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Abstract

A new non-parametric bootstrap is introduced for dependent data. The bootstrap is
based on a weighted empirical-likelihood estimate of the one-step-ahead conditional distri-
bution, imposing the conditional moment restrictions implied by the model. This is the
first dependent-data bootstrap procedure which imposes conditional moment restrictions on
a bootstrap distribution. The method can be applied to form confidence intervals and p-
values from hypothesis tests in Generalized Method of Moments estimation The bootstrap

method is illustrated with an application to autoregressive models with martingale difference
erTors.

*This research was supported by a grant from the National Science Foundation.
TDepartment of Economics, Social Science Building, Madison, WI 53706. email: bhansen@ssc.wisc.edu.
homepage: www.ssc.wisc.edu/ bhansen.



1 Introduction

The bootstrap of Efron (1979) is a powerful nonparametric method to approximate the
sampling distributions of estimators and test statistics. For dependent data, nonparametric
versions of the bootstrap have been implemented by dividing the sample into blocks and
sampling the blocks independently with replacement. The blocks, whose lengths increase
with sample size, may be nonoverlapping (Carlstein (1986)) or overlapping (Kunsch (1989))
and may have random lengths (Politis and Romano (1994)). The method of nonoverlapping
blocks was extended by Hall and Horowitz (1996) to the case of Generalized Method of
Moments (GMM) estimation (Hansen (1982)). In the absence of a structural model that
reduces the data-generation process to a transformation of independent random variables, a
blocking scheme is the dominant bootstrap method for dependent data.

There are a number of reasons, however, to expect a blocking bootstrap to be ineffi-
cient. First, the block bootstrap does not impose on the bootstrap distribution any of the
information contained in the given econometric model. For example, in overidentified GMM
estimation, as argued by Brown and Newey (1995) in the case of independent observations,
the data generated by the Hall-Horowitz bootstrap distribution does not satisfy the moment
conditions implied by the estimating equations. The solution proposed by Hall-Horowitz is to
re-center the bootstrap moments at their sample values. As Brown and Newey (1995) show,
however, this solution is inefficient, pointing out a generic inefficiency with blocking methods.
Second, the block bootstrap creates a bootstrap time-series process with serial dependence
patterns which are quite different from the original time-series, and this discrepancy does not
disappear as the sample size increases. To see this, consider the one-step-ahead conditional
distribution of a bootstrap observation, conditional on its past history, in a blocking scheme
with blocks of fixed length b. We see that the one-step-ahead conditional distribution is
degenerate for (b — 1) out of every b observations, and for the remaining observations the
one-step-ahead conditional distribution is independent of the past history. This one-step-
ahead conditional distribution is obviously quite distinct from the one-step-ahead conditional
distribution of the actual data, and this difference suggests that the bootstrap distribution

may be an inefficient estimate of the sampling distribution.



In some GMM contexts, such as autoregressions (ARs) or vector autoregressions (VARs),
time-series econometricians routinely use bootstrap methods which exploit the recursive
structure of the model, by treating the model errors as an independent series. An inherent
problem with this approach is that its usefulness depends on the accuracy of the auxiliary
assumption about the independence of the model errors. In most applications, it is probably
more accurate to view the AR or VAR errors as martingale differences, leaving higher-
order dependencies unspecified. In particular, time-varying conditional heteroskedasticity
appears quite prevalent in many economic time-series, and the treatment of such errors as
independent necessarily leads to inaccurate distributional approximations.

This paper introduces a new non-parametric dependent-data bootstrap which incorpo-
rates conditional moment restrictions. It may be viewed as an extension of the recent pro-
posal of Brown and Newey (1999) for a the case of independent data. Our bootstrap employs
the smoothed empirical likelihood estimator of Ahn, Kitamura and Tripathi (1999) which
efficiently incorporates information contained in a conditional moment restriction.

Section 2 describes the bootstrap problem. Section 3 describes the method to estimate
the conditional distribution. Section 4 describes how to use the conditional distribution to

generate a bootstrap sample by recursion. Section 5 presents a numerical simulation study.

2 The Bootstrapping Problem

The data y;, € RP is a strictly stationary and weakly dependent time series, observed over
t = —m +1,...,n for some finite integer m. Let z; = (yi_1,...,%+—m) . The time-series is

known to satisfy the conditional moment restriction
E (g (ye, z4;00) | Fio1) =0 (1)

where g is a known R®—valued function, 6y is an unknown R?—valued parameter, and F; =
o(Yt, Yt—1, -..) is the Borel sigma-field generated by the history of the series through time ¢.

A simple example is an AR(1) with martingale difference errors:
Y = B+ oyp—1 + €4, E (et | .7:;5_1) =0. (2)

Here, 0 = (u,a) and g (yi, 74;0) =y — pp — @y 1.
Given (1), there are standard GMM methods to estimate ¢ and conduct asymptotic

inference. In this paper we are not concerned with the choice of estimators and test



statistics, we simply suppose that there is some estimator 0 for 0 and some test statis-
tic t, = tn (Y1, .., Yn; 0p) . The test statistic ¢, can take the form ¢, = é, or alternatively
t, = 0 — 6y, but most likely takes a studentized form, e.g. ¢, = (é — 90) /5, where § is
an asymptotic standard error for 6. The purpose of ¢, is that if the distribution of ¢,, were
known, then the distribution can be inverted to yield confidence statements about 6.

For concreteness, we now give three examples of how the choice of statistic ¢, yields
different conventional confidence intervals for #. For any choice of ¢,, let ¢, denote the «
quantile of the distribution of ¢, (e.g., P(t, < qo) = «). If t,, = 6 , then a 90% percentile-
type confidence interval for 6 is formed as [qo5, q.o5]. If t,, = 0— 0y, then Hall’s percentile-type
interval takes the form [é—q,%, é—q'05]. If¢, = (é — 90) /5, then the percentile-t-type interval
takes the form [0 — $q.95,0 — $q.05).

In principle, the distribution of ¢, can be calculated from F (v, ...,ys), the joint dis-
tribution of the data, but F' is generally unknown. The bootstrap method approximates
the distribution of ¢,, by that of t& =t, (yf, s Y é) where the random sample (7, ..., y)
has some joint distribution F* which is designed to mimic the data distribution F. The so-
called bootstrap distribution F* is thus an approximation (or estimate) of F. One difference
between alternative bootstrap procedures is the choice of estimate F™.

Brown and Newey (1995, 1999) argue that bootstrap inference will be efficient when the
distribution estimate F'* is efficient. Intuitively, bootstrap inference can be made exact if we
set F* = F, and inferential error (the deviation of Type I error from the nominal level) only
arises through the deviation of F* from F. The larger this deviation, the larger the potential

inferential error.

3 Non-Parametric Estimation of Conditional Distribu-

tion

We saw in the previous section that the problem of bootstrap inference reduces to the problem
of selecting an estimate F* of F, the unknown data distribution, and that it is desirable for
this estimate to be efficient. Since all that is known about F* is the conditional moment
restriction (1), the problem appears to reduce to the problem of efficient non-parametric

estimation subject to a conditional moment restriction. Brown and Newey (1999) consider



the case of independent observations; we propose here an analog for the case of dependent
observations.

It is helpful to decompose F' using the conditional factorization

n

F(ylv“'ayn) = HG(yt ‘ ftfl)FO (xl)

t—1
where G (y | F1-1) = P (y: <y | Fi_1) denotes the one-step-ahead conditional distribution
function and F{ denotes the distribution of the initial condition z;. Thus if we have non-
parametric estimates G* and F{j of G and [y, respectively, we can form the natural non-

parametric estimate of F:

n

F* (Y1, ) = [[ G (e | Frcr) F5 (1) -

=1
We now turn to the problem of non-parametric estimation of the one-step-ahead condi-
tional distribution G. Supposing that G depends only on the most recent m lags! of the

series, we can write as G (y | Fi—1) = G (y | ;) . Then (1) can be written as

[ 960 dG (y | 1) =0. 3)

Observe that (3) is a restriction on the one-step-ahead conditional distribution function G.
In the context of independent observations, Brown and Newey (1999) argue that efficient

estimation of G requires that the estimate G* satisfy the empirical analog of (3):

0= /g (y,xt; é) dG* (y | =) . (4)

Independently, Brown and Newey (1999) and Ahn, Kitamura and Tripathi (1999) have
proposed similar asymptotically efficient estimators® which satisfy (4).

This estimator G* is a hybrid mixture of non-parametric density and empirical likelihood
estimation. The estimator can be described briefly as follows. For any given value of z;, find
a multinomial distribution on the support points (y1, ys, ..., ¥,) described by the probabilities
p = (p1,D2, ..., pn) such that the distribution satisfies the conditional moment restriction (4),
yet is close, in the sense of locally weighted empirical likelihood distance, to a non-parametric

kernel estimator of the distribution.

'If G depends on k lags of the series, and the function g depends on [ lags of the series, then without loss

of generality we can set m = max(k,1).
2We follow the treatment of Ahn, Kitamura and Tripathi (1999) since their estimator is guaranteed to

produce non-negative probability weights.



More precisely (again z; is held fixed), for some non-negative kernel K (-) and bandwidth

h, define the kernel weights

K ()

j=1 h

i=1,..,n, (5)

w; =

and local empirical likelihood estimator

D= (P1y.esPn) = argmaXZwi log(p;)

P1y--3Pn i=1
where the p; are constrained to satisfy
piz0,  Yp=1 Y g(ynw;0)p=0. (6)
i=1 i=1

The estimator G* (y | z;) is the multinomial conditional probability distribution such that
P(yf = vy; | @) = pi, i = 1,...,n. The constraint (6) ensures that this is a valid probability
distribution and the conditional moment restriction (4) is satisfied.

Numerically, a convenient method to obtain the estimator is via a Lagrange multiplier

technique. Ahn, Kitamura and Tripathi (1999) show that the solution satisfies

~ w;

bi = (7)

n+\Ng (yz‘, Ty é)

where A solves

~

“ g (yz‘, Tt 9) W
i—1n+ MNg (yz-, xy; é)
The multiplier A can be found by numerically solving the s nonlinear equations in (8),

yielding the probabilities (7).

~0. (8)

Relevant issues for empirical implementation include the choice of kernel and bandwidth.

For the kernel, a convenient choice is the multivariate normal

K(u) = exp (— (u'2_1u> /2) 9)

(normalizing constants are irrelevant because of the definition (5)), where
n
N =nS (2 - 7) (2 — ),
t=1
the sample covariance matrix of the conditioning variables x;. This scaling by ¥ results in an

estimator which is invariant to linear transformations of z;. The choice of normal kernel is



convenient because it technically precludes the possibility that for some z, K (ﬁh’—x) =0 for
all 7, which can happen for kernels with bounded support if x is unusual and the bandwidth
h is small.

Neither Ahn, Kitamura and Tripathi (1999) nor Brown and Newey (1999) give a rule to
select the bandwidth h. Since the estimation problem is very similar to that of m-variate
density estimation (see (5) above), we use the plug-in rule suggested by Silverman (1986, p.

45, 86-87) for multivariate density estimation:
h = ¢pun /™) (10)
where ¢, is determined by the choice of kernel. For the normal kernel,

1 = 1.06
ca = 0.96

4 1/(4+m)
Cm = ( > ) m > 2.
14+ 2m

It would be useful in the future to investigate alternative rules for selection of A, including

cross-validation.

4 Bootstrap Recursion

For a given initial condition z] = (y(’;, O T +1>7 the conditional probability distribution G*
described in the previous section defines a non-parametric bootstrap distribution F*. Namely,
given 7, the probability weights p;, i = 1,...,n are calculated from (5), (7) and (8), then
a random draw is made from (yi,¥s, ..., y,) With each receiving probability (p1,pa, ..., Pn),
yielding yj. Then set x5 = (yi‘, e Y +2) , recalculate the probability weights p;, 1 = 1, ..., n,
and draw from (yi, ..., y,) with these weights to yield y4. This defines a Markov chain on the
points (Y1, Y2, ..., Yn) and creates a bootstrap time series (yi,ys,...,y"). As discussed above,
given this bootstrap time series, the statistic of interest, namely ¢} = ¢, (yf, ey Y é) can be
calculated. Since the distribution of (v, v, ..., y) can be described by this Markov recursion,
the distribution of ¢} can be calculated by simulation.

This Markov recursion requires a choice for initial condition z. One option is to set it
to the values in the sample, vis., i = (yo, ..., Y—m=1) - This has the natural advantage of

conditioning on relevant information, as argued by Sims and Zha (1999). Another option is

6



to draw 3 from the unconditional distribution of (v}, y; i,...,y; ,,) defined by the Markov
recursion. While intuitively attractive, it is unclear how this could be calculated, or even
how to easily and generically verify that such a distribution exists. We propose a simplifying
shortcut, and draw z] as a random m—block from the original data series.

Simulating bootstrap samples via this recursion requires considerably greater compu-
tation time than conventional bootstrap methods. Table 1 shows the computation time
(in minutes using Gauss32 on a 300Mhz Pentium II processor) required to calculate 90%
confidence intervals using 999 bootstrap simulations, on AR(k) models, for a variety of lag
orders k and sample size n. For these calculations, we set m = k. These computation times
should only be taken as rough guidelines, since the actual time will depend on the number of
iterations required to solve the equations (8). What is apparent from Table 1 is that the com-
putation time depends quite strongly on the sample size n, and more mildly on the Markov
order m. For small samples, computation time is quite modest, for example, for a sample
of size n = 50, computation time was approximately a half-minute, and for a sample of size
100, computation time ranged from one to two minutes. But for large samples, computation
time can be quite demanding, as illustrated by the case n = 500, where computation time

ranged from 18 to 49 minutes.

Table 1: Computation Time for Non-Parametric
Bootstrap Confidence Intervals

(Minutes Using Gauss32 on a 300Mhz Pentium II Processor)
m = 1 2 4 6 8 12
n=>5005 05 06 06 07 0.7
n=100(11 13 15 16 1.8 24
n=250[46 52 65 80 9.1 12
n=2>500| 18 20 26 32 37 49

5 Monte Carlo Evidence

We explore the behavior of alternative bootstrap methods in a simple sampling experiment.

The model is an AR(1)

Y = W+ ayp_1 + €, E (et | ft—l) =0.



or constrained AR(2)
Yy = [+ QY2 + €, Ef(e | Fia) =0

where the martingale difference errors e; are generated by an ARCH(1) process with student-t

innovations (with degree of freedom parameter 5):

er = zpJw+ye:

zZt iid t5

We normalize w = 1 and set u = 0. We vary v among {.1,.3,.5,.7} to assess the effect of
conditional heteroskedasticity, and vary o among {0,.5, —.5,.8, —.8} to assess the effect of
serial correlation. In this experiment, we consider samples of size n = 30, 60 and 120, and
generate 3000 Monte Carlo replications.

We are primarily interested in the comparison of our non-parametric bootstrap with the
non-parametric block bootstrap. To implement the latter, we used overlapping blocks (as
in Kunsch (1989)), and tried three choices of block-length b € {4,6,8}. (for the n = 120
case we used b € {6,8,10}.) Because the qualitative results were not very sensitive to the
selection of block-length, we only report the results for b = 6 for n = 30 and 60, and b = 8
for n = 120. To implement our non-parametric bootstrap we set m = 1 for the AR(1) and
m = 2 for the AR(2), and used the kernel (9) with bandwidth determined by the Silverman
rule (10).

The parameter of interest is taken to be the autoregressive parameter ae. We consider tests
of Hy : a = «p, and report results for tests of nominal size 5%. We report results for two-
sided tests and one-sided tests (against both alternatives, since the sampling distributions
are asymmetric). These results can alternatively be interpreted as coverage probabilities of
bootstrap confidence intervals, constructed via either the symmetric two-sided or asymmetric
equal-tailed methods.

Following the recommendation of Hall (1992), we consider tests based on the percentile-t
method. That is, our selected test statistic is ¢, = (& — ag) /8§, where § (with one exception
discussed below) is the Eicker-White heterskedasticity-consistent standard error for &. In
this model, t,, is asymptotically distributed as N(0,1).

For the one exception to this rule, we report results for the model-based autoregressive

bootstrap using conventional standard errors (for the AR(1) model only). We report this
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case merely because this method is widely used in practice, and we wish to emphasize
the distortions from using nonpivotal methods. This method uses the OLS estimates and
independent draws from the OLS residuals {éy,...,é,} to generate bootstrap samples, and
conducts inference using the percentile-t method using a conventional OLS standard error.

In addition to the above method, we report two baseline model-based bootstrap methods.
The first is identical to the model-based bootstrap method described above, except that infer-
ence is based on the percentile-t method using the Eicker-White heterskedasticity-consistent
standard error. This might be viewed as a naive hybrid bootstrap, as the test statistic
is explicitly robust to heteroskedasticity, yet the bootstrap algorithm explicitly generates
bootstrap time-series which are conditionally homoskedastic (with iid errors).

For the second baseline model-based bootstrap, we use an estimated AR/ARCH model.
An ARCH(1) is fit to the AR residuals é; by Gaussian quasi-likelihood, yielding fitted con-
ditional variances and normalized residuals 2z, = é;/ m . The bootstrap algorithm
proceeds by iid resampling from the empirical normalized residuals {Z,,...,2,}, and the
AR/ARCH process is then generated (using the estimated parameters) as specified by the
model. We report this bootstrap as a baseline comparison, not because it is a realistic
method for empirical practice, (as it requires correct knowledge of the conditional variance
equation) but to illustrate the “best-case” for comparison with the non-parametric methods.

As stated above, our tests are based on a t-statistic ¢,,. Each bootstrap method generates
a bootstrap distribution for the t-statistic which we can denote by ¢} with conditional proba-
bility measure P*. Then the bootstrap p-value for a symmetric two-sided test of Hy : @ = g
against Hy : a # «g is p1 = P*(|t}| > [t.]), the bootstrap p-value for a one-sided test of
Hy : o = «ap against Hy : a > o is pp = P*(t} > t,), and the bootstrap p-value for a
one-sided test of Hy : @ = ag against Hy : o < « is p3 = P* (¢ < t,,) . For each Monte Carlo
sample and bootstrap method, these bootstrap p-values are calculated by simulation using
399 bootstrap replications. The test rejects at the 5% nominal level if the bootstrap p-value
is smaller than 0.05.

We report the frequency of rejection (across the 3000 Monte Carlo samples) in Tables 2,
3, and 4 for the AR(1) model for the cases n = 30, 60, and 120, respectively, and in Tables
5 and 6 for the AR(2) model for the cases n = 30 and n = 60.

The results in all tables tell essentially the same story. As expected, the naive model-based

bootstrap using conventional standard errors has quite poor performance when the ARCH



parameter v is large. The modified naive model-based bootstrap, using White standard
errors, performs surprisingly well, but does show meaningful size distortion when the ARCH
parameter v is large. For n = 30, the AR/ARCH bootstrap performs only slightly better,
but there is a more noticeable improvement for larger sample sizes. The blocking bootstrap
does not do well in any experiment. The results for the two-sided tests are often reasonable,
but the one-sided tests have enormous size distortions. More disturbingly, the extent of the
size distortion does not seem to diminish as the sample size increases.

Our non-parametric bootstrap, however, does quite well in most cases. The size distor-
tion is typically no worse than the (infeasible) bootstrap based on the correct model, and
in some cases has less size distortion. A notable exception, however, is the one-tailed test
of Hy : @ = oy against Hy : a < ag for the case of negative AR parameters, « = —.5 and
a = —.8. In these cases, the non-parametric bootstrap does less well than the baseline model-
based bootstrap methods. The performance is dramatically better than the block boot-
strap,however. Another exception is the one-tailed test of Hy : « = o against Hy : a > «q
for the AR(2) model with n = 30 and a = .8, where the non-parametric bootstrap is notably
undersized. Overall, the numerical evidence shows that the non-parametric bootstrap does

reasonably well even in very small samples, at least in the simple class of models considered.
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Table 2: Size of 5% Bootstrap Tests, AR(1), n = 30

P (p, < .05)

P (ps < .05)

P (ps < .05)

/7:

1

3

)

T

1

3

)

e

1

3

)

a=20

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.086
075
074
.096
.059

137
073
.069
.084
055

183
.088
077
078
.053

204
.091
.080
075
.045

.083
078
.076
.140
.095

130
.099
.090
178
094

144
101
.087
179
101

165
107
.088
199
113

.095
.082
.084
167
.087

120
077
074
.166
.088

155
.088
.085
.200
.093

165
.083
.080
199
112

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.086
.070
.066
.081
.065

116
070
.066
074
.064

155
.084
072
077
.065

186
.088
.070
078
.065

.081
.079
077
210
072

.100
.086
076
224
.092

124
102
.089
234
.081

.149
110
.092
247
116

.100
076
.070
103
.085

128
.084
082
109
.089

152
.088
.082
119
097

A7
.094
.085
140
104

a=-.5

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.080
072
.063
.096
.052

128
078
074
.081
.048

150
075
.062
071
.054

181
076
.063
.062
.046

.087
.081
.079
.095
.081

121
.090
077
115
.098

141
.099
.080
122
.097

163
.098
.079
139
.097

.086
075
072
.262
.081

109
.086
.082
258
.091

116
078
076
.254
116

126
073
.070
.260
122

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.106
.082
078
.091
078

143
094
.086
.090
077

152
.092
.081
.081
077

172
.095
.081
067
073

072
072
.067
237
.060

.096
094
.085
251
.068

.108
102
.088
236
078

120
110
.087
253
.085

114
.090
.090
101
.094

150
102
.096
103
.092

160
.096
.089
100
.092

176
101
.088
.099
.099

a=—.8

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.054
.045
.042
.060
.050

.089
.064
.058
067
.052

114
073
.060
.056
.053

133
.082
.066
.063
057

072
.062
.062
.063
074

101
083
074
079
.095

130
.091
075
.088
.098

132
.092
072
.092
.097

.063
.065
.062
393
.095

078
.065
074
341
.109

.085
.069
075
.339
125

113
.079
072
341
136
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Table 3: Size of 5% Bootstrap Tests, AR(1), n = 60

P (p, < .05)

P (ps < .05)

P (ps < .05)

/7:

1 3 5

T

1

3 5

e

1

3 5

a=20

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

118
077
.069
075
.058

181
.076
.062
.060
055

235
.083
.070
.055
.049

301
.099
067
.054
.047

.093
074
072
133
072

150
.096
.082
158
.089

176
.090
071
171
.096

201
103
.070
183
.109

105
.076
.069
.146
.083

132
.068
.064
148
.091

168
.066
.059
159
.088

210
.085
073
185
.109

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.098
.069
.065
.058
057

155
079
.065
054
054

221
078
.058
.042
.053

.260
.080
.055
.046
.041

.085
073
072
.262
.066

120
.080
.068
253
.082

151
.093
079
274
.086

176
108
.079
278
.100

101
074
072
071
071

137
075
.069
076
076

178
074
.066
.086
.084

210
078
.062
101
.076

a=-.5

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.098
.066
.061
.054
.047

157
074
.065
.052
.047

216
.084
.066
.047
.040

280
.098
067
.044
.043

.088
.065
.063
.054
.063

128
075
.064
.069
078

A72
.092
075
.091
.081

205
.096
.068
.106
.093

.086
.070
.064
282
078

120
074
071
276
.090

150
074
.066
.286
.109

.166
078
073
274
123

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.089
.067
.064
.044
.052

134
071
.060
.040
.060

A75
075
.057
.038
.054

213
.084
.038
.040
.046

.088
.082
.080
371
.065

102
.089
.083
375
.070

A17
.091
074
361
087

131
104
.079
338
103

.099
074
071
.044
.069

143
078
.068
047
078

174
.085
071
.053
072

210
.090
072
.062
.064

a=—.8

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.064
.056
.051
.032
.045

120
.066
.056
.030
.056

153
.068
.056
.034
.043

201
.083
.062
035
.044

072
057
.054
.028
.064

115
078
.063
.034
074

142
.083
.064
.046
.069

178
.099
.067
.038
.082

.069
.061
.062
481
.093

.087
.065
.064
460
122

109
.068
.064
431
125

126
.066
.061
419
141
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Table 4: Size of 5% Bootstrap Tests, AR(1

), n =120

P (p, < .05)

P (ps < .05)

P (ps < .05)

/7:

1 3 5

T

1

3 5

e

1

3 5

a=20

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

127
.067
.062
.066
.044

229
.076
.060
.054
.046

328
.092
.061
.047
.039

412
109
.066
.047
.033

.106
073
.069
128
.056

173
.080
067
141
072

208
.092
.063
162
.082

235
.098
.066
174
.099

.100
.062
.063
123
.065

155
.069
.060
133
075

214
074
.063
.159
.083

264
.080
.065
195
097

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

108
.063
.061
.043
.046

197
.063
.054
033
.041

304
.088
.058
.041
.044

376
101
.063
.038
.039

.093
.068
.061
.262
073

148
.083
067
.266
077

A75
.090
.070
269
.097

209
.094
.070
273
104

.096
.064
.058
.046
.057

152
.039
.052
057
.056

224
077
.061
.094
071

.262
.089
071
103
075

a=-.5

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

105
.060
.058
.041
.048

194
078
.063
.040
.048

282
078
.059
.037
.029

367
.097
.061
.040
.029

.095
067
.058
.041
.060

157
074
.060
.066
.066

202
.081
047
078
.065

241
.087
.051
103
076

.081
.055
.058
253
.066

137
.070
.065
265
.091

165
071
.066
263
101

209
.083
077
276
126

a=.

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

.092
.070
.064
.031
.058

148
067
.057
.027
047

211
.057
.044
.019
.039

278
073
.046
.020
.036

076
.069
.068
447
.067

126
.093
.082
432
.089

141
.095
074
408
.099

.166
102
071
376
122

.095
.070
.069
.030
.068

138
.069
.062
.031
.062

182
.064
.033
.036
.051

233
.080
.060
.046
.062

a=—.8

AR/OLS
AR/White
AR/ARCH
Block
Non-Par

077
053
.049
017
.039

158
.061
.055
.020
.044

214
.070
.054
.021
.038

284
.080
.049
.022
.030

.079
.059
057
.016
095

137
076
.063
.024
071

179
075
.049
.033
.063

226
.090
.048
.054
.069

071
.060
.058
524
.092

104
.063
.061
476
116

134
.065
.061
.446
131

153
.064
.067
412
163
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Table 5: Size of 5% Bootstrap Tests, AR(2), n = 30

P (p, < .05)

P (ps < .05)

P (ps < .05)

/7:

1

3

)

T

1

3

)

e

1

3

)

a=20

AR/White
AR/ARCH
Block
Non-Par

.054
.056
.055
.041

057
.056
.046
.038

057
.051
.041
.040

.067
.064
.042
.038

.068
.065
133
.069

076
075
154
.068

075
.069
160
079

.084
.080
176
078

071
073
.166
.069

.064
.064
164
076

.063
.065
179
.083

073
.076
201
.083

a=.

AR/White
AR/ARCH
Block
Non-Par

.060
.062
.054
.046

.064
.057
.051
.052

.059
.099
.046
.046

.069
.061
.048
.054

.069
.067
254
.040

067
.064
251
.041

.082
076
281
043

075
.069
287
.046

.068
.067
.065
.060

.069
067
.070
.063

.067
.066
076
.064

.080
.081
.091
.066

a=-—.5

AR/White
AR/ARCH
Block
Non-Par

.052
.052
.040
.041

.039
.052
.045
037

.099
.054
.040
.046

.065
.062
037
.049

.068
.064
.050
.062

071
.066
.064
.065

077
075
073
070

076
.067
078
072

.060
.060
.348
.069

071
.068
.345
079

.061
.039
342
.094

.066
.069
.365
113

a=.8

AR/White
AR/ARCH
Block
Non-Par

.079
.076
.047
.059

.064
.065
043
.058

075
075
.052
.058

071
.066
.040
.063

.054
.052
392
.010

.052
.052
.368
012

.061
.055
349
.016

.066
.058
341
018

.083
.084
.049
.082

071
072
.045
077

.084
.083
.060
073

.081
077
.055
.081

a=—.8

AR/White
AR/ARCH
Block
Non-Par

.052
053
.037
.042

.056
.052
.032
035

.052
.051
.033
.043

.056
.053
.033
.041

.059
.058
.031
.079

.063
.060
.029
076

.069
.063
.040
079

073
.065
.042
073

.061
.063
537
.166

.068
.066
.H42
168

.063
.061
031
191

.052
.053
521
187
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Table 6: Size of 5% Bootstrap Tests, AR(2), n = 60

P (p, < .05)

P (ps < .05)

P (ps < .05)

/7:

1

3

)

T

1

3

)

e

1

3

)

a=20

AR/White
AR/ARCH
Block
Non-Par

.066
.062
.040
.050

.056
053
028
.040

.066
.061
018
.037

072
.056
018
.029

.064
.065
126
072

.068
.062
143
077

072
.062
180
.086

.086
071
198
.106

.064
.060
152
.068

.058
.060
162
074

.068
.070
77
.083

.065
.063
196
.084

a=.

AR/White
AR/ARCH
Block
Non-Par

053
.052
.025
.041

052
.049
.023
.041

.059
.056
.025
.043

.065
.033
.024
.041

057
057
387
.039

073
067
392
033

071
.064
.380
.047

.081
.068
390
.056

.053
.056
.029
.040

.058
.054
.031
.043

.065
.066
.045
.044

.070
.068
.050
.046

a=-—.5

AR/White
AR/ARCH
Block
Non-Par

.060
.061
025
.048

.039
.056
024
.045

.062
.056
018
.042

.070
.062
015
.048

.058
.052
.024
.047

.063
.061
.031
.053

067
.061
037
.046

075
.061
.043
.049

.063
.066
452
.079

035
.057
457
.082

.064
.065
456
105

072
.070
452
124

a=.8

AR/White
AR/ARCH
Block
Non-Par

.062
.060
.016
.053

033
.051
.010
.046

.064
.053
.010
.045

067
.058
011
.043

.067
.064
.614
.023

.064
.039
.619
021

072
.064
.601
028

.079
.066
581
.026

.067
.067
.015
.079

.062
.060
.009
.069

072
.066
011
.068

072
.069
.016
.062

a=.8

AR/White
AR/ARCH
Block
Non-Par

.051
.049
.007
.030

057
.055
.006
.030

.055
.048
.010
.031

.063
057
.008
033

.054
.054
.005
.065

.063
.059
.007
.069

067
.059
.009
.069

.069
.057
015
.068

.058
.061
739
181

.063
.065
723
209

.062
.061
705
229

072
.064
.690
.260

15




References

1]

[9]

[10]

[11]

[12]

Ahn, H., Y. Kitamura, and G. Tripathi (1999): “An empirical likelihood approach to
conditional moment restriction models,” University of Wisconsin.

Brown, B.W. and W.K. Newey (1995): “Bootstrapping for GMM,” Rice University.

Brown, B.W. and W.K. Newey (1999): “Efficient Bootstrapping for Semiparametric
Models,” Rice University.

Carlstein, E. (1986): “The use of subseries methods for estimating the variance of a
general statistic from a stationary time series,” Annals of Statistics, 14, 1171-1179.

Efron, B. (1979): “Bootstrap methods: Another look at the jackknife,” Annals of Statis-
tics, 7, 1-26.

Hall, P. (1992): The Bootstrap and Edgeworth Ezpansion, New York: Springer-Verlag.

Hall, P. and J.L. Horowitz (1996): “Bootstrap critical values for tests based on
Generalized-Method-of-Moments estimation,” Econometrica, 64, 891-916.

Hansen, L.P. (1982): “Large sample properties of Generalized Method of Moments
estimators, Econometrica, 50, 1029-1054.

Kunsch, H.R. (1989): “The jackknife and the bootstrap for general stationary observa-
tions,” Annals of Statistics, 17, 1217-1241.

Politis, D.N. and J.P. Romano (1996): “The stationary bootstrap,” Journal of the
American Statistical Association, 89, 1303-1313.

Silverman, B.W. (1986): Density Estimation for Statistics and Data Analysis. London:
Chapman and Hall.

Sims, C.A. and T. Zha (1999): “Error bands for impulse responses,” FEconometrica, 67,
1113-1155.

16



