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The first attempt to model international real business cycles (IRBC) by Backus, Kehoe

and Kydland (1992) pointed out a number of discrepancies between the data and the

predictions of their model (see Backus et al (1995) and Ravn (1997)). First, the cross-

country correlation of output is higher than the cross-country correlation of consumption

in the data, while the opposite is observed in IRBC models (the cross-country consumption

correlation puzzle). Second, IRBC models can account for only a fraction of the variability

of relative prices found in the data. Third, productivity levels are more closely related

across countries in the data than in IRBC models.

Many authors have turned their attention toward IRBC models with (exogenous)

incomplete asset markets to try solving the cross-country consumption correlation puzzle.

Some examples are Arvanitis and Mikkola (1996), Baxter and Crucini (1995), Crucini

(1997) and Kollmann (1996). In their models, representative agents can trade only one-

period bonds. van Wincoop (1996) also includes (exogenous) market incompleteness in a

multi-country IRBC model with heterogenous agents. Asset market incompleteness can

also be made endogenous as in Kehoe and Perri (1996) where international loans are

not perfectly enforceable. Kehoe and Levine (1996) compare an (exogenous) incomplete

markets model with a model where loans are not perfectly enforceable and conclude that

the latter is simpler and should receive more attention.

This paper studies the accuracy of the linear approximation method commonly used to

solve these models and documents the effect of their parametrization on their economic im-

plications. A central finding is that the parametrizations which address the cross-country

consumption correlation puzzle are precisely those where solutions may be least accurate.

In section I, we contrast the complete markets IRBC model of Backus, Kehoe and Kyd-

land (1995) with the incomplete markets IRBC models of Baxter and Crucini (1995) and

Kollmann (1996). We also present the IRBC model we use in our analysis.

IRBC models are often approximated using the solution method of King, Plosser

and Rebelo (1988) where the first-order conditions are linearized around the steady state.

Dotsey and Mao (1992) investigated the accuracy loss due to that solution method. In

section II, we add to this literature by showing the great degree of inaccuracy associated
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with a non-stationary productivity shock process.

IRBC models with incomplete financial markets introduce an additional source of

inaccuracy. In such models there are an infinite number of steady-state equilibria so the

(linearized) dynamic system has an endogenous unit root and therefore is not guaranteed

to converge. In section III, we quantify this additional source of inaccuracy and show

that it can be reduced by using a symmetric model. We also demonstrate that the degree

of accuracy increases with the level of international spillovers in technology shocks and

decreases with the level of persistence in technology shocks.

Baxter and Crucini (1995) and Kollmann (1996) were the first to consider incomplete

asset markets in an IRBC model. Unfortunately, these two papers come to different con-

clusions regarding the effect of restricting asset markets (when using a stationary process

for technology shocks) even though their models have very similar structure. In section IV

we reconcile those apparently paradoxical results. We also show that the economic effect

of the restrictions on the asset markets is difficult to measure due to the approximation

error in the incomplete markets model. Section V concludes.

I. IRBC Models

Backus, Kehoe and Kydland (1995) present one of the simplest IRBC models. In this

model the world is composed of two ex ante identical countries, denoted by i = 1, 2, in

which identical agents produce and consume a single homogeneous good. Each country is

represented by a consumer who seeks to maximize

(1) Eui = E0

∞∑
t=0

βt
[
cµit(1− nit)1−µ]1−σ

1− σ

where cit and nit denote consumption and hours worked in country i. Output in country

i is given by the (constant returns to scale) production function

(2) yit = zitk
θ
itn

1−θ
it ,

where zit represents a shock to country i’s technology and kit the capital stock installed

in country i. The law of motion for capital, incorporating the time-to-build structure, is
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given by

kit+1 = (1− δ)kit + s1
it,

sjit+1 = sj+1
it , ∀j = 1, ..., J − 1,

where sjit denotes the value of investment projects that are j periods from completion at

time t. Investment at time t is given by

xit =
J∑
j=1

φjs
j
it,

where φj denotes the fraction of value added to an investment project in the jth period

before completion. The technology shocks follow[
z1t+1
z2t+1

]
=
[
ρp ρs
ρs ρp

] [
z1t
z2t

]
+
[
ε1t+1
ε2t+1

]
,

where ρp measures the persistence in technology shocks, ρs measures the level of interna-

tional spillovers and the innovations ε = (ε1, ε2) have covariance matrix Ω. The transition

matrix in the bivariate AR(1) process above is denoted P.

Baxter and Crucini’s (1995) model is very close to Backus, Kehoe and Kydland’s.

We outline only the differences between the two. A first difference is in the production

function. For country i, this function, incorporating labor-augmenting technical change at

gross rate γ, is

Yit = zitK
θ
itγ

(1−θ)tn1−θ
it .

Baxter and Crucini redefine the variables in order to remove the deterministic trend aris-

ing from the labor-augmenting technical change. They divide all variables, except hours

worked, by γt and let lowercase letters denote the transformed variables. The production

function in their transformed economy is then yit = zitk
θ
itn

1−θ
it , which is identical to the

one in Backus, Kehoe and Kydland’s model. Also, the adjusted discount factor used in

the transformed economy is β̃ = βγµ(1−σ).

A second difference is in the law of motion for capital. Instead of using time-to-

build to slow down investment, Baxter and Crucini use a capital adjustment cost function

ψ(xit/kit), where ψ > 0, ψ′ > 0 and ψ′′ < 0. The law of motion for capital is then

(3) γkit+1 = (1− δ)kit + ψ(xit/kit)kit.
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When asset markets are restricted to one-period discount bonds, the budget constraint

of country i is

(4) γPBt bit+1 + cit + xit = yit + bit

where bit+1 denotes the quantity of bonds purchased in period t and maturing in t + 1,

and PBt denotes the bond price.

The general form of the technology shock process is

(5)
[

log z1t+1
log z2t+1

]
=
[
ρp ρs
ρs ρp

] [
log z1t
log z2t

]
+
[
ε1t+1
ε2t+1

]
.

Kollmann’s (1996) model is very close to Baxter and Crucini’s. The only differences

are that Kollmann specifies explicitly the form of the capital adjustment cost function and

does not consider labor-augmenting technical change. The parameter values for all three

of these models are presented in appendix A.1.

To contrast the economic findings of these models and to study approximation er-

ror, we adopt a model similar to Baxter and Crucini’s. There are only two trivial dif-

ferences. First we do not consider labor-augmenting technical change, which implies

γ = 1. Second, we specify a particular form for the capital adjustment cost function,

ψ(xit/kit) = (xit/kit)τ , where 0 < τ < 1, which satisfies the conditions ψ > 0, ψ′ > 0 and

ψ′′ < 0. The greater τ the smaller the adjustment cost. As for any capital adjustment cost

function, the parameter τ is calibrated to match the relative volatility of investment. In

our case we set it to 0.977 so that investment is approximately three times more volatile

than output.

Therefore, the representative consumer in country i seeks to maximize expected life-

time utility given by (1). Output in country i is given by the production function (2).

The stock of capital evolves according to equation (3) and the technology shocks follow

the process given by (5) where the innovations ε = (ε1, ε2) have covariance matrix Ω.

When asset markets are restricted to one-period bonds, agents in country i must

satisfy the budget constraint (4) for all periods and states. Also the bond market clearing

condition, b1t + b2t = 0, must hold for all periods and states. Appendix A.2 presents the
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derivation of the equilibrium system for this economy and discusses the solution method

employed.

When asset markets are complete both countries can perfectly pool idiosyncratic risk

and the optimal and competitive equilibrium solutions coincide. Appendix A.3 presents the

derivation of the equilibrium system for this economy and discusses the solution method

employed. Unless otherwise specified, the parameter values considered in this paper are

the ones used by Backus, Kehoe and Kydland presented in appendix A.1, except for the

absence of time-to-build.

II. Solution Method and Technology Shock Specification

Whether asset markets are complete or incomplete, it is important to be aware of the

effect of the technology shock parametrization on the approximation error. For instance,

the linear dynamic system following from our IRBC model with complete markets satisfies

the saddle-path stability condition. Therefore, it fluctuates around its steady-state equilib-

rium under most circumstances. However, there are restrictions imposed on the bivariate

AR(1) process utilized to model technology shocks. The usual specification is given in

equation (5). Once the equilibrium system of equations is linearized and the fundamental

dynamic system derived, we use the linearized version of the AR(1) process, which is

[
ẑ1t+1
ẑ2t+1

]
=
[
ρp ρs
ρs ρp

] [
ẑ1t
ẑ2t

]
+
[
ε1t+1
ε2t+1

]
where hatted variables denote percent deviations from the steady state. That is, if we

let z̄i be the steady-state value for zi, then ẑit ≡ (zit − z̄i)/z̄i. For the complete markets

model to fluctuate around its steady state, it must be the case that the shocks ultimately

die out so that ẑ1 and ẑ2 come back to their steady-state value of 0. This occurs only if the

eigenvalues of P are less than 1. The eigenvalues of P are ρp + ρs and ρp − ρs. Therefore,

we have the restrictions ρp + ρs < 1 and ρp − ρs < 1. Since ρp and ρs are (usually)

positive constants we have the implicit restrictions that ρp < 1 and ρs < 1. Finally, if we

want to prevent oscillatory behavior, we must have ρp − ρs > 0 so that no eigenvalue is

negative. Therefore using a unit-root process without spillovers (as Baxter and Crucini
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do) violates the necessary conditions for the (complete asset markets) model to fluctuate

around its steady state. With such a specification, each innovation in the technology

shocks pushes the model toward a new steady-state equilibrium. In such a case, we expect

the approximation error coming from the linear approximation to increase because we are

linearizing around a particular steady state and the model moves away from that point.

One way to estimate this additional inaccuracy is to measure how far the new steady

state is from the initial one. The experiments we perform are very simple. We choose a set

of P matrices many of which violate the conditions ρp + ρs < 1 and ρp− ρs < 1. Then, we

perform an impulse response exercise and verify the new equilibrium to which the model

converges. More specifically, we simulate the complete markets model for 20,000 periods

after one technology shock (set to one standard deviation of ε1, denoted σε) in country 1

in period 1. Table 1a presents the effects of this single shock. The numbers in the column

GAP are calculated as follows: (1) calculate the difference (in percent) between the new

steady state and the initial one, for all variables except net exports; (2) take the largest

number (in absolute value) calculated in (1). From table 1a we see that the model does not

come back to its initial steady state when the condition ρp + ρs < 1 is violated. Moreover,

GAP is relatively large (2.339 percent) when ρp = 1.

Recall that the results in table 1a are generated by a single shock. When we perform

a regular simulation there are many more shocks and therefore we expect the model to

drift away from the initial steady state even more. To see this, we simulate the model for

20,000 periods but generate technology shocks (for both countries) in the first 100 periods

only. From table 1b, we see that the new steady state achieved after 20,000 periods is

always different from the initial one when the condition ρp + ρs < 1 is violated. Again we

see that the new steady state is further from the initial one when ρp = 1 (GAP=22.183%).

In the case of the incomplete asset markets model, if the necessary conditions given

above are violated, then there exist three sources of inaccuracy. The first is the loss of

accuracy coming from the fact that we linearize the model (investigated by Dotsey and

Mao (1992)). The second is the loss of accuracy coming from a non-stationary technology

shock process (exogenous unit root). This is investigated in this section. The third is
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the loss of accuracy coming from the endogenous unit root in the linear dynamic system

(investigated in the next section).

III. Solution Method and Incomplete Asset Markets

Our IRBC model with incomplete markets has an infinite number of steady-state

equilibria. This is easily seen by looking at the equilibrium system derived in appendix

A.2. In steady state, this system has 13 endogenous variables in 12 equations. In contrast,

when markets are complete (see appendix A.3) the number of endogenous variables equals

the number of equations and the model fluctuates around its unique steady state (as long

as the stochastic process for the technology shocks is stationary). The infinite number

of steady-state equilibria in the model with incomplete markets translates in a linearized

system with an infinite number of steady-state equilibria. This implies the system has a

unit root which is the discrete time analogue of a zero root studied by Giavazzi and Wyplosz

(1985). The system violates the stability condition and exhibits zero-root dynamics as

explained in Amable et al (1994).

Since the model is unstable, we do not expect the model to come back to its initial

steady state. Usually, the equilibrium system of equations is linearized around a symmetric

(initial) steady state where both countries do not trade. Since the equilibrium system is

approximated around this initial steady state, the decision-rules calculated depend on it.

When the economy moves toward another steady state, these decision-rules are inaccurate.

The further away the economy moves from the initial steady state, the greater the inaccu-

racy. Therefore we examine whether the model actually fluctuates in the neighborhood of

the initial steady state. If that is the case, then the system is not too inaccurate.

To investigate this question we proceed as follows. We simulate the economy for 20,000

periods but generate innovations in technology shocks in both countries in the first 100

periods only. Therefore, the economy has 19,900 periods to come back to a steady-state

equilibrium. We repeat this exercise 5,000 times and present the results of two of these

replications in the first two rows of table 2. Row 1 (2) presents what we call a “good draw”

(“bad draw”). It is the realization where GAP was the smallest (largest). Based on these

two rows we can conclude that the economy does not converge exactly to the initial steady
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state. We observe that the largest difference between the initial steady state and the new

equilibrium (GAP) is 1.8557 percent for these two rows.

To get some insight into bad draws we perform 6 experiments where we control the

sequences of innovations. The first one is similar to an impulse response. Again we simulate

the model for 20,000 periods but this time there is a single innovation in technology shocks.

It occurs in period 1 in country 1 and is equal to one innovation standard deviation (σε).

Row 3 of table 2 shows the results. The new steady state is very close to the initial one,

the largest discrepancy being 0.03939 percent. We then increase the number of innovations

set to one standard deviation. When the first five innovations to country 1’s technology

shocks are set to σε the largest difference between the new and the initial steady state is

0.19696 percent as shown in row 4. When the first twenty-five innovations equal σε, the

largest difference increases to 0.98480 percent and to 4.92398 percent in the extreme case

where 125 innovations are set to σε (rows 5 and 6 respectively). Therefore we see that for

a scenario where country 1 experiences 5 innovations which are not somehow compensated

by innovations in country 2, the resulting steady state is close to the initial one, with GAP

less than 0.20 percent.

Intuitively, the reason why the new steady state is close to the initial one when we

perform a regular simulation is that innovations in technology shocks across countries have

offsetting effects over time. Consider the case where country 1 experiences an innovation

equal to one standard deviation in period 1 and country 2 an innovation of one standard

deviation in period 2. The simulation length is still 20,000 observations. The results are

in row 7 of table 2. The largest discrepancy is very close to zero, which confirms our

intuition. Moreover, the innovation in country 2 need not be very close (in time) to the

one in country 1. When country 2’s innovation is postponed until period 50, the largest

difference is again close to zero (row 8). Therefore, it is clear that, when the innovation

sequences in both countries have similar empirical distributions, the new steady state is

close to the initial one. Therefore, the symmetry of the covariance matrix used to generate

innovations is important if we want the economy to come back to an equilibrium close to

the initial one.
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To prove the latter statement, we compare rows 9 and 10 in table 2. Row 9 is the base

case where the model is perfectly symmetric. We simulate the model for 20,000 periods

but this time we generate innovations in both countries for the first 100 periods based

on a particular seed. When the model is symmetric, GAP=0.34381%. However when we

double country 1’s innovations standard deviation, so that

Ω =
[

0.017042 0.258× 0.01704× 0.00852
0.258× 0.01704× 0.00852 0.008522

]
,

the resulting GAP is 0.73989 percent (row 10). This increase in GAP is not solely from

the increase in volatility since doubling the standard deviations in both countries exactly

doubles the GAP to 0.68762 percent.

The symmetry of the matrix governing the levels of persistence and international

spillovers in technology shocks (P) is also important. Rows 9 and 11 demonstrate this

point. Again we simulate the economy for 20,000 periods but generate innovations in

technology shocks for both countries only in the first 100 periods. When Ω and P are

symmetric the new and initial steady states are close. The largest discrepancy is 0.34381

percent. When the same sequence of innovations is used but matrix P is

P =
[

0.904 0.052
0.149 0.908

]

then the new steady state is relatively far from the initial one with the largest difference

being 1.72993 percent as shown in row 11. Note that the asymmetric P above has the

same eigenvalues as the symmetric P.

The symmetry of the model is therefore very important. Another example of this

importance arises when we consider different country sizes. When country 2 represents

one tenth of the world the gap almost doubles (0.61886, row 12) compared to the case

where both countries are equal (0.34381). In contrast, the symmetry of an IRBC model

with complete asset markets is irrelevant. All the rows in table 2 would have GAP equal

to zero.
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There are two other factors affecting the accuracy of the IRBC model with incomplete

markets. Those are the levels of persistence (ρp) and of international spillovers (ρs) in the

technology shock process. Except for row 11, all the results presented in table 2 depend on

the parameters ρp = 0.906 and ρs = 0.088. However, changing these parameters modifies

importantly the results in table 2. When we perform the experiments in table 2 but using

ρp = 0.906 and ρs = 0, we have to multiply the GAPs by a factor of (approximately)

1.97. When we use ρp = 0.95 and ρs = 0.044 the factor is still 1.97 but when we set

ρp = 0.95 and ρs = 0, then the factor is 3.59. Therefore we see that reducing the level

of international spillovers reduces the accuracy of the solution method. Also, if we set

ρp = 0.99 and ρs = 0 then we have to multiply the numbers in table 2 by 11.53 showing

that the level of inaccuracy increases with the degree of persistence.

The conclusion we can draw from our analysis is that when we model an economy

with incomplete financial markets, we have to pay attention to the symmetry of the model.

Using symmetric P, country-size, and Ω, and respecting the conditions ρp + ρs < 1 and

ρp − ρs < 1 increases the likelihood of having an economy fluctuating around steady-

state equilibria in the neighbourhood of the initial one. However, these conditions are not

sufficient to guarantee the accuracy of the solution method since the levels of persistence

and international spillovers play a significant role.

IV. Cross-Country Consumption Correlation and Incomplete Asset Markets

In this section we reconcile the main results of Baxter and Crucini (1995) and Koll-

mann (1996). Baxter and Crucini showed that when Backus, Kehoe and Kydland’s matrix

P is used, restricting asset markets has little impact on predicted moments. According

to them, this result comes from the fact that international spillovers are so large that

wealth effects are almost the same in both countries, whether markets are restricted or

not. They also showed that when technology shocks are permanent and there are no inter-

national spillovers, then restricting asset markets does affect the predictions of their model.

However, we demonstrated in section III that using such a P matrix generates unreliable

statistics (even in the complete markets model) as the approximation around a steady

state is inaccurate. Instead, we look at a persistence level consistent with a stationary
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stochastic process for technology shocks.

Considering Baxter and Crucini’s and Kollmann’s results together would lead to

the following conclusion. Baxter and Crucini showed that when there are international

spillovers, restricting asset markets has no effects on the IRBC model’s predictions. Koll-

mann showed that with larger persistence and no international spillovers, restricting asset

markets does modify the model’s predictions. Therefore, it must be that reducing the

level of international spillovers or increasing persistence is the factor explaining whether

incomplete markets can help resolve the cross-country consumption correlation puzzle.

We demonstrate that the effects of restricting asset markets are highly dependent on the

parametrization of the technology shock process. Since one goal of imposing restrictions

on the asset markets is to reduce corr(c1, c2), we focus on that moment only. Note that

other moments act similarly. That is, when corr(c1, c2) is not much affected by restrictions

then so are the other moments (standard deviations, autocorrelations and so on).

Table 3 shows the effect of the restrictions on the cross-country correlation of con-

sumption. First, when there are no spillovers (rows 1 to 3) restricting asset markets does

lower corr(c1, c2). Moreover, the larger the level of persistence, the larger the effect. Row 3

is consistent with the large effect of the restrictions found by Baxter and Crucini when they

set ρp = 1 and ρs = 0. Second, decreasing the level of international spillovers (compare

row 1 with 4 and 2 with 5) greatly increases the effect on corr(c1, c2). When ρs 6= 0 the

changes in corr(c1, c2) are not statistically significant. These results are consistent with

Baxter and Crucini’s wealth effect argument. The larger the spillovers, the more similar are

the wealth effects across countries and therefore the closer to the complete markets model

we get. Therefore, Kollmann’s result is perfectly consistent with Baxter and Crucini’s.

In section III we showed that both a reduction in spillovers and an increase in per-

sistence reduce the accuracy level of the solution method. Therefore, it is hazardous to

conclude that the restrictions on the asset markets have a large economic effect when there

are no spillovers and when there is a lot of persistence because the portion of the change in

cross-country consumption correlation due to the approximation error is unknown. This

loss of accuracy can certainly explain the large standard deviations on corrI(c1, c2) in the
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first three cases.

V. Conclusion

We measured the accuracy of King, Plosser and Rebelo’s (1988) solution method when

applied to an IRBC model with incomplete markets. We showed that it is necessary for the

sum of the levels of persistence and international spillovers to be less than one to obtain

accurate results in the complete markets setting and reduce the inaccuracy in a model

with incomplete markets. We demonstrated that the use of a unit root process without

spillovers greatly reduces the accuracy of the solution method.

We presented measures of the inaccuracy generated by the presence of an endogenous

unit root in the (linearized) dynamic system when markets are incomplete and showed

that this inaccuracy can be reduced by having a model as symmetric as possible. We also

showed that the lower the degree of international spillovers in technology shocks and the

higher the level of persistence, the greater the inaccuracy of the solution method when

applied to the incomplete asset markets model.

Finally we demonstrated that the effect of restricting asset markets on predicted mo-

ments is highly dependent on the levels of persistence and spillovers. This dependence

explains why Baxter and Crucini (1995) conclude that the restrictions on asset markets

have little impact on the cross-country consumption correlation when using a stationnary

process for technology shocks while Kollmann (1996) shows the opposite.

The finding that the economic effect of asset markets restrictions depends on the

persistence in the shocks to income was also demonstrated in the asset-pricing literature.

For instance, Telmer (1993) who specifies a labour income process with little persistence

does not find much effect from asset markets restrictions whereas Constantinides and Duffie

(1996) show that in a model where the shocks to income are random walks, an economy

with incomplete markets is different from one with complete markets.

As shown by Kollmann (1996) and van Wincoop (1996), restrictions on asset markets

actually improve the model’s predictions regarding cross-country correlation of output

compared to the cross-country correlation of consumption. However, the results depend

heavily on the levels of persistence and spillovers assumed or estimated which in turn
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influence greatly the degree of accuracy of the solution method of King, Plosser and Rebelo

(1988). Moreover, since estimates of the level of international spillovers are somewhat

imprecise it might be desirable to map this uncertainty into uncertainty about the model’s

predictions.

13



APPENDIX A.1 Parametrizations of Previous Models

1.1 Backus, Kehoe and Kydland (1995)

preferences: β = 0.99, µ = 0.34, and σ = 2.0;

technology: θ = 0.36 and δ = 0.025;

time-to-build: J = 4, φj = 0.25 ∀j;

technology shock process:

P =
[

0.906 0.088
0.088 0.906

]
, Ω = 0.008522

[
1 0.258

0.258 1

]
.

1.2 Baxter and Crucini (1995)

preferences: β = 0.98, µ = 0.2 and σ = 2

technology: θ = 0.42, δ = 0.025 and γ = 1.004

capital adjustment cost: 1/ψ′ = 1, −(ψ′/ψ′′)÷ (x/k) = 15

the two technology shock processes considered are:

First

P =
[

0.906 0.088
0.088 0.906

]
, Ω =

[
1 0.258

0.258 1

]
.

Second

P =
[

1 0
0 1

]
, Ω =

[
1 0.258

0.258 1

]
.

1.3 Kollmann (1996)

utility function: U(c, 1− n) = (1/(1− σ)
[(
c (1− n)µ̃

)1−σ − 1
]

preferences: β = 0.9828, µ̃ = 0.39 and σ = 2

technology: θ = 0.36 and δ = 0.021.

capital adjustment cost: The law of motion for capital is

kit+1 + φ(kit+1, kit) = (1− δ)kit + xit,

where

φ(kit+1, kit) = 0.5 · φ · [kit+1 − kit]2 /kit, φ = 3.
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technology shock process:

P =
[

0.95 0
0 0.95

]
, Ω = 0.0072

[
1 0.2

0.2 1

]
.
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APPENDIX A.2 Equilibrium System of Equations: Incomplete Markets

Agent in country i chooses sequences {cit, nit, kit+1, bit, xit} to solve the problem

maxE0

∞∑
t=0

βtU(cit, 1− nit) = E0

∞∑
t=0

βt
[
cµit(1− nit)1−µ]1−σ

1− σ

subject to

cit + xit + PBt bit+1 = zitk
θ
itn

1−θ
it + bit

kit+1 = (1− δ)kit +
(
xit
kit

)τ
kit

This maximization problem is solved by Lagrange’s method. Define the Lagrangean

E0

∞∑
t=0

βt

{[
cµit(1− nit)1−µ]1−σ

1− σ
+λit

[
zitk

θ
itn

1−θ
it + bit − cit − PBt bit+1 − xit

]

+νit

[
kit+1 − (1− δ)kit −

(
xit
kit

)τ
kit

]}

where λit and νit are Lagrange multipliers. Defining U(cit, 1 − nit) ≡ Uit and yit ≡

zitk
θ
itn

1−θ
it , the first-order conditions are

(A1) (cit) : µ(1− σ)
Uit
cit

= λit

(A2) (nit) : (1− µ)(1− σ)
Uit

1− nit
= λit(1− θ)

yit
nit

(A3) (xit) : λit + τνit

(
xit
kit

)τ−1

= 0

(A4) (bit+1) : λitP
B
t = βEtλit+1

(A5) (kit+1) : νit + βEt

{
λit+1θ

yit+1

kit+1
− νit+1

[
1− δ + (1− τ)

(
xit+1

kit+1

)τ]}
= 0
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(A6) (λit) : cit + xit + PBt bit+1 = zitk
θ
itn

1−θ
it + bit

(A7) (νit) : kit+1 = (1− δ)kit +
(
xit
kit

)τ
kit

Therefore, the equilibrium system is composed of 15 equations: (A1) to (A7) for i = 1, 2

and market clearing condition

(A8) b1t + b2t = 0.

Note that equation (A8) in conjunction with the budget contraints imply the world

market clearing condition

(A9) c1t + c2t + x1t + x2t = y1t + y2t.

Since the numerical solution method prevents us from imposing both budget constraints,

we follow Baxter and Crucini (1995) and replace country 1’s budget constraint by (A9).

The equilibrium system can be simplified by using (A8) to substitute out b1t and (A4) to

substitute out PBt . Therefore, we are left with an equilibrium system in the endogenous

variables (c1, c2, n1, n2, x1, x2, k1, k2, b2, λ1, λ2, ν1, ν2) composed of equations (A1), (A2),

(A3), (A5) and (A7) for both countries, equation (A9), equation (A6) for country 2 and

(A10)
Etλ1t+1

λ1t
=
Etλ2t+1

λ2t
.

The system can now be linearized by taking a first-order Taylor series approximation

around its steady state. After substituting out (c1, c2, n1, n2, x1, x2, λ1) using the linearized

version of (A1), (A2), (A3) and (A9) we obtain the fundamental dynamic system

Et


k̂1t+1
k̂2t+1
b̂2t+1
λ̂2t+1
ν̂1t+1
ν̂2t+1

 = W


k̂1t
k̂2t
b̂2t
λ̂2t
ν̂1t
ν̂2t

+Q

[
ẑ1t
ẑ2t

]
+R Et

[
ẑ1t+1
ẑ2t+1

]
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where hatted variables denote percent deviations from steady state. That is, if we let z̄i

be the steady-state value for zi, then ẑit = (zit − z̄i)/z̄i. Since asset holdings are assumed

to be zero in steady state we define b̂2t = b2t/ȳ2.

Matrix W is 6× 6 and matrices Q and R are 6× 2. k̂1t, k̂2t and b̂2t are predetermined

at time t (state variables ) while λ̂2t, ν̂1t and ν̂2t are not (co-state variables). Matrix W

governs the system dynamics. For the system to have a unique solution, W must have

as many roots outside the unit circle as there are co-state variables. For the system to

be stable, W must have as many roots on or outside the unit circle as there are co-state

variables. Therefore we need W to have 3 eigenvalues greater than one (in absolute value)

for uniqueness and 3 eigenvalues greater or equal to one (in absolute value) for stability.

The roots are 0.8888, 0.9666, 1, 1.0101, 1.0450 and 1.1365. Therefore the system is unstable

and has a unique solution given by Blanchard and Kahn (1980).
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APPENDIX A.3 Equilibrium System of Equations: Complete Markets

When financial markets are complete we know the competitive equilibrium is Pareto

optimal. Therefore, we can conveniently derive the equilibrium system using an equal

weight planner problem since both countries are ex ante identical. The planner maximizes

the sum of expected lifetime utilities subject to the world resource constraint

c1t + x1t + c2t + x2t = z1tk
θ
1tn

1−θ
1t + z2tk

θ
2tn

1−θ
2t

This maximization problem is solved by Lagrange’s method. Define the Lagrangean

E0

∞∑
t=0

βt

{[
cµ1t(1− n1t)1−µ]1−σ

1− σ
+

[
cµ2t(1− n2t)1−µ]1−σ

1− σ

+λt

[
z1tk

θ
1tn

1−θ
1t + z2tk

θ
2tn

1−θ
2t − c1t − x1t − c2t − x2t

]

+ν1t

[
k1t+1 − (1− δ)k1t −

(
x1t

k1t

)τ
k1t

]
+ν2t

[
k2t+1 − (1− δ)k2t −

(
x2t

k2t

)τ
k2t

]}

Defining U(cit, 1− nit) ≡ Uit and yit ≡ zitkθitn
1−θ
it , the first-order conditions are

(A11) (cit) : µ(1− σ)
Uit
cit

= λt, i = 1, 2

(A12) (nit) : (1− µ)(1− σ)
Uit

1− nit
= λt(1− θ)

yit
nit

, i = 1, 2

(A13) (xit) : λt + τνit

(
xit
kit

)τ−1

= 0, i = 1, 2

(A14)

(kit+1) : νit+βEt

{
λt+1θ

yit+1

kit+1
− νit+1

[
1− δ + (1− τ)

(
xit+1

kit+1

)τ]}
= 0, i = 1, 2
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(A15) (λt) : c1t + x1t + c2t + x2t = y1t + y2t

(A16) (νit) : kit+1 = (1− δ)kit +
(
xit
kit

)τ
kit, i = 1, 2

Therefore, we have an equilibrium system composed of equations (A11) to (A16)

in the endogenous variables (c1, c2, n1, n2, x1, x2, k1, k2, λ, ν1, ν2). The system can now be

linearized by taking a first-order Taylor series approximation around its steady state. After

substituting out (c1, c2, n1, n2, x1, x2, λ) using the linearized version of (A11), (A12), (A13)

and (A15) we obtain the fundamental dynamic system

Et


k̂1t+1
k̂2t+1
ν̂1t+1
ν̂2t+1

 = W


k̂1t
k̂2t
ν̂1t
ν̂2t

+Q

[
ẑ1t
ẑ2t

]
+R Et

[
ẑ1t+1
ẑ2t+1

]

where hatted variables denote percent deviations from steady state.

Matrix W is 4×4 and matrices Q and R are 4×2. k̂1t, k̂2t are predetermined at time

t (state variables) while ν̂1t and ν̂2t are not (co-state variables). Matrix W governs the

system dynamics. For the system to have a unique solution, W must have as many roots

outside the unit circle as there are co-state variables. For the system to be stable, W must

have as many roots on or outside the unit circle as there are co-state variables. Therefore

we need W to have 2 eigenvalues greater than one (in absolute value) for uniqueness and 2

eigenvalues greater or equal to one (in absolute value) for stability. The roots are 0.8888,

0.9666, 1.0450, and 1.1365. Therefore the system is stable and has a unique solution given

by Blanchard and Kahn (1980).
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Table 1a. Complete Markets Model — One Shock

Case Persistence Spillovers Sum GAP (%)

1 0.906 0.088 0.994 0.00000

2 0.906 0.094 1.000 0.89194

3 0.950 0.050 1.000 0.89194

4 1.000 0.000 1.000 2.33942

Table 1b. Complete Markets Model — 200 Shocks

Case Persistence Spillovers Sum GAP (%)

1 0.906 0.088 0.994 0.00000

2 0.906 0.094 1.000 10.14903

3 0.950 0.050 1.000 10.14903

4 1.000 0.000 1.000 22.18271

Notes: GAP is the largest difference, for any variable, between the new steady-state value and the initial one.

The seed is fix across all cases in table 1b.



Table 2. Incomplete Asset Markets Model

Case Description of the Experiment GAP (%)

1 Good Draw 2.895E-05

2 Bad Draw 1.85568

3 1 Shock 0.03939

4 5 Shocks 0.19696

5 25 Shocks 0.98480

6 125 Shocks 4.92398

7 1 period 4.37e-10

8 50 periods 2.19e-08

9 Symmetric P, Ω and Country Size 0.34381

10 Asymmetric Ω 0.73989

11 Asymmetric P 1.72993

12 Asymmetric Country Size 0.61886

Notes: GAP is the largest difference, for any variable, between the new steady-state value and the initial one.

The seed is fix across cases 9 to 12.



Table 3. Effect of Asset Markets Restrictions on corr(c1, c2)

Case ρp ρs corrC(c1, c2) corrI(c1, c2)

1 0.906 0.000 0.770 0.592

(0.082) (0.127)

2 0.950 0.000 0.805 0.527

(0.074) (0.143)

3 0.990 0.000 0.863 0.183

(0.056) (0.183)

4 0.906 0.088 0.912 0.872

(0.032) (0.045)

5 0.950 0.044 0.896 0.804

(0.040) (0.070)

Notes: The cross-country consumption correlation is denoted corrC(c1, c2) in the complete markets model and

corrI(c1, c2) in the incomplete markets model. Moments are calculated using HP filtered percent deviations

from steady state. They are averages over 1000 replications, each 100 periods in length. Standard deviations are

in parentheses.


