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The return of goods is an important part of many economic transactions. Consider for
example mail-ordered goods, or electronic and photographic material.! Many goods
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Abstract

We present a model of monopoly provision of money-back warranties. A buyer
values an object more than a seller. They are both risk neutral and initially have
no private information. The buyer can, however, acquire information and learn
his true valuation for the object. Information acquisition is wasteful because it is
costly, and because it reduces the gains from trade. The seller uses a warranty to
prevent wasteful information acquisition, by offering the buyer part of the benefits
that information would have given him, namely the ability not to purchase useless
objects.

We compare the optimal contracts when a warranty can be offered and when
it cannot. We find that when the cost of information is lower than a threshold,
allowing the seller to offer a warranty is welfare improving. However, when the
cost of information is higher than the threshold, it is socially optimal to forbid
money-back warranties.

Introduction

'In the electronics industry, or in other industries that produce and sell high learning products,
a large number of returns are not really defective. A high learning product is one that requires user
knowledge or expertise for proper operation. Such products often are returned in large numbers but
there is really nothing wrong with them, except that the consumer could not figure out how to make

them work. See Chapter 2 of Rogers and Tibben-Lembke (1998).



are sold with the option to return them if the buyer is not satisfied. Sometimes the
promise is explicit, in which case we have “money-back warranties”. Other times, it is
implicitly understood that the consumer may return the object for refund or credit.?

In the economic literature the term “warranty” usually designates an arrangement
where the seller of a product, upon occurrence of a prespecified contractible event
(malfunctioning of the product), pays a compensation to the buyer. One standard
rationale for warranties relies on the seller’s incentive to signal his private information
about the quality of the product; it is less costly for the seller to offer a warranty when
the quality of the good is high rather than low. Other models feature warranties as an
additional instrument, beyond the price and the probability of sale, to screen different
types of consumers; in such models, risk averse consumers know their own valuation for
the object, but the seller does not. Finally, some models present warranties as insurance
against the malfunctioning of the product; this explanation relies on consumers being
more risk averse than producers.

In this paper we address a different contracting issue, namely the arrangement by
which a seller allows the buyer to return the good for a refund, no questions asked. This
arrangement does not condition on any commonly observable event, such as “malfunc-
tioning” or “failure”. The event that triggers the return is is the buyer’s idiosyncratic
perception of the quality of the good, which is unobservable to the seller. Such ar-
rangements are common, for instance, in retail sales, where the quality of the good is
the enjoyment that the consumer derives from it, and thus may not objectively mea-
surable. Consider as an example the buyer of a book who has the option of returning
the book for cash or, as more common in Europe, for credit. Why does the seller offer
this option? Risk aversion is implausible, given the small sums involved, and signaling
motives on the part of the seller are unlikely. The screening models discussed above
do not work either, because the contract does not condition on “failure” of the book.
We propose that, in this case, the money-back warranty is a means of preventing the
buyer from acquiring information about the book before purchasing it.

To explore this issue, we present a model where buyer and seller are risk neutral

2“Generally, customers who believe that an item does not meet their needs, will return it, regardless
of whether it functions properly or not. In an interesting example of this behavior, one retailer recently
reported the return of two ouija boards. Ouija boards are children toys that, supposedly, allow contact
with the spirit world. On one ouija board there was a note describing that it did not work because no
matter how hard we tried, we could not get any good answers from the other side. The other ouija
board returner said that the reason for return was: too many spirits responded to the ouija board
session, and things became too scary. In both cases, the consumers were allowed to return these
defective products.” Rogers and Tibben-Lembke (1998), p. 19.



and have no private information about the buyer’s valuation of the object. Only the
buyer can find out his valuation for the object, incurring a cost of information. In this
model the seller uses the warranty to discourage wasteful information acquisition on
the part of the buyer. Information acquisition is wasteful for two reasons: it is costly,
and information that is private to the buyer reduces the gains from trade because
consumers with low valuations will not buy.

To understand the role of warranties, consider an object whose value to the seller is
zero, and whose value to the buyer is a random variable distributed uniformly between
zero and one. Neither the seller nor the buyer know the buyer’s true valuation, but
the buyer can incur a cost of 3/32 and learn his true valuation for the object. We now

show that, absent a warranty, the best choice for the seller is to set a price of |/6/32.
Acquiring information allows the buyer to not purchase the object if his valuation is

below this price. In this event, which has probability |/6/32, the expected surplus
from buying is the expected value of the object minus the price, viz. —(1/2)/6/32.

2
The value of information to the buyer is therefore (1/2) (,/6 / 32) = 3/32; this is the
amount that the buyer saves if he becomes informed. Thus, at the given price the
buyer is willing to forego information acquisition and accept the contract, and the

seller makes a profit of 1/6/32. At any higher price the buyer will acquire information,

and the seller will earn profits of 1/4 < 1/6/32. Consider now the following contract
involving a warranty: the seller sets a price of 1/2, and allows the buyer to return
the object in exchange for a restitution of 1/4.3 Under this contract, the buyer enjoys
negative surplus when his valuation turns out to be less than 1/2; but he does not
return any object which he values at more than 1/4. When the value is smaller than
1/4 the buyer returns the object, so the buyer’s expected surplus is (1/4) [-1/4]. When
the value is between 1/4 and 1/2 the expected surplus is (1/4) [(3/8) — 1/2]. Adding
up we obtain the value of information for the buyer, which is exactly 3/32, hence the
buyer is willing to accept this contract without acquiring information. The seller earns
1/2 when the object is not returned and 1/4 when it is returned, for a total expected

profit of 7/16 > 1/6/32. Thus, offering a warranty is profitable for the seller.

As the above example suggests, the seller wants to induce the buyer to purchase
without acquiring information. To this end, offering a warranty is preferable to lower-
ing the price. The seller prefers the warranty because it reduces the revenue from only
low-valuation types, instead of lowering the price for all types. The buyer regards the

3Warranties where the seller gives back the full amount are discussed in Section 5.



warranty as a good substitute for information because it kicks in when his valuation
is low, precisely when information would have mattered (the buyer uses information
to decide whether or not to buy). In this paper we pose this as a mechanism design
problem, and solve for the optimal direct revelation game. We show that at the optimal
contract the good is traded more often than would be the case if the buyer was in-
formed. Thus, the optimal contract eliminates the costly information acquisition, and
introduces an inefficiency smaller than the inefficiency that would arise if the buyer
was informed.

We present a sufficient condition under which the outcome of the optimal revelation
game can be implemented as follows: the seller posts a fixed price for the object, and
agrees to take back the object and give back part of the price paid—if the buyer so
wishes. Under this contract the buyer never gets informed, always purchases the object,
and sometimes—when his valuation turns out to be low—returns the object.

We also work out the optimal contract when a warranty is impossible because the
object cannot be returned. Objects that cannot be returned are ice-cream cones, and
hair cuts. A regulation making it very expensive for sellers to dispose of returned items
may also make offering a warranty de facto impossible. We solve for the optimal direct
revelation mechanism, and we find that the seller can implement that allocation simply
by asking for a fixed price. In this case, however, the buyer will sometimes acquire
information. To see why, keep in mind that the optimal contract must consider the
incentive to acquire information. The only way that a seller can prevent information
acquisition in a world where objects cannot be returned is to lower the price, but
lowering the price hurts profits. In fact, when the cost of information is very small,
it is not profitable for the seller to prevent information acquisition because he would
have to lower the price too much. At the optimal contract, the seller anticipates that
information will be acquired and asks for the price that is optimal when dealing with
an informed agent.

We ask the question of whether money-back warranties are desirable by comparing
the optimal contracts when the object can, or cannot, be returned. In our model,
allowing the seller to offer a warranty is not necessarily welfare-improving, because
when the buyer returns an object we regard the object as not traded. In fact, when
the cost of acquiring information is high relative to the value of the object, forbidding
the seller from offering a warranty is the optimal policy. This is because the seller will
then find it optimal to lower the price, ensuring trade with probability one and no
information acquisition. By contrast, when the cost of information acquisition is low
the seller should be allowed to offer a warranty, since otherwise the optimal contract
involves information acquisition and limited trade of the object.
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1.1 Related Literature

The literature on warranties is vast. All of it, to our knowledge, assumes that there
is a contractible event, the “failure”, that leads to the warranty being invoked. The
textbook model is due to Grossman (1981), where warranties are a means of signalling
quality.* There are papers where warranties play a screening role; see Matthews and
Moore (1987), and the literature cited therein. These models are closer to our, in that
private information rests with the buyers. In Heal (1977) warranties play a risk-sharing
role. Mann and Wissink (1990) discuss the difference between money-back warranties
and replacement warranties; a money-back warranty ensures restitution of (part of)
the consumer’s purchase price in case of failure, and this terminates the relationship
between firm and consumer. Under a replacement warranty, a replaced product carries
the same warranty as the original and may itself be replaced if it fails to work. This
difference leads to different incentives for firms to produce quality.

Our work contributes to the literature on contracting with precontractual informa-
tion gathering. This literature has focused on principal-agent relationships where the
agent can acquire information about his disutility of production; see Cremer, Khalil
and Rochet (1998) for a review. The closest paper to ours is Cremer and Khalil (1992);
that paper examines a principal-agent model where before the contract is signed the
agent can pay a cost to discover his disutility of production, and after the contract is
signed the agent learns his disutility of production at no cost.

2 Model without warranties

A seller has an object which he values at 0. A buyer has value § > 0 for the object.?
Neither the buyer nor the seller know 6; they regard it as a realization from a ran-
dom variable distributed according to F' with support [0,1]. The buyer can acquire
information, i.e. pay c and learn the true value of 6.

The timing is as follows. First, the seller proposes a contract. After observing the
contract, the buyer decides whether or not to acquire information. Then the buyer
decides whether or not to participate in the contract. This timing captures a situation
where information acquisition is a covert activity: the seller cannot observe whether
the buyer has acquired information.

4See for example its account in Tirole (1995), p. 441-443.

5Since the seller values the object more than the buyer, the efficient allocation is for the object
always to be traded. Thus, information has no efficiency role in this model. This is discussed further
in Section 5.



We denote § = E(6). In what follows we will sometimes need the following as-
sumption:

Assumption 1 H (t) := t[1 — F (t)] is strictly pseudo-concave, i.e. H has a unique

mazximum, say tr, and H (t) is strictly decreasing away from t;.

19_f1§%) be strictly

increasing in 6; this assumption characterizes the “regular case” in Myerson (1981).
In the next section we characterize the optimal take-it-or-leave-it offer. In the

following one we set up the mechanism design problem, and give sufficient conditions

under which the optimal contract is indeed a take-it-or-leave-it offer.

A sufficient condition for Assumption 1 to hold is that the function

2.1 The optimal Tioli

One simple contract is the take-it-or-leave-it offer (Tioli), where the seller asks a price
t for the object which the buyer can accept or refuse. To characterize the optimal
DRM we need to talk about the value of information for the buyer under a Tioli. The
value of information is the increase in utility that the buyer enjoys by virtue of being
informed. Consider a Tioli at price t. When ¢ < @, the buyer purchases the object if
he is uninformed. Then the value of information is

t

V(t):/Ol[max{(),e—t}—(H—t)]dF(G):/ (t— ) dF (0).

0

When t > 0, the buyer will not purchase the object if he does not acquire information.
Then the value of information is

V(t)zfol[max{O,Q—t}—O]dF(Q):/1(9—t)dF(9).

t

V (t) is continuous at # and

V(0)=0
V(1)=0
V' (t)=F(t) >0 for0<t<@

Vit)=F({#)—1<0 forf<t<l.

Since V' (t) is single-peaked, in general its inverse is double-valued. Denote with
V-1 (c)and V! (c) the smallest and largest value of the inverse. Define ¢ := V/ (9),
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Figure 1: The value of information in a Tioli.

and ¢ := V (H (t;)). Because H (t;) < 6, we have ¢ < ¢.® Refer to figure 1. When
¢ > cthere is no value t for which the buyer acquires information. When ¢ < ¢ the
buyer acquires information if and only if V=1 (¢) <t < V! (¢).

The following assumption ensures that the optimal price that a seller would ask of
an informed buyer is not too large. This is not an overly restrictive assumption.

Assumption 2 V (t7) > c.

Proposition 1 Assume Assumption 2. Then the optimal Tioli has a price t* (c) defined

by
0 forc>c
t"(c)=14 V' (e) forc<ec<e
tr forc<ec.

For any t < 1 we have t [1 — F (t)] = ftl tdF (0) < ftl OdF (0) < fol 0dF (0) = 0, and in particular
tr[1—F(tr)] <.



Under this contract, the buyer acquires information if and only if ¢ < c.

Proof:  When ¢ > cthere is no value t for which the buyer acquires information, thus
t*(c) =fand 7" (c) = 0.

When ¢ < ¢ < ¢, the buyer acquires information if and only if V-1 (¢) <t < V! (¢).
Thus, if t = V7' (c) then 7 = V71 (¢); if t > V71 (¢)then 7 = H(t) < H(t;) <
V=1 (c) (the first inequality holds by definition of ¢7, and the second follows from the
restriction ¢ < ¢). The seller prefers to set t* (¢) = V! (¢), whence 7* (¢) = ¢* (¢) and
the buyer does not acquire information.

When ¢ < ¢, if t = t; the buyer acquires information since by Assumption 2
tr < V' (¢), and the seller makes m = H (¢7). If t = V! (¢), thenm = V=1 (¢) < H (¢1)
(the 1nequahty holds because ¢ < ¢). The seller prefers to set t* (¢) = t;, whence
7* (¢) = H (t;) and the buyer acquires information. |

As cincreases from zero, at first the buyer’s surplus decreases linearly in ¢; but
when chits ¢ the buyer’s surplus jumps up by ¢+ F (t;) E (0|0 < t;).” Thus, at ¢ = ¢
the buyer appropriates all the welfare gains from sparing the cost cand from selling
the object more often

2.2 The optimal mechanism is a Tioli

In this section we study the optimal direct revelation mechanism (DRM). In our con-
text, a DRM is a game where the buyer is asked whether he is informed or not, and
his valuation if he is informed. If the buyer reports to be uninformed he is given a
probability of getting the object p*and is forced to pay w". If the buyer reports to
be informed with type 0 he pays w (9) and is given a probablhty P (9 of receiving
the object. A DRM is described by the list (p (0),w (8)) U (p*, w*) of probabilities of
getting the object and payments.

We begin by showing that given any DRM where the buyer chooses not to become
informed, there is a better mechanism consisting of a Tioli. The Tioli mechanism
is better in that it gives the seller the same profit, and it gives the buyer a smaller
incentive to acquire information.

Lemma 1 Consider any direct revelation mechanism where the buyer chooses to stay
uninformed. Then there is a take-it-or-leave-it offer (Tioli) which yields at least as
great a profit to the seller.

"This is because the seller’s profits are continuous in ¢ while welfare is discontinuous because of the
shape of the optimal contract.



Proof:  See Appendix. |

The next theorem guarantees that, when Assumptions 1 and 2 are satisfied, the
allocation achieved by the optimal DRM can be implemented through a Tioli.

Theorem 1 Assume Assumptions 1 and 2. Then the optimal direct revelation mech-
anism can be implemented through a Tioli.

Proof.  Consider any DRM. If under this mechanism the buyer chooses to stay unin-
formed, by Lemma 1 the seller can earn a profit at least as great with a Tioli.

Suppose under the DRM the buyer chooses to become informed. Then we show
that one of the following two deviations is profitable, depending on the value of c.

Deviation A. switch to a Tioli at ¢;.

Deviation B. switch to a Tioli at min {le (c) ,@}

Consider the case ¢ < V' (t7). Then the seller should make deviation A. We must
show that, faced with the contract of deviation A, the buyer is willing to acquire infor-
mation and purchase the object. Then the seller’s profits will be H (¢7) which, in view
of Assumption 1, are the most that a seller can make when the buyer is informed (see
Myerson (1981)): thus this deviation will profitable. The buyer is willing to acquire in-
formation because ¢ < V' (t;). We must check that, after the buyer acquires information
and accepts the contract, he ends up with a nonnegative surplus. To this end, consider
first the case where t; > . Rewriting V (¢;) — ¢ > O we get ftll (0 —t;)dF () —c >0,
viz. the buyer’s expected surplus is positive. Consider next the case where t; < 6.
Rewriting this condition we get

0 < /O”(e—tl)dmew tl(ﬁ—tl)dF(Q)
— V) + tl(e—tl)dF(e)
< —ct [(0—tnar o),

tr
where the last inequality follows because ¢ < V (¢t;). This proves that the buyer’s
expected surplus is positive.

Consider the case ¢ > V (t7). Then the seller should make deviation B. Faced with
the contract of deviation B, the buyer does not acquire information and enjoys nonneg-
ative surplus. The seller’s profits are min {V:l (c) ,5} which, in view of Assumption
2, are greater than H (t7). Since H (t;)is the most that the seller could be extracting
from an informed buyer, deviation B is profitable. ]



3 Model with warranties

In this section we investigate the optimal direct revelation mechanism in the case
where a money-back warranty is possible. For a warranty to be possible, the buyer
must be able to experience the object and return it without obliterating its value
to himself or the seller. We model this by assuming that the seller can show the
buyer the object. If the seller shows the object, the buyer costlessly learns his true
valuation. When the equilibrium of the DRM entails the seller showing the object
and the object subsequently being not traded with positive probability, we talk about
the DRM involving a warranty. We look for the optimal contract, out of all direct
revelation mechanisms of the following form:

Stage 1 The buyer is asked whether he is informed. He answers Yes or No.

Stage 2 If the buyer answers Yes, he is asked to reveal his valuation 0 and faced with a
schedule (@ (9) D (9)) of prices and probabilities of trade. If buyer answers No,
he pays a fee b and is shown the object. Then, the buyer is asked to reveal his
valuation and faced with a schedule (fD (9) D (9))

Of course, the buyer retains the option of acquiring information before participating
in this mechanism. However, acquiring information is inefficient since the seller can
provide information for free.

Lemma 2 In the optimal direct revelation mechanism the buyer never acquires infor-
mation.

Proof:  Take a mechanism, and suppose the buyer acquires information before partic-
ipating in this mechanism. The seller could change (15 (0) ,;5(9)) and make it equal to
(w (0),p(0)), and set b = ¢ —e. Then the buyer would rather not acquire information,
and the seller would improve his revenue by ¢ — . Thus, no mechanism that induces
a buyer to acquire information can be optimal. ]

Although at equilibrium the buyer does not acquire information, the possibility of
information acquisition affects the shape of the optimal contract. Indeed, the mecha-
nism that maximizes the seller’s expected revenue must meet the constraint that the
buyer does not acquire information before the contract is signed.

The following lemma, in conjunction with the previous one, implies that the seller
does not lose anything by restricting attention to simple contracts where the buyer
pays a fee to be shown the object, and then is faced with a schedule (fﬂ (0) ,5(9)) .
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Lemma 3 Consider any direct revelation mechanism where the buyer does not acquire
information. The seller can obtain the same profits using the following contract. The

buyer pays a fee b and is shown the object; then, the buyer is asked to reveal his valuation
and faced with a schedule (@ (0) ,;’5(9)).

Proof. See Appendix. 1

Next, we characterize the optimal DRM in terms of the probability that the object
is returned. We show that, if 6f () /F (0)is strictly increasing, the probability that
the object is returned is zero for high realizations of €, and one for low realizations of
0. Thus, the optimal contract is implementable in the following way: The buyer pays
a price t and gets property rights over the object. However, the buyer retains the right
to return the object to the seller, and get back ¢t —.S. S is an optimally determined
“stocking fee”, which the seller gets to keep when the object is returned.

If 6f () /F (0)is not strictly increasing, at the optimal DRM the probability that
the object is returned is decreasing in the realized value of 8, and assumes values of
z€ero, p1, pa, or one (where p; and/or p, may equal one).

Theorem 2 If0f (0) /F (0)is strictly increasing, the optimal probability schedule has
one jump. If 0f (8) /F (0) is not strictly increasing, generically the optimal probability
schedule has at most three jumps.

Proof:  We want to characterize the optimal (15 (0) ,;5(9)) and b. Denote (w (0),p(0)) :=

(@ (6) = b,p(9)), and
up (0) = 6p(0) —w(0).

Solving for the optimal (w (8), p (0)) is equivalent to solving for the optimal (fD (9) ,;5(9)) and
b.

Without loss of generality we restrict to DRMs that are incentive compatible, i.e.
it is optimal for the buyer to announce his true type, and individually rational, i.e. the
buyer’s expected surplus is nonnegative, [y ug (8) dF (8) > 0. Finally, it must be the
case that the buyer does not gain by acquiring information. A buyer who acquires infor-
mation and accepts the contract has a surplus of f; max {ug (8),0} dF (6)—c. Ifit were
the case that [ min {ugp (0),0} dF (6) < —c, then by acquiring information the buyer
could increases his surplus relative to [y ug (6) dF (6), which is nonnegative by individ-
ual rationality. Thus, at the optimal contract it must be [} min {ug (0),0}dF (§) >
—c.
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The seller chooses (w (#),p(0)) to maximize exected profits subject to the above
constraints. The seller’s problem is

) Hp( )—w () >0p(0)—w(¢) for all 6,0 (IC)
Jmax [ (6)dF (0) s { Jo us (6)dF (6) >0 (IR) )
’ Jo min {u (6) 0} dF (6) > — (V1)

Constraint VI says that the value of gathering information prior to signing contract
(w (0),p(0))is lower than the cost of information. The solution to problem 1 is char-
acterized by a Lagrangean. The Lagrangean we write lacks the IC constraints, but
we solve it assuming that the schedule (w (0),p (6)) satisfies a local version of IC con-
straints. From this exercise we obtain necessary conditions for optimality of a schedule.
The Lagrangean is

L= /01 [0p (0) —up (0)] dF (9)+u/01 ug (0) dF (6)+ [/01 min {ug (0),0} dF () + ¢

To simplify the Lagrangean, it is useful to derive an expression for [} ug (6) dF (6).
From the IC constraint we have the well-known expression up (8) = ug (0) + J¢ p (s) ds
(see Myerson (1981)); then for all y > 0

/O " ug (0) dF ()

_ /Oy luB(O)—{—/ng(s)ds] £(6)do
= u(OFW)+ [ [ f(6)dop(s)ds

— ug(O)F () + [ [Fy) = F(9)]p(s)ds.

Let 6, denote the value of 6 such that ug (6) > 0if and only if 6 > 6,. By IC up (0)is
nondecreasing, so 6, is well-defined. Substituting for [up (f) the Lagrangean becomes

L= —us O+ [ [fO)0p0) — 1= FO)p@)]do+p[un0)+ [ (1= F©)p(©) ]

) [uB O F©)+ [P 6)—F@)pE)d+ ]
= up(0)[-14 p+ AF(6,)]
+ / 1 [F(0)0—(1=F(0)+p(1=F(0) + I oop, () A(F (6,) = F (6))] p(6) d6 + Ae.

12



At the optimal contract the seller must not be able to benefit from offering a
lump sum transfer, positive or negative, to the buyer. Thus, a necessary condition
for optimality is that the derivative of the Lagrangean with respect to up (0) equals
zero.When we perform the differentiations we take into account the change in 6,.

or 20, 0, 00,
0 = Gurg = LA EAR ) Fus (A (0) 5 +/O A (02) s (0) 0
0y
= —1+pu+AF(0,)+\f(0,) auajzo) <uB (0) +/O p(0) d9>
= L AR (0) 4 AF (0) gt un (6)
= —1+4+upu+AF(6,), (2)

where the last equality follows from ug (6,) = 0. Using this equality the expression in
square brackets inside the integral simplifies to

0) -— f0)0+(1—pu—X\)F(9) for 6 < 6,
m(8) = F(0)0—[1—F @)+ ull—F ()] ford >0,

and the Lagrangean reads
1
L= / m (0) p (0) df + const.
0

A necessary condition for the function p* (6) to be the solution to problem (1) is
that it maximizes the Lagrangean, among all functions p (f) with the property that
up (0) = up, where ug is part of the solution to problem (1).

If m (0) is strictly quasimonotone,® there is a type 6* such that m ()is strictly
negative for § < 6* and strictly positive for § > 6*. Then, the function p* that
maximizes L is p* (#) = 0 for § < 0*, and p* (0) = 1 for 0 > 6*.

A sufficient condition for quasimonotonicity of m (6)is that f(0)8/F (0)is strictly
increasing. In this case, m (#) is strictly quasimonotone on [0, 6,]. Let us show that
m (#) is quasimonotone on the entire range of . To this end, notice that:

a) m(60,) must be strictly positive, since there must be positive probability of sale
at type below 0, and m is strictly quasimonotone on [0, 8,].

b) Because f (0)0/F (0)is increasing, then f (6)60/[1 — F ()]s strictly increasing.
Thus, m (0) is strictly quasimonotone on [0, 1], and hence strictly positive in view of
(a) above.

8A function g is strictly quasimonotone if ¢ (z) = 0 implies ¢ (z’) > 0 for all 2’ > z.
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Parts a) and b) together imply that m (0) is strictly positive for > 6,. Then m ()
is strictly quasimonotone on [0, 1].

If m (#) is not quasimonotone, we need to follow a procedure introduced by Myerson
(1981). Define M (8) = [?m (s)ds, and let M (6) denote the convex hull of M (6).
Because M is differentiable, M is differentiable. Let 7 (6) denote the derivative of
M (6).

L = /Olm(e))p(e)de

— /Olm(e)p(e)dM/Ol [m (6) —m (6)]p(6) db

1

_ /Olm(ﬁ)p(ﬁ)dﬁ—l— [M(@)—M(@)}p(e)\e_o—/ol (M (6) — M (6)] dp (6)
- /Olm(ﬁ)p(e)dﬁ—/ol (M (6) =M (6)] dp(6), (3)

where the last equality holds because by definition of M (6) we have [M 0) — M (9)} D (9)’

0. We want to characterize the function p* that maximizes expression (3).

By construction M (f) > M (6), so to minimize the second term in expression (3)
we would like p* to be constant. Keeping this in mind, it is easy to see that the optimal
p* must be equal to 1 for values of 6 such that 77 (f) > 0, and equal to zero for values of
6 such that 7 (#) > 0. Since 7@ is nondecreasing by construction, there is a * < 1 with
the property that 72 (0) > 0if and only if § > 6*, and a 6, > 0 with the property that
m (0) < 0if and only if § < §*. Thus, p* (0) = 0 for § < 6,, and p* (f) = 1 for 6 > 6*.

When 6, < 6 < 0* the function 7 (f) is constant at zero, so p* (#) must be con-
stant unless M (8) — M (6) = 0. We now show that the maximum number of points in
(0.,0%) where M (§) = M (0) is one. At such a point, let us call it 6, the function m
crosses the zero line from below and the following two integral constraints are satisfied:

99*1 m (0)df = 0, f@l* m (0) df = 0. Furthermore, we have a constraint that, at equilib-
rium, p + AF (6,) — 1 = 0. To manufacture 6; we adjust the three parameters A, p,
and 6, in the function m. In general we can manufacture at most one such point, as
we have three constraints to meet and three variables to adjust. An additional point
0y > 61 would require satisfying one additional integral constraint. ]

Theorem 2 mentions the condition that 6f (6) /F (0) be strictly increasing. Distri-
butions that satisfy the condition are:

1
0=0

o f(0) = const-0*(1—0)"", a Beta with parameters a = 1/2,b = 1/2. Then
0f (0) /F (0)is increasing (checked with Maple). Notice that when a = b = 1,
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the beta reduces to a uniform. So, the suspicion is that the beta might work for
all parameters a,b < 1.

o [,,(0) = (ab +0b6%) /C. Then f,; () = (a+ 2b0) /C, and

6f (6)  ab + 206°
F(0)  af+b0?

is increasing in # when b > 0.

If F*(0) =0 (for o > 0), then 6f (0) /F (0)is constant. The uniform distribution
is a member of this family.

3.1 Characterization and comparative statics

In the next two propositions we characterize the optimal contract. The first proposition
says that at the optimal contract the object is traded more often than would be the
case if the buyer was informed.

Proposition 2 Assume Assumption 1. Let 6* denote the smallest type that keeps the
object for sure in equilibrium. Then 0* < tj.

Proof: ~ We first notice that m (8*) = 0. This follows from our choice of §* as the sup
of all #’s such that m () = 0.

Case 0* < 0,

In this case m (0*) = 0 reads

fOYO+(1—pu—N)F () =0. (4)
Equation (2) in the proof of Theorem 2 gives
—14+p+AF(6,) =0,
which can be manipulated to obtain
(1 —p =) F(67) = AF (67) [F (0,) — 1]

Substituting into equation (4) one gets

f(7)0" = AF(67)[1— F(6,)] (5)
< AF(0,) [1 = F(67)]
< 1-F(07),
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where the first inequality follows from 6* < 6, and the second inequality follows from
the fact that, in view of (2), A\F'(0,) = 1 — u < 1. Thus, the derivative of H (t)
evaluated at t = 0*is strictly positive. Then the result follows from Assumption 1.

Case 0* > 0,
In this case m (6*) = 0 yields immediately

1 — F(0") — f(0°) 0" > 0.

Thus, the derivative of H (t) evaluated at ¢ = 6*is positive. Then the result follows
from Assumption 1. ]

The next proposition states that, if at the optimal contract the IR contraint is not
binding, and under a condition on the uncertainty about @, the price in the Tioli-cum-
warranty contract is higher than ¢;. In addition, the larger ¢, the more this price is
larger than ¢; and the higher the stocking fee S =6, — 6*.

Proposition 3 Suppose that 0f (8) /F (0) is strictly increasing, and that at the optimal
mechanism the IR constraint does not bind. Let 8, denote the type who receives an ex-
post utility of 0 in the optimal mechanism. Then

1. 0, > 1;.

2. as cincreases, 6, increases and 0* decreases.

Proof.  See Appendix. |

Proposition 4 Suppose that there is a cost k > 0that the seller incurs on returned
items. Suppose that 0f (0) /F (0) is strictly increasing, and that at the optimal mecha-
nism the IR constraint does not bind. Then the optimal contract has the same form as
in Theorem 2. Denote with 0, and 0} the types who receive an ex-post utility of zero
and the lowest type who keeps the object, respectively, in the optimal contract with k.
Then and 0, < 6, and 65 < 6*.

Proof. See Appendix. 1
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3.2 An example: uniformly distributed valuations.

Consider the case where F' is uniform on [0,1]. Then f(0)68/F (0) is constant and
equal to one. In this example, a warranty will be offered for all values of ¢ for which
the VI constraint distorts the first-best (for the monopolist) problem.

The optimal contract when a warranty is not possible is:

1/2 for ¢ >1/8. The buyer will not acquire information.
t*(c) =< 2¢ for 1/32 < ¢ <1/8. The buyer will not acquire information.
1/2 for 0 <¢<1/32.  The buyer will acquire information.

For ¢ > 1/32, the seller’s profits are t* (¢). For ¢ < 1/32 the seller’s profits are 1/4.

Consider now the case where a warranty is possible, concentrating on the nontrivial
case where ¢ < 1/8. We now show that the optimal contract can be implemented by
a Tioli at price 1/2 together with a warranty with the stocking fee S that solves the
equation ¢ = f;/* lmax {6 — 1/2, —S}|df. To see this, assume the IR constraint is not
binding; then, using the fact that f (0)6/F () is constant, the proof of Proposition 3
Part 1 yields an optimal price t** (¢) = t; = 1/2. We now show that when t** (¢) = 1/2
the IR constraint is never binding. To this end, notice that when ¢ < 1/8 the Tioli at
price 1/2 must have a stocking fee S smaller than 1/2. But such a contract is more
advantageous for the uninformed buyer than a simple Tioli with price 1/2, which leaves
the uninformed buyer with zero surplus. Thus, when ¢ < 1/8 the IR constraint is not
binding and the optimal contract is a Tioli at price 8, = 1/2 with a warranty with the

stocking fee S that solves the equation ¢ = f;’” lmax {6 — 1/2, —S}|d6.

4 Welfare effect of warranties

We discuss the welfare effect of allowing warranties by comparing the optimal contracts
when a warranty is possible (Section 3) and when a warranty is not possible (Section
2). Throughout this section we assume that that Assumptions 1 and 2 are verified.

When ¢ < ¢, introducing the possibility of a warranty increases efficiency for two
reasons. First, it spares the social cost of acquiring information. Second, comparing
Propositions 1 and 2 we see that the object is traded more often than would be the case
without a warranty. By contrast, when ¢ > callowing the seller to offer a warranty
is efficiency-reducing. Indeed, if a warranty is not allowed the seller sets a Tioli price
such that the buyer always buys and acquires no information.
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We are also interested in the buyer’s surplus. When ¢ > ¢, the buyer is worse off
with a warranty. Indeed, with the warranty the social surplus is lower (the object is
not always sold) and the seller’s profits are higher. When ¢ < ¢ and f () 60/F (0) is
nondecreasing, the buyer is worse off with a warranty, because then the contract with
a warranty has a price 6, > t; (see Proposition 3). Thus, with a warranty the buyer’s
expected surplus is [1 — F'(0,)] [f, — E (0|6 > 6,)] — ¢, while without a warranty it is
[1—F(t)][tr — E(0|0 > t1)] — c.

5 Discussion

We have presented a model of monopoly provision of money-back warranties. In our
model, buyer and seller are risk neutral and have no private information about the
buyer’s valuation for the object. The buyer can, however, acquire information and
learn his true valuation for the object. In this setup, we have shown that the optimal
contract allows for the object to be returned. Under some conditions the optimal
contract can be implemented with a money-back warranty. The seller uses the warranty
to prevent wasteful information acquisition, by offering the buyer part of the benefits
that information would give him, namely the ability not to purchase useless objects.
We have compared the optimal contracts when the object can be returned and when
it cannot. We have found that when the cost of information is lower than a threshold,
allowing the seller to offer a warranty is welfare improving. However, when the cost of
information is higher than the threshold, it is socially optimal to forbid money-back
warranties.

In our model the information structure is determined endogenously as part of the
equilibrium. Reasoning in terms of information structures affords an insightful per-
spective on the incentives in this paper. Consider the two polar extremes of

(a) trade with symmetric information, and

(b) trade with the buyer being more informed than the seller.

Since in case (a) the buyer receives zero surplus, the buyer should be prepared to pay
something to get from information structure (a) to information structure (b). Acquiring
information allows the buyer to do precisely that. The seller, on the other hand, should
be prepared to pay something to avoid information structure (b). By choosing the
mechanism, the seller has a measure of control over the information structure under
which trade takes place. The warranty is an efficient way for the seller to control the
buyer’s information structure.

In our model information has a purely strategic role, as opposed to an efficiency
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role. This is because the efficient allocation is for the object always to be traded;
information is not necessary to implement the efficient allocation. One could extend
the model to allow for the buyer’s valuation to be below the seller’s. In this case,
information assumes an efficiency role because the efficient allocation is to not trade in
the event that the seller values the object more than the buyer. As the probability of
this event increases, the warranty becomes more efficient. This is because the object
is returned when the buyer’s valuation is low. An extreme case is when the seller’s
valuation exceeds the buyer’s expected value for the object. In this case, if the buyer
is uninformed there are no gains from trade, so the seller prefers the buyer to be
informed. Now, a warranty increases efficiency by allowing trade to happen when the
buyer’s valuation turns out to be high.

The two fundamental ingredients of our analysis are: information acquisition; and
the fact that the seller cannot observe the buyer’s valuation, which leads to non con-
tractibility of realized quality. Both ingredients are necessary, as the analysis becomes
trivial in the absence of any one of them. Indeed, absent information acquisition the
analysis would be exactly the same as in Myerson (1981). And if it was possible to
contract on the buyer’s realized quality, the seller could offer a contract extracting all
of the buyer’s surplus for any realization; such a contract would leave the buyer with
zero surplus state by state, and thus would give no incentives to acquire information.

A salient feature of the optimal contract is that the seller may give back less than the
full price if the buyer decides to return the object. Thus, the seller makes money even
when the good is ultimately returned. This is not uncommon. Sometimes stocking
fees are charged directly, as discount stores of electronic and photographic material
often do. The Bookstore of the University of Pennsylvania charges a stocking fee of
between 50% and 75% on textbooks returned later than two weeks after the beginning
of classes, no matter how good their condition. Stocking fees are built into programs to
incent retailers to reduce returns. For instance, in the computer industry “[t/he IBM
PC Co.’s seven largest resellers, [...] can qualify for a special allocation of ThinkPads
if they accept a 10 percent return penalty and a 10 percent cancellation fee for the
order.”® Of course, there are less direct ways for the seller to earn rents even when the
object is returned. For instance, return policies often stipulate a refund not in money,
but in credit.

Even in the absence of stocking fees, a money-back warranty may be valuable for
the seller. If a warranty imposes on the buyer a cost of returning the object, even one
that the seller does not appropriate (for instance, forcing the buyer to call repeatedly

9Zarley (1994).
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to inquire about the return), the seller can improve on the simple take-it-or-leave-it
contract. To see this, consider again the example of Section 3.2. Suppose ¢ < 1/32,
so the seller’s profits without warrranty are 1/4. Let r denote the cost to the buyer
of returning the object, and assume that r < 2c. Given a price of 1/2 with a money-
back warranty without stocking fee, the buyer accepts the contract without acquiring
information, and returns the object whenever 6 < (1/2) — r. The seller’s profits are
1/2(r+1/2) > 1/4. Therefore, the seller offers the warranty even if the stocking fee is
zero. This shows that, by imposing a wasteful cost on the buyer to return the object,
the seller may benefit from a money-back warranty with no stocking fee.

While it is intuitively appealing to imagine that sellers impose wasteful costs on
buyers, in this paper we insist on optimal contracts. In an optimal contract there is
no role for wasteful costs, as they are dominated by cash transfers to the seller; hence,
the prevalence of stocking fees in our model. Indeed, stocking fees can be interpreted
as the price that the seller charges for information. Yet, casual empiricism suggests
that money-back warranties often involve no stocking fee. Lenient return policies are
often ascribed to competition between sellers. This suggests that stocking fees are
most likely when the seller has market power. In our analysis we assume a monopolist
seller. Extending the analysis to many competing sellers may not be straightforward
due to well-known difficulties with multi-principal mechanism design. Is it possible
to generate optimal contracts with zero stocking fees in our environment? This is a
question for future research.
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A Proofs

Proof of Lemma 1.
Proof:  Consider any DRM where the buyer does not acquire information and pays
a price w". We show that a buyer faced with a Tioli at a price w" does not acquire
information, and purchases the object. Without loss of generality we restrict attention
to DRMs where the buyer truthfully reveals whether he is informed or not, and his true
type if informed. Furthermore, without loss of generality we require the DRM to be
individually rational. This means that the uninformed buyer must earn a nonnegative
expected surplus, while the surplus of all informed types, not including the information
acquisition cost, must be nonnegative. Finally, let us restrict to the nontrivial case
where p*, w* > 0.

By incentive compatibility, an informed buyer must be willing to reveal himself
instead of claiming to be uninformed. Thus, as IR is also satisfied,

Op (0) — w () > max {0,0p" — w"} . (6)

The uninformed’s utility is
Op* — w".
Thus, under the DRM the value of information is

\Y

[ 160 6) —w@) — @ —w)dr @) = ["109(6) ~w (6) — (69— w)] dF (6)

> ["= oy —w) aF (9

for any y > 0. Both inequalities follow from (6).
Consider now the contract offering a Tioli with price w* both to an informed and
to an uninformed. Under the Tioli the payoff of an informed is

max {0, 6 — w"}.

For an uninformed it is IR to accept the Tioli since his expected utility is 6 —w* >
Op* — w*, and by hypothesis Op* — w* > 0. The payoft of an uninformed is

6 — w".

The value of information is therefore

u u

/Ow —(H—w“)dF(H)S/Ow — (Op* — w") dF (6) .
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Comparing with the value of information under the DRM we conclude that if it was
IC to be uninformed under the DRM, it will also be IC not to become informed under
the Tioli. |

Proof of Lemma 3

Proof.  Without loss of generality we restrict to DRMs that are incentive compatible,
i.e. it is optimal for the buyer to announce his true type, and individually rational,
i.e. the buyer’s expected surplus is nonnegative. Take any DRM characterized by
(16 (é) D (QA)) , (15 (5) ,5(@)) and b, and suppose that the buyer does not acquire
information. We show that the seller can implement the same allocation simply by
charging b, showing the buyer the object and then facing the buyer with the schedule
(#6) 500

y incentive compatibility, an informed buyer must be willing to reveal himself
instead of claiming to be uninformed. Thus, as IR is also satisfied,

6p (6) — w (6) > max {0,605 (6) — w (6) — b} (7)

The uninformed’s utility is B B
Op (0) —w (9) —b.

Thus, under the DRM the value of information is

/01 65(6) — @ (6) — (65(6) — & (6) — b)] dF (6)
/Oy [05(0) @ (0) - (65(0) — @ (6) — b)] dF ()
> /Oy—(ef.ﬁ(e)—ﬁ(e)—b)dme)

\Y

for any y > 0. Both inequalities follow from (7).

Consider now the contract offering both to an informed and to an uninformed buyer
to be charged b, be shown the object and then be faced with the schedule (ZE (9) D (93,)
Under tthis contract the payoff of an informed is

max {0,0p (6) — w (6) — b}

For an uninformed it is IR to accept this contract by assumption. The payoff of an
uninformed is

0p (0) — w () — b.
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The value of information is therefore

/09” —(65(6) — @ (6) — b) dF (),

which is smaller than the value of information under the DRM. Thus, if it was IC to
be uninformed under the DRM, it will also be IC not to become informed under the
new contract. Hence, we can replace the DRM with the simple contract above, and
the buyer will enter the contract without acquiring information. It is clear then the
the seller’s profits are unchanged. 1

Proof of Proposition 3
Proof.  Part 1.
6)6

JFrom equation 5, using the assumption that % is nondecreasing we obtain

S (6v) 0,
AF (6y)

Since the IC constraint does not bind we have p = 0 in eq. (2), and therefore AF' (6,) =
1. Substituting into the previous expression,

f(0,)0,>1[1—F(6,)].

Since t; solves
ftr=1-F(tr),

and % is increasing, the result follows.

Part 2.
When the IR constraint is not binding ¢ = 0, and 6* solves A—1 = 6* f (6*) /F' (6*) . From
equation (2) A = 1/F (6,), and substituting into the previous expression we obtain
1 0 f(0")

Fe) T F@e)

Since %% is increasing by assumption, this equation requires 6* to be inversely related

to 6,. So, fix a cand consider the optimal #* and 6, associated to it (the ones solving
problem 1). Because the VI constraint holds with equality, we have

c= [0, — 0| F(6") + ;v (6, — 0) dF (6). (8)
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Take now a ¢ > ¢, and consider the optimal 6* and €/ associated to ¢’. Since 6*is
inversely related to 6,, one of the following two configurations must be true: either
0* > 0* and 0 < 0,; or 0% < 0* and 0, > 6,. To conclude the proof, we show that the
first configuration is inconsistent with ¢ > ¢. Pick any 0* > 6* and ¢/ < 6,. Equation
(8) reads

6%

¢ = [0, —0"IF ")+ [ (6, -0)dF ()

o 0,
— [0, — 07| F(67) + /9 (0, - 0")dF (6) + /9 (8, - 0)dF (6)
< [0, — 0 F(6") + /: ¢, — 9)dF (8) +/: ¢, — 9) dF ()

< [0, — 0] F (6) + :” (0, — 0)dF (0)

< 6, 6 F (6 + (:“ (0, — 0)dF (0) = c.

Proof of Proposition 4
Proof:  The Lagrangean in the same as before, except for an added term [ —k (1 —p (0)) dF (6).
Thus, the function m () is the same except for an added term kf (6). The same rea-
soning as in Theorem 2 then yields the optimal contract.

We now show that it must be 6, < 6, and 6 < 6*. Denote

1
m(zly) = f(z)x + (1—W>F(x)

Notice that, since %% is nondecreasing, m (x|y)is quasimonotone in z for all values of

y. Also, m (z|y) is increasing in y for all values of .

We have that 6*and 6,solve m (0*|6,) = 0, while 6} and 6, solve m (05|0,x) +
kf(67) = 0.

By contradiction, suppose it were not true that 6,, < 6, and 6; < 6*. We know
that 6* and 0, satisfy the VI constraint with equality. If 6, > 6, to satisfy the VI
constraint with equality it must be 6; > 6*. Similarly, if 6; > 6*, to satisfy the VI
constraint with equality it must be 6, > 6,. Thus, the only possible configuration is
O > 0, and 65 > 0*. Now notice that

m (Og|Our) — m (676,)
= [m (Ok]0ur) — m (0;]0.)] + [m (6;]6,) — m (6716,)] > 0,
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where the inequality holds because (a) m (6*|6,) is increasing in 6, and (b) m (6*|6,) is
quasimonotone in 6* and m (6*|6,) = 0. But then m (6;|0,x) + kf (65) > m (6*]6,) = 0,
which is a contradiction. Hence the assertion that 6, < 6, and 6 < 6*. ]
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