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Abstract

Recent work shows that a low correlation between the instruments and the included

variables leads to serious inference problems. We extend the local-to-zero analysis of

models with weak instruments to models with estimated instruments and regressors

and with higher-order dependence between instruments and disturbances. This makes

this framework applicable to linear models with expectation variables that are esti-

mated non-parametrically. Two examples of such models are the risk-return trade-o¤

in …nance and the impact of in‡ation uncertainty on real economic activity. Using more

robust LM con…dence intervals leads us to conclude that no statistically signi…cant risk

premium is present in returns on the S&P 500 index, excess holding yields between

6-month and 3-month Treasury bills, or in yen-dollar spot returns.
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1. Introduction

Recently, the problem of weak correlation between instruments and regressors in instrumental

variable regression has become a focal point of much research. Staiger and Stock (1997)

developed an asymptotic theory for this type of problem using a local-to-zero framework.

They show that standard asymptotics for IV estimators can be highly misleading when this

correlation is low. Following the methodology of Staiger and Stock, Zivot, Startz, and Nelson

(forthcoming) and Wang and Zivot (1998) show that usual testing procedures are unreliable

in such situations. Earlier analyses of models under partial identi…cation conditions was

given in Phillips (1989) and Choi and Phillips (1992), and Dufour(1997).

This paper extends the weak instrument literature using the Staiger and Stock framework

in two ways: …rst, we will analyze a restricted class of semi-parametric models in which

both regressors and instruments are estimated, and second we will allow for higher-order

dependence between the instruments and the disturbances. These extensions are meant to

make the analysis applicable to the many theoretical models in …nance and macroeconomics

that suggest a linear relationship between a random variable and an expectation term of the

general form,

yt = ¯
0xt + ±

0Zt + et (1.1)

where yt is a scalar, xt is a vector of exogenous and predetermined variables, and Zt is a

vector of unobservable expectation variables. Of particular interest is the case where Zt is a

conditional variance term, and in this framework, interest centers on the parameter ± as it

measures the response of yt to increased risk.

One example of this type of problem includes the risk-return trade-o¤ in …nance where

agents have to be compensated with higher expected returns for holding riskier assets. A

model like (1:1) will hold as an approximation in this case if yt is the return on an aggregate

portfolio. This trade-o¤ has been examined by several authors, including French, Schwert,

and Stambaugh (1987) and Glosten, Jagannathan, and Runkle (1993). In this case, Zt is

the conditional variance of the asset, and xt would generally include variables measuring
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the fundamental value of the asset. For example, if the asset is an exchange rate, potential

fundamental variables include the interest rate di¤erentials, relative money stocks, relative

outputs, and relative in‡ation rates. A second example of this model is in analyzing the e¤ect

of in‡ation uncertainty on real economic activity. Here, Zt is the variance of the in‡ation

rate conditional on past information, and yt is some real aggregate variable such as real GDP

or industrial production.

The estimation of these models has proven di¢cult because a proxy has to be constructed

for the unobservable expectation term. A complete parametric approach would assume

functional forms for the expectation processes of agents which can then be estimated along

with (1:1) by, for example, maximum likelihood. A semi-parametric approach, which is of

interest in this paper, leaves the functional form of the expectation terms unspeci…ed but

uses the linear structure in (1:1) to estimate the parameters of interest once estimates of the

expectation terms are obtained.

When Zt is a variance term, Engle, Lilien, and Robins (1987) have introduced the

parametric AutoRegressive Conditional Heteroskedasticity-in-Mean (ARCH-M) model which

postulates that Zt = ¾2t ; the variance of the returns, follows an ARCH(p) model. A popular

generalization is the Generalized ARCH-M (GARCH-M) model with ¾2t of the form:

¾2t = ®0 + ®1e
2
t¡1 + : : :+ ®pe

2
t¡p + °1¾

2
t¡1 + : : :+ °q¾

2
t¡q (1.2)

with (1:1) and (1:2) estimated jointly by maximum likelihood. Two problems surface when

using such models. First, maximization of the likelihood function can be very di¢cult unless

p and q are kept small. Second, estimates in the mean equation will be inconsistent if the

variance equation is misspeci…ed because the information matrix is not block diagonal. Given

the lack of restrictions on the behavior of the conditional variance provided by economic

theory, this seems quite problematic.

An alternative approach that is robust to speci…cation was suggested by Pagan and Ullah

(1988) and Pagan and Hong (1991). Their suggestion is to …rst replace Zt by its realized

values, say Yt, estimating this quantity non-parametrically, and using a non-parametric esti-

mate of Zt as an instrument. This approach is itself problematic since it does not solve the
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necessity to keep the number of conditioning variables low. Moreover, a common problem

when using such a semi-parametric approach is that the estimated conditional variance is

poorly correlated with bYt; the estimated realized values. This paper will focus on addressing

this second problem. The …rst problem is addressed by using non-parametric estimators that

are less susceptible to the so-called curse of dimensionality, such as neural networks and a

semi-parametric estimator suggested by Engle and Ng (1993).

The rest of the paper is divided as follows: section 2 presents the instrumental variable

procedure described above in detail under the standard assumptions. In section 3, we present

evidence on the presence of weak instruments in the risk-return trade-o¤. Next, in section 4,

we develop asymptotic theory for the instrumental variable estimator described above under

the weak instrument assumption. In section 5, results from a limited simulation experiment

are presented to outline the di¢culties involved in carrying out analysis in this type of

models. Section 6 contains the results from applying the techniques developed in previous

sections to three …nancial data sets, returns on the Standard and Poor’s 500 index, excess

holding yields on Treasury bills and yen-dollar spot returns. Finally, section 7 provides some

concluding comments.

2. Semi-parametric models with conditional expectations

As discussed above, we consider linear models such as,

yt = ¯
0xt + ±

0Zt + et (2.1)

where yt is a scalar, xt is a k1£1 vector of exogenous and predetermined variables, and Zt is

a k2 £ 1 vector of unobservable expectation variables. One example of particular interest is

where Zt is a vector of variances and covariances of a vector Ãt of the form vech (E [YtjFt]),
with Yt = (Ãt ¡ E [ÃtjFt]) (Ãt ¡ E [ÃtjFt])

0 and where Ft is the information set available to

agents in the economy at the beginning of period t. In this framework, interest centers on

the parameter ± as it measures the response of yt to increased risk. Such models were …rst

investigated along the lines followed here by Pagan and Ullah (1988).
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The …rst step in tackling this problem is to replace the conditional expectation Zt by

the realized value Yt: In the following, we assume that Yt is not observable as is the case in

the variance example since Yt is itself a function of an expectation. Thus, an extra step is

required in replacing Yt by an estimate, bYt. The model to be estimated is then:

yt = ¯ 0xt + ±
0bYt + et + ±0

³
Yt ¡ bYt

´
+ ±0 (Zt ¡ Yt)

= ¯ 0xt + ±
0bYt + ut

In general, an ordinary least squares regression of yt on xt and bYt will lead to inconsistent

estimates of ¯ and ± due to the correlation between bYt and (Zt ¡ Yt). The solution suggested

by Pagan (1984) and by Pagan and Ullah (1988) is to use an instrumental variable estimator

with bZt used as instruments for bYt: In fact, to obtain consistent estimates, any variable in Ft
could be used as instrument. We could consider …nding an optimal instrument as E

h
bYtjFt

i

which in general will be di¤erent from bZt because of the bias arising from the estimation of

Yt: The steps used to construct the estimator are illustrated in …gure 1.

**** Insert …gure 1 here ****

This problem will be semi-parametric when Yt and Zt are estimated non-parametrically.

As in many semi-parametric models, despite the lower rate of convergence of the non-

parametric estimators, the estimates of ¯ and ± will converge at the usual
p
n rate under

certain conditions.

De…ne Zt = (xt; Zt), Y t = (xt; Yt) ; Z =
¡
Z1; : : : ; Zn

¢0
; Y =

¡
Y 1; : : : ; Y n

¢0
with eZ and eY

similarly de…ned but with bZt and bYt replacing Zt and Yt: Further let ut = et + ±
0 (Zt ¡ Yt)

and µ = (¯; ±)0. Consider the IV estimator for this model:

bµ =
³

eZ 0eY
´¡1 eZ 0y

Andrews (1994) derived the asymptotic normality of this estimator. The condition of

most interest is that bY be n
1
2 -consistent. This ensures that the asymptotic distribution of

the IV estimator of bµ is not a¤ected by replacing Yt and Zt by bYt and bZt: This will generally
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not be the case when bY is estimated non-parametrically. However, it will hold in the special

case where Zt is a variance term or other higher conditional moments. Let ¿1t = E [ÃtjFt]
and b¿1t be an estimate of this quantity. Then,

Et

�
1p
n

X³
bY ¡ Y

´¸
=

1p
n

X
Et

¡
[Ãt ¡ b¿1t]2 ¡ [Ãt ¡ ¿1t]2

¢

=
1p
n

X
(b¿ 1t ¡ ¿ 1t)2

which will be op (1) if b¿ 1t is consistent for ¿ 1t at rate n
1
4 : Conditions under which this holds

can be found in Andrews (1995). The distribution is still a¤ected by replacing Zt by Yt,

however, as ut = et + ±
0 (Zt ¡ Yt).

This estimator has been applied in Pagan and Ullah (1988), Pagan and Hong (1991),

Bottazzi and Corradi (1991), and Sentana and Wadhwani (1991). Except for Pagan and

Ullah, all these papers analyze the trade-o¤ between …nancial returns and risk as postulated

by mean-variance analysis. Pagan and Ullah look at the forward premium in the foreign

exchange market and the real e¤ects of in‡ation uncertainty.

3. Evidence of weak instruments

When using the above instrumental variable estimator, the quality of the instrument bZt will

determine the quality of the asymptotic approximation obtained by Andrews (1994). There

is a large amount of work in the simultaneous equation literature devoted to the importance

of strong instruments for the …nite-sample distribution to be well approximated by a normal

distribution (one example is Nelson and Startz (1990)). Essentially, the usual non-singularity

condition is close to being violated.

Unfortunately, in our case of interest in which Yt = e2t and Zt = ¾2t , it will generally be the

case that the correlation between the two estimates, be2t and b¾2t , is very low. Tables 1, 2, and 3

show the value of R2 for the regression of be2t on a constant and b¾2t for three …nancial data sets

using three non-parametric estimators with di¤erent conditioning variables and smoothing

parameters. The estimates are constructed in three ways. First, we use a multivariate kernel
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estimate de…ned as:

b¿ jt =
P

i6=t y
j
iK

¡
wi¡wt
b

¢
P

i6=tK
¡
wi¡wt
b

¢

as the estimate of the mean of yjt for j = 1; 2 with the kernel function K (w) taken to be the

multivariate standard normal and the bandwidth b = cbsn ¡1
p+4 where bs is the sample standard

deviation of yt, n is the sample size, p is the number of variables in the conditioning set

and c is a constant taking three di¤erent values, 0.5, 1, or 2. The conditioning variables, w;

are taken to be lagged values of the returns. We then de…ne be2t = (yt ¡ b¿ 1t)2 and obtain an

estimate of ¾2t as:

b¾2t = b¿ 2t ¡ (b¿ 1t)2 :

A theoretical analysis of this non-parametric estimator of the conditional variance can

be found in Masry and Tjostheim (1995).

The second estimation method used is neural networks. A good introduction to these

methods is Kuan and White (1994). The advantage of this approach over the kernel is that

it is not subject to the curse of dimensionality. The version we will adopt has one hidden

layer with logistic and identity activation functions. the number of nodes will be allowed to

equal 2, 4 and 8. The representation is:

b¿ j =
KX

k=1

bµk
1

1 + e¡w
0 b̄
j

for j = 1; 2:

The third estimator was …rst proposed by Engle and Ng (1993). It provides more structure

to the conditional variance and will approximate the conditional variance function much

better than the kernel when the variance is persistent (see Perron (1999) for simulation

evidence). The estimator is implemented by …rst estimating the mean by a kernel estimate

as above and then …tting an additive function for ¾2t as follows:

¾2t = ! + f1 (bet¡1) + : : :+ fp (bet¡p) + ¯¾2t¡1

where the fj (¢) are estimated as splines with knots using a Gaussian likelihood function. This

allows for a ‡exible e¤ect of recent information on the conditional variance while allowing

7



for persistence. This framework includes most parametric models suggested in the literature

such as the entire GARCH class. The number of segments in the spline functions acts as a

smoothing parameter and is allowed to take three values, 2, 4, and 8. The knots in the spline

were selected using the order statistics such that each bin has roughly the same number of

observation subject to the constraint of an equal number of bins in the positive and negative

regions.

The …rst data set analyzed represents monthly excess returns on the Standard and Poor’s

500 between January 1965 and December 1997 measured at the end of each month. The

data is taken from CRSP, and the risk-free rate is the return on three-month Treasury bills.

The second data set is made of quarterly excess holding yields on 6-month versus 3-month

Treasury bills between 1959:1 and 1998:1. A similar, but shorter, data set has already been

analyzed by Engle, Lilien, and Robins (1987) using their GARCH-M methodology and Pagan

and Hong (1991) using the above instrumental variable estimator. Finally, the last data series

is made of monthly returns on the yen-dollar spot rate obtained from International Financial

Statistics between September 1978 and June 1998. The three data sets are plotted in …gures

2-4.

**** Insert …gures 2-4 here ****

**** Insert tables 1-3 here ****

A quick look at the tables reveals that of these three series, only the excess holding

yield with the Engle-Ng estimator generally has R2 higher than 0.1. The reason for this low

correlation is that e2t and ¾2t have very di¤erent volatility. Even if E [e2t jFt] = ¾2t , …nancial

returns are extremely volatile and therefore, the di¤erence between e2t and ¾2t can be quite

large. This is true even if we did not have to estimate these two quantities; having to estimate

them complicates matters further. We can illustrate by looking at the GARCH(1,1) model:

yt = ¹+ ¾t"t = ¹+ et

¾2t = ! + ®e2t¡1 + ¯¾
2
t¡1:
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Andersen and Bollerslev (1997) show that the population R2 in the regression

(yt ¡ ¹)2 = °0 + °1b¾2t + vt

where b¾2t is the one-period ahead forecast obtained from the GARCH model is

R2 =
®2

1¡ ¯2 ¡ 2®¯

which will in general be very small even though E
£
(yt ¡ ¹)2 jFt

¤
= ¾2t : Figure 5 plots the

value of R2 for di¤erent values of ® and ¯: The value of R2 is highly sensitive to the value

of ®: It is usual in the literature to …nd point estimates of GARCH(1,1) models in the

neighborhood of ® = 0:05 and ¯ = 0:9: The …gure clearly shows that for such values, the

correlation between e2t and ¾2t will typically be quite low. The problem in this case is that

¾2t has very low variance relative to that of y2t ; a low value of ® means that ¾2t is nearly

constant locally.

**** Insert …gure 5 here ****

We can expect that tables 1 and 2 do not even provide an accurate picture of the problem

of weak instruments. Using data sampled at higher frequency (e.g. daily) would result in

even lower correlation. The lower frequency allows some averaging which reduces the variance

of e2t .

4. Asymptotics with weak instruments

Staiger and Stock (1997) have recently shown, in the framework of a linear simultaneous

equation system, that having instruments that are weakly correlated with the explanatory

variables makes the usual asymptotic theory work poorly. Their assumed model is:

y = Y ± +X¯ + u (4.1)

Y = Z¦+X¡ + V (4.2)
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where Y is the matrix of included endogenous variables that are to be replaced by k2 instru-

ments. Since in our case, it will always be true that the model is exactly identi…ed (that is,

there will be as many regressors as instruments since the instruments are estimates of the

expected value of the regressors), we will concentrate on the case where Z is a n£k2 matrix.

The weak instrument assumption is imposed by assuming that:

¦ =
Gp
n

(4.3)

for some …xed k2 £ k2 matrix G 6= 0 This assumption implies that in the limit, Y and Z are

uncorrelated.

We extend the analysis of weak instruments in Staiger and Stock (1997) to our case of

interest by allowing Y and Z to be unobserved and estimated by bY and bZ respectively.

Moreover, we allow for the possibility of higher-order dependence between the instruments

and the disturbances. Simple algebra leads to:

bY = bZ¦+
³
Z ¡ bZ

´
¦+

³
bY ¡ Y

´
+X¡ + V

= bZ¦+X¡ + ³

so that the correlation between bYt and bZt is also low.

There might be two reasons for a low correlation between the estimated instrument and

explanatory variable in a given data sample. The …rst may be that the estimators used in

constructing bZt and bYt are poor and will not approach their true value in small samples. On

the other hand, the estimators may not be poor in any sense, but Yt and its expected value

may be weakly correlated. We saw one such example above in the GARCH(1,1) model.

We can give a di¤erent motivation for equations (4:2) and (4:3) in the case where the

instrument is a variance term (Zt = ¾2t ; Yt = e
2
t ) if we assume that the estimates of ¾2t and

e2t are obtained by the kernel method. In this case, a simple application of the results in

Masry and Tjostheim (1995) leads to the joint distribution:

p
nbp

0
@ be2t ¡ e2t ¡B1

b¾2t ¡ ¾2t ¡B2

1
A d! N

0
@

0
@ 0

0

1
A ;

0
@ 1 0

0 2

1
A

1
A
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where b is the bandwidth, p the number of conditioning variables, and B1 and B2 are bias

terms. We can then assume that the covariance term is local to zero, say J=
p
n, and use the

formula for the conditional distribution of Yt to obtain:

be2t ¡ e2t ¡B1t = ¡12
Jp
n

¡
b¾2t ¡ ¾2t ¡B2t

¢
+ ºt

and since e2t = ¾
2
t + Àt with Àt uncorrelated with the past, we can rewrite this as:

be2t = ¡12
Jp
n

b¾2t ¡ ¡12
Jp
n
¾2t ¡ ¡12

Jp
n
B2t + ¾

2
t + Àt +B1t + ºt

= ¡12
Jp
n

b¾2t +
µ
I ¡¡12

Jp
n

¶
¾2t +Bt + ³t

with Bt = B1t +B2t so that the coe¢cient on b¾2t is local to zero.

Recall that the IV estimator of ± is:

b± =
³

bZ 0Mx
bY

´¡1 bZMXy

= ± +
³

bZ 0MX
bY

´¡1 bZ 0MXu

where MX = I ¡X (X 0X)¡1X 0: In order to derive the distribution of b̄, we need to make

an extra assumption on the reduced-form coe¢cients of X: We will also assume that they

are local to zero:

¡=
Hp
n

(4.4)

for some k1 £ k2 matrix H 6= 0: This assumption is made because if ¡ were …xed, X and Y

would be collinear in the limit and the moment matrices would be singular.

The distribution of the estimators is given in the following theorem. All proofs are

relegated to the appendix.

Theorem 4.1. In the model (4:1)¡ (4:3), assume the following:

1. 1p
n

P
E

³
bYt ¡ Yt jFt

´
p! 0;

2. bZt = Zt + op (1) ; Zt <1 a.s. 8t;

11



3. µ0 is the interior of £ ½ Rk+1;

4. 1p
n

P
Ztut

d! N (0; S) where S = lim
n!1

1
n

Pn
s=1

Pn
t=1EutusZsZ

0

t;

5. (n¡1X 0X;n¡1X 0Z;n¡1Z 0MXZ)
p! (

P
XX ;

P
XZ;

P
ZZ) ;

6.
³
n¡

1
2X 0u; n¡

1
2Z 0MXu; n

¡ 1
2X 0V; n¡

1
2Z 0MXV

´
) (ªXu;ªZu;ªXv;ªZv).

De…ne

¾Zu = lim
n!1

1
n

P
s

P
t utusZ

?
s Z

?0
t

¾Zv = lim
n!1

1
n

P
s

P
t Z

?
s V

0
sVtZ

?0
t

¾Xu = lim
n!1

1
n

P
s

P
t utusXsX

0
t

¾Xv = lim
n!1

1
n

P
s

P
tXsV

0
sVtX

0
t

½Z = lim
n!1

1
n

Pn
t=1

Pn
s=1 V

0
t Z

?0
t ¾

¡ 1
2
0

ZV ¾
¡1
2

ZuZ
?
s us

½x = lim
n!1

1
n

Pn
t=1

Pn
s=1 V

0
tXt¾

¡ 1
2
0

Zv ¾
¡ 1
2

ZuXsus

where Z?t is the residuals from the projection of Zt onto X, i:e: it is the transpose of the

tth row of Z? =MXZ:

Then,

1. b±¡± d! ¥ = ¾
¡ 1
2

Zv (¸+ zv)
¡1 ¾Zuzu with ¸ = ¾

¡1
2

Zv

P
ZZ G; where zu = zv½Z+(1¡ ½Z½0Z)

1
2 »,

and (vec (zv) ; ») s N
¡
0; Ik2(k2+1)

¢
;

2. In addition, with (4:4) ;
p
n

³
b̄ ¡ ¯

´
d! P¡1

XX [¾Xuxu + (
P

XZ G+
P

XX H + ¾Xvxv) ¥] ;

where xu = xV ½x +
¡
Ik1 ¡ ½x½

0
x

¢ 1
2 ³, and (vec (xv) ; ³) s N

¡
0; Ik1(k2+1)

¢
:

Assumptions 1-4 of the theorem are the same as used by Andrews (1994) to derive the

asymptotic distribution of bµ; while assumptions 5 and 6 are similar to those of Staiger and

Stock (1997) : Several aspects of this result can be pointed out, all the outcome of the poor
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identi…cation of ±. First, the IV estimator of ± does not converge to the true value of the

population parameter ±: Rather, it will converge to a random variable in the limit, as in

Phillips (1989). Second, the limit distribution is the ratio of correlated normal random

variables. This suggests that the distribution will, in some cases, have Cauchy-like behavior

with thick tails and possibly bimodality. Moreover, the distribution depends on nuisance

parameters ¸; and ½Z ; making inference di¢cult. As ¸ ! 1; ¥ will approach the usual

normal distribution. The distribution of the coe¢cients on the exogenous variables xt is

contaminated by the poor identi…cation of ±. Speci…cally, we expect that the usual standard

errors will understate the true uncertainty as these are based on the …rst term of the limit

distribution only. This will lead to over-rejection of the hypothesis H0 : ¯ = ¯0.

The basic distribution theory described above is very closely related to that derived by

Staiger and Stock. The form of the covariance matrix is di¤erent because we do not assume

that the instruments, Zt; are independent of the error terms ut and vt; we only assume that

they are uncorrelated. This adjustment allows for higher order dependence between Zt on

the one hand and ut and vt on the other. In cases where there is no higher dependence

between the instruments and the error terms, this distribution coincides with that derived

by Staiger and Stock.

The assumptions on the properties of the data are given in terms of high-level conditions, a

joint weak law of large numbers and a weak convergence result. This is done to make the con-

ditions similar to those used by Staiger and Stock. Many sets of primitive conditions can lead

to these two results. For example, su¢cient conditions are that the vector (ut; Vt) be a mar-

tingale di¤erence sequence with respect to the …ltration
©
(ut¡j¡1; Vt¡j¡1; Zt¡j ;Xt¡j) ; _j ¸ 0

ª

with uniform …nite (2 + ´) moments for some ´ > 0 and the vector (Zt; Xt) be ®-mixing

with mixing numbers of size ¡ �
�¡1 and (r +�)…nite moments for some r ¸ 2: Unfortunately,

these conditions imply that in the variance case, Zt = ¾2t ; we need ¾8t to be …nite for all t:

This is a very di¢cult requirement for …nancial data as there is evidence that many …nancial

series do not even have four …nite moments. For this reason, we will use highly aggregated

data (for example monthly and quarterly data) for applications to …nancial data.
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4.1. Inference

Recent work by Wang and Zivot (1998) and Zivot, Startz and Nelson (forthcoming) has

shown how unreliable inference can be in the Staiger and Stock framework. In particular,

they show that con…dence intervals based on Wald statistics tend to be too narrow, thus

leading to overrejection. Rather, these authors recommend the use of con…dence intervals

obtained from inverting LM statistics and the Anderson-Rubin statistic in the case where the

model is overidenti…ed. On the other hand, Dufour and Jasiak (forthcoming) have obtained

exact tests statistics based on AR-type test statistics in models with generated regressors and

weak instruments. However, their results only apply to parametrically-estimated regressors

that will converge at rate
p
n and not to the non-parametric estimators analyzed here.

Use of the asymptotic theory developed in the previous section is hampered by the pres-

ence of the nuisance parameters, ¸ and ½; which cannot be consistently estimated. As Wang

and Zivot (1998) have noticed, in the case of just-identi…ed models as is the case here, if

we use the restricted estimate of ¾Zu; test statistics will have a limiting Â2 distribution. In

over-identi…ed models, these test statistics will be bounded from above by a Â2 (K) distri-

bution where K > k2 is the number of instruments. Thus LM statistics will be appropriate

if our concern is to control the size of the test and construct asymptotically valid con…dence

intervals.

The LM con…dence intervals can be obtained as the set of ± such that the LM test

statistic does not reject the null hypothesis. Zivot, Startz, and Nelson (forthcoming) have

shown that inverting the LM statistic for ± involves solving a quadratic equation. The

shape of the resulting con…dence interval will vary: it could be a bounded set, the union

of two unbounded intervals, or the entire real line. These are quite unusual in shape. The

possibility that con…dence intervals could be unbounded re‡ects the great uncertainty about

the parameter of interest. Dufour (1997) has shown that a valid (1¡ ®) con…dence interval

for a locally unidenti…ed parameter will be unbounded with probability (1¡ ®) : Since Wald

intervals are always bounded (being constructed by adding and subtracting two standard

errors to the point estimate), they cannot provide valid inference in this type of model.
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Unfortunately, these Wald intervals are almost always used in practice.

In our case here, we need to adjust the LM statistic for the higher order dependence.

This is done in the following proposition for our just-identi…ed case:

Proposition 4.2. Let g = 1
n

bZ 0MX

³
y ¡ bY ±

´
: Then under the null hypothesis, H0 : ± = ±0,

LM = ng0¾¡1Zug
d! Â2 (k2) :

Unfortunately, in this case, there is no easy way to write the inequality that de…nes the

con…dence intervals as a quadratic equation in ±: Con…dence intervals must be computed

numerically by de…ning a grid of ± and verifying for each point on the grid whether the LM

statistic de…ned in the above proposition is less than the appropriate critical value from the

Â2 (k2) distribution. This method is easily implemented in the scalar case, but could hardly

be carried out in high dimensions.

Another approach to obtaining con…dence intervals, suggested by Staiger and Stock

(1997), is to use the Anderson-Rubin statistic. It is usually de…ned as the F -statistic for the

signi…cance of ±¤ in the regression

y ¡ bY ±0 = X¯¤ + bZ±¤ + u¤

where ¯¤ = ¯+¡ (± ¡ ±0) ; ±¤ = ¦(± ¡ ±0) ; and u¤ = u+v (± ¡ ±0) : Since we have a case with

heteroskedasticity, we need to use robust standard errors to compute the test statistic. It

turns out that in the just-identi…ed case, this statistic is identical to the above LM statistic.

This fact is stated in the following proposition:

Proposition 4.3. Let AR = nb±¤bV ¡1 b±¤ where bV =
P¡1

ZZ b¾Zu
P¡1

ZZ : Then, under the null

hypothesis H0 : ± = ±0; AR = LM:

The above propositions thus give us two equivalent ways to construct asymptotically valid

con…dence intervals. The two methods are exactly the same as long as the same estimate

of ¾Zu is used to construct either LM or AR: The performance of these intervals in a small

sample situation will be analyzed in the simulation experiment in the next section.
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5. Simulation Results

In this section, the behavior of the procedures described above will be analyzed through a

small simulation experiment. Important issues to be analyzed include the choice of smoothing

parameters, the appropriateness of the various con…dence intervals, and the distribution of

the resulting estimators.

Consider the GARCH-M(1; 1) DGP:

yt = ° + ±¾2t + et = ° + ±¾
2
t + ¾t"t

¾2t = ! + ®e2t¡1 + ¯¾
2
t¡1

"t s i:i:d:N (0; 1)

In terms of the above notation, we have vt = e2t ¡ ¾2t ; ut = et ¡ ±vt; Yt = e2t ; and Zt = ¾2t :

The various parameters are set to the estimates obtained from an identical GARCH-

M(1,1) model for the S&P 500 data which are ° = ¡0:0094; (!;®; ¯) = (1:44£ 10¡4; 0:0659; 0:8546) ;
and ± = 6:6764: These point estimates are similar to those usually obtained in this context,

for example by Glosten, Jagannathan, and Runkle (1993), and will lead to a rather persis-

tent ¾2t and to a weak instrument. Throughout, samples of 450 are drawn, with the …rst 50

observations deleted to remove the e¤ect of the initial condition (taken as the mean of the

unconditional distribution). The length of the sample nearly matches that of the S&P data.

One disadvantage of the current setup is that the correlation between b¾2t and be2t cannot

be controlled. We can control the correlation between the unobservable variables, but due

to estimation, the correlation between observable variables will be di¤erent in general.

The values of the nuisance parameters in this setup can be obtained in terms of the

moments of the conditional variance process as:

¾Zv = (�4 ¡ 1)
h
E

¡
¾8t

¢
¡ 2E

¡
¾2t

¢
E

¡
¾6t

¢
+ E

¡
¾2t

¢2
E

¡
¾4t

¢i

¾Zu = ±2¾Zv + E
¡
¾6t

¢
¡ 2E

¡
¾2t

¢
E

¡
¾4t

¢
+ E

¡
¾2t

¢3

¡2±�3
h
E

¡
¾7t

¢
¡ 2E

¡
¾5t

¢
E

¡
¾5t

¢
+ E

¡
¾3t

¢
E

¡
¾2t

¢2i

¾uv = �3E
¡
¾3t

¢
¡ ±¾Zv
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¸ =

p
n

h
E (¾4t )¡E (¾2t )2

i

¾
1
2
Zv

where �j = E
¡
"jt

¢
is the jth moment of "t:

The values of the …rst 4 even moments of ¾2t are derived recursively in Bollerslev (1986)

as a function of !; ®; and ¯ and the moments of "t. This allows for the easy computation

of the nuisance parameters. For the values given above, these parameters are ¸ = 2:145;

½Z = ¡0:472; ¾Zv = 3:404e¡ 12; and ¾Zu = 6:819e¡ 10. The population R2 between e2t and

¾2t is 2.77%.

Figure 6 shows a plot of the asymptotic distribution using the above estimates of the

nuisance parameters and that of the normal distribution obtained under the usual asymptotic

theory, namely
p
n

³
b± ¡ ±

´
d! N

µ
0;

X¡1

ZY
¾Zu

³X¡1

ZY

´0¶

where
P

ZY = limn!1
1
n
Z 0MXY . All quantities are normalized as t-ratios; this makes the usual

normal theory above the standard normal. The …gure is drawn with 100,000 draws taken

from each distribution. The weak instrument approximation is slightly skewed, but its main

feature is the much fatter tails than those of the standard normal distribution. The mass

points at -10 and 10 represent the mass that lies outside of the [¡10; 10] interval.

**** Insert …gure 6 here ****

Figure 7 shows the same picture for n = 5000: Since the weak instrument approximation

approaches the standard normal as n ! 1 in this case because ¸ ! 1; we see that both

the skewness and the excess kurtosis are much reduced for this sample size.

**** Insert …gure 7 here ****

Figure 8 shows the distribution of the infeasible IV estimator using the actual values of ¾2t

and e2t generated; this estimator is infeasible since these values are unobservable in practice.
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This experiment was repeated 20,000 times. The asymptotic approximation captures most

of the features of the …nite-sample distribution of the IV estimator. It matches the two

tails well but overestimates the mass in the middle of the distribution. The usual normal

approximation does not capture the tail behavior at all and does not do better in the area

around the peak of the distribution.

**** Insert …gure 8 here ****

The results of all simulation experiments are summarized in tables 4-10. The …rst column

of each table shows the median of the IV estimator (rather than the mean because of the

heavy tails of the distributions). The next two columns indicate the coverage rate of the

appropriate 95% con…dence intervals. The last column contains the mean R2 of a regression

of be2t on a constant and b¾2t :
The …rst line of these tables reports results of the infeasible estimator discussed above.

The IV estimator appears slightly biased upward as expected given the skewness observed in

…gure 8. The Wald con…dence interval has a coverage rate that is much lower than its nominal

level, while the LM interval has coverage rate that is only slightly too low. The under-

coverage of the Wald-based con…dence intervals is expected given the theoretical results that

these should have zero coverage asymptotically and the heavy tails of the distribution in

…gure 8. A researcher using these intervals would over-reject the null hypothesis H0 : ± = ±0

when it is true.

For the remaining experiments, estimates of e2t and ¾2t are necessary. As before, these

are obtained in three ways. The …rst one is a kernel-based estimator with a multivariate

Gaussian kernel and with bandwidth selected according to the rule bk = cbskn¡
1

p+4 ; where p

is the number of conditioning variables (taken to be lagged values of yt), bsk is the sample

standard deviation of the kth conditioning variable, and c is a constant. Three values of c

were used: 0.5, 1, and 2. These are the same choices as those used to obtain the values

presented in table 1 above. The second estimator is based on arti…cial neural networks with

one hidden layer and logistic and identity activation functions. The number of nodes are
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set at 2, 4, and 8 as was done in the construction of table 2. Finally, the last estimator

is the Engle-Ng estimator used in the construction of table 3 with 2, 4, and 8 bins. Each

experiment was repeated 1000 times.

The need to estimate ¾2t and e2t changes the result quite dramatically relative to the

infeasible estimator. The results using the kernel estimates are presented in tables 4-6 and

…gures 9-11. In all cases, the estimator of ± is strongly biased downward, but this bias

goes down as the bandwidth increases. In general, a small bandwidth is preferable in semi-

parametric estimation as it leads to less biased but more variable non-parametric estimates

that get averaged in the second step. However, additional smoothing is appropriate in this

case because we need to keep the conditioning set small despite the high persistence. This

…nding is consistent with the results in Perron (1999). Surprisingly, the Wald intervals have

in general better coverage than their LM counterparts. However, the coverage rate of LM

intervals improves substantially as the bandwidth increases.

**** Insert tables 4-6 here ****

**** Insert …gures 9-11 here ****

The …gures explain this phenomenon. The kernel estimator is not a very good estimator

of the conditional variance in this case as it does not capture persistence well. Hence, the

…nite sample distribution of b± is nowhere near the one obtained by using the infeasible IV

estimator. However, this situation improves with a larger bandwidth, and this explains why

the results approach those obtained using the infeasible estimator as the bandwidth increases.

Nevertheless, all distributions are heavily skewed to the left and are not well summarized by

any asymptotic approximation.

The results using the neural networks are presented in tables 7-9 and …gures 12-14. The

distribution of the estimator of ± is well-centered with p = 1. With more than one lagged

value in the conditioning set, however, the estimator is biased downward. The two sets of

con…dence intervals have coverage rate that is too low, but the LM intervals perform much
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better. In fact, with p = 1; the coverage rate of the LM intervals is almost correct. The weak

instrument approximation does not provide a very good approximation to the …nite-sample

distribution of the estimator due to the bias, but of course neither does the usual normal

theory.

**** Insert tables 7-9 here ****

**** Insert …gures 12-14 here ****

Finally, the results for the Engle-Ng estimator are presented in table 10 and …gure 15

for p = 1: The results provided by this method are excellent. The bias in the estimation

of the risk parameter is small (but slightly negative). Once again, the LM-based con…dence

intervals perform better with a coverage rate that is close to their nominal level of 95%. The

asymptotic approximation provided by the weak instrument theory is excellent. Moreover,

there is only slight sensitivity to the choice of the smoothing parameter. The distributions

with 2, 4 or 8 bins are essentially indistinguishable in the …gure.

**** Insert table 10 here ****

**** Insert …gures 15 here ****

It would thus appear that only the Engle-Ng procedure provides a good approximation to

the conditional variance as it leads to an IV estimator with a distribution that is close to that

of the infeasible IV estimator. The other two (as well as other non-parametric estimators

such as nearest neighbors or local polynomials) face the disadvantage that they must be

made conditional on a small information set. In theory, neural networks do not su¤er from

the curse of dimensionality and could be estimated conditional on a much larger number of

lagged values. In practice, this is di¢cult as the optimization becomes more problematic,

and the performance does not seem to improve remarkably.
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Thus, the results above suggest extreme caution when using estimated instruments and

explanatory variables in instrumental variable regression. It however appears that infer-

ence can be done robustly by using LM con…dence intervals and using the semi-parametric

estimator of the conditional variance. Once the conditional variance is estimated, the ap-

proximation provided by the weak instrument distribution is much superior to that provided

by the usual normal approximation.

6. Empirical results

In this section, we will analyze our three …nancial data sets to seek evidence of a risk-return

trade-o¤. To reiterate, the series are monthly returns on the S&P 500 index, quarterly

excess holding yield between 6-month and 3-month Treasury bills and monthly returns on

the yen-dollar spot rate.

For each series, we postulate a model of the form

yt = ¯
0xt + ±¾

2
t + et

with xt being a vector of explanatory variables and ¾2t = E
£
fyt ¡E [ytjFt¡1]g2 jFt¡1

¤
where

Ft¡1 is the information set used by the agents in forming the corresponding expectation.

For both series, the conditional variance was estimated using each of the three methods

discussed above: kernel, neural networks, and the Engle-Ng estimator described above. We

only report the results using the kernel estimate with a bandwidth constant of 2 since this

value reduced the bias in the estimation and provided con…dence intervals with better cover-

age in the simulation experiment, neural networks with 4 nodes, and the Engle-Ng estimator

with 4 bins. Results for the other choices are available upon request.

The LM con…dence intervals were computed by numerically inverting the LM statistic.

A grid of 1000 equi-spaced points between -100 and 100 was used for this purpose. For this

reason, the in…nite or very large con…dence intervals got truncated at these two endpoints.
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6.1. Stock returns

The …rst series represents monthly excess returns on the S&P 500 index between January

1965 and December 1997. The data is taken from CRSP, and the risk-free rate is the 3-

month Treasury bill rate. The trade-o¤ between risk and return has been extensively studied

for similar series with con‡icting results. For example, French, Schwert, and Stambaugh

(1987) …nd a positive relation between returns and the conditional variance, while Glosten,

Jagannathan, and Runkle (1993) …nd a negative relationship using a modi…ed GARCH-M

methodology. This con‡icting evidence is not surprising in light of the results obtained

by Backus, Gregory, and Zin (1989) and Backus and Gregory (1993). Using a general

equilibrium setting, they provide simulation evidence that the relationship between expected

returns and the variance of returns can go in either direction, depending on speci…cation.

The estimation results are presented in table 11. In addition to the point estimates

and the robust t-statistics, we present Wald-based and LM-based 95% con…dence intervals

for the coe¢cient on the risk variable, ±; as well as the partial R2 between b¾2t and be2t :
The results are unambiguous on the presence of a relationship between the excess returns

and the conditional variance. In all cases but one, there is no signi…cant e¤ect of risk on

returns. The only exception is the kernel estimator with 3 lags which shows a signi…cant

positive relationship using the Wald inference. However, the main feature of the results is the

much wider con…dence intervals obtained using the LM principle. Wald con…dence intervals

dramatically understate the uncertainty of the estimated parameters.

**** Insert table 11 here ****

6.2. Excess holding yield

Following Engle, Lilien, and Robins (1987), the excess holding yield between 6-month Trea-

sury bill and 3-month Treasury bill is de…ned as:

yt =
(1 +Rt)

2

(1 + rt+1)
¡ (1 + rt)
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where Rt and rt are the yield on the 6-month and 3-month T-bill between t and t + 1

respectively. Quarterly data between the …rst quarter of 1959 and the …rst quarter of 1998

is used. A similar (and shorter) series has been studied by Engle, Lilien, and Robins (1987)

and by Pagan and Hong (1991). The …rst paper applied the ARCH-M methodology, while

the second one used the above semi-parametric instrumental variable estimator. A plot of

the data is provided in …gure 3.

The results of the estimation are presented in table 12 for lag lengths between 1 and 3.

The variables included in the vector of exogenous and predetermined variables xt include a

constant, and the interest spread Rt¡rt. All point estimates are positive with the exception

of the kernel with one lag. Three cases show a signi…cant relationship using Wald inference.

In these three cases. the LM intervals are very wide and reverse the conclusion. In fact the

LM intervals are much wider than their Wald counterparts in all cases.

**** Insert table 12 here ****

Also note that the interest spread is signi…cant at the 5% level using standard testing

procedures in all cases but one. This is to be expected given the second part of theorem 4.1 as

the usual standard errors understate the level of uncertainty associated with the estimators

of the coe¢cients of the exogenous variables.

6.3. Yen-dollar exchange rate

The other data series considered consists of monthly returns on the yen-dollar spot exchange

rate between September 1978 and June 1998. This series is plotted in …gure 4. The returns

are assumed to depend on the di¤erential between Japanese and U.S. interest rates as pos-

tulated by the uncovered parity condition, as well as their own lag values. The interest rate

used is the 3-month LIBOR o¤er rate. The data was obtained from the IFS CD-Rom.

The results from the estimation are presented in table 13. Once again, few con…dence

intervals show a statistically signi…cant risk premium term. The only exceptions are the

neural network with 2 lags which shows a signi…cantly negative relation and 3 cases where
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the LM intervals take the unusual disjoint shape. The Wald con…dence intervals are already

wide, but the LM intervals are even wider. The partial R2 between estimated squared

innovations and the estimated conditional variance is much lower than for the excess holding

yield as was documented in tables 1-3.

**** Insert table 13 here ****

Note that the coe¢cient on the interest rate di¤erential seems quite precisely estimated

between -3 and -4 for all speci…cations and is signi…cantly negative using standard testing

procedures. Many studies using the uncovered interest rate parity condition …nd such a

signi…cantly negative coe¢cient on the interest di¤erential (see Froot and Thaler (1990) for

a survey of the literature). The inclusion of the variance term does not change the results

much, neither does the inclusion of monthly dummies. This is also true for the GARCH-M

speci…cation. In this latter case however, the risk premium term is signi…cantly positive.

However, this signi…cance has to be taken with care given the second result of theorem 4.1.

7. Conclusion

This paper follows several others in showing that inference using instrumental variables is

greatly a¤ected by a low correlation between the instruments and the explanatory variables.

It extends the current literature to linear semi-parametric models with non-parametrically

estimated regressors and instruments and to cases with higher-order dependence. The anal-

ysis shows that the limit theory in this case is similar to that currently available in the

literature.

Simulation evidence reveals that the additional step of estimating both the regressor and

the instrument may lead to a large loss in the quality of asymptotic approximations. Using a

semi-parametric estimator proposed by Engle and Ng (1993) and carrying out inference using

Lagrange Multiplier procedures allows for inference that is more robust than the alternatives

considered here.
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Empirical application to three …nancial series suggests that conclusions may hinge on

the use of appropriate con…dence intervals. Using the appropriate LM con…dence intervals

and the semi-parametric estimator of the conditional variance leads us to conclude that

none of the series considered includes a statistically signi…cant risk premium. This di¤ers in

many cases from inference based on the usual Wald con…dence intervals and on a parametric

GARCH-M model. However, because of the wide con…dence bands, the results are also

consistent with the presence of large risk premia. The data is simply not informative enough

to precisely estimate the relationship between risk and returns.

Further work on this problem is clearly warranted. In particular, other estimators such

as maximum likelihood are likely to face similar problems as the IV estimator analyzed

here. Moreover, Bayesian methods might be helpful in this case as a prior distribution on

the reduced form coe¢cients is intuitive. Finally, the development of data-based selection

procedures for the smoothing parameters appears important given the sensitivity of the

results to this choice. This is left for future work.
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8. Appendix

1. Proofs

1.1. Preliminary results

Before proving the various theorems, we will collect the required preliminaries in the following

lemma.

Lemma 1.1. Suppose the conditions of theorem (4:1) hold. Then, the following hold:

1. 1p
n

³
bZ 0MX

bY
´
= 1p

n
(Z 0MXY ) + op (1)

2. 1p
n

h
bZ 0MX (Z ¡ Y ) ±

i
= 1p

n
[Z 0MX (Z ¡ Y ) ±] + op (1)

3. 1p
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5. 1p
n
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7. 1p
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´
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Proof. To prove the …rst result, note that
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+Et
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We will next bound each of the Ai; i = 1; : : : ; 6: Let jAj be the matrix norm of A: First,

jA1j =

¯̄
¯̄Et

�³
bZ ¡ Z

´0 hp
nMX

³
Y ¡ bY

´i¸¯̄
¯̄

�
¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯Et

hp
nMX

³
Y ¡ bY

´i¯̄
¯

= op (1)

by assumptions 1 and 2 where the second line follows from the fact that both bY and Y are

measurable with respect to Ft and the triangle inequality. Next,

jA2j =

¯̄
¯̄ 1p
n

³
bZ ¡ Z

´0
MX (Y ¡ Z)

¯̄
¯̄

�
¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1p
n
MX (Y ¡ Z)

¯̄
¯̄

= op (1)

by assumption 2 and since the quantity inside the second absolute value will be Op (1). The

third term is:

jA3j =

¯̄
¯̄ 1p
n

³
bZ ¡ Z

´0
MX [Z ¡E (Z)]

¯̄
¯̄

�
¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1p
n
MX [Z ¡ E (Z)]

¯̄
¯̄

= op (1)

again by assumption 2 and the term inside the second absolute value being Op (1). The

fourth term can be bounded as:

jA4j =

¯̄
¯̄ 1p
n

³
bZ ¡ Z

´0
MXE (Z)

¯̄
¯̄

�
¯̄
¯̄ 1p
n

³
bZ ¡ Z

´¯̄
¯̄ jMXE (Z)j

= op (1)
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as bZ p! Z and jE (Z)j < 1 with probability one since Zt < 1 for all t. The …fth term is:

jA5j =
¯̄
¯Et

h
(Z ¡ E (Z))0

hp
nMX

³
bY ¡ Y

´ii¯̄
¯

� jZ ¡ E (Z)j
¯̄
¯Et

hp
nMX

³
bY ¡ Y

´i¯̄
¯

= Op (1) ¢ op (1)

= op (1)

by assumption 1. Finally, the sixth term can be bounded as:

jA6j =
¯̄
¯Et

h
E (Z)

hp
nMX

³
bY ¡ Y

´ii¯̄
¯

� jE (Z)j
¯̄
¯Et

hp
nMX

³
bY ¡ Y

´i¯̄
¯

= op (1)

by assumption 1 and the fact that jE (Z)j < 1 with probability one: Thus,

1p
n

bZ 0MX
bY = 1p

n
Z 0MXY + op (1)

as required.

The second result is obtained as:

1p
n

h
bZ 0MX (Z ¡ Y ) ±

i
=

1p
n

�³
bZ ¡ Z

´0
MX (Z ¡ Y ) ±

¸
+

1p
n
[Z 0MX (Z ¡ Y ) ±]

=
1p
n
[Z 0MX (Z ¡ Y ) ±] + op (1)

where the last line follows from:
¯̄
¯̄ 1p
n

³
bZ ¡ Z

´0
MX (Z ¡ Y ) ±

¯̄
¯̄ �

¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1p
n
MX (Z ¡ Y ) ±

¯̄
¯̄

= op (1) ¢Op (1)

= op (1)

The third result follows from:

1p
n

bZ 0MXe =
1p
n

h³
bZ ¡ Z

´i0
MXe+

1p
n
Z 0MXe
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and noting that the …rst term can be bounded by:
¯̄
¯̄ 1p
n

h³
bZ ¡ Z

´i0
MXe

¯̄
¯̄ �

¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1p
n
MXe

¯̄
¯̄

= op (1) ¢Op (1)

= op (1)

by assumptions 2 and 4.

The fourth result is proved by rewriting the left hand side as:

1

n
bZ 0MX

bZ =
1

n

³
bZ ¡ Z

´0
MX

bZ + 1

n
Z 0MX

bZ

=
1

n
Z 0MXZ +

1

n

³
bZ ¡ Z

´0
MX

³
bZ ¡ Z

´
+
1

n

³
bZ ¡ Z

´0
MXZ +

1

n
Z 0MX

³
bZ ¡ Z

´

=
1

n
Z 0MXZ +B1 +B2 +B

0
2

where Bj; j = 1; 2; is each bounded in turn by an op (1) term. For B1; we obtain:

jB1j =

¯̄
¯̄ 1
n

³
bZ ¡ Z

´0
MX

³
bZ ¡ Z

´¯̄
¯̄

�
¯̄
¯̄ 1p
n

³
bZ ¡ Z

´0
¶

¯̄
¯̄ jMX j

¯̄
¯̄ 1p
n
¶0

³
bZ ¡ Z

´¯̄
¯̄

= op (1)

by assumption 2 where ¶ is a vector of ones. The second term is bounded as:

jB2j =

¯̄
¯̄ 1
n

³
bZ ¡ Z

´0
MXZ

¯̄
¯̄

�
¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1
n
MXZ

¯̄
¯̄

= op (1) ¢Op (1)

= op (1)

by assumption 2. The fourth result follows.

The …fth result is obtained as:

1p
n
X 0bY =

1p
n
X 0Y +

1p
n
X 0

³
bY ¡ Y

´

=
1p
n
X 0Y + op (1)
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by assumption 2.

The sixth result is obtained from the decomposition:
¯̄
¯̄ 1p
n

h
bZ 0MX

³
Y ¡ bY

´
±
i¯̄
¯̄ =

¯̄
¯̄ 1p
n

�³
bZ ¡ Z

´0
MX

³
Y ¡ bY

´
±

¸
+

1p
n

h
Z 0MX

³
Y ¡ bY

´
±
i¯̄
¯̄

�
¯̄
¯̄ 1p
n

�³
bZ ¡ Z

´0 ³
Y ¡ bY

´
±

¸¯̄
¯̄

+

¯̄
¯̄ 1p
n
[Z ¡E (Z)]0MX

h³
Y ¡ bY

´i
±

¯̄
¯̄

+

¯̄
¯̄1
n
E (Z)0MX

hp
n

³
Y ¡ bY

´i
±

¯̄
¯̄

�
¯̄
¯ bZ ¡ Z

¯̄
¯
¯̄
¯̄ 1p
n
¶0

³
Y ¡ bY

´
±

¯̄
¯̄

jZ ¡E (Z)j
¯̄
¯̄ 1p
n
¶0

³
Y ¡ bY

´
±

¯̄
¯̄

+ jE (Z)j
¯̄
¯̄ 1p
n
¶0

³
Y ¡ bY

´
±

¯̄
¯̄

= op (1)

where the last line follows from 1p
n
¶0

³
Y ¡ bY

´
p! Et

hp
n¶0

³
Y ¡ bY

´i
p! 0:

Finally, the last result is obtained by rewriting the left hand side as:

1p
n

bZ 0MXu =
1p
n

bZ 0MXe+
1p
n

bZ 0MX

³
Y ¡ bY

´
± +

1p
n

bZ 0MX (Z ¡ Y ) ±

and using results 2, 3, and 5 of the lemma.

1.2. Proof of theorem 4:1

The instrumental variable estimator of ± is

b± ¡ ± =
³

bZ 0MX
bY

´¡1 bZ 0MXu

= (Z 0MXY )
¡1
Z 0MXu+ op (1)

by results 1 and 7 of the lemma. To derive the asymptotic distribution, we can handle the

inverse term as:

1p
n
(Z 0MXY ) =

1p
n
[Z 0MX (Z¦ + V )]

34



=
1

n
Z 0MXZG+

1p
n
Z 0MXV

d!
X

zz
G+ªzv

= ¾
1
2
Zv

³
¾
¡1
2

Zv

X
zz
G+ zv

´

= ¾
1
2
Zv (¸+ zv)

while 1p
n
(Z 0MXu)

d! ªzu = ¾
1
2
Zuzu by assumption. Putting these pieces together gives us

the desired result for the distribution of b± :

b± ¡ ± d! ¥:

To derive the distribution of b̄; note that:

b̄ = (X 0X)¡1X 0
³
y ¡ bY b±

´

= ¯ + (X 0X)
¡1
X 0bY

³
± ¡ b±

´
+ (X 0X)

¡1
X 0u

so that

p
n

³
b̄ ¡ ¯

´
=

µ
X 0X

n

¶¡1
Ã
X 0bYp
n

!³
± ¡ b±

´
+

µ
X 0X

n

¶¡1
X 0up
n

=

µ
X 0X

n

¶¡1µ
X 0Yp
n

¶³
± ¡ b±

´
+

µ
X 0X

n

¶¡1
X 0up
n
+ op (1)

d! ¡
X¡1

XX

³X
XZ
G+

X
XX
H +ªXv

´
¥ +

X¡1

XX
ÃXu

where the term in parentheses is derived from:

1p
n
X 0Y =

1p
n
X 0 (Z¦+X¡ + V )

=
1

n
X 0ZG+

1

n
X 0XH +

1p
n
X 0V

d!
X

XZ
G+

X
XX
H +ªXv

by assumption.

1.3. Proof of Proposition 4:2

By result 7 of the lemma,
p
ng

d! ªZu
d
= N (0; ¾Zu) under the null hypothesis. Standard

arguments show the desired result, ng0¾¡1Zug
d! Â2 (k2) :
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1.4. Proof of Proposition 4:3

The estimator of ±¤ is de…ned as:

b±¤ =
³

bZ 0MX
bZ
´¡1 bZ 0MX

³
y ¡ bY ±0

´

=
³

bZ 0MX
bZ
´¡1 bZ 0MX

³
X¯¤ + bZ±¤ + u+ v (± ¡ ±0)

´

= ±¤ +
³

bZ 0MX
bZ
´¡1 bZ 0MXu+

³
bZ 0MX

bZ
´¡1 bZ 0MXv (± ¡ ±0)

so that

p
n

³
b±¤ ¡ ±¤

´
=

Ã bZ 0MX
bZ

n

!¡1 bZ 0MXup
n

+

Ã bZ 0MX
bZ

n

!¡1 bZ 0MXv (± ¡ ±0)p
n

=

Ã
bZ 0MX

bZ
n

!¡1 bZ 0MXup
n

under the null hypothesis. By results 4 and 7 of the lemma,
p
n

³
b±¤ ¡ ±¤

´
! N

¡
0;

P¡1
ZZ ¾Zu

P¡1
ZZ

¢
:

The robust AR statistic is:

AR = n
³
y ¡ bY ±0

´0
MX

bZ
³

bZ 0MX
bZ
´¡1�³

bZ 0MX
bZ
´¡1

¾Zu
³

bZ 0MX
bZ
´¡1¸¡1

³
bZ 0MX

bZ
´¡1 bZ 0MX

³
y ¡ bY ±

´

= n
³
y ¡ bY ±0

´0
MX

bZ¾¡1Zu bZ 0MX

³
y ¡ bY ±

´

= LM

after simpli…cation with ¾Zu estimated under the null.
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Table I. R2 from regression of be2t on b¾2t
Kernel-based estimates

Bandwidth is b = cbsT¡ 1
p+4

c = 0:5 1 2

S&P 500 returns p = 1 0.001 0.000 0.061

1965:1-1997:12 2 0.000 0.001 0.085

3 0.012 0.041 0.077

Yen-dollar returns p = 1 0.022 0.004 0.026

1978:10-1998:6 2 0.000 0004 0.003

3 0.011 0.004 0.005

Excess holding yield p = 1 0.016 0.004 0.170

1959:1-1998:2 2 0.002 0.034 0.010

3 0.008 0.017 0.046

Table II. R2 from regression of be2t on b¾2t
Neural network estimates

number of nodes = 2 4 8

S&P 500 returns p = 1 0.041 0.040 0.039

1965:1-1997:12 2 0.034 0.036 0.036

3 0.020 0.020 0.020

Yen-dollar returns p = 1 0.010 0.019 0.025

1978:10-1998:6 2 0.229 0.261 0.278

3 0.234 0.075 0.075

Excess holding yield p = 1 0.006 0.006 0.006

1959:1-1998:2 2 0.032 0.031 0.032

3 0.002 0.002 0.002
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Table III. R2 from regression of be2t on b¾2t
Engle-Ng estimates

number of bins = 2 4 8

S&P 500 returns p = 1 0.138 0.139 0.138

1965:1-1997:12 2 0.107 0.107 0.151

3 0.098 0.088 0.073

Yen-dollar returns p = 1 0.015 0.022 0.031

1978:10-1998:6 2 0.003 0.001 0.001

3 0.004 0.001 0.000

Excess holding yield p = 1 0.124 0.125 0.114

1959:1-1998:2 2 0.350 0.338 0.259

3 0.152 0.142 0.148

Table IV. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p = 1

Bandwidth Median Coverage rate of 95% CI First-stage

constant IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

0.5 0.427 92.2 81.2 5.29

1 1.230 90.5 92.2 3.12

2 2.214 81.4 93.0 2.09
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Table V. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p = 2

Bandwidth Median Coverage rate of 95% CI First-stage

constant IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

0.5 -0.186 99.1 53.6 24.63

1 0.586 96.9 77.9 11.07

2 1.873 92.4 91.7 5.37

Table VI. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p = 3

Bandwidth Median Coverage rate of 95% CI First-stage

constant IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

0.5 -0.665 92.9 74.9 51.50

1 0.334 98.9 65.7 22.61

2 2.144 97.2 89.2 9.75
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Table VII. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p = 1

Number Median Coverage rate of 95% CI First-stage

of nodes IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

2 6.449 51.2 95.5 0.35

4 6.938 51.4 93.8 0.36

8 6.258 53.7 93.5 0.33

Table VIII. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p = 2

Number Median Coverage rate of 95% CI First-stage

of nodes IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

2 1.219 60.9 79.6 0.57

4 1.031 61.1 80.6 0.52

8 1.556 62.4 81.6 0.40

40



Table IX. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p = 3

Number Median Coverage rate of 95% CI First-stage

of nodes IV Estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

2 1.061 56.5 82.6 0.59

4 0.746 56.8 85.1 0.46

8 1.404 53.4 86.5 0.34

Table X. Simulation results

GARCH parameters from S&P 500 data

Engle-Ng estimate of the conditional variance

p = 1

Number Median Coverage rate of 95% CI First-stage

of bins IV estimator Wald LM R2 (%)

Actual 7.865 79.1 94.0 2.19

2 6.213 82.4 94.5 2.26

4 5.713 86.2 95.5 2.63

8 6.039 86.7 95.5 2.69
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Table XI. Estimation results

S&P 500 returns, 1965-1997, robust standard errors in parentheses

Estimator p = 1 p = 2 p = 3

constant
(£10¡2)

0:25
(0:40)

¡0:14
(0:36)

¡1:15
(0:50)

Kernel be2t ¡0:40
(¡2:00)

1:62
(1:64)

6:92
(2:63)

(c = 2) Wald 95% CI [¡4:4; 3:6] [¡1:6; 4:8] [1:8; 12:1]

LM 95% CI [¡100;¡14:6] [ [¡7:6; 100] [¡100; 100] [¡100; 100]
1st stage R2 0.061 0.085 0.077

constant
(£10¡2)

0:27
(0:69)

0:09
(0:60)

0:10
(0:83)

Neural network be2t ¡0:45
(3:21)

0:38
(2:71)

0:42
(4:20)

(4 nodes) Wald 95% CI [¡6:9; 6:0] [¡5:1; 5:9] [¡7:8; 8:6]
LM 95% CI [¡14:6; 6:0] [¡55:0; 7:0] [¡100; 100]
1st stage R2 0.040 0.036 0.020

constant
(£10¡2)

0:17
(0:28)

0:16
(0:33)

¡0:04
(0:33)

Engle-Ng be2t ¡0:01
(1:00)

0:05
(1:25)

1:10
(1:72)

(4 bins) Wald 95% CI [¡2:5; 2:5] [¡2:8; 2:9] [¡2:2; 4:4]
LM 95% CI [¡100; 100] [¡100; 100] [¡39; 6:4]
1st stage R2 0.139 0.107 0.088

constant
(£10¡2)

¡0:94
(1:12)

GARCH-M(1,1) be2t¡1 6:68
(6:42)

Wald 95% CI [¡6:2; 19:54]
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Table XII. Estimation results

Excess holding yield, 1959:1-1998:2, robust standard errors in parentheses

Estimator p = 1 p = 2 p = 3

constant
(£10¡3)

0:45
(0:23)

¡1:07
(1:65)

¡0:23
(0:62)

Kernel spread 1:50
(0:24)

1:98
(0:91)

1:79
(0:42)

(c = 2) be2t ¡24:56
(20:13)

119:25
(140:29)

34:63
(34:29)

Wald 95% CI [¡38:9;¡10:2] [¡155:1; 393:6] [¡32:6; 101:8]
LM 95% CI [¡100; 100] [¡100; 100] [¡49:6; 99:8]
1st stage R2 0.167 0.008 0.041

constant
(£10¡3)

¡6:79
(1:20)

¡6:18
(0:91)

¡2:48
(4:07)

Neural network spread 0:46
(0:18)

0:57
(0:15)

1:20
(0:66)

(4 nodes) be2t 21:21
(3:47)

19:40
(2:59)

8:11
(12:48)

Wald 95% CI [14:4; 28:0] [14:3; 24:5] [¡16:2; 32:4]

LM 95% CI [¡100; 100] [¡100; 100]
[¡100; 17:8]
[ [23:8; 100]

1st stage R2 0.042 0.090 0.020

constant
(£10¡3)

0:01
(0:33)

0:05
(0:20)

¡0:02
(0:29)

Engle-Ng spread 1:66
(0:24)

1:70
(0:24)

1:68
(0:27)

(4 bins) be2t 9:27
(7:86)

6:81
(11:54)

8:34
(11:42)

Wald 95% CI [¡6:1; 24:6] [¡15:6; 29:3] [¡14:2; 30:8]
LM 95% CI [¡100; 100] [¡100; 100] [¡100; 53:0]
1st stage R2 0.125 0.338 0.142

constant
(£10¡3)

0:03
(0:10)

GARCH-M(1,1) spread 1:30
(0:27)

be2t¡1 51:43
(18:50)

Wald 95% CI [14:4; 88:4]

43



Table XIII. Estimation results

Yen-dollar returns, robust t-statistics in parentheses

Estimator p = 1 p = 2 p = 3

constant ¡0:02
(0:01)

¡0:03
(0:02)

¡0:03
(0:02)

di¤erential ¡4:19
(0:95)

¡4:51
(1:20)

¡4:37
(1:19)

Kernel be2t 6:95
(10:07)

19:96
(16:76)

15:54
(14:52)

(c = 2) Wald 95% CI [¡12:7; 26:6] [¡12:9; 52:8] [¡13; 44:1]
LM 95% CI [¡20:6; 89:8] [¡9:2; 100] [¡8; 100]
1st stage R2 0.026 0.008 0.012

constant ¡0:06
(0:04)

0:02
(0:02)

0:01
(0:02)

Neural network di¤erential 2:84
(5:92)

¡4:09
(0:93)

¡4:46
(1:10)

(4 bins) be2t 55:00
(43:31)

¡0:28
(0:14)

¡1:00
(0:78)

Wald 95% CI [¡29:8; 139:8] [¡0:6; 0] [¡2:5; 0:5]

LM 95% CI
[¡100;¡69]
[ [18:8; 100]

[¡0:6;¡0:2] [¡3:8; 0]

1st stage R2 0.008 0.321 0.115

constant 0:02
(0:03)

0:17
(0:50)

0:00
(0:00)

di¤erential ¡3:05
(1:69)

¡1:38
(12:55)

¡3:48
(1:10)

Engle-Ng be2t ¡33:26
(31:98)

¡218:11
(573:97)

¡14:95
(43:97)

(4 bins) Wald 95% CI [¡96:3; 29:7] [¡1354:9; 918:7] [¡102:1; 72:19]

LM 95% CI
[¡100;¡9]
[ [33:6; 100]

[¡100;¡28:4]
[ [29:8; 100]

[¡100; 100]

1st stage R2 0.022 0.001 0.001

constant ¡0:01
(0:00)

GARCH-M(1,1) di¤erential ¡3:37
(0:05)

be2t 1:95
(0:00)

Wald 95% CI [1:95; 1:95]
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Ẑ






























