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Abstract

In the course of the analysis of time series of counts the need to test for the
presence of a dependence structure arises reqularly. Suitable tests for this purpose
are analysed in this paper. Their size and power properties are evaluated under
various alternatives among which the INARMA-processes play a prominent role.
The results can be summarized as follows. (1) All the tests considered but one are
robust against extra binomial variation in the data. (2) Newly proposed tests based
on the sample autocorrelations and the sample paritial autocorrelations can help to
distinguish between integer-valued first-order and second-order autoregressive as well
as first-order moving average processes. (8) The tests considered are not powerful
enough to distinguish between higher-order integer-valued autoregressive processes
and the popular parameter-driven processes where a dynamic latent process introduces
the serial dependence into the counts. The methods and findings of this study are
applied to three data sets: the so called Firth-data already analysed in the branching

process literature, data on worker absenteeism and to polio incidence data.
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1 Introduction

Time series of small counts arise in various fields of statistics. Examples are the number
of customers waiting to be served at a counter recorded at discrete points in time, the
daily number of absent workers in a firm or the monthly cases of rare infectious diseases
in a specified area. Typically such series consist of positive (or zero) counts with a sample
mean not higher than 10 rendering any continuous modelling inadequate. Several models
that take the discreetness of the data explicitly into account have been developed in the
literature. Following a proposal of Cox (1981) they are divided into two broad categories:
observation-driven and parameter-driven models. While the latter rely on a latent pro-
cess connecting the observations, the former specify a direct link between current and

past observations.

This paper focuses on the a special class of observation driven models, the so called
integer-valued autoregressive-moving average (INARMA) processes introduced by McKen-
zie (1985) and Al-Osh and Alzaid (1987). They provide a very interesting class of discrete
valued processes with the ability not only to specify the dependence structure but also
with a possibility to choose among a wide class of (discrete) marginal distributions. Al-
though inherently nonlinear in nature, the INARMA-processes try to mimic the linear
structure of the well known linear Gaussian ARMA-processes. There exists however a
gap between the theoretical models for INARMA-processes and their practical applica-

tion to time series of counts. It is the purpose of this paper to close this gap somewhat.

A natural first question in the analysis of time series of counts is whether the data
exhibit a significant serial dependence or not. If that is not the case standard methods
suitable in the iid-case can be applied, otherwise a more sophisticated analysis is called
for. To equip the applied researcher with suitable tools to answer this question we discuss
various standard tests of serial dependence and introduce a new class of tests derived from
the branching process literature. The size and power properties of the various tests are
examined in Monte Carlo experiments. Once a significant serial correlation is established

in the data the next task is to identify the type of correlation structure. For this purpose



we propose a testing strategy that supports this identification process and is especially de-
signed to identify series that are suitable for the analysis with INARMA-processes. Again

the power properties of this testing strategy is analysed in Monte Carlo experiments.

The paper is organized as follows: In Section 2 the basic INARMA-processes are de-
scribed in some detail along with a parameter-driven process with an unobservable dy-
namic process entering the mean function serving as an alternative. In Section 3 well
known and newly designed tests for serial dependence are discussed. Section 4 provides
the results of Monte Carlo studies on the size properties of the various testing procedures
under the assumption of equidispersed iid-Poisson variables as well as overdispersed iid-
negative binomial variables. The empirical power of the tests against various alternatives

is analysed in Section 5. Section 6 provides some applications and Section 7 concludes.

2 Time Series Models for Counts

For the class of observation-driven models the simple integer-valued first order autore-
gressive (INAR(1)) and first order moving average (INMA(1)) processes are presented
in greater detail as well as the INAR(2)-model in order to account for the possibility of
higher order dependence. For the class of parameter-driven models the widely employed

latent process model introduced by Zeger (1988) is briefly described.

2.1 The INAR(1)-process
The INAR(1)-process {X;;t = 0,+1,+2,...} is defined by the difference equation
X,=aoX, 1 +W,, t=0,+£1,+2, ... (1)

with the state space of the process being Ny. It is assumed that ¢ € [0,1) and W} is an
iid-discrete random variate with finite first (4, ) and second moment (¢2,). W; and X;_;

are supposed to be stochastically independent for all points in time.

The process closely resembles the familiar Gaussian AR(1)-process but is nonlinear due

to the o-operation replacing the usual scalar multiplication in the continuous models. The
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purpose of this operation which goes back to the work of Steutel and van Harn (1979) is
to ensure the discreteness of the process. Following McKenzie (1988a) it will be called

binomial thinning or simply thinning and it is defined as follows:
Xi-1
aoXy 1 =Y+ Yo+ +Yx o1 = Z Yie_1 - (2)

i=1
The Y;;, are assumed to be iid with P(Y;; ; = 1) =aand P(Y;;_, =0) =1 —a. It
is important to note that subsequent thinning operations are performed independently of
each other with a constant probability a and that thinning is a random operation with
an associated probability distribution. Although not as rigorously defined as above the
concept of thinning is nevertheless well known in classical probability theory and has been
in use in the Bienaymé-Galton-Watson branching processes (Cf. Feller, 1968, ch. 12) as
well as in the theory of stopped-sum distributions (Cf. Johnson, Kotz and Kemp, 1992,
ch. 9). The close relationship between the Bienaymé-Galton-Watson branching processes
and the INAR(1)-process will be described below and subsequently exploited in the next

section.

An illustrative example of the process described by equations (1) and (2) is as follows:
consider X; to be the number of particles in a well defined space at time ¢. According to
the INAR(1)-process this number is made up of particles who have been in the space at
time ¢ — 1 and new entrants during the time span (¢ — 1,¢]. Each particle’s probability
to stay in the space is given by a. High values of a generate high correlation among

subsequent observations and low values of a a low correlation.

Important properties of the INAR(1)-process are summarized below. More detailed
information is provided in the papers mentioned above as well as in Alzaid and Al-
Osh (1988). Due to the stationarity assumption the derivation of the first and second
order moments is straightforward: E(X;) = pw /(1 — a), Var(X;) = (apw + 02)/(1 — a?)
and the autocorrelation function is given by p(k) = a* for K = 1,2,.... The behaviour
of the entire distribution of X; is conveniently summarized in the probability generating

function (pgf)

Px.(s) = Px.,(1 —a+as) Pw(s) . (3)



In contrast to the well known Gaussian processes the knowledge of the first and second
order moments does not suffice to describe the dependence structure of the process entirely.
Due to the Markovian property of the INAR(1)-process the relevant tool is the bivariate

distribution function or the bivariate pgf

PXt,Xt_l(Sla 82) = Px, 1 (8:(1 —a—as,)) - Pw,(s2) - (4)

The structural equivalence between the INAR(1)-process and the well known Bienaymé-
Galton-Watson branching process with immigration (BGWI-process) can easily been seen
when (1) and (2) are compared with a definition of the BGWI-process due to Athreya
and Ney (1972)

Xi-1
Xpe=) Yipa+We, t=0,+1,%2,..., (5)

i=1
where Y;; | denotes lattice iid-random variables with pgf Py (s) and W, denotes lattice
iid-random variables with pgf Pw(s). Yi:—1 and W, are assumed to be stochastically
independent for all + and ¢. The structural equivalence is restricted to the subcritical
case where E(Y; ;1) < 1 holds. This feature can be exploited for purposes of parameter
estimation and inference given the fact that a rich body of literature on BGWI-processes

is available.

As mentioned in the introduction the INARMA-processes are characterized by their
dependence structure and by their marginal distribution. So far no assumption about this
marginal distribution has been made. A natural first choice in the analysis of counting
processes is the Poisson distribution. Following Al-Osh and Alzaid (1987) we assume
that W; ~ Po(A) with A > 0. The marginal distribution of the process X; can now
be derived (Cf. Al-Osh and Aly, 1992) by inserting the pgf of W;, which is given by
Pw (s) = exp[—A(1 — s)] into (3). The thus obtained functional difference then has to be

solved iteratively:
Px,(s)=exp[-Al—s+a—as+a*—d°s+...+a" —a’s)]

x Px,(1 —a” +a”s) (6)

= exp —%(1—8)(1—@11_1) - Px, (1 —a” +a's).



For T' — oo we obtain the final result:

A
Px,(s) = exp [— :

-], )
which shows that X; ~ Po(A/(1—a)). The resulting process will be denoted as POINAR(1)-
process.

Figure 1 depicts simulated sample paths of the POINAR/(1)-process. For all three panels
E(X:) = 2 was chosen while the autocorrelation parameter a and the Poisson parameter
A was allowed to vary across the panels. In the top panel a was set to 0.1 resulting in a
very low autocorrelation and the sample path is quite erratic. In order to keep E(X;) = 2
the value of A had to be set to 1.8. In the center panel the parameter combination was
a = 0.5 and A = 1. In the bottom panel finally we set a to 0.9 and A to 0.1. The high au-
tocorrelation is quite evident in the bottom panel as well as the extremely low innovation
rate A. Note that the process returns back to its mean quite regularly as a consequence

of the stationarity property introduced above.

2.2 The INMA(1)-process

A different type of dependence structure can be generated using the first order integer-

valued moving average (INMA(1)) process {X;,t =0,+1,+2,...}
Xt:bOWt_1+Wt, t:07i17i2,..., (8)

with the state space of the process being again Ny. It is assumed that b € [0,1] and
that W; is a lattice iid-random variate with finite mean (uy) and variance (ow ). The
thinning-operation b o W;_, is defined as follows:

Weo1

boW;_ = Z Yie1, (9)

i=1

where Y;;_ is an iid variate with P(Y;; ; =1) =band P(Y;;-; =0) =1—b.

The INMA (1)-process can be illustrated using the example given already above: X;

denotes the number of particles in a well defined space at time £. According to the



INMA (1)-process this number is made up of particles who entered the space during the
time span (¢ — 1,%] and survivors of the entrants of the time span (¢ — 2,7 — 1]. Each
elements has a fixed survival probability of b. In contrast to the INAR(1)-process thinning
takes place only among the immigrants of ¢ — 1 not among all particles in the space. As
a consequence some particles are forced to die automatically. This ensures that only two
consecutive observations of X; are correlated but not observations more than one time

period apart. The resulting process is neither Markovian nor a BGWI-process.

The first and second order moments of X; can be derived without assumptions about
the marginal distribution. The mean of the process is given by E(X;) = (1 + b)uy, the
variance' by Var(X;) = (1 + b?)02 + b(1 — b)uy and the autocorrelation function

bo?,
for k=1
p(k) = { (L =D)py, + (1 +6%)0] (10)
0 for £>1

is in analogy to the Gaussian MA(1)-process. It is straightforward to show that given the
assumption of b being restricted to [0, 1], p(1) is allowed to vary in the interval [0, 0.5] only.

The distribution of the INMA(1)-process can be summarized in its pgf
Px.(s) = Pw,_i (1 = b+ bs) - P, (s) - (11)

As noted already above the INMA(1)-process is not Markovian and as a consequence the
conditional distribution of X¢|X;_1, X¢—o,...,X; depends not only on X;_; but also on
Xi—2,X¢ 3,...,X1. Due to a result of McKenzie (1988b) it is nevertheless possible to

describe the entire dependence structure of INMA(1)-process by the bivariate pgf
Prirxi(50:5) = Pwa(l=bo+b5) Py, (5, (1= b+b5,)) Puslsr) . (12)

From the pfg given in (11) it is obvious that the marginal distribution of the process
is derived from the distributional assumption for the innovation process {W;}. A natu-

ral first candidate is again the Poisson distribution. Employing W; ~ Po(\) the pgf of

1The property that b o W;_1|W;_; follows a binomial distribution with scale parameter b and index

parameter W;_; has been used in this derivation.



the PoINMA(1)-model is easily derived to be Px,(s) exp[—A(1 +b)(1 — s)]. As a result
X; ~ Po (A(1+b)).

Simulated sample paths for different parameter values of the PoOINMA(1)-process are
depicted in Figure 2. Again E(X;) = 2 is fixed. The parameter combinations used to
generate the graphs are: b = 0.1 and A = 1.8 for the top panel; b = 0.5 and A = 1.33 for
the center panel, and b = 1 and A = 1 for the bottom panel. The resulting autocorrela-
tions are 0.09, 0.33 and 0.5. Again the effect of an increased autocorrelation leads to a

smoothing of the sample path.

2.3 The INAR(2)-process

Higher order dependence in the data cannot be captured by the models discussed so far
but only by higher order processes. The INAR(2)-process {X;, ¢t = 0,£1,£2,...}, a

seemingly natural extension of the INAR(1)-process, is defined in the usual manner

Xt:CElOXt_1+a20Xt_2+Wt, t:(),:l:l,j:2, (13)

The thinning-operation is in analogy to (2). To ensure the stationarity of the process, it is
assumed that a, +a, < 1. It turns out that without additional assumptions regarding the
thinning-operation no sensible and easily interpretable processes result. Following Alzaid
and Al-Osh (1990) we assume that the vector (a, 0 X;_1,a, 0 X; 1) given X; ; follows a
multinomial distribution with parameters (a,,a,, X;_1). A short description of the way
the INAR(2)-process is simulated may serve to gain further inside into the structure of
the model. At time ¢ two binomial thinning operations are performed: U; = a, o X;_
and V; = a, o (X;—1 — U;). While Uy is employed in the next time point ¢ + 1 to generate
the new value of the process X;,, it is not until the time point ¢ 4 2 before V; is involved
in the generation of X;;o. In general the formula for generating the process is given by

Xe=Up 1+ Vi o+ W,

A direct consequence of the fact that thinned elements of X; re-enter the process at
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different time points a moving average structure is induced. As shown by Alzaid and Al-
Osh (1990, p. 320) the autocovariance function of a general INAR(p)-process defined as
above is similar to that of a Gaussian ARMA (p, p—1)-process. This result is in contradic-
tion to that obtained by Du and Li (1990) who do not employ an additional assumption
for the thinning operation in their definition of an INAR(p)-process. As a consequence
a sensible physical interpretation of their process is not readily available. Dion, Gau-
thier and Latour (1995) are able to demonstrate that the INAR(p)-process in general
can be viewed as multitype branching process with immigration. As a consequence the
classical branching process literature can be exploited for the analysis of higher order

INAR-processes as well.

Employing the Poisson assumptions W; ~ Po()) for the innovation process, a INAR(2)-
process with a Poisson marginal distribution results. The first and second order moments
of this process can be derived based on the assumption that a, o X;_; is independent of
the past history of the process and of a, 0 X;_5. The mean and the variance of the process
are equal to E(X;) = Var(X;) = A/(1 — a; — a,). The autocorrelation function satisfies

the second-order difference equation
p(k) =a, p(k — 1)+ a, p(k — 2) for k>2 (14)

with the starting values p(0) = 1 and p(1) = a,. Note that the first order autocorrelation
of this process depend solely on the parameter a, while higher order autocorrelations de-

pend on both a; and a,.

As is the case in the Gaussian ARMA-processes, the a,/a,-parameter space can be
partitioned in an area, where the autocorrelation function decays exponentially to zero
for all lags £ > 2 and an area where it oscillates before it damps out. This is depicted
in Figure 3. For processes, where a, < a, — a? is satisfied, the autocorrelation function
decays exponentially to zeros. The oscillating behaviour can be found in situations, when
a, > a, — a?. If a, happens to be equal to a, — a? the first and second order autocorrela-

tions are equal.



Figure 4 depicts simulated sample paths for the PoOINAR(2)-process at different pa-
rameter combinations. For all three panels the sum of a, and a, was set to 0.9 and in
order to fix the mean of the generated series to 2, the Poisson parameter A was set to 0.2.
In the top panel the a, = 0.8 and a, = 0.1. The corresponding sample autocorrelation
function and sample partial autocorrelation function of this series is shown in top panel of
Figure 5. The autocorrelation clearly exhibits no oscillating behaviour. This changes in
the middle panel of Figure 4, where a simulated sample path is depicted that is based on
the parameter values a, = a, = 0.45. The corresponding autocorrelation function is again
in the middle panel of Figure 5. The two parts it is made up of is clearly visible. While up
to k = 5 an oscillating behaviour is evident, for £ > 6 the autocorrelation function decays
exponentially. In the bottom panels of the two figures a situation, where a; = 0.1 and

a, = 0.8 is shown. The corresponding autocorrelation function is oscillating an damps out.

2.4 A parameter-driven model for time series of counts

A widely used parameter-driven model for time series of counts was introduced by Zeger (1988).
It is set up in the regression framework of generalized linear models and specifies the
mean function of the process {X; :t = 0,+1,+2,...} by a log-linear predictor and a non-
negative latent dynamic process {g; : ¢ = 0,%+1,+2,...}. In the standard specification

the counts given the latent process {¢;} are assumed to follow a Poisson distribution

Xile ~ Po(exp{z,B}e:) (15)

where {z,:¢t=0,%+1,+2,...} is a sequence of possible time-varying covariates including
a constant term and B = (84,...,0x)’) is the vector of regression parameters. In a pure
time series framework the covariates typically consist of a time trend and various cyclical
components. The dynamic latent process, which is assumed to be independent of the
process {X;} introduces both serial correlation as well as overdispersion. A simple spec-
ification of the latent process which prevents the mean function from becoming negative

is to employ a Gaussian AR(1)-process for the logarithm of ¢,

loge; = dloges 1 + 1y and |§] < 1. (16)



The innovations v; are assumed to be iid-N(u,, o2).

The mean of the process (p;) is given by E(X;) = exp(z,8) while the variance, which
is given by Var(X;) = u; + 02 p? always exceeds the mean as long as 02 > 0. The

autocorrelation function

— ps(k)
olk) = {1+ (02p) V)1 + (02_g) 1 }1/2° (17)

where p.(k) = Cor(X, X; 1), is not independent of the regressors {z;}. Note that posi-
tive as well as negative autocorrelation is permitted in this model. This is in contrast to

the INARMA-processes described above, where only positive autocorrelation is possible.

Additional properties of this process along with a general review of parameter-driven
and observation driven-models is provided in Davis, Dunsmuir and Wang (1999). In the
subsequent analysis this model which we should call the Zeger-model will be used to assess
the power properties of the test of serial dependence to be introduced in the next section

because of its prominent use in the literature.

A graph of the simulated data from the Zeger-model is depicted in Figure 6. The
data were generated using a time trend as well as two cyclical components as regressors:
213 = By + Pt + Pz cos(2nt/12) 4+ B3 sin(27t/12). This is in the spirit of Zeger (1988) and
Davis, Dunsmuir and Wang (1999). In both panels the mean of the process is set to 2. In
the top panel the first order autocorrelation is around 0.1 and in the bottom panel it is
about 0.5. Note that sample path in the top panel is quite volatile and regularly returns
to zero. The higher correlation in the bottom panel is due to long runs of zeros. Correla-
tions as high as 0.9 as given in Figures 1 and 2 are beyond the realm of the Zeger-model.
This is due to the fact that the dependence is induced not directly but through the latent
process. It can be shown that e.g. the first-order autocorrelation of the observed process
{X.} is always less then or equal to the first-order autocorrelation of the underlying latent

process (see e.g. Davis, Dunsmuir and Wang, 1999).
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3 Tests of serial dependence

There are several parametric as well as nonparametric tests available in the literature to
test for the presence of serial dependence in an ordered sample (z,,...,z,) of counts.
Many tests fail to take the discreetness of the data into account or break down due to the
presence of multiple ties. All the tests analysed here are carefully chosen in order to cope

with this very special situation.

The first test to be considered is the simple runs test. In order to apply the test to
time series of counts however the original series has to be dichotomized on the basis of
a specified criterion. It is often recommended the median being used for this task with
observations which are identical to the sample median being discarded. But given the
fact that stationary processes often return to the median many observations would have
to be discarded. This leads in some cases to a significant reduction in the power of the
test. Following Gibbons and Chakraborti (1992, p. 77) we therefore use of the sample
mean as a threshold, given the fact that the mean of discrete data will generally not be

discrete.

Under the null hypothesis of no serial dependence the distribution of the number of
runs R can be derived using combinatorics (see e.g. Gibbons and Chakraborti, 1992). The
resulting test statistic is discrete and therefore nominal significance levels can regularly
be attained through a randomized test design. As was confirmed by means of Monte
Carlo experiments not published here from samples of size 40 onwards the much more

convenient normal approximation

p_1_2T(T-T)
7 = T e (18)
oT\ (T — T))[2T\(T - T1) — T|1Y
T*(T — 1)

of the runs test can safely be recommended. Wald and Wolfowitz (1940) show that
Z -4 N(0,1).
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The test design chosen here is one sided. This is motivated by the fact that under
the alternative hypotheses of INAR(1), INAR(2) or INMA(1)-processes which are in the
center of our interest no negative autocorrelation is possible. Hence the only sensible

departure of the null is smaller number of runs than would be expected under the null.

Due to the discrete nature of the distribution of R it is often recommended (cf. e.g.
Gibbons and Chakraborti 1992, p. 77) to use a continuity correction in the Z-statistic.

The resulting test statistic

R—0.5— 2T(T — Ty)
ch = T 1/2 (19)
9T\(T — T))[2Ty(T — T}) — T
T2(T — 1)

is asymptotically equivalent to the Z statistic. Due to the one sided test design the null
hypothesis of serial independence is rejected in both cases if Z(resp.Z.. < z,, where z, is

the relevant quantile of the standard normal distribution.

Another approach to test for the presence of serial dependence in a time series of counts
is provided by the score test of Freeland (1998). The test statistic denoted by S is defined
as follows:

-1 T
S = (ﬁx) Y (@1 — 2)(z — 2) (20)
t=2
where 7 = 1/T Zle Z¢. Under the null hypothesis the x;’s being iid-Poisson with param-
eter A > 0 Freeland (1998) shows that § -5 N(0, 1).

A slightly modified version of Freelands test can be derived utilizing the mean-variance

equality property of the Poisson distribution. The modified statistic

S* — \/T ZZ—':Q(:Et_I - :E) (:Et - E) (21)
23;1(5515 —I)?
is asymptotically equivalent to the S-statistic based on the fact that under the null hy-

pothesis of iid Poisson random variables the probability limits of the sample mean and

the sample variance are equal.
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Again we advocate the use of a one sided test. A rejection of the null is in order, if
the measured dependence is higher that would be expected under the null, that is when

S > s, or 5* > s,.

A third class of tests to be considered is derived from goodness-of-fit tests of simple
branching processes as proposed by Venkatamaran (1982) and by Mills and Seneta (1989).
The first statistic is based on the sample autocorrelations whereas the second one is based
on the sample partial autocorrelations. Both statistics are in the spirit of portmanteau
tests due to Box and Pierce (1970) in the context of models for continuous time series.
Parallel to the application of the Box-Pierce-test to the original series in order to test for
serial dependence in the data (e.g. Pindyck and Rubinfeld, 1991, sec. 16.2) we advocate
the use of goodness-of-fit tests for simple branching processes to the original series using

the test statistics given below.

Restricted to first order processes the relevant implementation of the Venkatamaran

(1982) statistic, given in section 6 of his paper is as follows:

o]

t=1

Qacf(l) = @g T
Z(iﬂt — 7)X (249 — T)°

t=3

where 0y = > s (@ — T) (312 — B)/ Lo (30 — B)*.

(22)

Under the null of iid-Poisson variables z; it can be shown that the statistic Qqcf(1) N

x*(1). To see this in a first step the limit distribution of the sample autocorrelation gy,
has to be derived. Since the summands in the numerator of g, are not independent but
form a martingale difference with respect to the information set % = {z,_,... , 2}
it is necessary to employ a martingale central limit theorem. It is then possible to show
that vT ¢, = N(0,1) and T 9> % x2(1) respectively for all k£ =1,2,.... In a second
step the probability limit of the fraction in (22) has to be derived. For the numerator a
weak law of large numbers for independent variables is appropriate to establish that plim

[T 327 (z, — )% = A2. The denominator consists of dependent summands who form
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a martingale with respect to F;_;. An appropriate weak law of large numbers helps to
show that plim T-" Y31 .(z, — T)*(z;_o — Z)2 = A% This establishes the asymptotical

neutrality of the fraction and closes the proof.

A further test based on the branching process literature is due to Mills and Seneta (1989).

In the first order case the test statistic is given by

Qpacs (1) = 65— , (23)
Z(iﬂt — 1)*(24-2 — T)°
t=3
where q§2 is the second order sample partial autocorrelation. Along the lines of the proof

outlined above it is easy to show that Qpuc(1) L5 2(1).

Note that the Qqcf(1)-test is based on the first order sample autocorrelation whereas
the Qpacs(1)-test is based on the sample partial autocorrelation function. In parallel with
AR- and MA-models for continuous time series it may be the case that the two tests can
help us distinguish between an autoregressive and a moving average structure in the count

data.

The two tests just introduced can easily be expanded to a portmanteau structure in
order to capture higher order dependence in the data. It is hoped that the use of the
Quacr(k)- and the Qpecs(k)-test with £ = 1 and k£ > 1 can help distinguish between first
and higher order processes. The portmanteau version of the Q,.f(1)-test is defined as

follows:

k
Quer(k) =Y 05 ——— : (24)
= Z (@5 — T)* (2451 — )
t=s5;4+2

where k > s; > 1 each 4, s;,1 — s; > 2 and k is arbitrary.
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The corresponding portmanteau version of the Qpq.¢(1)-test is given by

o]

k
Qpacf(k) = Z QAS?H-I T =1 (25)
= Z (2 = 2)*(T4—g;1 — T)?
t=s;+2

The appropriate limit distribution for both portmanteau versions of the tests is the x2-
distribution with k degrees of freedom. This can easily seen since under the null hypothesis
of independence both statistics consist of the sum of k independent x?(1) variables as de-

rived above.

4 Empirical size properties of the tests

A Monte Carlo study has been conducted in order to analyse the the size properties
of the various test statistics discussed in the last section. The number of Monte Carlo
replications were set to 200000 to provide reasonably narrow confidence intervals for the
nominal sizes under investigation. Using the normal approximation? the 95% confidence
interval for the tests at e.g. a nominal level of 5% is given by [4.90; 5.10] and for a nominal
level of 1% by [0.96;1.04]. Under the null independent Poisson variables were generated
for low level data (A = 1) and higher level data (A = 5). The sample sizes used were
50,100, 500 and 1000. In preliminary work we experimented with smaller sample sizes but
various elements of unsatisfactory behaviour were in evidence. Add it to which additional
complexities due to randomized devices of runs tests are required. For some additional
information on this see Jung (1999, sec. 3.2). For the portmanteau tests Q,.s(k) and

Qpacs) (k) the number of summands k was set to 5.

Table 7 gives the rejection percentages of the different tests for for a nominal level
of 5% as well as 1%. Numbers in boldface indicate that the value is outside the 95%
confidence interval derived above. Several conclusions can be drawn. Most tests exhibit

size distortions for the smallest sample size used in our simulation study. Whereas for

2The relevant formula is: 2 - 1.96 [nominal size - (1 — nominal size)/(200 000)]1/2.
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some tests the size distortions disappear for moderate sample sizes, for some test they
do not even for T as high as 1000. The simple runs test behaves satisfactorily under the
null while the runs test using the continuity correction underrejects even for sample size
1000. Both versions of the score test behave in a similar fashion. The Q4.f(1)-test does
not seem to be exhibits a slight tendency to underrejection while its portmanteau version
Qucr (D) seems not to be affected by size distortions. The only test that tends to overreject
is the Qpacr(k)-test. Again no differences in the behaviour of the null distribution of the
test statistics can be observed for different values of k. A variation in the level of the
series does not seem to have systematic effects on the size behaviour of the test statistics
under investigation. This analysis has been carried out for all conventional significance
levels with qualitatively similar results. A full set of results is available from the authors

if desired.

Overdispersion is a phenomenon often encountered in the analysis of count data. To
assess the empirical size of the tests in the presence of overdispersion the negative bi-
nomial distribution was chosen under the null. Parameters of this distribution were set
as to reflect a situation with modest overdispersion (variance-mean ratio of 1.5) and one
with high extra binomial variation (variance-mean ratio 3). Table 7 gives the rejection
frequencies of the different configurations of our Monte Carlo experiment again for the

nominal sizes of 5% as well as 1%.

The results are qualitatively similar to those obtained under the Poisson assumption.
A remarkable exception is the behaviour of the S-test. Even in the presence of modest
overdispersion the test rejects the true null about twice as often as intended by the signif-
icance level. The nonstationarity of this statistic is evident from its behaviour in growing
sample sizes. In the presence of high overdispersion the situation is even worse. This
behaviour can be explained by looking at formula (20). In the presence of overdispersion
in the data this statistic is not properly scaled anymore and therefore is of no practical
use. A second test that is affected by the presence of overdispersion in the data is the
Qpacs (k)-test. For small and medium sample sizes in low level data (E(X) = 1) especially

the portmanteau version of the test exhibits quite a significant overrejection. As a con-
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sequence of this the value of k in the Qpq.f(k)-test should be chosen with great care in

small and medium sample sizes.

As in the Poisson case changing the level of the data by increasing the Poisson pa-
rameter A from 1 to 5 does not seem to have systematic effects on the size behaviour of
the other test statistics under investigation. This analysis has been carried out too for
all conventional significance levels with qualitatively similar results. Again a full set of

results is available from the authors if desired.

Overall our findings can be summarized as follows: All the tests discussed in Section 3
exhibit only minor size distortions as long as the data are equidispersed. Overdispersion
can lead to noticeable size distortions in the newly proposed Qqcr(k)- and Qpacs-test and a
nonstationary behaviour of the S-test. As a consequence in the presence of overdispersion
the use of the S-test cannot be recommended and the for the Q,.¢(k)- and Qpq.r(k)-tests

size adjusted critical have to be used.

5 Monte Carlo power properties

The ability of the various tests of serial dependence introduced in Section 3 to distinguish
between the alternative data generating processes discussed in Section 2 is now evaluated
on the basis of Monte Carlo experiments. The design parameters for the experiments were
chosen in such a way that the results for the different alternatives are comparable. All
rejection frequencies are calculated on the basis of 10000 Monte Carlo replications. Due
to size distortions found in Section 4 size adjusted as well as asymptotic critical values
were used. Sample sizes of 50, 100 and 500 were chosen. No power calculations were con-
ducted for sample size 1000 since all the power curves show high power at all significance
levels for this sample size as a result of their consistency property to be shown below. The
empirical power curves presented here are based on a nominal size of 5%. Calculations
for other nominal sizes show no substantive differences in the results. They are available

from the authors upon request.
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The PoINAR(1)-process serves as the first alternative hypothesis to be analysed. Em-
pirical power curves were calculated for series, where the Poisson parameter A\ was set
to 1 and series where A was set to 5. The autocorrelation parameter a was successively
raised from 0, resembling the situation under the null hypothesis to 0.90 in steps of 0.05.
The results are summarized in Figures 7 and 8. Figure 7 depicts the power curves for all
tests discussed in Section 3 at sample size 100. In the top panels A was set to 1 and in
the bottom panels to 5. The power curves in the left hand size panels are based on size
adjusted critical values while in the right hand size panels asymptotical critical values

were used.

It is quite obvious that the S* version of the score test dominates all the other tests
over the entire parameter space considered in the experiments. Freelands S-test exhibits
quite good power properties too but fails to handle situations with high autocorrelation
at small sample sizes satisfactorily. This non-monotonic behaviour of the empirical power
of the S-test can be attributed to the to the different scaling factors used in (20) and
(21) respectively. While the scaling factor employed in the S-test is the sample mean,
the S*-test is scaled by the sample variance. Although both statistics provide an es-
timate for the Poisson parameter A the variation of the two estimators differs markedly

as soon as the dependence is very high. More details are provided in Jung (1999, sec. 3.2).

The power properties of the simple runs test is quite remarkable. Going from the left
hand panels to the right hand panels it can be seen that the while the runs test with con-
tinuity correction (Z.. ) and the runs test without continuity correction (Z) have identical
power curves based on the size adjusted critical values, the size distortions of the Z,.-test
leads to a slightly worse performance with respect to power based on the asymptotic crit-
ical values. As a result of this finding it may be recommended not to use the continuity
correction because this can lead to inferior results. Both versions of the runs test are
affected by the level of the underlying data series. The higher the level of the data, the
lower the power of the runs test. This is due to the fact that the higher the level of the

data the less skewed is the marginal distribution of the counts. As a result the probability
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of shorter runs of observations above or below the sample mean is raised leading to a
lower rejection rate for the proposed null hypothesis and a loss of power. From comparing
the upper panels of Figure 7 with the lower panels it can be inferred that only the power

properties of the runs test is affected by the level of the underlying data.

Finally the power properties of the tests based on the sample partial autocorrelation
differs markedly from that based on the sample autocorrelation. Both the Qpacr(1)-test
as well as its portmanteau version Qpqcr(5) do not seem to possess any power at all and
exhibit a tendency to be biased for high values of the parameter a. The Q,.r(1)-test
performs slightly better as compared to its portmanteau version Qu.¢(5) but the power
properties of both versions of this test are clearly inferior to the score tests and the runs
test. The consistency of the S*-test and the two versions of the Qu.f(k)-test is demon-

strated in Figure 8.

The second alternative analysed is the PoOINMA (1)-process. The only difference in
the design of the Monte Carlo experiments as compared to the PoOINAR(1)-alternative
is the fact that distance between the null hypothesis of iid-Poisson random variables is
increased by successively raising the value of the parameter b of the INMA(1)-process (8).

The results are summarized in Figures 9 and 10.

From the inspection of Figure 9 several points emerge. While it seems to be harder to
identify a first-order moving average structure in the data the ability of the different tests
to detect it is comparable to the first-order autoregressive case discussed above. Again
both version of the score test tend to dominate the other tests employed in this study.
The simple runs test is also doing remarkably well here. As hoped for in Section 3 the
Qpact (k)-tests are now picking power and as shown in Figure 10 are consistent under the
PoINMA (1)-alternative. In contrast to that the Qucr(k)-tests are now virtually unaffected
by the growing dependence structure. Both versions of this test are not consistent under
the PoOINMA (1)-alternative. While the portmanteau version of the Qp,.¢-tests is picking
up power at a slower rate as compared to the Qpacf(1)-statistic the situation is reversed

in the @).f-case.
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The power curves in the left hand panels in Figure 9 are based the adjusted critical
values obtained in Section 4 while in the right hand panels asymptotical critical values
were used. The size distortions influence on the empirical power is restricted to the al-
ternatives, which are very close to the null hypothesis. A noticeable difference arises in
the case of the runs test. Due to the size distortions in the continuity corrected version
of the runs test the empirical power of this test statistic is somewhat lower than that of
of the uncorrected statistic when asymptotical critical values are employed. As under the
PoINAR(1)-alternative it can be seen when comparing the top to the bottom panels that
the only test affected by the change in the level of the data is runs test. The explanation

for this phenomenon is already provided above.

As mentioned above, the power properties of the Qu.r(k)-tests and the Qpq.r(k)-tests
differ markedly. While the former possess power against the PoOINAR(1)-alternative, the
latter do not. In the case of the POINMA (1)-alternative the power properties of the two
tests are reversed. This is due to the fact that the Qqucr(k)-tests are determined on the
basis of the second, fourth, sixth and so on order sample autocorrelations as shown in (22)
and (24) respectively. The the Qp..f(k)-tests on the other side are based on the second,
fourth, sixth and so on order sample partial autocorrelations. This is quite evident from
equations (23) and (25). Under the PoINAR(1)-alternative the second, fourth, sixth and
so on order sample autocorrelations pick up the dependence structure present in the data
while the second, fourth, sixth and so on order sample partial autocorrelations will be
close to zero under this alternative. Under the POINMA(1)-alternative the situation is
reversed. The second, fourth, sixth and so on order sample autocorrelation coefficients
will not pick up any dependence due to the special kind of dependence in the this process,
while the second, fourth, sixth and so on order sample partial autocorrelation coefficients
are positive due to the dependence structure in the data. This very different behavior
of the test statistics can subsequently be used to provide a tool to distinguish between

INAR-processes and INM A-processes and will be discussed in greater detail below.

The last INARMA-process to be analysed here is the PoOINAR(2)-process (13). The
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design of the Monte Carlo experiments is identical to the one chosen above. The distance
from the null hypothesis of iid-Poisson variables is increased by a vector of parameter
values for a, and a, with 0 < a, + a, < 0.9. Based on the very distinct behaviour of the
sample autocorrelation function as described in section 2.3 above, two sets of experiments
were conducted. For the first set, the combinations of a, and a, was chosen in such a way
as the a, was kept below the parabolic boundary depicted in Figure 3. In the second set

series with a oscillating autocorrelations were generated.

As long as a, < a, — a® the autocorrelation properties of the PoOINAR(2)-process are
very similar to those of the POINAR(1)-process. This is evident from the empirical power
curves depicted top panels of Figure 11. But in contrast to the first order process the sec-
ond order autoregressive process exhibits a exponentially decaying partial autocorrelation
function. This can bee seen in the top right panel of Figure 5. Consequently under the
PoINAR(2)-alternative the Qpacr(k)-test is picking up power as expected. All the tests

considered in this study are therefore consistent under this alternative.

As soon as a, > a, — a? the situation changes quite dramatically as evident from the
bottom panel of Figure 11. The score tests as well as both versions of the runs test are
not very powerful against this constellation of the PoOINAR(2)-alternative. All the other
tests exhibit a superior power performance over the relevant area of the parameter space.
The (Qqcf(1)-test seems to be possess the test with the highest power under those cir-
cumstances. The second most powerful test is the Qpacr(1)-test while the portmanteau
versions of both tests lag somewhat behind. The explanation for these results is quite
evident. The higher the value of a, as opposed to the value of a, grows the higher the
probability of the elements of the second thinning operation that re-enter the process with
a lag of 1 to survive. This can bee seen from the bottom panel in Figure 4. Every other
time point the process is staying at a level for some time. It seems as if the process is
jumping between two regimes. A regime of high values and a regime of low values. As a,
is so small only a very low first order autocorrelation arises. But second order autocor-
relation is very high. All the tests that rely solely on the first order autocorrelations as

the score test do must inevitably fail to capture the dependence structure correctly. The
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failure of the simple runs test is also evident from the bottom panel of Figure 4. The
process seems to be erratic with jumps across the sample mean of the process occurring

quite often and consequently decreasing the probability of longer runs.

Variations in the design parameter of the Monte Carlo do not produce substantively
different results with respect to the power properties of the test. Our findings up to this
stage can be summarized as follows. Both versions of the score test and the simple runs
test are surprisingly powerful when it comes to detecting a dependence structure that is
restricted to the first order. As soon as the dependence structure is more complicated both
classes of test fail to work. The specially designed Qu.¢(k)- and Qpu.s-tests are relatively
slow in picking up first order dependence alone. But as soon as higher order dependence
is in the data they are certainly the more powerful alternatives. The quite distinctive
power behaviour of the two versions of this class of tests can potentially be used to al-

low for a classification of the correlation structure among the various INARMA-processes.

To confront the tests of serial dependence described here with a data situation that
is very popular among applied researchers and whose dependence is generated in a very
different way as in the INARMA-processes, the Zeger-model as briefly outlined in Section
2.4 is used. The setup of the Monte Carlo experiments is chosen in such a way as to be
comparable to the experiments conducted under the INARMA-alternatives. Specifically
the parameters of the process, 8,0, and § were set to reflect a low level data situation
(with the mean of the process equal to 1 and 5 respectively under the null hypothesis
of idd-Poisson variables). As evident from the autocorrelation function of the process
(17) control of the autocorrelation of the observed data is not directly possible but only
through the parameter §, the autocorrelation parameter of the latent process. Conse-
quently this parameter is varied over the relevant parameter space, that is from 0 to 0.9
in the experiments and will be serve as the abscissae in the graphs of the empirical power
curves. This is in contrast to the graphs depicted above and should be kept in mind
when interpreting the results of the Monte Carlo. It should also be noted that negative
values for p although theoretically possible are not investigated here. As denoted above

significant negative autocorrelation in the data is evidence that INARMA-models are not
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an appropriate assumption for the data generating process and therefore is not analysed
here any further. As was also mentioned in Section 2.4 the latent process introduces not
only autocorrelation but also overdispersion. As the value of p increases the dispersion
in the data rises in an nonlinear fashion. In the setup of the experiments it was paid

attention that the level of overdispersion was kept a reasonable level.

Along with the values of the design parameters already discussed above in the Zeger-
model explanatory variables have to be fixed. In the pure time series framework of this
study sensible regressors are the time trend and various cyclical components. We con-
ducted Monte Carlo experiments for models with different regressors. One for a model
with time trend only, one with a single cyclical component and one with a time trend and
two cyclical components. This last model served for the generation of the data in Figure
6 and is given in Section 2.4. Since the no substantive different results for the power
analysis of the different specifications of the regressor matrix emerged, we only describe

the results for the Zeger-model with trend and two cyclical components as regressors here.

The empirical power curves for the various test are depicted in Figure 12. Note that
the S-test is discarded from the analysis because of its nonstationary behaviour under
the null hypothesis in the presence of overdispersion. It can be seen that all the tests
considered in the analysis pick up power and are consistent under the Zeger-alternative.
The S5*-test is dominating over the entire parameter spaced analysed here. The runs test
is also quite powerful whereas the Qqcf(k)-test is picking up power very slowly as the
autocorrelation in the latent process rises. As under other alternatives discussed above,
the Qpacr(k)-test is the least powerful test examined. It emerges that no exploitable be-
haviour of the different tests distinguishes the power analysis under the Zeger-alternative
as compared to the POINAR(2)-alternative. Up to this stage of the analysis no testing
strategy based on the tests of Section 3 can help us to distinguish between higher order
INARMA-process and the Zeger-alternative. As a result of this analysis, further evidence

is needed.
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6 Applications

The methods and findings of this paper are applied to three data sets. The first data set
is well known in the branching process literature and has been analyzed inter alia in Mills
and Seneta (1989). The data consist of 505 counts of pedestrians on a city block observed
every five seconds and have been compiled by the German physicist Reinhold Fiirth (Cf.
Fiirth, 1918). The sample mean of the series is 1.59 and the sample variance is 1.51,
providing no indication for the presence of overdispersion. The ()-test for the presence of
overdispersion of Davis, Dunsmuir and Wang (1999) supports this intuition. The results
of the various tests for serial correlation are summarized in first column of Table 7. All
tests are significant at the all conventional significance levels. Since both the Q,.f(k)-tests
and the Qpq.r(k)-tests provide evidence for the presence of serial correlation in the data,
it can be inferred that neither the simple PoOINAR(1)-model nor the simple PoINMA (1)-
model is adequate to describe the Fiirth-data satisfactorily. This result is in accordance
with Mills and Seneta (1989), who found a poor fit for the fitted branching process model,
which is equivalent with our PoOINAR(1)-model.Since no significant overdispersion can be

found in the data, fitting a PoOINAR(2)-model to this data set should be considered.

The second data set consists of a daily count of the number of absentees in a specific
firm. The sample size is 616, the sample mean is 5.04 and the sample variance is 5.49, pro-
viding a slight hint toward the presence of overdispersion. The ()-test of Davis, Dunsmuir
and Wang rejects the null hypothesis of no overdispersion at the 10% level but not on the
5% level. The results of the various tests of serial dependence are summarized in column
2 of Table 7. All tests, but the Qpe.r(k)-tests are highly significant. In accordance with
the findings in the last section we conclude that a first-order autocorrelation structure is
present in the data. The simple PoINAR(1)-model therefore should provide a suitable

basis for a further analysis of this data set.

The last data set analysed here is an extension of the polio incidence data of Zeger
(1988). The original data set covered the time period 01/1970 to 12/1983. The extended

data set adds observations for 1984 and 1985 giving us a sample size of 192. The sam-
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ple mean of this series is 1.24 and the sample variance 3.20. Consequently the ()-test
for the presence of overdispersion of highly significant. The results for the various tests
are summarized in column 3 of Table 7. Some points are worthwhile to mention. The
unusual high difference between the results of the S-test and the S*-test is certainly due
to the presence of overdispersion. As explained in Section 3 this affects the performance
of the S-star test quite dramatically. The Qu.r(k)-tests are highly significant whereas the
Qpacs(k)-tests are not. According to our findings in the last section an INAR(1)-model
might suffice to describe the dependence structure in the data. Due to the presence of
overdispersion a suitable marginal distribution has to be chosen. Interestingly the polio
incidence data have been analysed by Zeger using an parameter-driven approach as de-

scribed in Section 2.4.

7 Summary and conclusions

This paper presented different kind of tests for serial correlation applicable to time series
of counts. In a Monte Carlo study both the size and power properties of the tests are

evaluated thoroughly against a wide variety of alternative data generating process.

The main findings of the paper are: (1) The INAR(2)-process provides a parsimo-
niously parameterized model to capture higher-order dependence in the data. Certain
parameter combinations in the INAR(2)-model lead to oscillating autocorrelation func-
tions. (2) Extra binomial variation in the data leads to a nonstationary behaviour of
the null distribution of the score test proposed by Freeland. The other tests considered
in this study are only affected to a minor extend by the presence of overdispersion. (3)
The often recommended continuity correction for the simple runs test leads to severe size
distortions under the null resulting in inferior power properties for this test based on the
asymptotic critical values. (4) Newly proposed tests based on the sample autocorrelation
and the sample partial autocorrelation can be utilized to distinguish between a first-order
autoregressive, a first-order moving-average and a higher-order autoregressive type of de-

pendence structure in time series of counts. The portmanteau version of theses test do
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not provide additional inside in this respect. (5) The tests analysed in this study are not
powerful enough to distinguish between a higher-order autoregressive INAR-structure and
a dependence that is introduced through a dynamic latent process. For this purpose it is
necessary to combine the tests described in this study along with tests for the presence

of a latent process as e.g. discussed in Davis, Dunsmuir and Wang (1999).
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size | A\| test |T=50 T=100 T=500 T =1000
5% | 1| 2 5.25 5.10 5.03 5.08
Zee 3.69 4.07 4.52 471
S 3.49 4.00 451 475
S* 3.45 4.02 4.54 478
Qacs(1) | 5.01 5.18 5.02 5.06
Qacs(5) | 4.90 5.10 5.10 4.98
Qpacs(1) | 6.12 5.77 5.15 5.13
Qpact(5) | 6.94 6.15 5.32 5.13
5|2 5.28 4.80 5.08 5.04
Zee 3.43 411 4.61 4.72
S 3.33 3.86 4.54 477
S* 3.30 3.87 4.56 4.76
Qacs(1) | 4.86 4.96 5.01 5.02
Qacs(5) | 4.85 4.81 4.96 5.02
Qpacs(1) | 5.72 5.35 5.09 5.04
Qpact(5) | 6.29 5.49 5.07 5.05
1% | 1] 2 1.10 1.08 1.02 1.00
Zee 0.77 0.81 0.88 0.92
S 0.81 0.87 0.94 0.96
S* 0.61 0.75 0.91 0.96
Qacs(1) | 0.71 0.90 1.00 1.00
Qacs(5) | 1.04 1.10 1.03 1.00
Qpacs(1) | 1.04 1.11 1.05 1.02
Qpacs(5) | 1.46 1.28 1.07 1.02
5|2 0.89 1.05 0.98 1.00
Zee 0.71 0.74 0.88 0.92
S 0.70 0.80 0.92 0.99
S* 0.50 0.68 0.91 0.98
Qacs(1) | 0.69 0.82 0.97 0.98
Qacs(5) | 1.04 1.00 0.99 1.01
Qpact(1) | 0.98 0.96 1.00 0.99
Qpacs(5) | 1.21 1.03 0.98 1.00

Table 1: Rejection percentages of the tests under the iid-Poisson assumption at a nominal
level of 5% and 1%.



modest overdispersion high overdispersion

size | E(X) test T=50 T=100 T =500 T=1000 | T=50 T =100 T =500 T =1000
5% 1 Z 5.32 4.90 5.07 5.06 5.31 511 5.13 5.02
Zee 3.58 4.08 4.58 4.72 3.53 4.20 4.56 4.82

S 9.14 10.62 12.40 12.88 | 18.71 21.70 25.61 26.83

S* 3.60 4.18 4.80 4.83 3.95 4.59 5.14 5.27
Qacr(1) 5.16 5.39 5.25 5.17 5.66 6.90 6.45 5.98
Qacy(5) 4.93 5.52 5.66 5.42 8.53 6.98 6.51 7.48
Qpacr(1) | 6.75 6.26 5.44 5.29 8.69 8.66 6.88 6.23
Qpacy(5) | 8.81 7.57 6.08 5.58 | 14.43 13.23 9.61 8.04

5 Z 5.23 4.80 5.03 4.95 5.21 491 4.95 4.94
Zee 3.42 417 4.58 4.66 3.56 4.06 4.47 4.61

S 9.49 10.97 12.58 12.77 | 21.97 24.29 27.09 27.75

S* 3.33 3.98 4.59 4.57 3.56 4.02 4.65 4.82
Qacr(1) 4.93 4.97 5.02 5.03 4.85 5.14 5.13 5.07
Qacy(5) 4.78 4.90 4.94 5.09 4.71 5.14 5.28 5.22
Qpacr(1) | 5.91 541 511 5.06 6.09 5.80 5.29 5.16
Qpacs(5) | 6.58 5.67 5.11 5.19 7.66 6.56 5.55 5.34

1% 1 Z 1.05 1.09 1.08 1.00 1.14 1.15 1.03 1.06
Zee 0.74 0.72 0.94 091 0.74 0.84 0.92 0.94

S 4.07 4.86 5.73 5.80 | 13.23 15.82 19.16 20.13

S* 0.72 0.90 1.09 1.02 0.97 1.28 1.42 1.38
Qacr(1) 0.67 0.94 1.11 1.08 0.56 1.33 1.79 1.62
Qacy(5) 0.97 1.15 1.23 1.16 0.84 1.63 2.44 2.10
Qpacs(1) | 1.16 1.26 1.21 1.14 1.52 211 2.01 1.75
Qpacy(5) | 2.05 1.74 1.39 1.23 4.47 3.98 2.95 2.35

5 Z 0.86 1.03 0.99 0.99 0.95 0.99 0.98 1.02
Zee 0.69 0.69 0.90 091 0.71 0.75 0.87 0.92

S 4.06 4.77 5.52 5.57 | 15.69 17.71 20.21 20.85

S* 0.52 0.70 0.88 0.90 0.65 0.81 0.98 1.05
Qacr(1) 0.69 0.80 0.96 0.98 0.61 0.87 1.03 1.02
Qacy(5) 1.01 1.03 0.97 1.04 0.94 1.06 1.08 1.03
Qpacs(1) | 0.99 0.98 0.99 1.00 0.99 1.11 1.09 1.06
Qpacy(5) | 1.35 1.07 1.02 1.04 1.70 1.40 1.15 1.10

Table 2: Rejection percentages of the tests under overdispersion at a nominal level of 5%
and 1%.
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test Fiirth data | Absentee data | Polio data
VA —-10.71*** —12.40*** —3.27***
Zce —10.67*** —12.36*** —3.18***
S 14.12*** 17.78*** 10.37***
S* 14.93*** 16.34*** 4.05***
Qacr(1) 40.02*** 108.86*** 7.30%**
Qacy(5) 72.41%** 315.10*** 12.13**
Qpacy(1) 17.51*** 3.65* 1.70
Qpacy(5) 24,7 7% 14.84* 3.74

*xx denotes significance on the 1% level
* denotes significance on the 5% level
* denotes significance on the 10% level

Table 3: Results of the various tests applied to three data sets
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Figure 1: Simulated sample paths for the PoOINAR(1)-process
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Figure 2: Simulated sample paths for the POINMA(1)-process
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Figure 3: Partition of the a,/a,-parameter space in the POINAR(2)-process
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Figure 4: Simulated sample paths for the PoOINAR(2)-process
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Figure 5: Sample autocorrelation and partial autocorrelation functions for the simulated
sample paths of the PoINAR(2)-process
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Figure 6: Simulated sample paths for the Zeger-model
AN = 1 and adj. crit. values A = 1 and asympt. crit. values
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Figure 7: Empirical power curves for the various tests under the PoINAR(1)-alternative
at sample size T' = 100.



Qacr(1)—Test

1.0 1.0
-
0.9 0.9 -
0.8 0.8
0.7 0.7
0.6 0.8
0.5 0.5
0.4 0.4
= 50
0.3 0.3 — 100
= 500
0.2 0.2 — 1000
0.1 0.1
0.0 0.0
00 01 02 03 04 05 06 07 08 08 1.0 00 01 02 03 04 05 06 07 0.8 09 1.0
parameter a parameter a

Figure 8: Empirical power curves for the S*-test and the Qu.(1)-test under the
PoINAR(1)-alternative at various sample sizes.
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Figure 9: Empirical power curves for the various tests under the PoOINMA(1)-alternative
at sample size T' = 100.
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Figure 10: Empirical power curves for the S*-test and the Qpu.f(1)-test under the
PoINMA (1)-alternative at various sample sizes.
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Figure 11: Empirical power curves for various tests under the PoOINAR(2)-alternative at
sample size 100.
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Figure 12: Empirical power curves for the various tests under the Zeger-alternative
sample size T' = 100.
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