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Abstract

During recession, many macroeconomic variables display higher levels

of volatility. We show how introducing an AR(1)-ARCH(1) driving pro-
cess into the canonical Lucas consumption CAPM framework can account

for the empirically observed greater volatilty of asset returns during re-

cessions. In particular, agents' joint forecasting of levels and time-varying
second moments transforms symmetric-volatility driving processes into

asymmetric-volatility endogenous variables. Moreover, numerical exam-

ples show that the model can indeed account for the degree of cyclical
variation in both bond and equity returns in the U.S. data. Finally, we

argue that the underlying mechanism is not speci�c to �nancial markets,

and has the potential to explain cyclical variation in the volatilities of a
wide variety of macroeconomic variables.

1 Introduction

When it rains, it pours. In times of recession, not only are many macroeco-

nomic variables in bad shape with respect to their levels, but they are also

plagued by higher levels of volatility. But what is it about recessions that

seems to exacerbate volatility? In order to address this question, a frame-

work must allow not only the �rst but also the second moments of relevant

processes to change over time. In such a framework, agents need to base

their optimal decisions upon forecasts both of future levels and of future vari-

ances. The main contribution of this paper is to show that agents' optimal joint

forecasting of levels and variances leads to volatility which is asymmetric over

the business cycle. In more technical terms, symmetric-volatility forcing pro-

cesses are transformed into asymmetric-volatility endogenous variables. High-

volatility recessions and low-volatility expansions may emerge endogenously

due to agents' optimal behavior when forecasting levels and variances jointly.
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What is it about forecasting variances and levels jointly that produces asym-

metries? In the ARCH-forecasting framework developed in this paper, agents

use observations on the innovations ut to forecast the level of some process,

while using u2t to forecast its variance. This means that each realization of the

shock carries two messages: one on the level and another on the variance. These

two pieces of news may reinforce one another, but they can also contradict one

another. For example, a large negative shock will hold two pieces of bad news:

bad news on the level due to ut < 0 and bad news on the variance due to u2t
large. Thus, any dismay about the bad news of a large negative shock will be

ampli�ed: when it rains, it pours. A large and positive shock, on the other hand,

will carry both good news and bad news. Any exuberance about the good news

on the level ut > 0 will be dampened by the bad news about the variance due

to u2t large. Thus, agents' reactions to large positive shocks and large negative

shocks will be asymmetric, which in turn generates asymmetries in endogenous

variables. These asymmetries turn out to be more important for the volatilities

than for the levels of the variables.

The greater part of the paper will be devoted to studying the when it rains it

pours mechanism in the context of a consumption CAPMmodel, of the kind �rst

introduced by Lucas (1978). Despite its well known failings, the consumption

CAPM has one important advantage: simplicity. Although the CCAPM is a

dynamic general equilibrium model, it is possible to �nd closed form solutions

for some types of asset returns, namely bond returns. By studying these closed

form solutions it will be possible to gain some insight into how the when it

rains it pours mechanism works. Moreover, the CCAPM is �exible enough to

generate a wide variety of asset returns, providing an opportunity to compare

the workings of the mechanism in bond and equity returns. The �nal part of

the paper is then devoted to a numerical exercise, in order to determine whether

the volatility asymmetries generated by the when it rains it pours mechanism

are empirically relevant and quantitatively signi�cant for reasonable parameter

values. It turns out that the degree of countercyclical heteroscedasticity in both

bond and equity returns is indeed quantitatively signi�cant and quite similar to

that found in the data.

1.1 GARCH Processes

Clearly, the when it rains it pours mechanism depends crucially on the use of

squared residuals u2t in variance forecasting. The most direct way to induce

agents to use squared residuals in their optimal forecasts is to assume that

innovations are governed by ARCH or GARCH processes. The ARCH spec-

i�cation, introduced by Engle (1982) and generalized by Bollerslev (1986) to

GARCH, have been some of the most popular approaches to modelling time-

varying second moments. In an ARCH(q) process, next period's conditional

variance �2t+1 is a linear and stochastic function of q lagged squared residuals�
u2t ; u

2
t�1; :::u

2
t�q

�
. The GARCH(p,q) speci�cation adds linear dependence on p

previous variances
�
�2t ; �

2
t�1; :::�

2
t�p

�
. Such a speci�cation is said to include p

GARCH terms and qARCH terms.
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Literally hundreds of papers have documented the empirical success of

GARCH speci�cations, especially in modelling volatility in �nancial markets.

(For a survey see Bollerslev, Chou and Kroner (1992).) GARCH has also been

employed quite widely in modeling the variance of non-�nancial variables. For

example, Gallant and Tauchen (1989) �nd evidence of GARCH-type volatility in

the aggregate consumption process. This latter �nding motivates the assump-

tion in this paper that variance of consumption growth follows a (G)ARCH

process.1 That is, since (G)ARCH speci�cations do very well at representing

the empirical properties of variance processes, it seems natural to integrate them

into theoretical models as well.

In contrast to the voluminous body of empirical literature, relatively few

theoretical models take time-varying second-moments into account. Notable ex-

ceptions are Kandel and Stambaugh (1990), Canova and Marrinan (1991,1993),

and Bollerslev, Engle and Wooldridge (1988). Canova and Marrinan introduce

time varying-volatility by means of GARCH innovations to the money supply

and government expenditure functions into an ICCAP model, which they then

use to study exchange rate volatility and the term structure of interest rates.

Bollerslev, Engle and Wooldridge (1988) introduce time-varying covariances into

a CAPM model. Closest in approach to the present model is the work of Kan-

del and Stambaugh (1990): they introduce second moments of consumption

growth which follow a simple autoregressive process into a consumption CAPM

framework, and examine the ability of such models to generate large equity pre-

mia. In contrast, here we concentrate on variances rather than levels, and upon

(G)ARCH second moments.

1.2 Asymmetric Volatility

The main objective of this paper is to demonstrate the ability of ARCH-forecasting

to explain the presence of asymmetric volatility in asset returns. The greater

volatility of asset returns during recessions was �rst noted by O�cer (1973).

Schwert (1989) presents further evidence that equity and short-term bond re-

turns are more volatile during recessions. In particular, Schwert (1989) reports

estimates that monthly equity returns were 68% more volatile during reces-

sions than during expansions in the post-war U.S. data (1953-1987): Over the

same period, monthly short-term bond returns were estimated to be 134% more

volatile. Such countercyclical heteroscedasticity also seems to be a property of

other kinds of economic variables: Schwert (1989) also presents evidence that

production growth rates are more volatile during recessions. Further, Heaton

and Lucas (1996), using data from the PSID, �nd that income shocks are more

volatile during recessions than during expansions. To our knowledge, no theo-

retical explanation has been proposed for CCH in any of these variables, with

the exception of equity returns.

1The theoretical part of the paper will assume, for the sake of tractability, that consumption
growth follows an ARCH(1) process. We have, however, also examined a numerical example
with a GARCH(1,1) consumption process, which gives qualitatively similar (and somewhat
stronger) results. Details are available upon request.
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For equity returns, two explanations for CCH have been advanced. The most

prominent explanation is the �leverage e�ect�, originally due to Black (1976),

for which Schwert (1989) provides some empirical support. During economic

contractions, an asset's total value declines, so that the proportion of its value

which is levered increases. More highly levered assets are riskier, so the leverage

e�ect leads to equity returns which are more volatile during recessions. How-

ever, leverage is not of much help for fully-levered assets, most notably bonds,

whose returns also display countercyclical heteroscedasticity. Leverage is of even

less help in explaining CCH in more general macroeconomic variables, such as

production growth. Thus, it seems that a deeper mechanism is needed, one

which is capable of generating asymmetries in volatility over the business cycle

in a wider range of variables.

The �rst objective of this paper is to describe such a deeper mechanism,

one which is based upon agents' joint forecasting of levels and variances of

relevant driving processes in a dynamic general equilibrium framework. The

mechanism is based upon the idea that it is the sign of an innovation which

determines whether it carries good or bad news on the level, but the magnitude

which determines whether news on the variance is good or bad. Since sign

and magnitude need not coincide, we obtain a richer set of implications for

the equilibrium dynamics of endogenous variables. Among these implications is

asymmetric volatility in endogenous variables over the business cycle.

To our knowledge, the only other formal model analyzing a similar mech-

anism is that of Campbell and Hentschel (1992). They develop a volatility

feedback mechanism which is similar to the when it rains it pours mechanism

presented in this paper. In the volatility feedback mechanism, time-varying sec-

ond moments also serve to amplify equity returns' reactions to negative innova-

tions in dividends, helping to account for the empirically observed correlation

between negative innovations and volatility of equity returns. As the name

suggests, it is a feedback machanism: its focus is upon the e�ects of current

innovations to dividends on current equity return volatility. Further, volatility

feedback operates within an empirical (non-equilibrium) framework. In particu-

lar, it is based upon a log-linear approximation to the ex de�nition relationship

between returns, prices and dividends, better known as the present-value div-

idend model of Campbell and Shiller (1988a,b). The present-value dividend

approach is based only upon the de�nition of asset returns Rt+1 =
Pt+1+Dt+1

Pt
,

where Pt+1 is the ex dividend asset price and Dt+1 is the dividend, both at date

t + 1.
In contrast, we are interested in forecasting in dynamic general equilibrium.

General equilibrium places stronger restrictions on the relationship between re-

turns, prices and dividends. Not only must the present-value dividend rela-

tionship of the volatility feedback mechanism continue to hold, but the returns

must also be consistent with agents' risk preferences, in conjunction with their

expectations on the stochastic dividend process. Given the fundamental im-

portance of agents' risk preferences in determining their reactions to volatility,

there is reason to believe that these restrictions may indeed be important, both
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theoretically and quantitatively. Moreover, when it rains it pours di�ers from

volatility feedback in its timing. While Campbell and Hentschel (1992) stress

the simultaneous e�ects of innovations, the focus in this paper is on the e�ects

of innovations on agents' forecasting, and thus upon future asset return volatil-

ity. In this sense, the two approaches are complementary, and will turn out to

deliver complementary results.

Our approach is to incorporate forecasting of (G)ARCH variances into a

dynamic general equilibrium model with arbitrary risk aversion, which allows

for general types of assets. Both the precise nature of the underlying asset,

the degree of risk aversion, and the timing turn out to be quite important in

determining whether returns will react more strongly to negative or to positive

innovations. We show that equilibrium bond returns display countercyclical

heteroscedasticity at all levels of risk aversion under quite general conditions2.

Furthermore, CCH in bond returns generated by the when it rains it pours

mechanism turn out to be quantitatively signi�cant and empirically relevant. If

agents have low to moderate levels of relative risk aversion, then the model is

able to match reasonably well the 29% by which short-term bond returns were

estimated by Schwert (1989) to be more volatile during recessions over the last

century.

Moreover, our results are complementary to those of Campbell and Hentschel

(1992) for equity returns. In our framework, next-period equity returns turn

out to be more volatile during recession, but only at low to moderate degrees

of risk aversion. When parameters are chosen to match U.S. monthly consump-

tion data3, simulated equity returns turn out to be more than twice as volatile

during recessions as during expansions. However, the degree of countercyclical

heteroscedasticity in equity returns is decreasing in risk aversion. The behavior

of when it rains it pours in conjunction with risk aversion turns out to very

important in interpreting the results, and will be discussed at length in Section

5.

The remainder of the paper is organized as follows: Section 2 presents the

general framework and derives equilibrium asset returns with ARCH(1) variance

forecasting. Section 3 derives closed form solutions for ARCH(1) bond returns

and discusses some general properties of bond returns when variances are time-

varying. In Section 4 the focus is upon ARCH(1) bond return volatility : we

�rst link volatility to innovations, and then innovations to recessions, in order to

examine the relationship between volatility and the business cycle more closely.

Section 5 presents simulation results on bond and equity returns from both

ARCH and constant variance models calibrated to U.S. data. Section 6 discusses

extensions of the results to non-�nancial variables, and concludes.

2Brie�y, the conditions su�cient for CCH in bond returns are that consumption growth is
growing su�ciently and that volatilities are time-varying and positively serially correlated.

3See Section 5 for a discussion of the use of monthly versus quarterly data. All simulations
have also been performed for the calibration to quarterly data presented in Appendix B.1.
Quarterly results do not vary in any signi�cant way, and are available upon request.
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2 Consumption CAPMwith ARCH(1) Variance

In this section, we introduce symmetric heteroscedasticity in the driving process

into a consumption-CAPM model of the type �rst described in Lucas (1978).

This provides a simple dynamic general equilibrium framework in which to test

the ability of joint variance and level forecasting to generate asymmetries in the

volatility of endogenous variables. In consumption-CAPM models, these en-

dogenous variables are the returns on claims to aggregate consumption (equity

returns) and the returns to one-period bonds. We will describe how equil-

brium asset returns are related to the symmetrically heteroscedastic consump-

tion growth process. This relationship will provide a precise basis for the discus-

sion on asymmetric heteroscedasticity in endogenous variables in the sections

to follow.

2.1 Asset Returns in an Exchange Economy

Consider a simple dynamic general equilibriummodel of the type �rst introduced

by Lucas (1978). Agents choose streams of consumption and asset holdings

fct; ztgt to maximize the discounted sum of future utilities, given the stochastic

process for endowments fytgt. Formally, they solve

max
1X
t=0

�tu (ct) (1)

subject to the resource constraint

yt + Rt+1zt = ct + zt+1 t = 0; 1; :::

fytgt c�1; z�1 given (2)

where Rt+1 is the gross return on the asset zt. The asset is in zero net supply,

so that in equilibrium zt = 0. The equilibrium solution to this optimization

problem takes the form of an Euler equation, which may be written as4

1 = �Et

�
u0 (ct+1)

u0 (ct)
Rt+1

�
(3)

Assuming power utility u (ct) =
1

1�

c
1�

t , the Euler equation may be expressed

in terms of the consumption growth rate xt+1 �
ct+1
ct

as:

1 = �Et

�
x
�

t+1Rt+1

	
(4)

where 
 represents the coe�cient of relative risk aversion.

One can now apply the Euler equation (4) for general asset returns in an

Lucas exchange economy to two types of assets. We follow the tradition in the

Macro�nance literature, and focus on the returns to equity and to one-period

bonds.

4This Euler equation for general assets was �rst derived by Grossman and Shiller (1981):
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2.1.1 Equity Returns

In the CCAPM, equity is de�ned as a claim to consumption and saving is ruled

out, hence in equilibrium the dividend dt is equal to aggregate (per capita)

consumption ct. Its gross return may be expressed as Rt+1 = pt+1+dt+1
pt

. Sub-

stituting into equation (4) yields

pt = �Et

�
x
�

t+1 fpt+1 + dt+1g

	
In a growing economy, dividends dt and prices pt are non-stationary. Under

balanced growth, however, these variables grow at the same average rate xt, so

that the price-dividend ratio pt
dt

is stationary. Thus, it is helpful to write the

Euler equation for a claim to consumption in terms of stationary variables as

pt

dt
= �Et

�
x
1�

t+1

�
pt+1

dt+1
+ 1

��
(5)

The sequence of price-dividend ratios
n
pt
dt

o
t
satisfying equation (5) may be

approximated using the parameterized expectations approach of Marcet and

Marshall (1994) [See Appendix B.3 for details.]. Once one has obtained the

equilibrium price-dividend sequence
n
pt
dt

o
t
, equilibrium returns may be recov-

ered as

Rt+1 = xt+1
pt+1=dt+1 + 1

pt=dt
(6)

2.1.2 Bond Returns

One-period bonds may be represented as claims to an asset paying a dividend

of one unit of the consumption good (dt = 1) which mature at t+1 ( pt+1 = 0).
Substituting into equation (4) yields the following expression for the price of

the one-period bond

qt = �Et

�
x
�

t+1

	
(7)

Under power utility and log-normally distributed consumption growth rates

xt+1; Hansen and Singleton (1983) show that it is possible to �nd analytical

solutions for prices and returns on one-period bonds. Since the gross return on

a one-period bond is Rt+1 = 1
qt
, and thus r

f
t+1 = logRt+1 = � log qt, one may

use equation (7) above and write:

r
f
t+1 = � log � + 
Et logxt+1| {z }

smoothing term

�

2

2
vart logxt+1| {z }

precautionary term

(8)

The smoothing term re�ects the fact that agents wish to borrow against future

consumption growth, placing upward pressure on interest rates. The precau-

tionary term, on the other hand, captures the e�ects of consumption volatility.
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The more volatile the future growth rate, the more agents wish to insure them-

selves by means of precautionary savings. Increased demand for savings will

place upward pressure on the interest rate.

Equations (5) and (8) de�ne a relationship between the expected growth rate

of consumption xt+1 and the equilibrium returns of equity and one-period bonds.

Thus, the precise nature of the process governing the consumption growth rate

plays a crucial role in determining the properties of the equilibrium returns.

The next section describes the driving process for logxt+1 assumed here, which

incorporates time-varying second moments.

2.2 Incorporating AR(1)-ARCH(1) Consumption Growth

It is at this point that our framework diverges from the canonical Lucas/Mehra-

Prescott model. The di�ering element is the introduction of time-varying second

moments in the driving process. In particular, we incorporate symmetric het-

eroscedasticity in the innovation ut by means of an ARCH(1) speci�cation.

To see how this works, suppose that the consumption growth rate logxt+1 �

log
�
ct+1
ct

�
follows an AR(1) process

logxt+1 = c+ � logxt + ut+1 j�j < 1 (9)

This is a standard approach to modeling consumption growth in the consumption-

based asset pricing literature. Now we incorporate heteroscedasticity in the

innovation ut by means of an ARCH(1) process. Innovations which are ut �
ARCH(1) may be described as:

ut+1 � N
�
0; �2t+1

�
�t+1 =

q
� + �u2t � vt+1 where vt+1 � i:i:d:N (0; 1)

The ARCH(1) speci�cation has the convenient property that the conditional

expectation of the variance is linear in the lagged squared innovation u2t :

Et�
2
t+1 = � + �u2t (10)

Heteroscedasticity in the innovations induces heteroscedasticity in the con-

sumption growth rates logxt+1. Moreover, this heteroscedasticity is symmetric

over the business cycle: consumption growth is just as volatile in recessions as

in expansions. In particular, the consumption growth rate is symmetrically and

conditionally log-normally distributed with moments:

Et logxt+1 = c + � logxt (11)

vart logxt+1 = � + �u2t (12)

Thus, each innovation ut has an impact on both the expectation of logxt+1
(via logxt), and upon its variance. A large negative innovation will cause agents

to expect future consumption growth to be low and volatile: when it rains it
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pours. Agents observing a large positive innovation, on the other hand, will

expect future consumption growth to be high but volatile. In this latter case,

any exuberance about high future growth will be dampened by worries about

the economy �overheating� due to increased volatility.

3 Bond Returns with and without ARCH

Now we wish to analyze more carefully the e�ects of time-varying volatility and

�when it rains it pours� variance forecasting. Since bond returns' closed form

solutions lend themselves to such careful analysis, we begin by examining bond

returns in some detail. The most natural place to start is by comparing the

equilibrium bond returns with and without ARCH. For the AR(1)-ARCH(1)

framework introduced above, the return to a one-period bond may be obtained

by substituting the conditional moments (11) and (12) into the general equation

for the bond return (8) to obtain:

r
f
t+1 = � log � + 
 [c+ � logxt]| {z }

smoothing term

�

2

2

�
� + �u2t

�
| {z }

precautionary term

(r
f
t+1�ARCH)

Similarly, when consumption growth variance is constant and equal to �2x the

bond return may be written as:

r
f
t+1 = � log � + 
 [c+ � logxt]| {z }

smoothing term

�

2

2
�2x| {z }

precautionary term

(r
f
t+1�no ARCH)

Clearly, the smoothing e�ect will be identical in both the ARCH and no-ARCH

cases. Thus, any di�erences in the properties of ARCH and no-ARCH bond

returns must be due to their di�ering precautionary terms, and thus to their

variances.

Indeed, the precautionary e�ects will most likely di�er. This is due to the

fact that the ARCH variance forecasts are varying over time. At times, the

ARCH variance forecast � + �u2t will be greater than its constant uncondi-

tional mean �2x, placing additional downward pressure on the riskfree rate via

a stronger precautionary e�ect. At other times, however, the ARCH variance

forecast will be lower than average: relatively calm times will weaken the pre-

cautionary motive to save, placing additional upward pressure on the riskfree

rate.

Figure (1) illustrates this variance-based di�erence between ARCH and no-

ARCH bond returns. The solid line plots ARCH bond returns as a function of

ut, while the dashed line represents bond returns when variance is constant. For

large magnitude innovations, the news on the variance is bad, placing downward

pressure on the risk-free rate via the precautionary motive, and the ARCH bond

returns curve lies below the corresponding constant variance line. For small

magnitude innovations, however, the good news on the variance puts upward
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pressure on the risk-free rate. As a result, the ARCH bond return is greater than

its constant-variance counterpart, and the ARCH curve lies above the no-ARCH

line.

The quantitatively signi�cant e�ects of time-varying second moments are

not, however, on the bond returns themselves nor on their overall volatility.

In fact, overall unconditional moments of bond returns in the ARCH and no

ARCH cases are almost indistinguishable. Table 3.1 reports sample mean bond

returns for the ARCH and no ARCH calibrations: the greatest di�erence is one

basis point (one-hundredth of a percentage point). Similarly, Table 3.2 below

shows that overall bond return volatility is not a�ected to any great extent by

variance-forecasting either. Thus, introducing time-varying second moments to

the driving process leads to bond returns whose overall moments are nearly

indistinguishable from their constant variance counterparts.

Table 3.1: Average Bond Returns


 1 2 4

ARCH 1.26 % 1.34 % 1.68 %

no ARCH 1.26 % 1.34 % 1.67 %

Table 3.2: Bond Return Volatilities


 1 2 4

ARCH 0.10% 0.15 % 0.29 %

no ARCH 0.12 % 0.16 % 0.33 %

4 Asymmetric Volatility of ARCHBond Returns

Although the unconditional moments are scarcely a�ected by variance-forecasting,

variance forecasting does have signi�cant and interesting e�ects on the volatility

of bond returns over the business cycle. To see this, take a second look at Figure

(1): it illustrates the fact that the ARCH bond return may be expressed as a

quadratic function of the date t innovation to consumption growth ut as:

r
f
t+1 (ut) = kA + 
�ut �


2

2
�u2t (r

f
t+1 - ARCH)

dr
f
t+1 (ut)

dut
= 
�� 
2�ut (

dr
f

t+1

dut
- ARCH)

where all elements of kA � � log�+

�
c (1 + �) + �2 logxt�1

�
� 
2

2
� are param-

eters or constant at date t� 1.
In contrast, when variance is constant and equal to �2x, as it is in the canon-

ical model, the bond return may be written as a linear function of ut:

r
f
t+1 = knA + 
�ut (r

f
t+1 - no ARCH)

drft+1
dut

= 
� (r
f
t+1 - no ARCH)
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where knA = � log � + 

�
c (1 + �) + �2 logxt�1

�
� 
2

2
�2x.

What does this mean for the reaction of bond returns to positive and negative

innovations? Note that for the concave bond return function (13), the slope of

the bond return is decreasing in ut, while for the linear no-ARCH bond return

line, the slope is constant. This is illustrated in Figure (2): in the no-ARCH

case, the constant slope translates into bond return which react symmetrically

to positive and negative innovations. In the ARCH case, however, the decreasing

slope translates into stronger reactions to negative innovations than to positive

ones of equal magnitude. This is re�ected by the fact that the ARCH plot of
dr

f

t+1

dut
lies above the horizontal no-ARCH line for all negative innovations, while

it lies below the horizontal no-ARCH line whenever ut > 0. Thus, variance-

forecasting tends to amplify the e�ects of negative shocks, while dampening the

e�ects of positive shocks. This clearly induces a negative correlation between

innovations to the consumption growth rate process and bond return volatility,

which is considered in greater detail in what follows.

4.1 Negatively Skewed Heteroscedasticity

Negatively Skewed Heteroscedasticity (NSH) captures the idea that negative

innovations are associated with greater volatility. Formally, NSH may be ex-

pressed by means of bond return variance which is greater conditional on inno-

vations being negative:

E

��
r
f
t+1 (ut)� Erf

�2
jut < 0

�
| {z }

var[rft+1jut<0]

> E

��
r
f
t+1 (ut)� Erf

�2
jut � 0

�
| {z }

var[rft+1jut�0]

(13)

Equivalently, one may write the above equation in terms of absolute deviations

from the unconditional mean as:

E
n���rft+1 (ut)�Erf

��� jut < 0
o
> E

n���rft+1 (ut)� Erf
��� jut � 0

o
(14)

4.1.1 No ARCH, no NSH

First, it can be shown that constant-variance bond returns do not exhibit skewed

heteroscedasticity. That is, in the no-ARCH case symmetrically time-varying

second moments to the driving process lead to symmetrically time-varying sec-

ond moments in the endogenous variable.

Begin by noting that, on average, the innovation needed to induce the uncon-

ditional mean bond return is eut = 0.5 For constant-variance bond returns, then,

the absolute deviation in the bond return from its mean due to an innovation

5That is, on average, eut is the innovation which satis�es Erf = r
f
t+1 (eut). See Appendix

A.1 for details. Of course, eut = 0 always induces the conditional mean bond return in the
constant variance model.
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ut may be written as

sNA (ut) �
���rft+1 (ut)� Erf

��� = ���rft+1 (ut) � r
f
t+1 (0)

���
Thus, sNA (ut) may also be expressed as the integral:

sNA (ut) =

�����
Z ut

0

dr
f
t+1 (u)

du
du

����� (15)

The integral (15) yields a particularly convenient graphical representation of

sNA (ut). In Figure (3), one can see that (15) corresponds to the shaded area

under the horizontal no-ARCH line between ut and 0.
To show that bond return volatility is symmetric, we need to show that

volatility is equally large conditional on innovations being negative or positive.

Thus, we need to show that the average size of the shaded area taken only over

negative innovations ut < 0 is just as large as the average size of the shaded

area taken only over positive innovations. This is clearly the case. To see this,

note that for each pair of positive and negative innovations of equal magnitude

(u+; u�), the absolute deviations are also equal, as illustrated in Figure 3(a).

Formally:

snA (u+) = snA (u�) for
u+ > 0

u� = �u+
(16)

Since ut is symmetrically distributed about zero, the equal magnitude positive

and negative innovations u+ and u� are equally likely. Thus, it is easy to see

that for eut = 0

E
�
snA (ut) jut < 0

	
= E

�
snA (ut) jut � 0

	
(17)

Finally, the fact that eut is also symmetrically distributed about zero implies that

(17) holds also when expectations are taken over eut. Thus, in the no-ARCH

case, positive and negative innovations have symmetric e�ects not only on the

bond returns themselves, but also upon their deviations from Erf , and thus on

their volatility.

4.1.2 ARCH and NSH

The ARCH case is somewhat more complex. First consider something close to

the absolute deviation of the bond return from its mean, namely the deviation

from its ut = 0 value:

sA0 (ut) =
���rft+1 (ut)� r

f
t+1 (0)

���
It is easy to see that sA0 (ut) corresponds to the vertically striped region under

the ARCH line between ut and 0 in Figure (4). It is also clear that the ARCH

deviation will be of greater magnitude for negative innovations. The area under

12



the ARCH line between 0 and u� is clearly greater than that between 0 and u+

in Figure 4(a), so that

sA0
�
u�
�
> sA0 (u+) for

u+ > 0
u� = �u+

Now symmetry of the distribution of ut about zero imply that the average size

of the shaded area under the ARCH line will be greater over all negative shocks:

E
�
sA0 (ut) jut < 0

	
> E

�
sA0 (ut) jut � 0

	
(18)

Thus, in the ARCH case, negative innovations have greater e�ects on sA0 than

do positive innovations, inducing an asymmetry in the reaction of bond returns

to positive and negative innovations when eut = 0.
Unfortunately, however, (18) is not necessarily equivalent to asymmetric

volatility for the ARCH case. This is due to the fact that in the ARCH case,

ut = 0 is not the innovation required to induce the unconditional mean bond

return Erf . In fact, when � > 0, the innovation needed to induce the mean

bond return is negative on average, so that Eeut < 0 [see Appendix A.1.2 for a

detailed discussion]. Negativity of Eeut makes it more di�cult for NSH to hold.

The reason is that any given negative innovation will be closer to a negative eut.
This works against the asymmetry due to the negatively sloped ARCH drf

du
line.

To see this more clearly, recall that sA (ut) may be expressed as the integral:

sA (ut) =

�����
Z ut

eut

dr
f
t+1 (u)

du
du

����� (19)

For eut = 0, the integrals for positive and negative shocks u+ and u� are taken

over equally sized ranges. Thus, the fact that the integrand is always greater for

u� is su�cient for the u� -integral to be greater, so that NSH holds. For eut > 0,
negative innovations must travel further to reach eut, so that the u�- integral

is taken over a greater range than the corresponding u+-integral, reinforcing

NSH. For eut < 0, however, negative innovations do not have to �travel� as far to
reach eut as do positive ones. Thus, the range of the u� integral is smaller, while

its integrand is greater, so that it is not certain which of these countervailing

in�uences on sA (ut) will prevail. As long as eut is symmetrically distributed

about zero, the positive and negative range e�ects cancel one another out, as

was the case with the no-ARCH bond return. When, however, eut is more likely

to be negative, then it is no longer certain that NSH will prevail.

Table 4.1: Mean-Inducing Innovations and Asymmetric Absolute

Deviations

Case Range E�ect Integrand E�ect Total E�ect

eut < 0 jeut � u�j < jeut � u+j
dr

f

t+1(u
�)

du
>

dr
f

t+1(u
+)

du
ambiguous

eut = 0 jeut � u�j = jeut � u+j
dr

f

t+1(u
�)

du
>

dr
f

t+1(u
+)

du
sA (u�) > sA (u+)

eut > 0 jeut � u�j > jeut � u+j
dr

f

t+1(u
�)

du
>

dr
f

t+1(u
+)

du
sA (u�) > sA (u+)
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Loosely speaking, the greater is the slope of the ARCH-line in Figure 4(a),

the more often the greater integrand will prevail over the smaller range, and

the more likely will NSH hold. Further, the smaller is the magnitude jEeutj, the
smaller will be the di�erences in the ranges, and thus the easier it is for the

greater integrand to prevail and NSH to hold.

4.2 Greater Volatility during Recessions

What we are really interested in, however, is the relationship between reces-

sions and bond return volatility. Bond returns which are conditionally counter-

cyclically heteroscedastic (CCH) display conditional variances which are greater

whenever the innovation ut is recessionary. Formally, CCH is said to hold when-

ever

E
�
sA (ut) jut recessionary

	
> E

�
sA (ut) jut expansionary

	
To the extent that negative innovations to consumption growth are linked to

recessions, one would expect NSH to be linked with CCH. It turns out, however,

that in growing economies, CCH is more likely to hold than NSH. That is, as

long as the economy is growing at a su�cient rate, returns may be more volatile

during recessions than during expansions, even if NSH does not hold. In order

to examine this more closely, we must �rst de�ne more precisely what we mean

by recession and expansion.

4.2.1 Recession and Expansion

An innovation ut is called recessionary whenever it causes the growth rate

logxt to be negative. More precisely: ut is recessionary whenever logxt =
c + � logxt�1 + ut � 0, which translates into a condition on ut as

ut 2 fU rec
t g whenever ut � �c� � logxt�1 � ut (20)

ut 2 fU exp
t g whenever ut > �c � � logxt�1 � ut (21)

Thus, for any given logxt�1 and any AR(1) parameters, the recessionary thresh-

old ut divides the support of innovations into two disjoint subsets. This is illus-

trated in Figure (5): The subset of recessionary innovations U rec
t is that subset

of the real numbers which is lies below the recessionary threshold, while the

subset of expansionary innovations U
exp
t is its complement:

Note that the recessionary threshold ut will be shifting over time depending

upon last period's growth rate logxt�1. If last period's growth rate was large

and positive, then it will take a relatively large negative innovation to throw

the economy into recession. If, however, last period's growth rate logxt�1 was

already recessionary, then it is possible that even small positive innovations will

be su�cient to keep the economy in recession. From equation (20) one obtains

that the recessionary threshold will be symmetrically and normally distributed

with mean ��x and variance �2�2x. Thus, the greater the growth trend in the

economy, the more strongly negative will the recessionary threshold tend to be.

14



Mean consumption growth �x turns out to play a crucial role for CCH, both

in the formal analysis in the next subsection, and in the simulation results of

Section 5.

4.2.2 Countercyclical Heteroscedasticity

Now we can make more precise the idea that bond returns are more volatile

during recessions than expansions. Formally, bond returns satisfy CCH when-

ever:

E
n���rft+1 (ut) �Erf

��� jut 2 U rec
t

o
> E

n���rf (ut)� Er
f
t+1

��� jut 2 U rec
t

o
(22)

The absolute deviation in the bond return at date t + 1 may be written as

a function of the innovation at date t as

sAt+1 (ut) =
���rft+1 (ut)� r

f
t+1 (eut)��� =

�����
Z ut

eut

dr
f
t+1 (u)

du
du

�����
Once again, whether sAt+1 (u

�) > sAt+1 (u
+) depends on whether the larger inte-

grand of sA (u�) outweighs the larger range of sAt+1 (u
+).

CCH for (ut; eut) First consider a pair of recessionary threshold and mean-

inducing innovation (ut; eut). Furthermore, assume that both consumption growth

is positively serially correlated, and the mean-inducing innovation eut for the
ARCH bond return is negative eut < 0.6 In what follows we �rst examine under

which conditions negative innovations induce a larger deviation in the bond re-

turn from its mean than do equal magnitude positive innovations. That is, we

wish to �nd pairs (u+; u�) so that:

sAt+1
�
u�
�
> st+1

�
u+
�

(23)

Then, in a second step, we will examine when those negative innovations for

which (23) holds will also be recessionary ones, creating a link to CCH.

Table 4.2 below summarizes the relationship between the absolute deviations

induced by equal magnitude pairs of innovations (u+; u�). Begin by noting that

for all very small magnitude innovations jutj � jeutj, the absolute deviation is

larger for u+, so that sAt+1 (u
�) < sAt+1 (u

+). This is illustrated in Figure (6):

the area under the ARCH line between eut and u� is fully contained within the

corresponding area between eut and u+. That is, for all jutj � jeutj, the �range
e�ect� outweighs the �integrand e�ect�, and absolute deviations due to u� are

smaller than those due to u+.

6Recall from the discussion above that this is the more di�cult case, since it is the one in
which range e�ects arise which work against CCH. Thus, all results carry over a fortiori to
eut > 0.
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Moreover, it is easy to see that for innovation pairs with magnitude only

slightly greater than jeutj, the range e�ect continues to dominate, so that

sAt+1 (u
�) < sAt+1 (u

+). (This appeals to a continuity argument.) Further, as

long as the ARCH line has negative slope, there exists some innovation eut� " =
u� such that the range e�ect and integrand e�ect cancel one another out, so

that sAt+1 (u
�) = sAt+1 (u

+). [The precise value of " is derived in Appendix A.2.]

Taken together, this implies that for su�ciently large magnitude innovations

jutj > jeut � "j the integrand e�ect dominates, so that sAt+1 (u
�) > sAt+1 (u

+). In
summary, small magnitude innovations will have procyclical e�ects on volatility,

while large magnitude innovations will have countercyclical e�ects on volatility.

Table 4.2: Innovations and Absolute Deviationseut < 0

Innovation Magnitude Absolute Deviations in r
f
t+1

Small ju�j < jeut � "j Smaller for u� sAt+1 (u
�) < sAt+1 (u

+)
Borderline ju�j = jeut � "j Equally Sized sAt+1 (u

�) = sAt+1 (u
+)

Large ju�j > jeut � "j Larger for u� sAt+1 (u
�) > sAt+1 (u

+)

Now consider the CCH property for given eut and given recessionary threshold
ut: CCH holds for (eut; ut) whenever

E
�
sAt+1 (ut) j ut < ut; eut	 > E

�
sAt+1 (ut) j ut > ut; eut	 (24)

. These expectations may be written as

E
�
sAt+1 (ut) j ut < ut; eut	 =

Z u

�1

sAt+1 (ut) dP (ut)

=

Z
eut�"

�1

sAt+1 (ut) dP (ut) +

Z u

eut�"

sAt+1 (ut) dP (ut)

and correspondingly

E
�
sAt+1 (ut) j ut > ut; eut	 =

Z 1

�eut+"

sAt+1 (ut) dP (u) +

Z �eut+"

u

sAt+1 (ut) dP (u)

Using these integrals, one can see that CCH will hold for (eut; ut) whenever"Z
eut�"

�1

sAt+1 (ut) dP (ut) �

Z 1

�eut+"

sAt+1 (ut) dP (u)

#
(25)

>

"Z �eut+"

u

sAt+1 (ut) dP (u) �

Z u

eut�"

sAt+1 (ut) dP (ut)

#
> 0

That is, whenever the countercyclical e�ects on volatility of large magnitude

shocks outweigh the procyclical e�ects of small magnitude shocks, then het-

eroscedasticity is countercyclical overall, and (25) holds. That is, if the counter-

cyclical e�ects of �tail� shocks outweigh the procyclical e�ects in �body� shocks,

CCH holds for (eut; ut).
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Thus, the smaller is the magnitude of the innovation eut � " at which CCH

takes over, the more likely is (25) to hold. More precisely, the smaller is the re-

gion [eut � ";�eut + "] in which the procyclical range e�ect dominates, the larger

is the region where CCH dominates, and the more likely is CCH to dominate

on the whole. The value for " is derived in Appendix A.2: it is decreasing in 


and �, so that a greater slope -
2� of the ARCH line makes CCH more likely

to hold.7 Further, " is decreasing in eut, the mean-inducing innovation. That is,

the closer the mean-inducing innovation is to zero, the smaller is its magnitude,

and thus the smaller is the region in which PCH dominates. Put another way,

the smaller is jeutj, the smaller are the range e�ects, and thus the more easily

can the countercyclical integrand e�ect dominate. As a result, small magnitudeeut make CCH more likely to hold.

In addition, the placement of the recessionary threshold ut is crucial for

CCH. In particular, CCH will certainly hold if the recessionary threshold is

equal to eut� ". This is because now the absolute deviations due to recessionary

shocks will be greater than those due to any equally large expansionary shocks.

This follows from the discussion above. To see this, divide the set of negative

innovations into recessionary u�rec and expansionary ones u�exp. Also, de�ne

corresponding large and small magnitude positive innovations as u++ = �u�rec
and u+ = �u�exp respectively. Thus, recessionary innovations are u�rec, while all

others are expansionary, as illustrated in Figure 4(b). We proceed in four steps:

1. ut < eut � " < 0 guarantees that for all recessionary u�rec, s
A (u�rec) >

sA (u++), where u++ = �u�rec. Thus, Es
A (u�rec) > EsA (u++).

2. Now we need to guarantee that adding the small magnitude expansionary

innovations u�rec and u
+ to the expansionary expectation will not counter-

balance the e�ect in 1. Since sA (u+) is monotonically increasing in the

magnitude of u+, u++ > u+ guarantees that sA (u++) > sA (u+)

3. Moreover, for all expansionary u�exp, s
A (u+) > sA

�
u�exp

�
. Thus, by 2.

and transitivity, sA (u�rec) > sA
�
u�exp

�
.

Putting all of these steps together, one obtains that

EsA

0
B@ u�rec|{z}
ut recessionary

1
CA > EsA

0
B@u++ [ u+ [ u�exp| {z }

ut expansionary

1
CA

which means that the expected absolute deviation induced by recessionary inno-

vations is greater than that induced by expansionary innovations. Thus, CCH

holds for (ut; eut) when ut < eut � ".

Moreover, a fortiori, CCH will also hold if the recessionary threshold is lies

below eut�". Thus, we obtain the following su�cient condition for CCH to hold

7Indeed, the sensitivity analysis of the numerical example in the next section re�ects these
relationships.
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for (eut; ut)
ut � eut =) CCH holds for (eut; ut) (26)

CCH overall Finally, recall that both the mean-inducing innovation eut and
the recessionary threshold ut are functions of logxt�1, and are thus changing

over time. That is, equation (26) only ensures that CCH holds for a given

pair (eut; ut), not for all pairs (eut; ut). To ensure that CCH holds overall, one

must take expectations over both eut and ut. Doing this would allow one to �nd

parameter constellations (c; �; �; �; 
; �) for which CCH holds. Rather than �nd-

ing such six-dimensional parameter regions, we discuss brie�y which parameter

choices are propitious for CCH, and then defer to numerical simulations.

First note that for any given parameter constellation (�; �; �; 
; �) the suf-

�cient condition for CCH to hold may be expressed as a lower bound on the

economy�s growth unconditional mean growth rate �x. This follows directly

from (26): since Eut = ��x. Loosely, su�ciently large growth rates imply that

(26) will hold often enough for CCH to hold overall.

Thus, the factors favoring CCH overall8 are high mean consumption growth

rates �x; as well as high coe�cients of risk aversion 
, and large positive serial

correlation in volatility �. Risk aversion and serial correlation in volatility work

together to induce the asymmetric reactions to positive and negative innovations

in the �rst place. If consumption growth is positive, then it takes relatively large

magnitude negative shocks to throw the economy into recession. As discussed

above, large magnitude negative shocks are precisely the kind which will be

ampli�ed by ARCH-forecasting of variance. Thus, to the extent that large

magnitude negative shocks coincide with recessionary ones, CCH will hold.

5 Simulation Results

In order to examine whether the degree of cyclical variation in volatilities is

quantitatively signi�cant and on the order of magnitude of the empirically ob-

served values we perform a numerical exercise. Bond returns are calculated

directly from equation (r
f
t+1 - ARCH), while equity returns must be obtained

by numerical approximation, as detailed in Appendix B.3.

In order to obtain numerical values for asset returns one needs to choose

values for six parameters. The four parameters of the AR(1)-ARCH(1) process

are pinned down by the data. They are chosen to match unconditional moments

in monthly U.S. data on growth in the consumption of non-durables and ser-

vices.9 The only free parameters are the discount factor � and the risk aversion

8Recall that we are concentrating the discussion on the case where � > 0.
9Monthly data are used to choose parameters for the consumption growth process, since

Schwert (1989)'s estimates are based upon monthly data as well. The monthly consumption
data, however, has dubious time series properties (cf. Wilcox (1992)). The parameters which
are di�cult to pin down are the two serial correlations. Rather than basing the numerical
exercise on meaningless estimates, the basic parameter set takes conservative values for � and
� which work against CCH. Moreover, in the sensitivity analysis, we will argue that our results
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coe�cient 
. We examine three possible values for the degree of relative risk

aversion, namely 
 2 f1:5; 2; 4g. These choices are quite conservative, and are

well within the range generally considered in the macro�nance literature. � is

set to 0.99: since the discount factor is only a scaling parameter with no e�ect

on the variances, there is no point in varying it. For further details on the

calibration see Appendix B.

Table 5.1: Countercyclical Heteroscedasticity in Bond Returns

ARCH(1) versus no ARCH

%�s %�s

 no ARCH ARCH(1)

1.5 1 % 32 %

2 1 % 32 %

4 1 % 33 %

data 1859-1987 29 %

1953-1987 134 %

Results are summarized in Tables 5.1 and 5.2. The tables compare the per-

centage increase in volatility during recession %�s in the canonical constant

variance and the ARCH(1) models. Clearly, Table 5.1 shows that the constant

variance model is not able to account for any signi�cant degree of CCH in bond

returns. In contrast, the ARCH(1) model matches the estimates from the data

quite well. The results are similarly positive for equity returns. From Table 5.2

one can see that it is also the ARCH(1) model which accounts for signi�cantly

more CCH in equity returns than the no-ARCH model. The following subsec-

tions present these simulation results in considerably greater detail, along with

a sensitivity analysis.

Table 5.2: Countercyclical Heteroscedasticity in Equity Returns

ARCH(1) versus no ARCH

%�s %�s

 no ARCH ARCH(1)

1.5 68 % 115 %

2 59 % 94 %

4 45 % 37 %

data 1859-1987 61 %

1920-1952 234 %

1953-1987 68 %

are quite robust to variations in the autocorrelations. Finally, all simulations have also been
performed for the calibration [presented in Appendix B.1] to quarterly data. These results do
not vary in any signi�cant way from those of the monthly simulations presented here, and are
available upon request.
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5.1 Countercyclical Heteroscedasticity in Bond Returns

We �nd that bond returns are indeed signi�cantly more volatile during reces-

sions than during expansions in the arti�cial economy. To compare volatility in

recessions and expansions, we follow Schwert (1989) in regressing the absolute

deviation of the bond return r
f
t+1 from its unconditional mean on a constant

and a contraction dummy variable. Contrt takes on the value 1 whenever the

innovation at t is recessionary ut 2 U
rec
t , and the value 0 otherwise:���rft+1 (ut)� Er

f
t+1

��� = �1 + �2 � contrt + "t (27)

Clearly, an estimate b�2 which is positive and signi�cant implies that volatility

of the bond return is greater during recessions. Further, the ratio b�2=b�1 pro-

vides an estimate of the percentage increase in volatility during recessions over

expansions.

The ARCH(1) model can account for signi�cant degrees of greater bond re-

turn volatility during recession. Simulation results for the ARCH(1) model, cali-

brated to U.S. monthly data, are presented in Table 5.3.10 
 gives the coe�cient

of relative risk aversion, while the �rst two columns represent OLS estimates of

the coe�cients of regression equation (27), with corresponding White corrected-

for-heteroscedasticity t-values in brackets below. Note that b�1 is an estimate of

the standard deviation of bond returns during expansions sexp, while b�2 is an

estimate of the increase in standard deviation during recession. b�2 is positive

and highly signi�cant, re�ecting a signi�cant increase in volatility during reces-

sion. This can also be seen in the fourth column, which presents estimates of

the standard deviation during recession, srec = b�1+ b�2. The estimate of srec is

clearly greater than its recessionary counterpart.

Table 5.3: Bond Return Volatility in Recession and Expansion

ARCH(1) model

sexp srec�sexp srec %�s


 b�1 b�2 b�1 + b�2 b�2=b�1
1.5 9.26�10�4 3.01�10�4 1.22�10�3 32 %

[42.08] [6.93]

2 1.23�10�3 3.90�10�4 1.62�10�3 32 %

[42.03] [6.75]

4 2.47�10�3 8.01�10�4 3.27�10�3 33 %

[41.57] [6.82]

Finally, the last column quanti�es the amount by which volatility is greater

during recession, by presenting the percentage increase in standard deviations

during recession. We take this value %�s as a measure of the degree of counter-

cyclical heteroscedasticity: the estimate for the ARCH(1) model is about 33%

10All simulation results are averages over 40 runs of 5000 periods each.
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at all levels of risk aversion considered. Thus, the degree of CCH generated by

the when it rains it pours-ARCH(1) model approximates well the 29% estimated

by Schwert(1989) for the period 1859-1987.

In contrast, the canonical constant variance model can clearly not account

for any signi�cant degree of CCH in bond returns. b�2 is slightly positive but

not signi�cant, indicating that there is no signi�cant increase in volatility dur-

ing recession. This is also re�ected in the fact that the estimate of standard

deviation during recession, srec = b�1 + b�2, is not signi�cantly di�erent from its

expansionary counterpart sexp. Finally, the degree of CCH (%�s) generated
by the canonical constant variance model is only about 1 %. Clearly, without

ARCH it is not possible to account for any signi�cant degree of CCH.

Table 5.4: Volatility of Bond Returns in Recession and Expansion

Canonical Constant Variance Model

sexp srec�sexp srec %�s


 b�1 b�2 b�1 + b�2 b�2=b�1
1.5 1.09�10�3 1.60�10�5 1.11�10�3 1 %

[43.69] [0.64]

2 1.45�10�3 1.50�10�5 1.47�10�3 1 %

[43.42] [0.45]

4 2.90�10�3 4.18�10�5 2.94�10�3 1 %

[44.88] [0.52]

In Table 5.5 we present Schwert's (1989) estimates of CCH in monthly bond

returns, to check whether the ARCH(1) model can generate excess volatility in

recessions that is on the same order of magnitude as that in the data. Indeed, we

�nd that the ARCH(1) model can generate degrees of CCH which approximate

the 29% observed in the US economy over the entire 1859-1987 period. The

amount of CCH generated does, however, fall short of matching the 134% by

which volatility in short-term interest rates during recessions exceeds that during

expansions over the post-war period.11

Table 5.5:Increase in Bond Return Volatility during Recession

U.S. monthly data [Source: Schwert (1989)]

period 1859-1987 1859-1919 1920-1952 1953-1987

% �s 29 % 15 % 16 % 134 %

5.2 Sensitivity Analysis

The sensitivity analysis is motivated by two concerns. First and foremost, the

theoretical discussion of Section 4 showed that whether CCH holds or not de-

pends upon parameter values. Secondly, due to well-known problems with serial

11Note that Schwert (1989)'s estimates are, however, considerably less signi�cant than those
of the simulation data. t-values for the two periods used for comparison here are only about
1.4.
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correlation of measurement errors in monthly consumption growth estimates12,

it is safer to treat the serial correlations in consumption growth and volatility as

unknown or highly uncertain. Thus, it is important to establish that the CCH

results are not reversed or destroyed by some values for � and �. Indeed, the

only way to damage the CCH result, without doing away with ARCH(1) en-

tirely, is to set � equal to zero. Even then, however, the degree of CCH remains

signi�cant and on the order of magnitude of the data estimates.

5.2.1 Mean Consumption Growth �x

Sensitivity of the CCH results to variations in mean consumption growth �x is

particularly important, as stressed in the theoretical analysis in Section 4. The

greater is the average growth rate of the economy, the more strongly negative

a shock must be (on average) in order to throw the economy into recession.

Thus, the greater is �x, the more likely are recessions to be associated with

the precisely the kind of large negative innovations which favor CCH. Table

5.6 illustrates this point: when the economy is not growing, there is no CCH.

Furthermore, the degree of CCH is clearly increasing in the unconditional mean

growth rate of the economy �x, con�rming the analysis in Section 4.

Table 5.6: Bond Return Volatility in Recession and Expansion

ARCH(1) Calibration with 
 = 1:5 and Varying �x

sexp srec�sexp srec %�s

�x
b�1 b�2 b�1 + b�2 b�2=b�1

0.00 9.97�10�4 7.29�10�6 1.00�10�3 0.8 %

[41.90] [0.22]

0.001575 9.26�10�4 3.01�10�4 1.22�10�3 32 %

[42.08] [6.93]

0.00315 9.48�10�4 3.67�10�4 1.31�10�3 39 %

[40.60] [6.00]

0.0063 9.71�10�4 5.30�10�4 1.44�10�3 55 %

[37.95] [4.85]

1859-1987 29 %

5.2.2 Serial Correlation in Consumption Growth �

The serial correlation of consumption growth � cannot be reliably estimated

from monthly series. However, it turns out that CCH is not particularly sensi-

tive to �. This robustness is re�ected in Table 5.7, which presents simulation

results for serial correlations values ranging from -0.48 to 0.48. The only way to

endanger the CCH results is to set serial correlation equal to zero: even then,

the increase in volatility during recession b�2 remains signi�cant at the 5 % level.

Thus, as long as the true monthly consumption growth rate series does show

12See Wilcox (1992) for a thorough discussion.
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some amount of serial correlation, we can be quite con�dent in the CCH results

for bond returns.

Table 5.7: Bond Return Volatility in Recession and Expansion

ARCH(1) Calibration with 
 = 1:5 and Varying �

sexp srec�sexp srec %�s

� b�1 b�2 b�1 + b�2 b�2=b�1
-0.48 1.87�10�3 8.26�10�4 2.51�10�3 44 %

[44.44] [10.45]

-0.24 9.26�10�4 2.91�10�4 1.21�10�3 31 %

[42.11] [6.72]

0.0 5.33�10�6 9.29�10�7 6.26�10�6 18 %

[24.00] [1.90]

0.24 9.26�10�4 3.01�10�4 1.22�10�3 32 %

[42.08] [6.93]

0.48 1.87�10�3 8.28�10�4 2.70�10�3 44 %

[44.38] [10.44]

5.2.3 Serial Correlation in Variances �

To examine sensitivity of our results to the degree of serial correlation in volatil-

ities, � is varied between 0.10 and 0.90. Simulation results from this exercise

are presented in Table 5.9 below. It is easy to see that the degree of CCH is

increasing in serial correlation. This is not surprising, since greater � lead to a

more steeply sloped
drf (u)

du
line, favoring CCH. Increasing the serial correlation

allows us to approach the 134 % by which bond returns were more volatile in

recession over the post-war period 1953-1987.

Table 5.9: Bond Return Volatility in Recession and Expansion

ARCH(1) Calibration with 
 = 1:5 and Varying �

sexp srec�sexp srec %�s

� b�1 b�2 b�1 + b�2 b�2=b�1
0.10 9.50�10�4 2.72�10�4 1.22�10�3 29 %

[43.68] [6.41]

0.20 9.26�10�4 3.01�10�4 1.22�10�3 32 %

[42.08] [6.93]

0.50 8.17�10�4 3.69�10�4 1.18�10�3 45 %

[34.24] [7.46]

0.90 4.37�10�4 5.07�10�4 9.44�10�4 115 %

[19.38] [7.22]

5.3 Countercyclical Heteroscedasticity in Equity Returns

Time-varying second moments also lead to signi�cantly greater degrees of CCH

in equity returns. Again, the �when it rains it pours� mechanism greatly in-
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creases the amount of CCH which the model can account for. To see this,

compare the degree of CCH in the constant variance model (the last column

of Table 5.11) to the degree of CCH in the ARCH(1) model (Table 5.10). [For

details on the simulation method, see Appendix B.3]

Table 5.10: Equity Return Volatility in Recession and Expansion

ARCH(1) model

sexp srec�sexp srec %�s


 b�1 b�2 b�1 + b�2 b�2=b�1
1.5 0.00200 0.00229 0.00429 115 %

[39.90] [23.29]

2 0.00198 0.00187 0.00386 94 %

[41.86] [20.19]

4 0.00245 0.00088 0.00333 37 %

[41.85] [7.62]

At low levels of risk aversion, the estimated increase in volatility during

recession b�2 is positive and highly signi�cant for both models.13 However, the

degree of CCH generated by the ARCH(1) model is more than twice as great

as that generated by the constant variance model: 140 % in the ARCH(1) case,

as opposed to 68 % in the constant variance case for 
 = 1:5. These values

compare favorably with those estimated by Schwert (1989) for U.S. data and

reported in Table 5.12 below.

Table 5.11: Equity Return Volatility in Recession and Expansion

Constant Variance Model

sexp srec�sexp srec %�s


 b�1 b�2 b�1 + b�2 b�2=b�1
1.5 0.00282 0.00192 0.00474 68 %

[38.25] [26.08]

2 0.00347 0.00206 0.00553 59 %

[38.53] [25.98]

4 0.00489 0.00219 0.00708 45 %

[38.83] [21.42]

That the constant variance model also exhibits some degree of cyclical vari-

ation in equity return volatility is not surprising, when one considers that non-

linearities were seen to be driving the CCH in bond returns. Since constant-

variance equity returns are already non-linear, they too can be expected to

13That some degree of CCH is also found in non-ARCH equity returns is not surprising.
Recall that it was the non-linearity of the ARCH bond return which was driving the CCH
result there. Since the non-ARCH equity return is also non-linear, it is plausible that it should
also display some amount of CCH.
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display some degree of cyclical variation in their volatility. That ARCH(1) eq-

uity returns display even greater degrees of CCH re�ects the added degree of

non-linearity contributed by the time-varying second moments.

Table 5.12: Increase in Equity Return Volatility during Recession

U.S. monthly data [Source: Schwert (1989)]

period 1859-1987 1859-1919 1920-1952 1953-1987

%�s 61% -6% 234% 68%

5.4 Habit Persistence

The equity return CCH results should, however, be treated with some of caution.

To see why, �rst note that the degree of CCH which both the ARCH(1) and the

constant variance model can generate is decreasing in the degree of risk aversion.

This, in turn, may be related to the relationship between risk aversion and risk

premia.

To be more precise, equity returns may be written as the sum of the bond

return and the equity risk premium as

ret+1 = r
f
t+1 +

�
ret+1 � r

f
t+1

�
| {z }
risk premium

(28)

Bond returns r
f
t+1 are decreasing in the variance of the underlying asset (due

to precautionary e�ects). Risk premia, on the other hand, are increasing in the

volatility of the underlying asset. The more variable the stream of payo�s, the

more a risk averse agent will have to be compensated for holding it. The total

e�ect is ambiguous.

For low levels of risk aversion, equity returns turn out to be highly correlated

with bond returns (corr
�
Re
t ; R

f
t+1

�
� 0:98), implying that the total e�ect has

equity returns decreasing in the volatility of the underlying asset. Recalling the

theoretical discussion of Section 4, it is precisely this negative relationship be-

tween volatility and returns which allows to generate the large degrees of CCH

documented in Table 5.10. The tight correlation between bond and equity re-

turns is also re�ected, however, in the extremely small equity premia generated

by the power utility model studied here at low levels of risk aversion. Further-

more, when risk aversion in increased to moderate levels (
 = 4:0), the CCH

generated by the power utility model begins to evaporate. Thus, one might

be tempted to suspect that the greater volatility of equity returns in recession

is intimately linked to the extremely low - and counterfactual - equity premia

associated with the basic Lucas(1978)-Mehra/Prescott (1985) model.

It turns out that this suspicion is unfounded. In Ebell (2000), I check whether

it is possible to generate endogenously both large equity premia and more volatile

equity returns during recessions. In particular, I extend Cochrane and Camp-

bell (1999)'s habit persistence model to include AR(1)-ARCH(1) consumption
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growth. When 
 = 0:914, this model can account for both realistic equity pre-

mia of 6.05 % per annum and equity returns that are about 118% more volatile

during recessions.

6 Conclusions

The main contribution of this paper has been to show that introducing time-

varying second moments into a consumption CAPM framework can induce

cyclical variation in asset returns. Moreover, the degree of countercyclical het-

eroscedasticity generated by the model is quantitatively signi�cant and empir-

ically relevant. CCH in bond and equity returns in the simulated model is

similar to that found in the data for an ARCH(1) parameterization with low to

moderate levels of risk aversion.

Furthermore, the when it rains it pours mechanism has the potential to ex-

plain cyclical variation in the volatilities of more general economic variables.

Although we concentrate on explaining countercyclical heteroscedasticity in �-

nancial markets, our framework is in no way speci�c to �nancial markets. All

sorts of forcing processes may have time-varying second moments, and ARCH

driving processes may be integrated into any number of models. Moreover, there

are no limits per se on which type of variables are generated endogenously. Thus,

the approach presented here could also be used to integrate ARCH-forecasting

into models with production or models with endogenous labor choice, to name

just two.

In particular, we make the following conjecture: endogenous variable which

may be expressed as quadratic functions of the innovation to the driving process

will tend to display asymmetric volatility. Whether this asymmetric volatility

is counter- or pro-cyclical will depend upon whether the endogenous variable

reacts positively or negatively to variance.

The reasoning behind this conjecture is simple. Recall that the asymmetric

volatility results are driven by the fact that endogenous variables are quadratic

rather than linear functions of the innovations. Endogenous variables that are

linear functions of the innovations react symmetrically to positive and negative

innovations. In contrast, endogenous variables that are quadratic in the inno-

vations react asymmetrically to positive and negative innovations. Thus, to the

extent that a given endogenous variable may be expressed (or approximated) as

a quadratic function of the innovation, it should also exhibit asymmetric volatil-

ity. More precisely, say that some endogenous variable yt+1 may be expressed

(or approximated) by a quadratic equation in the innovation to its driving pro-

14Those familiar with the habit persistence literature will note that this actually improves
somewhat on Campbell and Cochrane (1999)'s constant variance results. Setting all other
parameters equal, the constant variance model generates equity premia of about 6% per
annum when 
 = 2:0. This translates into steady state risk aversion of 


S
= 2:0

0:057
= 35:09,

whose large value has been criticized. In the AR(1)-ARCH(1) model, 
 = 0:9 is required to
generate 6% per annum equity premia, which is equivalent to steady state risk aversion of
15:79, a considerably more reasonable value.
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cess wt such as

yt+1 = a + bwt + cw2
t c 6= 0

dyt+1

dwt
= b+ 2cwt

Figure (8) shows the reaction in yt to an innovationwt when the endogenous

variable reacts positively to the innovationwt (b > 0), but negatively to variance

c < 0. In this case, the shaded region under the dyt+1
dwt

line between w� and zero is

clearly greater than that between w+ and zero, re�ecting the stronger reaction

of yt+1 to negative innovations. Thus, yt+1 behaves like a bond return, and

volatility will tend to be greater during recessions.

If, on the other hand, the endogenous variable reacts positively to variance

(c > 0), the volatility asymmetry is likely to be reversed. To see this, note

that in Figure (9), the slope of the
dyt+1
dwt

line is positive. Thus, the area under

this line will be greater for w+ than for w�, and volatility will tend to be

greater during expansions. For variables that are decreasing in the level wt
(b < 0), the above results will be reversed. The combination b; c < 0 will favor

procyclical heteroscedasticity, while the combination b < 0 and c > 0 will favor

countercyclical heteroscedasticity.

We take this conjecture as a guide to future research. If the conjecture proves

correct, then introducing time-varying second moments into other stochastic

models will allow the when it rains it pours mechanism to account for counter-

or procyclical heteroscedasticity in a wide range of variables. The ability to ex-

plain the presence of countercyclical heteroscedasticity in non-�nancial variables

may be useful in more than just an explaining-the-data sense. Recent work by

Storesletten, Telmer and Yaron (1999) take countercyclical heteroscedasticity in

idiosyncratic income shocks (to use the term they coined) as given in an OLG

framework, and show that this setup is capable of matching observed equity

premia for low levels of risk aversion. Thus, via cyclical variation in income

shocks, there may be an interesting link between equity premia and cyclical

variation in equity returns, which deserves further study.
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Appendix A: Mean-Inducing Innovations eut
De�ne the innovation eut as that which induces the bond return to be exactly

equal to its mean. That is

r
f
t+1 (eut) = Er

f
t+1

A.1.1.No-ARCH case

In the no-ARCH case, the innovation eut which induces the mean bond return

Erf satis�es:

r
f
t+1 (eut) = � log � + 


�
c (1 + �) + �2 logxt�1 + eut�� 
2

2
�2x

= � log � + 

c

1� �| {z }
E logxt

�

2

2
�2x = Erf

so that the mean-inducing innovation may be written as

eut = c

1� �
� c (1 + �) � �2 logxt�1

The idea is simple: the greater the growth rate at date t � 1, the greater the

current riskfree rate r
f
t . The greater the current riskfree rate, the smaller (or

more negative) the innovation required to bring the future riskfree rate back

down to its unconditional mean value.

Moreover, since logxt is distributed as N
�

c
1��

; �2x

�
, it is easy that the mean

inducing innovation will be distributed normally as eut � N
�
0; �4�2x

�
.

A.1.2.ARCH case

In the ARCH case, the innovation eut which induces the mean bond return

Erf satis�es:

r
f
t+1 (eut) = � log � + 


�
c (1 + �) + �2 logxt�1 + eut� � 
2

2

�
� + �eu2t�

= � log � + 

c

1� �| {z }
E logxt

�

2

2

�

(1� �2) (1� �)| {z }
var logxt

= Erf

Rearranging terms, this implies that the mean-inducing innovation satis�es the

following quadratic equation:

�
�2
�

c

1� �
� logxt�1

�
+

2

2
�

"
1�

�
1� �2

�
(1� �)

(1� �2) (1� �)

#
| {z }

c(logxt�1)

+ 
�eut � 
2

2
�eu2t = 0
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Making use of the quadratic formula, one may obtain an expression for the

conditional mean-inducing innovation eut as
eut;1 =

� �
p
�2 + 2� � c (logxt�1)


�

eut;2 =
� +

p
�2 + 2� � c (logxt�1)


�

Note that Ec (logxt�1) =

2

2
�

�
1�(1��2)(1��)
(1��2)(1��)

�
> 0. From Figure (10) it is easy

to see that it is the smaller root eut;1 = eut which is relevant. This smaller root

has an negative expected value, since E
p
�2 + 2�c (logxt�1) > �

Eeut = �


�
�
E
p
�2 + 2� � c (logxt�1)


�
< 0

Note, however, that it is not always possible to guarantee that eut is real. In
particular, eut will be complex whenever 2�c (logxt�1) + �2 < 0, which is the

case whenever:

�2�
�2
�

c

1� �
� logxt�1

�
+ �
2�

"
1�

�
1� �2

�
(1� �)

(1� �2) (1� �)

#
< ��2

The problem is that when logxt�1 is extremely large and negative, then an

extremely large and positive innovation is needed to bring the next period's

interest rate back up to its mean via the smoothing e�ect. However, any in-

novation which is that large, may also be so large as to increase the variance

so greatly via the precautionary e�ect, that the overall e�ect will be negative.

That is, there is no way to bring the interest rate up to its mean in one fell

swoop. This is, however, an exceedingly rare occurrence: it is necessary that

logxt�1 be so small that:

logxt�1 <
c

1� �
�

"
1

2�

+


�

2�2

"
1�

�
1� �2

�
(1� �)

(1� �2) (1� �)

##

Using the parameters from the calibration to the U.S. quarterly data given in

Appendix B, one can see that complex values for eut only occur for 
 = 1:5 when
the consumption growth rate is more than 77 (yes, seventy-seven) standard

deviations below its mean.

Appendix A.2: Calculation of "

We are looking for " such that

sAt+1 (eut � ") = sAt+1 (�eut + ")
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Recalling that

sAt+1 (ut) =
���rft+1 (ut)� r

f
t+1 (eut)��� =

����
Z ut

eut

�

� � 
2�u

�
du

����
leads to

sAt+1 (eut � ") =

�����
Z

eut�"

eut

�

� � 
2�u

�
du

�����
sAt+1 (�eut + ") =

�����
Z
�eut+"

eut

�

� � 
2�u

�
du

�����
Solving the integrals, we can write

sAt+1 (�eut + ") =
(" � 2eut)�
� � 
2

2
�"
�
if 0 < � < 


2
�"

� ("� 2eut)�
�� 
2

2
�"
�

if � > 


2
�" > 0

sAt+1 (eut � ") = "
�+

2

2
�" (" � 2eut)

1. � < 


2
�"

In this case, " must satisfy


2�"2 � 2
2�"eut + 2
�eut = 0

Using the quadratic formula, and the fact that we are interested in the positive

root, one may obtain:

" = eut +
vuuuteu2t � 2�


�
eut| {z }

<0

> 0

In this case, " is clearly decreasing in risk aversion 
 and serial correlation in

variances �, that is, " is decreasing in the slope of the
dr

f

t+1
(u)

du
-ARCH line.

Moreover, " is increasing in � and in the magnitude of the mean-inducing inno-

vation eut.
2. � > 


2
�"

" = �eut
In this case, " only depends upon eut. Once again, " is increasing in the magni-

tude of eut.
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Appendix B.1: Quarterly ARCH(1) Parameterization

It is necessary to choose values for a total of six parameters in order to com-

pute solutions to this model. These may be broken down into two groups. In the

�rst group are the two parameters of the AR(1) process governing consumption

growth (c; �), in addition to the two parameters of ARCH(1) process governing

the variance (�; �). These AR(1)-ARCH(1) parameters are pinned down by the

data. The second group of parameters are the two (free) preference parameters

risk aversion 
 and the discount factor �.

AR(1)-ARCH(1) Parameters

AR(1)-ARCH(1) parameters are chosen to match unconditional moments

and �rst-order serial correlations of U.S. quarterly growth in consumption of

non-durables and services. The unconditional moments to match may be seen

in Table B.1: they are the estimates reported in Kandel and Stambaugh (1990),

based on Breeden et. al.'s (1989) data set, covering the period 1929-1982.

Table B.1: Unconditional Moments of Consumption Growth

Breeden, et. al. 1929-1982

�x 0.00452

�x 0.0129

The �rst-order autocorrelations are chosen to match estimates from an AR(1)-

ARCH(1) regression using the NIPA data set. Parameters estimates are given

in Table B.2, with standard errors reported in square brackets.

Table B.2: AR(1)-ARCH(1) Estimates for Consumption Process

AR(1) equation: logxt = c+ � logxt�1 + "1;t

bc b�
6.6�10�3 0.24

[9.8�10�4] [0.091]

ARCH(1) equation: b"21;t = � + �u2t�1 + "2;t

b� b�
5.1�10�3 0.33

[5.0�10�6] [0.11]

The calibration strategy is to �rst set �rst-order autocorrelations (�; �) equal
to their estimated values from Table B.2, and to then use properties of the

autoregressive processes to �nd values for the constants which are consistent

with the unconditional moments in Table B.1 and the serial correlation estimates

in Table B.2. These consistent values for (c; �) are given in Table B.3 below:
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Table B.3: Constants consistent with Unconditional Moments

c �x (1� b�) 3.4 � 10�3

� �2x

�
1� b�2� (1� b�) 1.1 � 10�4

Preference Parameters

The only free parameters are then the two preference parameters risk aver-

sion and discount factor. Here we choose a discount factor of � = 0:99 and

vary the risk aversion coe�cient to satisfy 
 2 f1:5; 2; 4g. Note that these are

conservative values for 
: Mehra and Prescott (1985) considers risk aversion

coe�cients of up to 10, while Kandel and Stambaugh (1989) argue that risk

aversion coe�cients on the order of 29 might be reasonable.

Appendix B.2: Monthly ARCH(1) Parameterization

It is necessary to choose values for a total of six parameters in order to com-

pute solutions to this model. These may be broken down into two groups. In the

�rst group are the two parameters of the AR(1) process governing consumption

growth (c; �), in addition to the two parameters of ARCH(1) process governing

the variance (�; �). These AR(1)-ARCH(1) parameters are pinned down by the

data. The second group of parameters are the two (free) preference parameters

risk aversion 
 and the discount factor �.

AR(1)-ARCH(1) Parameters

AR(1)-ARCH(1) parameters are chosen to match unconditional moments.

The unconditional moments to match may be seen in Table B.4: they are the

estimates based upon NIPA data, covering the period 1959:01-1999:06 [source:

Bureau of Economic Analysis, U.S. Department of Commerce].

Table B.4: Unconditional Moments of Consumption Growth

NIPA data, 1959:01-1999:06

�x 0.0017

�x 0.0038

Since the dubious time series properties of monthly consumption growth

estimates are well-known (see Wilcox (1992)), no serious attempt is made to

estimate � and �. Rather than making what are most likely meaningless esti-

mates, we choose conservative values of � and �; and then allow them to vary

widely in the sensitivity analysis of Section 5. We assume that serial correlation

in consumption growth � is about equal in monthly and quarterly data. Then,

we make a very conservative estimate of the serial correlation in volatility. We

choose � = 0:20, which is lower than the more reliable estimates from quarterly

data. Note that this conservative choice works against CCH, and thus against

our results.
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Table B.5: Basic Parameter Values

� �

0.24 0.20

Again, the calibration strategy is now to use properties of the autoregressive

processes to �nd values for the constants which are consistent with the uncon-

ditional moments in Table B.4 and the serial correlations in Table B.5. These

consistent values for (c; �) are given in Table B.6 below:

Table B.6: Constants consistent with Unconditional Moments

c �x (1� �) 1.3 � 10�3

� �2x
�
1� �2

�
(1� �) 1.1 � 10�5

Preference Parameters

The only free parameters are then the two preference parameters risk aver-

sion and discount factor. Here we choose a discount factor of � = 0:99 and

vary the risk aversion coe�cient to satisfy 
 2 f1:5; 2; 4g. Note that these are

conservative values for 
: Mehra and Prescott (1985) considers risk aversion

coe�cients of up to 10, while Kandel and Stambaugh (1989) argue that risk

aversion coe�cients on the order of 29 might be reasonable.

Appendix B.3: Numerical Approximation of Equilibrium Equity

Returns

In order to obtain the equilibrium sequence of equity returns, we must �rst

�nd the sequence of price-dividend ratios
n
pt
dt

o
t
which satis�es the Euler equa-

tion (5). This may be achieved by iterating on equation (5) using the pa-

rameterized expectations approach (PEA) developed by Marcet and Marshall

(1994). This algorithm �nds a parameterization of expectations 	
�
xt; u

2
t ; 

�
=

Et

n
x
1�

t+1

�
pt+1
dt+1

+ 1
�o

= 1
�

pt
dt

which is consistent both with the exogenous growth

rates and endogenous price-dividend ratios. That is, the algorithm �rst assumes

some functional form (in our case an exponential one) by which values of the

state variables
�
xt; u

2
t

�
are transformed into expectations:

	
�
xt; u

2
t ; 

�
=  1 exp

�
 2xt +  3u

2
t

	
Now the series of price-dividend ratios generated by these expectations

	
�
xt; b�2t+1; � can be calculated as

pt

dt
( ) = � �  1 exp

�
 2xt +  3u

2
t
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Next, the consistency of
n
pt
dt
( )

o
t
needs to be checked. This may be done by

imposing rational expectations, and then �nding the RE price-dividend ratios

as

pt

dt RE
= �Et

�
x
1�

t+1

�
pt+1

dt+1
( ) + 1

��
(29)

Loosely speaking, a �xed point in this algorithm is then the series
n
pt
dt
( )

o
t

which implies itself. In particular,
n
pt
dt

o
is a PEA solution to the Euler equation

if non-linear least squared regressions of the equation

1

�

pt

dt RE
= �1 exp

�
�2xt + �3u

2
t

	

produce estimates
�b�1;b�2;b�3� which are close enough to those values which

generated the price-dividend ratios in the �rst place, namely ( 1;  2;  3).
From the sequence of equilibrium price-dividend ratios, it is easy to recover

the sequence of equilibrium equity returns as

ret+1 = xt+1 �

pt+1
dt+1

+ 1
pt
dt

(30)
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