
Consistent Estimators for Panel Duration Data

with Endogenous Censoring and Endogenous

Regressors¤

Tiemen M. Woutersen
Brown University

January 3, 2000

Abstract

The estimation of duration models is complicated by unobserved heterogeneity and
right censoring of the data. Assumptions on the unobserved heterogeneity can be avoided
by using a ¯xed e®ect parametrization. This paper develops new estimators that are
consistent under right censoring for a wide range of parametric duration models and
also derives a nonparametric estimator for the baseline hazard that converges in mean
square error. Moreover, the new estimator allows for endogenous regressors and enables
to distinguish state dependence from heterogeneity.

1 Introduction

The analysis of the durations of events has been a subject of some attention in econometrics
for almost two decades. It has been complicated by heterogeneity of the data and by the
fact that economic agents choose regressors given their characteristics and history. Thus the
regressors depend on the heterogeneity and may be endogenous as well. A further compli-
cation is that a part of the data may be censored. This paper develops estimators for this
framework.

The problem of heterogeneity is often dealt with by making distributional assumptions
on the unobserved heterogeneity. One of the assumptions usually is that the unobserved het-
erogeneity and regressors are independent. In that case, estimation by maximum likelihood
is possible. Lancaster (1990) gives an overview. However, both Heckman and Singer (1984)
and Lancaster (1990) have demonstrated that the estimated parameters can be sensitive
to the assumed functional form of the heterogeneity. We can avoid these functional form
assumptions by using a ¯xed e®ect speci¯cation: a time-invariant, individual parameter for
each individual. Honor¶e (1993) gives identi¯cation results for duration models with multiple,
uncensored spells. Lancaster (1999) suggests ¯nding a parametrization of the ¯xed e®ects

¤I am very grateful to Tony Lancaster, Moshe Buchinsky, Andrew Foster and Guido Imbens for helpful
comments and discussions. All errors are mine.
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that is orthogonal in the information matrix sense and then integrating out these ¯xed ef-
fects. When we apply Lancaster's method to the ¯xed e®ect Weibull model with uncensored
spells, we get Chamberlain's (1985) consistent estimator for the Weibull model.

However, Lancaster's method requires a di®erential equation to be solved analytically.
This is not possible for the Weibull or exponential duration model in the case that we have
right censoring. In general, right censoring complicates the analysis of panel duration data.
In particular, the chance that a duration spell is censored depends on the length of all earlier
spells and is therefore not exogenous. Indeed, Van den Berg (1999) notes that there are
hardly any estimation methods for panel duration data with censoring, whether or not we
allow for a ¯xed e®ect. We want to allow for ¯xed e®ects and right censoring. This paper
develops estimators for all important duration models. That is, for the exponential, Weibull,
piecewise-constant and log-linear hazard models as well as the nonparametric baseline hazard
with exponential regressors. We allow for interaction between the di®erent spells of the same
individual in order to distinguish between state dependence and heterogeneity.

In the case that we only have one spell for each individual, we cannot allow for an
individual parameter for each individual since none of our parameters of interest would be
identi¯ed. Depending on the application, we may be willing to assume that the value of the
¯xed e®ect depends on certain observable characteristics of the individual. If the data allow
us to ¯nd other individuals with similar characteristics, then we can construct a new `panel'
with the duration of the individual and a `weighted average' of other individuals with similar
characteristics. Obviously, the interesting interaction between spells of the same individual is
lost for the single spell case, but consistent estimation of a number of parametric models is still
possible. To be more precise: for the parametric models without interaction between spells
we can substitute the multiple spell requirement with a semiparametric matching condition.

Most of the estimators derived in this paper deal with cases where, so far, no consistent
estimator existed. The exception is a rank estimator for the slope coe±cients of the propor-
tional hazard model as derived by Chamberlain (1985). Ridder and Tunali (1999) use this
estimator for censored data. Crucial assumptions for this estimator are that the censoring
is exogenous and that there is no interaction between spells. Within this framework we
compare the asymptotic variance of this rank estimator to the asymptotic variance of the
estimators derived in this paper.

The paper is organized as follows. Section 2 shows how inference can be based on the
integrated hazard. It develops theorems for consistent estimators for several duration models
with ¯xed e®ects and right censoring. The nonparametric estimation of the baseline hazard
in this section and all theorems of further sections are based on these theorems. Section
3 then deals with the cases in which the chance of right censoring depends on the length
of previous spells. Section 4 deals with endogenous regressors like functions of previous
unemployment and employment spells. Section 5 substitutes the multiple spell requirement
with a matching condition, so only one spell is needed. Section 6 compares estimators and
section 7 concludes.
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2 Estimation using the integrated hazard

In this section we use properties of the integrated hazard function to derive estimators. First
we give two easy examples to illustrate the method (section 2.1), then we give theorems for
several parametric hazard speci¯cations (section 2.2) and ¯nally we explain how to use the
same method for nonparametric estimation of the hazard function (section 2.3).

2.1 Easy examples

This subsection is only meant to illustrate how to derive estimators that are based on the
integrated hazard; the resulting estimators are a very common maximum likelihood and a
methods of moments estimator. In the next subsections we use the integrated hazard to
derive estimators for cases where, so far, no estimator existed.

We frequently use the fact that, given the exogenous regressor x; the integrated hazard
is a unit Exponential variate.

Z =

Z t

0
µ(s;x)ds » "(1): (1)

So the expectation of Z equals one.

Example 1. We can use equation (1) to estimate parameters of the hazard function. Con-
sider almost the simplest problem to illustrate how this is done. Assume that t1; :::; tN are
independent durations with hazard µ(t) = e¹ so z = e¹t. The integrated hazards are inde-
pendent unit exponentials, z = e¹t » "(1): We estimate the model by choosing a ¹ such that
the integrated hazard has expectation one. Equating the sample analogue of the integrated
hazard to one gives:

PN
i=1 e¹ti
N

= 1:

This gives an estimate for ¹;

¹̂ = ln(

PN
i=1 ti
N

);

which is the maximum likelihood estimator.

Example 2. Suppose that we observe two spells for N individuals and want to estimate an
exponential hazard model. Assume that we observe for each period a vector of regressors for
individual i: Since we have more than one observation for each individual we can allow for a
¯xed e®ect. In the ¯xed e®ect parametrization, the coe±cients of the regressors depend on
the di®erence of the regressors in the ¯rst and second spell. Let the vector of these di®erences
be denoted by 4xi and let ¢X be a matrix with the vectors 4xi; i = 1; ::;N; as its rows.
Assume ¢X has full column rank. If the spells are independent across individuals as well
as across spells for the same individual then the hazard of the ¯rst and second spell can be
written as follows:

µi1 = fi

µi2 = fie
4xi¯ .
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The integrated hazards for the ¯rst and second spell are fiti1 and fie4xi¯ti2; respectively.
At the true parameter value, ¯0; the di®erence between these integrated hazards equals zero
in expectation. The expectation of the di®erence does not depend on the value of the ¯xed
e®ect and therefore

E(ti1 ¡ e4xi¯0ti2) = 0:

Multiplying by the vector 4xi gives

4xiE(ti1 ¡ e4xi¯0ti2) = 0:

The last equation suggests the following moment vector function

g(¯) =
1

N

X

i

gi

where

gi(¯) = 4xi(ti1 ¡ e4xi¯ti2):

Estimation based on the moment vector function g(¯) gives consistent estimates for ¯ when
the number of individuals goes to in¯nity1. Similar moment functions can be derived by
taking the logarithms of the durations and then di®erencing out the ¯xed e®ect. Estimators
that are based on the log durations need to observe the actual duration. An advantage of
inference based on integrated hazards is that it can deal with censoring, i.e. that resulting
estimators are consistent. Another advantage of the integrated hazard is that it suggests new
consistent estimators for studying the interactions between spells. We show these advantages
in the remaining part of this section and in the next section.

2.2 Estimation of several parametric hazard speci¯cations

In this subsection we use the integrated hazard to derive estimators for several parametric
hazard models. Since data are often right censored and heterogenous we allow for ¯xed e®ects
and right censoring. Van den Berg mentions in the forthcoming Handbook of Econometrics
an \important caveat" with multiple spell data: Existing estimator are \particularly sensitive
to censoring". Indeed, even for the Weibull, or piecewise-constant hazard model a consistent
estimator was lacking. This section derives consistent estimators for these and other models.

Suppose we observe the minimum of the duration tis and the censoring time cis. Let us
denote this observed length of a spell by yis. In this subsection we assume that the censoring
time is exogenous, i.e. the censoring time does not depend on the length of the current or
past spells. In section 3 we will discuss estimators with endogenous censoring.
For now, yis is determined as

yis = min(tis; cis):

1A proof of a more general case is given in section 2.2.1.
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The indicator dis equals zero when the observation is censored and equals one when the
observation is uncensored. The expectation of this indicator, E(dis); equals the probability
that the observation is not censored. A useful fact is that the expectation of dis equals the
expectation of the integrated hazard.

Lemma 1 The expectation of the integrated hazard of a spell that may be right censored
equals the expectation of the indicator that denotes no censoring:

E(zis) = E

Z yis

0
µ(s; x)ds = E(dis): (2)

Proof: See appendix 1.

2.2.1 Exponential hazard model

Suppose we want to estimate the exponential hazard model and observe two possibly cen-
sored spells for N individuals. More precisely, suppose the censoring time is exogenous and
denoted by cis; this censoring time may vary over individuals and spells. We observe, for
each individual, yis = min(tis; cis); s = 1; 2: Assume that we observe exogenous regressors
as well. As in example 2, section 2.1, we denote the di®erence between the regressors of the
¯rst and second spell by 4xi and de¯ne ¢X as the matrix with the vectors 4xi; i = 1; ::; N;
as its rows. Assume that ¢X has full column rank. We allow for a ¯xed e®ect fi and write
the hazard of the ¯rst and second spell as follows:

µi1 = fi

µi2 = fie
4xi¯ .

The integrated hazards for the ¯rst and second spell are fiyi1 and fie
4xi¯
i2 yi2; respectively.

The expectations of the integrated hazards are given by lemma 1:

Ezi1 = Efiyi1 = Edi1

Ezi2 = Efie
4xi¯0yi2 = Edi2

in general, Edi1 6= Edi2:

In general, the probability of a spell being censored di®ers for the ¯rst and second period2.
By lemma 1, this implies that the expectation of the integrated hazard of the ¯rst and second
period di®ers as well. For uncensored spells, the expectation of the integrated hazard was
the same for both periods (and equal to one). In section 2.1, example 2, we used this fact
to derive an estimator for the exponential hazard model. For the censored case, however, we
need to adjust the method to take care for the inequality of the expected integrated hazards.
Basically, the integrated hazard with the largest expectation needs to be decreased to restore
equality of the expectations. This can be done by multiplying the integrated hazard of the

2If ci1 = ci2 and 4xi = 0 then we know a priori that the probability of censoring is the same for the ¯rst
and second spell. However, only individuals with 4xi 6= 0 are useful for the estimation of ¯:
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¯rst period by di2 and multiplying the integrated hazard of the second period by di1: The
expression that results from this multiplication has the following expectation:

E(di2zi1 ¡ di1zi2) = E(di2zi1) ¡ E(di1zi2)

= Edi2Ezi1 ¡ Edi1Ezi2

where the last line follows from the independence of the ¯rst and second spell. From lemma
1 it follows that Ezi1 = Edi1 and Edi2 = Ezi2: Therefore

E(di2zi1 ¡ di1zi2) = 0: (3)

In example 1 and example 2 we based an estimator on the di®erence of the integrated hazards
of the ¯rst and second spell3. That di®erence was zero in expectation and the resulting
estimators were consistent. Equation (3) suggests an adjustment for exogenous censored
spells. Indeed, estimators based on (3) are in general consistent. The remainder of this
section is devoted to show this consistency for several duration models. For each model we
write the integrated hazard in the form that is implied by the model. For the exponential
model rewriting equation (3) gives:

E(di2fiyi1 ¡ di1fie
4xi¯0yi2) = 0:

The expectation does not depend on the value of the ¯xed e®ect fi and therefore

E(di2yi1 ¡ di1e
4xi¯0yi2) = 0:

As in example 2, we multiply by 4xi and get

4xiE(di2yi1 ¡ di1e
4xi¯0yi2) = 0:

The last equation suggests the following vector moment function:

g(¯) =
1

N

X

i

gi (4)

where

gi(¯) = 4xi(di2yi1 ¡ di1e
4xi¯0yi2): (5)

We de¯ne the objective function Q(¯) = g(¯)0g(¯): Maximizing Q(¯) w.r.t. ¯ gives a consis-
tent estimate for ¯. We will proof this in theorem 1. Theorem 1 will also cover the cases in
which the number of spells per individual di®ers from two. For example, suppose we observe
three possibly censored spells for each individual. Let xis denote the exogenous vector of
regressors of spell s of individual i: We can use the moment function of equation (5) and use
only the ¯rst two spells. That is, we use the following moment function

gAi (¯) = (xi2 ¡ xi1)(di2e
xi1¯yi1 ¡ di1e

xi2¯yi2):

3See 2.1 Easy examples.
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Similarly, we could choose two other pairs of spells:

gBi (¯) = (xi3 ¡ xi2)(di3e
xi2¯yi2 ¡ di2e

xi3¯yi3)

gCi (¯) = (xi3 ¡ xi1)(di3e
xi1¯yi1 ¡ di1e

xi3¯yi3):

A moment function that uses all spells is, obviously,

gi(¯) = gAi (¯) + gBi (¯) + gCi (¯):

Let the number of spells of individual i be denoted by Ti: The general expression for gi(¯)
allows for a di®erent number of spells per individual:

gi(¯) =
X

s<r

f(xir ¡ xis)(dire
xis¯yis ¡ dise

xir¯yir)g s; r = 1; :::; Ti:

Inference is based on the moment function g(¯) = 1
N

P
i gi: At the true value of the parameter,

¯0; this moment function has expectation zero:

Egi(¯0) = E
X

s<r

f(xir ¡ xis)(dire
xis¯0yis ¡ dise

xir¯0yir)g

=
1

fi

X

s<r

f(xir ¡ xis)(EdirEzis ¡ EdisEzir)g using independence

= 0 since Edir = Ezir and Edis = Ezis:

Therefore

Eg(¯0) =
1

N

X

i

Egi(¯0) = 0:

Panel duration data typically have a large number of individuals observed over a short time
period. Therefore, the relevant limiting distributions have the number of individuals, N;
increasing though not the time dimension4. So the number of spells is ¯xed but may vary
over individuals. Because the number of spells may vary over individuals this makes the `full
rank' condition slightly more di±cult than in the case where we just had two spells. We
de¯ne X as a matrix with

P
i Ti rows and K columns. The ¯rst row contains the regressors

of the ¯rst spell of the ¯rst person, i.e. x011, the second row contains the regressors of the
second spell of the ¯rst person,..., the (T1 + 1)th contains the regressors of the ¯rst spell of
the second person and so on. That is

X =

0
BB@

x011
x012
:::

x0NTN

1
CCA :

4See Chamberlain 1985.
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When we assume that X has full column rank then we are able to estimate ¯ consistently.

Theorem 1
Assume that we observe at least two spells for N individuals, that all the spells are indepen-
dent given the regressors and have the following hazards

µis(t) = fie
xis¯ s = 1; :::; Ti:

The censoring time, cis; is exogenous and we observe yis = min(tis; cis): Further assume that
¯ 2 £; which is compact, and that X has full rank. De¯ne Q(¯) = ¡g(¯)0g(¯): Maximizing
Q(¯) w.r.t. ¯ gives a consistent estimate for ¯; i.e.

^̄ = arg max
¯

Q(¯) !p ¯0 for N ! 1:

Proof: See appendix 2.

2.2.2 General theorem for one-parameter hazards

By using the insights of the exponential hazard model we can develop a general theorem for
single parameter hazard rates. Let the hazard depend on the scalar parameter °: Assume the
spells are independent spells and the censoring times are exogenous. The following lemma
holds for all one parameter duration models.

Lemma 2
De¯ne g(°) = 1

Nfi

PN
i=1f

P
s<r(dirzis ¡ diszir)g where zis =

R yis
0 µ(s; x)ds: Assume that the

spells are independent across both individuals and spells, and that the censoring time is
exogenous. Then

Eg(°0) = 0:

Proof: See appendix 3.

Lemma 2 only provides one moment function. However, the econometrician can censor the
data arti¯cially and apply lemma 2 several times. We show in the remaining subsections how
this can be done; in section 2.3 we develop an estimator based on lemma 2 which estimates
the baseline hazard nonparametrically. The basis for more advanced estimators is lemma
2 and the following theorem. This theorem states the conditions under which the moment
function of lemma 2 gives consistent estimates of °; the parameter of interest.

Theorem 2
De¯ne Qn(°) = ¡g(°)2: If g(°) is continuous in ° and if either assumption I or II is satis¯ed,

I. g(°) is monotonic and E sup° jjg(°)jj < 1;
II. ° 2 £; which is compact; Eg(°) = 0 only if ° = °0 and E sup°2£ jjg(°)jj < 1;

then °̂ = argmax° Qn(°) is a consistent estimate for °0; i.e.

°̂ = argmax
°

Qn(°) !p °o:
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Proof:
Eg(°0) = 0 by lemma 2. If assumption I is satis¯ed then g(°) is monotonic and
Q(°) = ¡ g(°)2 is concave in ° and therefore EQ(°) is uniquely maximized at the truth.
Therefore, maximizing Qn(°) gives a consistent estimate; see Newey and McFadden, 1994,
Theorem 2.7. If assumption II is satis¯ed then the conditions of Newey and McFadden, 1994,
Theorem 2.6 are satis¯ed and maximizing Qn(°) gives a consistent estimate of °:Q.E.D.

We are not aware of hazard rates that are not continuous in their parameters. In the next
subsections, we check for several hazard models in which either condition I or condition II is
satis¯ed.

2.2.3 Piecewise-constant hazard

In many countries, unemployed people can only collect unemployment bene¯ts for a certain
amount of time. To test whether the hazard rate depends on being eligible for unemployment
bene¯ts, we can estimate a piecewise-constant hazard model. Assume that the government
provides unemployment bene¯ts for u1 periods and that we observe two spells for N individ-
uals. A model to estimate the e®ect of unemployment bene¯ts on the hazard is5

µ(tis) = fi if tis � u1

= fi° if tis > u1:

The integrated hazard equals

zis =

Z tis

0
fids = fitis if tis � u1

= fiu1 + fi°(tis ¡ u1) if tis > u1:

The econometrician can censor the second spell at u1; the number of periods for which the
government provides unemployment bene¯ts. This ensures monotonicity of g(°) :

g(°) =

P
i

N
fdi2zi1 ¡ di1zi2

fi
g (6)

@g(°)

@°
= ¡

P
i

N

di2
fi

@zi1
@°

= ¡
P
i

N
di2 m(ti1 > u1)

where m(ti1 > u1) is an indicator that equals one if fti1 > u1g and zero otherwise. So
@g(°)
@° < 0 if there is at least one ti1 that is larger than u1: Consistency follows from theorem

2.

5Exogenous regressors can be added to this model in the same way as was done for the Weibull model in
section 2.2.4.
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The estimation of a piecewise-constant hazard with more than two `pieces' is similar, e.g.
the model with the following hazard

µ(tis) = fi if tis � u1

= fi°1 if u1 < tis � u2

= fi°2 if tis > u2

is estimated with a repeated use of equation (6): First we censor the ¯rst spell at u2 and the
second spell at u1 and obtain a moment equation that only involves the parameter °1: We
then censor the second spell at u2 while leaving the ¯rst spell uncensored and the resulting
moment function involves both parameters. In subsection 2.3 we discuss this procedure in
further detail and let the number of intervals increase and to estimate the baseline hazard
nonparametrically.

2.2.4 Weibull hazard

Suppose we observe two possibly censored spells for N observations and that we want to
estimate a Weibull model. First we show how this can be done for the Weibull model
without regressors; then we discuss the Weibull model with regressors. The hazard has the
form µis = ®fit

®¡1
is (s = 1; 2) and the integrated hazard is zis = fit®is (s = 1;2). We observe

yis = min(tis; cis): Theorem 2 suggests the following moment function

g(°) =
1

Nfi

NX

i=1

fdi2zi1 ¡ di1zi2g

=
1

N

NX

i=1

fdi2y
°
i1 ¡ di1y

°
i2g (7)

@g(°)

@°
=

1

N

NX

i=1

fdi2y°i1 ln yi1 ¡ di1y
°
i2 ln yi2g:

The equation Eg(°) = 0 has a unique solution if g(°) is monotonic. Monotonicity of g(°)
is assured if only the second period is censored. The function g(°) is in general monotonic
if the probability of the censoring di®ers for the ¯rst and second spell. Obviously, plotting
g(°) indicates whether the function is monotonic. If g(°) is relatively °at, as is the case
when the probability of censoring is the same for both the ¯rst and second spell, then the
econometrician can arti¯cially censor the second spell. This means that the econometrician
censors the observed data at a censoring points he prefers: Instead of using the observed
yis's the econometrician censors the second period6 and uses y0i2 = min(y0i2; ~ci2) as data
where ~ci2 � ci2 for at least some i: This arti¯cial censoring assures that g(°) is monotonic
and therefore Eg(°) = 0 is uniquely solved for ° = °0: Furthermore, E sup°2£ jjg(°)jj < 0
and therefore, condition II of theorem 2 is satis¯ed and consistency follows.

6In general, the spell is choosen which has the largest number of censored observations.
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The standard error of the estimator can sometimes be reduced by arti¯cial censoring.
Assume that the second spell is censored at the common censoring time c2: The asymptotic

variance of the estimator is then given by E[g(°)2]
fE[g°(°0)]g2 : The econometrician can arti¯cially

censor the data at ç2 where ç2 < c2 and redo his estimation including a calculation of the
variance of the estimator. A more systematic way is to choose c2 as the starting value of ç2
and then let ç2 decrease in small steps. For every step an estimate for ° is calculated by using
the moment function of equation (7); the asymptotic variance of the estimator is calculated

as well. A sensible procedure is to lower ç2 until the asymptotic variance, E[g(°)2]
fE[g°(°0)]g2 ; does

not decrease anymore.
We can allow for regressors by combining the moment function of equation (7) with the

moment function of theorem 1. We stack those moment functions and de¯ne g¤(¯; °) :

g¤(¯; °) =

µ
gW (¯; °)

gE(¯; °)

¶

where

gW (¯; °) =
1

N

NX

i=1

f
X

s<r

(ḑire
xis¯ y̧°is ¡ ḑise

xir¯y̧°ir)g

and

gE(¯; °) =
1

N

TiX

i=1

[
X

s<r

f(xir ¡ xis)(dire
xis¯y°is ¡ dise

xir¯y°ir)g ] :

The superscript for ḑis and y̧is denotes that the data are possibly arti¯cially censored. The
function gE(¯; °) uses the data in their original form, i.e. no arti¯cial censoring takes place
for that part of the moment vector function.

The moment vector function g¤(¯; °) has expectation zero at the truth, f¯0; °0g and the
minimizing rest Q(¯; °) = ¡fg¤(¯; °)g0fg¤(¯; °)g gives a consistent estimate of the parame-
ters (see appendix 4).

For the Weibull model without regressors there is another estimator available, so we will
compare the assumptions and properties of the di®erent estimators. Honor¶e (1990) develops
an estimator for the Weibull parameter that is based on an order statistic. He uses a random
e®ects model and the only assumption about the mixing distribution is that its mean is ¯nite.
Only one spell per person is needed. Asymptotically, the method uses only observations close
to zero; so theoretically it is not hindered by censoring. However, in some applications, e.g.
in demography Heckman, Hotz and Walker (1985) in which the amount of time between
¯rst and second birth, etc. is studied, one does not want to rely too much on observations
close to zero since one does not know when \time zero" happens to be. In this case, fertility
after giving birth is unobservable and lags behind the observable event of birth in a person
speci¯c way. With unemployment data time zero can be the moment one starts looking for a
new job; related events could be the moment one loses a job or gets unemployment bene¯ts.
Thus the disadvantages are that we let the shape parameter be determined by the shape in
a small interval [0; ²] and that we sometimes do not know its location. Moreover, Van den
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Berg (1999) notes that extremely short durations are often under-reported in real-life data
and that it is \notoriously di±cult" to assess the shape of the hazard function for t # 0;
let alone the extrapolation. However, the importance of these disadvantages depends on the
application.

As the following theorem shows, the rate of convergence of our method is
p

N: In contrast,
the maximum rate of convergence that the method of Honor¶e can attain is N1=3; which implies
that there is an advantage in the use of panel data in both robustness and rate of convergence.

Theorem 3
De¯ne Qn(°) = ¡g(°)2: Assume ° 2 £; which is compact. Then the estimator °̂ =

arg maxQn(°) converges at rate
p

N to the true value °0: Moreover,
p

N(°̂¡°0) ! N(0; E[g(°)2]
fE[g°(°0)]g2 ):

Proof:
(i) g(°) is continuously di®erentiable in °;
(ii) E(g(°0)) = 0 and E(jg(°0)j2) < 1;
(iii) E[sup°2£ jg°(°)j] < 1;
(iv) fE[g°(°0)]g2 is nonsingular.

These are the standard conditions for asymptotic normality of the GMM. 7 Q.E.D.

2.2.5 Log-linear hazard and the unemployment rate as regressor

The logarithm of the hazard is linear in the parameter ° :

ln µ(x; t) = ln(fi) + °k(x(t); t)

where k(x(t); t) is a function of the regressors and the data. Assume that we observe two
spells for N individuals. Lemma 2 suggests to use the following moment function

g(°) =

P
i

N
fdi2zi1 ¡ di1zi2

fi
g (8)

=

P
i

N
fdi2

Z yi1

0
exp(°k(x(s); s))ds ¡ di1

Z yi2

0
exp(°k(x(s); s))g;and

@g(°)

@°
=

P
i

N
fdi2

Z yi1

0
k(x(s); s) exp(°k(x(s); s))ds ¡ di1

Z yi2

0
k(x(s); s)) exp(°k(x(s); s))g:

Plotting the function g(°) reveals whether the solution to g(°) = 0 is unique. If it is not
we can try to arti¯cially censor the data and plot g(°) again. Assuming that Eg(°) = 0 is
uniquely solved for ° = °0 and noting that E sup°2£ jjg(°)jj < 0; then theorem 2 assures
consistency.

In the case that the second period is hardly censored then g(°) may be relatively °at and
@g(°)
@° is small and, as a consequence, the standard error of ° will be large. This standard

7See e.g. Newey and McFadden (1994), page 2148.
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error can sometimes be reduced by arti¯cially censoring the second period, i.e. use y̧i2 =
min(y̧i2; ç2): Without arti¯cial censoring we have ç2 = c2: Analogue to the Weibull case we
lower ç2 until the asymptotic variance of ° does not decrease anymore. The asymptotic

variance of ° equals E[g(°)2]
fE[g°(°0)]g2 .

A special case of the log-linear hazard model is the exponential model with time-varying
regressors. Theorem 1 gave a moment vector function for the exponential model. The value
of the exogenous regressors could vary over di®erent spells but was restricted to be constant
within a spell. However, some explaining variables, like the unemployment rate, do not
stay constant during an unemployment spell of an individual. We could use the moment
function of equation (8) to estimate the coe±cient of unemployment. From Lemma 2 follows
that Eg(°0) = 0: To assure uniqueness of Eg(°0) = 0 we can censor arti¯cially but we can
also multiply with functions of the unemployment rate. Note that if a random variable has
expectation zero then that random variable still has expectation zero when we multiply it
with a function of exogenous variables. A function of exogenous variables is the di®erence
between the average unemployment rate in the ¯rst and second spell. Let us denote the
average unemployment rate during the sthspell of individual i by uis: Then an adjustment of
equation (8) could be

g(°) =

P
i

N
(ui2 ¡ ui1)f

di2zi1 ¡ di1zi2
fi

g:

The generalization to Ti spells is straightforward: Just replace xis by uis in the moment
function of theorem 1. In case we have several time dependent regressors then we need to
censor the data arti¯cially to create as many moments as time dependent variables8.

2.3 Nonparametric and semi-nonparametric estimation of the baseline
hazard

In this subsection we use theorem 2 to estimate the baseline hazard nonparametrically. Some
writers have been skeptical about estimating the baseline hazard nonparametrically since that
estimation is very hard to interpret as long as we do not take account for the heterogeneity
in the data. For example, Lancaster (1990) devotes a section of his book to nonparametric
estimation and notes \since data are rarely homogeneous this section is not of direct relevance
to econometric work". Indeed, even if we specify the baseline hazard to be the Weibull
hazard then it turns out that the estimate of the Weibull coe±cient can change when we
add regressors that take account of heterogeneity. In Lancaster (1979) the inclusion of
more regressors changed a decreasing hazard to a nearly constant one (using a Weibull
speci¯cation). So estimation of the baseline hazard is sensitive to whether we take the
heterogeneity into account. In this section we react to this \heterogeneity-sensitivity" by
developing a nonparametric estimator for the baseline hazard that allows for ¯xed e®ects.
This section is organized as follows. First we extend the example of the piecewise-constant
hazard function of the last section by shrinking the length of the intervals over which the
hazard is constant. The length of the intervals can be arbitrary short and therefore the

8Plus moments for the Weibull parameter and the parameters for the interactions between spells.
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resulting estimator can be called nonparametric. The next step is to combine the estimation
of the baseline hazard with theorem 1. The resulting theorem allows to estimate the baseline
hazard and the coe±cients for the regressors simultaneously while allowing for ¯xed e®ects
and right censoring. Suppose that the durations are independent and that the hazard has
the following form

µ(tis) = fi ¸0(t)

where ¸0(t); the baseline hazard, is an unknown function of t: We observe

yis = min(tis; c)

where c is the common, exogenous censoring time. We divide the interval [0; c] into m
intervals. The number of intervals, m; increases with the number of individuals; we choose
m = [kn1=5] where [] means 'the next integer smaller than the argument' and k denotes a
constant. The length of each interval is r = c

m
: To estimate the function ¸0(t) we estimate

the following hazard model

µ(tis) = fi if tis � r

= fi°1 if r < tis � 2r

= fi°2 if 2r < tis � 3r

:::

= fi°m¡1 if (m ¡ 1)r < tis � c where m = [kn1=5]:

Note that if n ! 1 then the number of intervals goes to in¯nity, i.e. m = [kn1=5] ! 1:
However, the number of intervals goes to in¯nity at a slower rate than n so their ratio,
[kn1=5]
n ! 0 and, loosely put, the number of observations per interval increases. The integrated

hazard of this approximation that we estimate is

zis =

Z tis

0
fids

= fitis if tis � r

= fi(r + (tis ¡ r)°1 if r < tis � 2r

= fi(r(1 + °1) + (tis ¡ 2r)°2 if 2r < tis � 3r

= fi(r(1 + °1 + °2) + (tis ¡ 3r)°3 if 3r < tis � 4r

:::

= fi(r(1 +
m¡1X

l=1

°l) + (tis ¡ (m ¡ 1)r)°m¡1 if (m ¡ 1)r < tis � c where m = [kn1=5] .

In the last section we arti¯cially censored the second spell at the point where unemployment
bene¯ts ended to ensure concavity of the objective function. Thus we had two intervals and
arti¯cially censored the data once. In this case we have m intervals and arti¯cially censor
the data m ¡ 1 times. We use m ¡ 1 moment function to estimate all the parameters. For
the lth moment function, to estimate °l; we arti¯cially censor the data in the following way

moment function l yi1 = yi1

yi2 = min(yi2; l ¤ r):
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Analogue to the last section we have the following estimating equations

gl(°) =
1

Ln

X

i

fdi2zi1 ¡ di1zi2
fi

g for l = 1; ::; m

where Ln = n4=5

k : We divide by Ln since the number of observations used to estimate a

parameter increases at the rate n4=5; instead of n: The expectation of gl(°) is denoted by
g0;l(°) which decreases in °j for j = 1; ::; M

g0;l(°) =

P
i

Lnfi
fEdi2Ezi1 ¡ Edi1Ezi2g for l = 1; ::;M:

Its derivative

@g0;l(°)

@°j
=

P
i

Ln
fEdi2

@Ezi1
@°j

¡ Edi1
@Ezi2
@°j

g < 0 for j = 1; ::l ¡ 1:

Note that @Ezi2
@°j

= @Ezi1
@°j

; further note that Edi1 < Edi2 since di1 is not arti¯cially censored.

@g0;l(°)

@°j
=

P
i

Ln
fEdi2

@Ezi1
@°j

¡ Edi1
@Ezi2
@°j

g

=

P
i

Ln
rf¡Edi1

@Ezi2
@°j

g < 0 for j = l; :::M;

since @Ezi1
@°j

is not a function of °j for j ¸ l: Therefore the following function is concave in °l
for l = l; :::M :

Q0 = ¡
MX

l=1

fg0;l(°)g2:

Theorem 4
Assume that we observe T spells for N individuals, that all the spells are independent and
have the following hazards

µ(tis) = fi ¸0(t):

The censoring time, cis; is exogenous and we observe yis = min(tis; cis): Assume that ¸0(t)
is a bounded and continuous function of t. Arti¯cial censoring and grouping is done as

described above. De¯ne gl(°) =
P
i

Ln
fdi1zi2¡di2zi1fi

g for l = 1; ::; M and Qn =
PM
l=1fgl(°)g2:

Maximizing Qn(°) w.r.t. ° gives an estimate of ^̧
n(t) and this estimate converges in mean

square to ¸0(t), i.e.

lim
n!1

Ef(^̧n(t) ¡ ¸0(t))
2g = 0:

Proof: See appendix 5.
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There is a similar theorem for the case in which we want to allow for regressors.

Theorem 5
Assume that we observe T spells for N individuals, that all the spells are independent given
the regressors and have the following hazards

µ(tis) = fi ¸0(t)e
xis¯ :

The censoring time, cis; is exogenous and we observe yis = min(tis; cis): The matrix 4X
has xis as its columns. Assume that ¯ 2 £ which is compact and 4X 04X has full rank.
Further assume that ¸0(t) is a bounded and continuous function of t. Arti¯cial censoring

and grouping is done as described above. De¯ne gl(°) =
P
i

Ln
fdi2zi1¡di1zi2fi

g for l = 1; ::; M

where M is the number of intervals that increases with N: De¯ne gr(°) =
P
i

Ln
fdi2zi1¡di1zi2fi

g
for l = 1; ::; K where K is the number of regressors that stays constant as N ! 1: Finally,
de¯ne Qn = ¡fPM

l=1fgl(°)g2 +
PK
r=1fgr(°)g2g:

Maximizing Qn(°) w.r.t. ¯ and ° gives an estimate of ^̧
n(t) and this estimate converges in

mean square to ¸0(t), i.e.

lim
n!1

Ef(^̧n(t) ¡ ¸0(t))
2g = 0;

while

lim
n!1

Ef(^̄ ¡ ¯0)
2g = 0:

Proof: See appendix 6.

In applications the number of intervals depends on the sample size. For a ¯xed sample
size there is a trade-o® between bias and variance of our estimation of the baseline hazard
function. This is the usual trade-o® that is very well discussed in the nonparametric literature:
Using cross validation we choose the length of the intervals9. Cross validation techniques are
discussed and reviewed in HÄardle (1990).

Depending on the application, the relative importance of the baseline hazard compared to
the regression coe±cients di®ers. The two extreme interpretations are that either the baseline
hazard or the regression coe±cients10 are nuisance parameters. In the case that the baseline
hazard is interpreted as a nuisance parameter then the usual arguments for undersmoothing
apply; see Powell (1994) for a general discussion.

3 Endogenous Censoring

In the last section we assume that all the spells are independent. This implies that the
indicators for censoring are independent on the integrated hazards of other spells. The

9Or use cross validation to choose a number of observations per interval; let this number increase at a rate
slower than N:
10The reason for introducing the regressors in this case is to control for covariates that di®er across spells

of the same individual.
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assumption of independence is crucial for the theorems in that paragraph. To illustrate this,
consider the case where T = 2 and zis denotes the integrated hazard. We want the following
expression to have zero expectation:

gi =
1

fi
fdi2zi1 ¡ di1zi2g:

A su±cient condition is independence of the spell:

Egi =
1

fi
Efdi2zi1 ¡ di1zi2g

=
1

fi
fEdi2Ezi1 + Cov(di2;zi1) ¡ Edi1Ezi2 ¡ Cov(di1;zi2)g:

We consider Cov(di2;zi1) ¡ Cov(di1;zi2) 6= 0 to be a non-interesting case and therefore need
Cov(di2;zi1) = Cov(di1;zi2) = 0 to apply the results of the last section.

However, the assumption of exogeneity is sometimes hard to justify. Consider two examples
where the censoring time of the sth spell of individual i, cis; depends on the length of previous
spells of individual i:

Example 1. Suppose that tis denotes the time between two purchases of a product; the
spells are independent of each other and are distributed exponentially with mean 1

fiexis¯:
; i.e.

tis » "(fie
xis¯):

Suppose we follow the customers for a six month period after their ¯rst purchase. So the
censoring time for the ¯rst spell is six months, i.e. ci1 = 6: The censoring time for this second
spell depends on the length of the ¯rst spell and is six months minus the duration of the ¯rst
spell, i.e. ci1 = 6 ¡ ti1: Note that when ti1 ¸ 6 then ci2 � 0 and we cannot even observe a
part of the second spell. This section develops an estimator that is consistent despite this
endogeneity problem. But ¯rst we will look at an easier example where the data are such
that ci2 > 0 for all individuals:

Example 2. Suppose that tis denotes the waiting time between two events and that the
stochastic process of tis is such that tis � tmax where tmax is a constant. For example, tis
could be the waiting time between inspection of the ¯re alarm of a building and tmax is the
maximum time between two inspections as speci¯ed by some regulation. Assume that we
observe individual i for a period cData; where cData > tmax then we always observe at least a
part of the second spell. More precisely, the second spell is censored at ci2(ti1) = cData¡ti1:We
can arti¯cially censor the second spell at c2 = cData ¡ tmax: This arti¯cial censoring removes
the endogeneity of the censoring time of the second period: c2 no longer depends on ti1:
Thus we are back in the framework of the last section with exogenous censoring times and
therefore consistent inference is possible for a wide range of models.

In this section we show that we can use the moment functions of the last section in
many cases. A realistic sample scheme would be a scheme in which we are able to follow an
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individual for a certain period of time. Let cData denote the length of this period. Note that
the ¯rst spell can be longer than cData; i.e. ti1 ¸ cData: In that case we do not observe a
second spell for that individual. Let us, for now, concentrate on the ¯rst and possibly second
spell for each individual. Suppose we arti¯cially censor the ¯rst period at c1 and, if available,
the second period at c2 where c2 � cData: Let us use the following moment function:

g =
1

N

X

i

gi

where

gi = di2si1 ¡ di1si2 (9)

and sis denotes the integrated hazard divided by the ¯xed e®ect, i.e. sis = zis
fi

: For the ¯rst
spell we observe whether or not the observation is censored at c1. So we know the values of
di1 and yDatai1

11: We may, however, not observe a second spell for each individual: Suppose
that the ¯rst spell lasts longer than the time we can follow an individual, cData: In that case
we do observe yDatai1 and di1 but do not observe anything about a possible second spell, i.e.
yi2 and di2 are unobserved. As equation 9 shows, it is actually not a problem that we do not
observe yi2 since di1 is zero in those cases. However, we still need a value for di2: Therefore,
we have to replace it with an unbiased estimate that is not correlated with yi2: That is, the
estimator ~di2 should satisfy the following conditions:

E ~di2 = Edi2 and Cov( ~di2; si2) = 0:

To distinguish the arti¯cial censoring times from the censoring times of the data, we denote
the arti¯cial censoring times by c1 and c2 and the censoring of the data by cData and cDatai2 :
So cDatai2 = cData ¡ yi1: Using elementary probability rules, we can write the Edi2 as follows

Edi2 = E(di2jti2 � cData2 )P (ti2 � cData2 ) + E(di2jti2 > cData2 )P(ti2 > cData2 ):

Whether c2 is larger or smaller than cData2 depends on the length of the ¯rst spell. If c2 � cData2

then

E(di2jti2 � cData2 )P (ti2 � cData2 ) = Edi2

since E(di2jti2 > cData2 ) = 0: If c2 > cData2 then

E(di2jti2 � cData2 )P (ti2 � cData2 ) = EdDatai2

and

P (ti2 > cData2 ) = 1 ¡ EdDatai2 :

So an estimator for E(di2jti2 > cData2 ) would be helpful for deriving an estimator for ~di2. Note
that ~di2 cannot be based on the lengths of other spells since we did not make assumptions

11Where the superscript denotes that the censoring is a property of the dataset; arti¯cial censored spells
are denoted by yis:
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about the heterogeneity. Fortunately, we can use yDatai1 ¸ ci1: For the observations in which
we did not observe di2 we always have yDatai1 ¸ ci1: The quantity yDatai1 ¡ ci1can give an
indication about the size of the ¯xed e®ect: If yDatai1 ¡ ci1 is large, then the ¯xed e®ect is
likely to be small. We use yDatai1 ¡ci1 to predict di2; i.e. to predict the value of di2 in case we
could have observed ti2: We de¯ne 4s1 = s(yDatai1 ; °)¡s(ci1; °) and 4s2 = s(ci2; °)¡s(yi2; °).
In the case that we observe dDatai2 = 1 then there is no need for adjustment; we denote the
observable indicator by dDatai2 : In the case that dDatai2 = 0 we make the following adjustment:
If 4s1 < 4s2 then we use ~di2 = 1 as an estimate for di2: In other words, we de¯ne ~di2 to be
the following:

~di2 = dDatai2 + (1 ¡ dDatai2 )ind

where ind is an indicator that equals one if 4s1 < 4s2 and zero otherwise. After constructing
an estimator for di2 we can base inference on the same moment function as we did in section
2.

Lemma 3
Suppose we can follow each individual for a period with length cD: De¯ne g(°) = 1

N

P
i(

~di2si1¡
di1si2) where sis = 1

fi

R yis
0 µ(s;x)ds and yis = min(yDatais ; cis): Assume that the spells are ei-

ther independent across both individuals and spells or that the probability of the second
spell is censored, E(1 ¡ di2); does not depend on ti1: Then

Eg(°0) = 0:

Proof: Similar to lemma 2 where E ~di2 = Edi2 (see appendix 7).
Lemma 3 only provides one moment function. As we showed in section 2, we can increase
the number of moments by multiplying by an exogenous vector or additional censoring. If
the conditions of theorem 7 are satis¯ed then the moment function of lemma 3 provides
consistent estimates.

Theorem 6
De¯ne Qn(°) = ¡g(°)2: If g(°) is continuous in ° and either assumption I or II is satis¯ed,

I. g(°) is monotonic and E sup° jjg(°)jj < 1;
II. ° 2 £; which is compact; Eg(°) = 0 only if ° = °0 and E sup°2£ jjg(°)jj < 1;

then °̂ = argmax° Qn(°) is a consistent estimate for °0; i.e.

°̂ = argmax
°

Qn(°) !p °0:

Proof:
Eg(°0) = 0 by lemma 3. If assumption I is satis¯ed then g(°) is monotonic and Q(°) = ¡
g(°)2 is concave in ° and therefore EQ(°) is uniquely maximized at the truth. Therefore,
maximizing Qn(°) gives a consistent estimate; see Newey and McFadden, 1994, Theorem 2.7.
If assumption II is satis¯ed then the conditions of Newey and McFadden, 1994, Theorem 2.6
are satis¯ed and maximizing Qn(°) gives a consistent estimate of °:Q.E.D.
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3.1 Exponential hazard model

Suppose we can follow each individual for a period with length cD: We can multiply the
moment function of lemma 3 by a vector function of exogenous variables to derive more
moment conditions. As in section 2, we multiply by 4xi; the di®erence in the regressors
between the ¯rst and second spell. That is, we use the following moment vector function

g(¯) =
1

N

X

i

gi(¯)

where

gi(¯) = 4xi( ~di2si1 ¡ di1si2):

The resulting estimator is consistent. In the next subsection we illustrate this estimator with
a simulation and compare it to other moment estimators.

3.2 Simulation

The following simulation illustrates the importance of taking endogenous censoring into ac-
count. We estimate an exponential hazard model with three estimators. The ¯rst is an
estimator based on the integrated hazard as derived in the last subsection. We denote it by
^̄I : The second and third estimator are standard estimators that are based on the di®erence
in logarithms of durations. That estimator is consistent in the case no censoring takes place
( cData = 1 in the table). In the case that a part of the data is censored we can either

² ignore the censoring, i.e. use yis instead of tis; we refer to this approach as "Di®. 1"

and denote the resulting estimator by ^̄D1;

² ignore the censored observations i.e. only use those observations for which dis = 1; we

refer to this approach as "Di®. 2" and denote the resulting estimator by ^̄D2:

The simulated sample consists of N = 5000 individuals. There is only one explaining variable
and the di®erence of that regressor, 4xi; follows a standard normal distribution. The ¯xed
e®ects are distributed uniformly between 0.8 and 1.2. We repeat the estimation a 1000 times.
In the table below we report the average and the variance of the estimates.

cData
Cens.,

1st spell

Cens.,

2nd spell

Int,

^̄I var ^̄I
Di®.1,

^̄D1 var^̄D1
Di®.1,

^̄D2 var ^̄D2

1 0% 0% 0:99995 3:92 10¡4 0:99992 6:53 10¡4 0:99992 6:53 10¡4

10 0:0074% 3:23% 0:99992 5:11 10¡4 0:9733 6:07 10¡4 0:9304 7:10 10¡4

5 0:871% 12:6% 1:00075 6:57 10¡4 0:91860 6:06 10¡4 0:85824 8:40 10¡4

1 38:9% 73:6% 1:00009 18:4 10¡4 0:67314 8:54 10¡4 0:52343 23:8 10¡4

0:5 62:2% 89:9% 0:99860 29:5 10¡4 0:5459 19:2 10¡4 0:3447 52:3 10¡4

As Van den Berg (1999) notes, standard methods are indeed \particularly sensitive to cen-
soring".
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3.3 Piecewise-constant hazard

Assume that the government provides unemployment bene¯ts for u1 periods and that we
observe two spells for N individuals. Suppose that we want to test whether the hazard
di®ers before and after the bene¯ts end. As in section 2, we can test this by estimating a
piecewise-constant hazard model. It has the following hazard:

µ(tis) = fi if tis � u1

= fi° if tis > u1:

The integrated hazard equals

zis =

Z tis

0
fids = fitis if tis � u1

= fiu1 + fi°(tis ¡ u1) if tis > u1:

The econometrician can censor the second spell at u1; the number of periods for which the
government provides unemployment bene¯ts

g(°) =

P
i

N
fdi2zi1 ¡ di1zi2

fi
g:

The estimator based on this moment function gives a consistent estimate since Eg(°0) = 0
is uniquely solved for °:

3.4 Weibull Model

Suppose we can follow N individuals for a period with length cD and that we want to estimate
a Weibull model. The hazard has the form µis = ®fit

®¡1
is (s = 1; 2) and the integrated hazard

is zis = fit®is (s = 1; 2). We observe yis = min(tis; cis): Theorem 6 suggests the following
moment function

g(°) =
1

Nfi

NX

i=1

f~di2zi1 ¡ di1zi2g

=
1

N

NX

i=1

f ~di2y
°
i1 ¡ di1y

°
i2g:

The equation Eg(°) = 0 has a unique solution if g(°) is monotonic. Monotonicity of g(°)
can always be assured by choosing a ci2 that is smaller than ci1: As in section 2.2.4, we
can combine g(°) with the moment function of the exponential hazard model to estimate a
Weibull model that allows for regressors.

3.5 Exponential hazard model, alternative approach

An alternative approach to the problem of endogenous censoring is to concentrate on the
observations of which neither the ¯rst nor the second spell are censored. In section 2 we used
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the fact that for uncensored spells, the expectation of the integrated hazard function equals
one. Now we can use the expectation of the integrated hazard multiplied by its censoring
indicator to derive an estimator. We de¯ne the normalized censoring time, zismax;as the
integrated hazard evaluated at the censoring time for that spell, i.e.

zismax =

Z cis

0
µ(t; x)dt:

Lemma 4 The expectation of the integrated hazard, multiplied by the indicator that indi-
cated not being censored, E(zisdis), equals 1¡zismaxe

¡zismax where zismax =
R cis
0 µ(t; xis)dt;

i.e.

E(zisdis) = 1 ¡ zismaxe
¡zismax ¡ e¡zismax:

Proof: See appendix 8.

For the exponential hazard model the integrated hazard and the normalized censoring time
have the following form:

zis =

Z yis

0
fie

xis¯ds = fie
xis¯yis

zismax = fie
xis¯cis:

We want the same normalized censoring time for both spells

zi1max = zi2max:

Thus

fie
xi1¯ci1 = fie

xi2¯ci2

and therefore

exi1¯ci1 = exi2¯ci2:

This gives the censoring time for the ¯rst period

ci1 = e(xi1¡xi2)¯ci2:

We arti¯cially censor the second spells according to ci1 = e(xi1¡xi2)¯ci2 and de¯ne

g(¯) = (xi2 ¡ xi1)fexi1¯yi1di1di2 ¡ exi2¯yi2di2di2g and

Eg(¯0) =
(xi2 ¡ xi1)

fi
fE(zi1di1di2) ¡ E(zi2di2di1)g

=
(xi2 ¡ xi1)

fi
ffE(zi1di1jdi2 = 1)gPr(di2 = 1) ¡ fE(zi2di2jdi1 = 1)g Pr(di1 = 1)g

=
(xi2 ¡ xi1)

fi
ffE(zi1di1jdi2 = 1)gPr(di2 = 1) ¡ fE(zi2di2jdi1 = 1)g Pr(di1 = 1)g:
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Since the normalized duration times are equal to each other, zi1max = zi2max, the probabilities
of not being censored are equal too, i.e. Pr(di2 = 1) = Pr(di2 = 1) = 1 ¡ e¡zi2max : The
conditional expectations, E(zi1di1jdi2 = 1) and E(zi2di2jdi1 = 1) equal the unconditional
expectations, i.e. E(zi1di1jdi2 = 1) = E(zi1di1) and E(zi2di2jdi1 = 1) = E(zi2di2) and
therefore

Eg(¯0) =
(xi2 ¡ xi1)

fi
f1 ¡ zi1maxe

¡zi1max ¡ e¡zi1max ¡ 1 ¡ zi2maxe
¡zi2max ¡ e¡zi2maxg

= 0 using Lemma 3 and zi1max = zi2max:

We can also evaluate Eg(¯) at values other than the truth:

Eg(¯) = (xi2 ¡ xi1)fexi1¯Eyi1di1 ¡ exi2¯Eyi2di2g

=
(xi2 ¡ xi1)

fi
fexi1¯Efiyi1di1 ¡ exi2¯Efiyi2di2g

=
(xi2 ¡ xi1)

fi
fexi1(¯¡¯0)Efie

xi1¯0yi1di1 ¡ exi2(¯¡¯0)Efie
xi2¯0yi2di2g

=
(xi2 ¡ xi1)

fi
fexi1(¯¡¯0)E(zi1di1) ¡ exi2(¯¡¯0)E(zi2di2)g:

Above we showed that E(zisdis) = 1 ¡ zismaxe
¡zismax . We censored the second spell such

that zi1max = zi2max and, therefore, E(zi1di1) = E(zi2di2): Thus

Eg(¯) =
(xi2 ¡ xi1)

fi
fexi1(¯¡¯0)E(zi1di1) ¡ exi2(¯¡¯0)E(zi1di1)g

=
(xi2 ¡ xi1)

fi
fexi1(¯¡¯0) ¡ exi2(¯¡¯0)gE(zi1di1):

The derivative of Eg(¯) w.r.t. ¯ is also of interest:

@Eg(¯)

@¯
= Eg¯(¯) since the boundaries of tisdo not depend on ¯

=
(xi2 ¡ xi1)

fi
fxi1exi1(¯¡¯0) ¡ xi2e

xi2(¯¡¯0)gE(zi1di1):

Since we have normalized xis;
P

xis = 0; xi2 = ¡xi1 and therefore

@Eg(¯)

@¯
=

¡2xi1
fi

fxi1exi1(¯¡¯0) + xi1e
¡xi1(¯¡¯0)gE(zi1di1)

= ¡2x2i1
fi

fexi1(¯¡¯0) + e¡xi1(¯¡¯0)gE(zi1di1) < 0

since x2i1 > 0; fi > 0 and exi1(¯¡¯0) + e¡xi1(¯¡¯0) > 0: The column vector Eg(¯) has as many
rows as xis: When we di®erentiate the jth element of column Eg(¯) then the result above
helps to show that ¯0 is a locally unique solution to Eg(¯) = 0:

23



Theorem 7
Assume that the hazard has the following form

µis = fie
xis¯ :

We de¯ne the function k(ti1) as a function of the length of the ¯rst spell that determines the
censoring time ci2: The censoring time of the second spell may depend on the length of the
¯rst spell, i.e. ci2 = k(ti1): We will ignore spells that we censored in the ¯rst period. We
de¯ne the function k(ti1) as a function of the length of the ¯rst spell that determines the
censoring time ci2 : ci2 = k(ti1): Assume ¯ 2 £; which is compact.
We censor the ¯rst spells according to ci1 = e¡(xis¡xis)¯ci2 and de¯ne

g(¯) = (xi2 ¡ xi1)fexi1¯yi1di1di2 ¡ exi2¯yi2di2di1g

Q(¯) = ¡g(¯)0g(¯):

Maximizing Q(¯) w.r.t. ¯ gives a consistent estimate for ¯; i.e.

^̄ = arg max
¯

Q(¯) !p ¯0 for N ! 1:

Proof: See appendix 9.

4 Endogenous regressors: Tools to estimate hysteresis

In the previous sections, we assumed that the regressors, xis, were exogenous. This section
provides tools to estimate duration models in which the regressors, xis, can depend on the
length of previous spells. Following Honor¶e (1993) we refer to such regressors as endogenous
regressors. Honor¶e (1993) notes that \the main problem with identi¯cation of multispell
models is that if the model has `lagged duration dependence', then one of the regressors
(lagged duration) will be endogenous". He gives results for exogenous regressors and further
notes sensitivity to the mixing distribution. There are several reasons why one may want
to allow for the endogeneity of the regressors. The ¯rst is that the individual may choose
xis given the ¯xed e®ect fi and the length of the previous spells. Mundlak (1961) argues
that the value of the ¯xed e®ect fi in°uences the choice of regressor xis and that therefore
fi and xis are dependent. Similar reasoning gives that xis may be chosen by the individual
as a function of both fi and the length of previous spells. Another reason for endogeneity
might be that the government is more likely to o®er job training programs to people with
longer unemployment spells. In that case participation in a program can be endogenous for
two reasons: selection of an agency and self selection of the individuals. Another regressor
that is likely to depend on previous unemployment spells is the employment spell. Finally,
the hazard in one spell may be determined by the length of previous spells in which case a
function of the length of previous spells appears as a regressor. Whatever the mechanism
that causes endogeneity, it seems to be interesting to have an estimator that is robust against
endogeneity.

We ¯rst present how to handle endogenous regressors in the exponential hazard model.
Then we discuss the estimation of hysteresis and present a more general framework that
allows for endogenous regressors, duration dependence and endogenous censoring.
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4.1 Exponential hazard model with endogenous regressors

Suppose that we observe two uncensored spells for N individuals and observe, for each spell,
a vector of regressors wis. Assume that the hazard has an exponential form and that we
want to allow for the endogeneity of the regressors12. So the hazard has the following form:

µi1 = fi

µi2 = fie
4wi¯ (10)

where 4wi = wi2 ¡ wi1: The integrated hazards are zi1 = fiti1 and zi2 = fie
4wi¯ ti2 respec-

tively. We can use the fact that the expectation of the di®erence between the ¯rst and second
hazard equals zero and de¯ne

gi(¯) = ti1 ¡ e4wi¯ ti2:

Example 2 of section 2.1 deals with exogenous regressors and multiplies gi() by the di®erence
in the regressors. However, if the elements of the vector 4wi are correlated with ti1 then
E4wigi(¯0) 6= 0 and therefore the approach of example 2 does not work. Fortunately, we
can reparameterize the hazard rate such that the regressors are no longer correlated with ti1.
Let 4wmi denote the mthelement of the vector 4wi, m = 1; :::;M where M is the number of
regressors. We de¯ne

4wm = f4wm1 ;4wm2 ; ::::;4wm(N¡1);4wmNg and

t1 = ft11; t21; ::::; t(N¡1)1; tN1g:

We regress 4wm on t1 using ordinary least squares and obtain an estimate for the slope
parameter, ®̂ms ; and an estimate for the constant, ®̂mc . A transformation of 4wmi that is not
correlated with ti1 is, obviously

~wmi = 4wmi ¡ ®̂ms ti1:

An equivalent de¯nition of ~wm uses the OLS residuals13 emi :

~wmi = ®̂mc + emi :

The new variable, ~wmi , is not correlated with ti since
P
i e
m
i ti1 = 0: We can multiply gi(¯)

by ~wmi and obtain

g¤(¯) =
1

N

X

i

~wmi gi(¯):

Since ~wmi is not correlated with gi(¯0) we have the following result, (see appendix 11 for
details),

Eg¤(¯0) =
1

N
E

X

i

~wmi gi(¯) = 0:

12E®ects of the possible spells prior to the ¯rst spell are incorporated in the ¯xed e®ect.
13Using the identity 4wmi = ®̂mc + ®̂

m
s ti1 + e

m
i :
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Identi¯cation is assured by a full rank condition and the use of the moment function g(¯) =
1
N

P
i gi(¯) in addition to the moments implied by g¤(¯): These two moment functions iden-

tify a model that is less restrictive than (10). This less restrictive model has an exponential
duration dependence in the sense that the hazard of the second period is an exponential
function of the ¯rst spell:

µi1 = fi

µi2 = fie
~wi¯+±ti1 : (11)

Note that ~wi is not correlated ti1 and that we can estimate this hazard rate by stacking the
moment functions of theorem 1 and 2. Details are given in the proof of theorem 8. De¯ne
® = f®̂1s; ®̂2s; :::; ®̂Ms g; if ± = ¯0® then

~wi¯ + ±ti1 = ~wi¯ + ¯0®ti1 = 4wi¯:

Therefore, if ± is restricted to equal ¯0® then model (10) and (11) are equivalent. Therefore,
identi¯cation of model (11) implies that model (10) is identi¯ed as well. The next theorem
uses this argument to prove identi¯cation and shows how to estimate the exponential hazard
model with endogenous regressors.

Theorem 8
Suppose that we observe two uncensored spells for N individuals and a vector of regressors
wis for each spell. Assume that the hazard regressors can depend on the length of previous
spells and that the hazard has the following form:

µi1 = fi

µi2 = fie
4wi¯

where 4wi = wi2¡wi1: Further assume that the matrix with rows fti1;4w0ig has full column
rank and that ¯ 2 £; which is compact. Let ~wmi ; g¤(¯) and g(¯) be de¯ned as above. Further
de¯ne

Q(¯) = ¡fg(¯)2 + g¤(¯)0g¤(¯)g:

Maximizing Q(¯) w.r.t. ¯ gives a consistent estimate for ¯; i.e.

¯ = argmax
¯

Q(¯) !p ¯0 for N ! 1:

Proof: See appendix 12.

In the case that the number of spells is larger than two for all individuals we can pair
them, i.e. equate the integrated hazard of the ¯rst spell to the integrated hazard of the
second spell and, in a second equation, equate the integrated hazard of the second spell to
the third, etc. An alternative approach is to avoid making pairs and regress the endogenous
variables on ti1; ti2.
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Before we look at more general theorems with endogenous regressors we discuss the
concept of unemployment hysteresis. The hysteresis literature in macro economics implies
that the hazard rate for the unemployed is path dependent. We think that hysteresis is
an important subject in itself. Moreover, its estimation can illustrate the generalizations of
theorem 8.

4.2 Hysteresis

Originating in physics, the word hysteresis is used to describe the circumstance in which
the equilibrium of a system depends on the history of that system. In economics it is most
commonly used to consider the natural rate of unemployment, where the equilibrium is said to
be path-dependent, i.e. it depends on the actual history or path of unemployment. Hysteresis
may result in a rise of the proportion of long term unemployment to the total unemployment,
where the long term unemployed have a very low probability of ¯nding a job. This low hazard
rate for the long term unemployed is caused by a lack of relevant skills and psychological
reasons14. Blanchard and Wolfers (1999) argue that hysteresis can at least partly explain
the high unemployment rate in Europe but the existence of the phenomenon of hysteresis
is not commonly accepted. Since the policy implications are large it is nice to perform an
econometric test. The data for the test may have no transition for some individuals and may
be right censored as well. A good test for path dependence of employment and unemployment
should take care of the employment spells. We assume that the employment in°uences the
hazard of the next unemployment spell through the function b(s) where s is the length of
the employment spell. Heckman and Borjas (1980) discuss duration dependence and lagged
duration dependence in the framework of a random e®ects model. Heckman (1991) notes
that such models are very sensitive to the assumed distribution of the random e®ect. So a
°exible form of the heterogeneity as well as endogenous regressors are desirable properties of
an estimator of hysteresis. Before we extent the estimator of the last section we discuss an
easy example of lagged duration dependence with just one endogenous regressor.

Example: Lagged duration dependence in an one-parameter model.
Consider the following model of lagged duration dependence where we observe two spells,
possible censored, for each individual. The spells are independent across individuals and
have the following hazards:

µi1 = fi

µi2 = fie
°r(yDatai1 )

where r(yDatai1 ) > 0 and either r() ¯nite or r(yDatai1 ) bounded in probability. Note that,
in the presence of lagged duration dependence, the probability of the second spell being
censored depends on the length of the ¯rst spell, even if the censoring times are exogenous.
The last section suggested to remove the endogeneity by arti¯cial censoring. So we use
yi1 = min(yDatai1 ; ci1) and yi2 = min(yDatai2 ; e¡°r(yi)ci2). The integrated hazards have the

14The lack of relevant skills and the psychological problems do not indicate hysteresis per s¶e since both
might be caused by a person speci¯c e®ect.
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following form:

zi1 =

Z yi1

0
µi1ds = fiyi1

zi2 =

Z yi2

0
µi2ds = fie

°r(yi)yi2:

Note that, after arti¯cial censoring, the probability of the second spell being censored does
not depend on the length of the ¯rst spell anymore:

Prob(2nd spell censored) = E(1 ¡ di2) = e¡zmax where

zmax = fie
°r(yi)(e¡°r(yi)ci2) = fici2:

After the endogeneity is removed we can use the following moment function:

g(°) =
1

Nfi

X

i

fdi2zi1 ¡ di1zi2g =
1

Nfi

X

i

fdi2yi1 ¡ di1e
°r(yi)yi2g:

According to theorem 6 the resulting estimator is consistent (see Appendix 12 B for details).

The models are usually more complicated than this example. In particular, models about
hysteresis in unemployment data should allow for several endogenous regressors and a dura-
tion dependent hazard. The duration dependence should be more °exible than the Weibull
model since monotonicity of the baseline hazard is a rather strong assumption15. We are
therefore primarily interested in the piecewise-constant hazard model.

4.3 Piecewise-constant hazard with endogenous regressors

Suppose we observe two uncensored spells for N individuals and want to estimate a piecewise-
constant hazard model with endogenous regressors. Assume that the hazard has the following
form

µi1 = fi¼(t)

µi2 = fie
4wi¯¼(t) (12)

where ¼(t) denotes the baseline hazard and 4wi = wi2 ¡ wi1: Assume that the piecewise-
constant hazard has three breaking points and that these breaking points are at u1; u2 and
u3: This means that ¼(t) can have four di®erent values over four di®erent intervals:

¼(t) = 1 if 0 � t < u1

¼(t) = °1 if u1 � t < u2

¼(t) = °2 if u2 � t < u3

¼(t) = °3 if u3 � t < 1:

15For example, the baseline hazard is likely to `peak' around the time that people are no longer eligible for
unemployment bene¯ts.
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Since the model is more complicated then the previous one we estimate it in di®erent steps. In
the ¯rst step we either ignore the duration dependence or the endogeneity of some indicators
and estimate a simpli¯ed model. In the latter steps we pick up what was ignored in the ¯rst
step.

Ignore duration dependence
Suppose we choose to ignore the duration dependence at ¯rst. We can then proceed with
the following steps:

1. Ignoring the duration dependence brings us back in the framework of theorem 8: We
regress16 the endogenous regressors 4wi on t1 and obtain ~wm :

~wmi = ®̂mc + emi :

The initial estimate for the regressors is denoted by ¯1:

2. We focus on the interval t 2 [0; u) and therefore censor the ¯rst and second spell at ci1
and ci2 respectively where ci1, ci2 < u1: Following the reasoning of the last section we
want to remove the dependence between the ¯rst and second period and, in particular,
remove the dependence between the length of the ¯rst spell, ti1; and the expectation of
di2: We therefore choose ci1 = 0:8u1 and ci2 = e4wi¯1k1 such that ci2 < u1ri. Note that
this is the framework with an exponential hazard model and that the expectation of
Edi2 does not depend on ti1: De¯ne yis = min(tis; cis): We also remove the endogeneity
of the endogenous regressors by regressing 4wi on y1 and di1 to obtain ~wm: We can
use the moment functions that are suggested by theorem 1 and 2:

g(¯) =
1

N

X

i

di2yi1 ¡ di1e
4wi¯yi2

g¤(¯) =
1

N

X

i

~wm(di2yi1 ¡ di1e
4wi¯yi2):

Note that dis and yis are functions of ¯ since c2 = e4wi¯1k1. We denote the resulting
estimate by ^̄ and note that it is a consistent estimate for ¯ of equation (12).

3. After obtaining a consistent estimate for ¯ we focus on the ° 0s: Theorem 4 and 5
suggest moments to estimate these parameters in the case of exogenous censoring17.
As in step 2 we can remove the endogeneity by arti¯cially censoring the data. For
example, censor the ¯rst spell at u2 and the second sample at ci2(4wi¯1; k2) where k2
is chosen s.t. ci2 is smaller than u1 for 80% of the population. Note that in theorem
4 and 5 the arti¯cial censoring is at u1 and u2; however, since we have to remove the
endogeneity of the censoring we cannot do that anymore. Suppose the baseline hazard
has L parameters, then we derive the moment functions for the other parameters in a

16If the econometrician is willing to assume that some of the covariates are exogenous then ~wm = 4wi for
those covariates.
17Note, however, that the dimension of ° is ¯xed here.
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similar way

gPCl (¯; °) =
1

N

X

i

dli2y
l
i1 ¡ dli1e

4wi¯yli2 for l = 1; :::L:

Note that dis and yis are functions of the parameters since cl1 = ul+1 and cli2(4wi¯1; k
l
2)

where kl2 is chosen s.t. 80% of the second spell we have cli2(4wi¯1; k
l
2) < ul:

4. The ¯nal step is to estimate all the parameters simultaneously. We increase k1s.t.
ci2 = e4wi¯1k1 < u1 for 80% of the spells and de¯ne

gE(¯; °) =
1

N

X

i

di2si1 ¡ di1si2

g¤E(¯; °) =
1

N

X

i

~wm(di2si1 ¡ di1si2)

where sis denotes the integrated hazard divided by its ¯xed e®ect, i.e. sis = zis
fi

and ~wm is obtained by regressing 4wi on t1 and di1: We further de¯ne gPC(¯; °) =
fgPC1 (¯; °); gPC2 (¯; °); :::; gPCL (¯; °)g: At the true value, f¯0; °0g all the moments have
zero expectation:

EgPC(¯0; °0) = 0

EgE(¯0; °0) = 0

Eg¤E(¯0; °0) = 0:

Theorem 9 uses this overidenti¯cation system of equation to estimate the parameters
consistently. The uniqueness of the solution to this system of equations follows from
theorems 1, 2, 5 and 8: From theorem 1, 2 and the discussion of theorem 8 we conclude
that, if ci2 < u1ri 18 then EgE(¯) = Eg¤E(¯) = 0 is uniquely solved for ¯ = ¯0: Using
arguments of theorem 5 we conclude that the estimation of the ¯nite parameter vector
° is possible. We ¯nally conclude that consistency by allowing a low percentage of ci2
to be larger then ui:

Instead of estimating a simpli¯ed model ¯rst one can also choose to do the estimation of
step 4 directly. If one feels like having a preliminary step, one can also choose to ignore the
endogeneity of spells:

Ignore endogeneity for short spells

1. Censor the ¯rst and second spell at u1; regress the endogenous regressors 4wi on y1
and di1 to obtain ~wm: De¯ne yis = min(tis; u1) and use the moment functions that are
suggested by theorem 1 and 2:

g(¯) =
1

N

X

i

di2yi1 ¡ di1e
4wi¯yi2

g¤(¯) =
1

N

X

i

~wm(di2yi1 ¡ di1e
4wi¯yi2):

18So that gE(¯; °) = gE(¯) and g¤E(¯; °) = g¤E(¯):
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The estimate that follows from this is denoted by ¯1:Note that we did not correct for
the correlation between di2 and yi1 or the between di1 and yi2:

2. Use the initial estimate ¯1 and follow the scheme from step 2 above.

We summarize the ¯ndings of this section in a theorem:

Theorem 9
Suppose we observe two uncensored spells for N individuals and that the hazard rate is
piecewise-constant with endogenous regressors:

µi1 = fi¼(t)

µi2 = fie
4wi¯¼(t)

where 4wi = wi2¡wi1: Assume that the piecewise-constant hazard has L breaking points and
that these breaking points are at u1; u2; ::: uL: Assume that f¯; °g 2 £; which is compact. Let
gPC(¯; °), gE(¯; °) and g¤E(¯; °) be de¯ned as above. The system of equations EgPC(¯; °) =
EgE(¯; °) = Eg¤E(¯; °) = 0 is uniquely solved for f¯0; °0g and the resulting GMM estimator
is consistent. See appendix 13 for details.

For hazard functions with other baseline hazard function we can follow the similar technique.
Let the parameters of be denoted by µ: For uncensored spells we have the following moment
function

g(µ) =
1

N

X

i

(si1 ¡ si2)

Depending on the speci¯cation of the baseline hazard we need to generate more moments
by arti¯cial censoring. The derivation of the moments of the regressors is a close analogue
to theorem 9, the only di®erence being that, for the endogenous regressors, 4wi is now
regressed on s1: Following the notation of theorem 9, we can de¯ne ~wmi = ®̂mc + emi and use
the following moment functions:

gE(µ) =
1

N

X

i

~wi(si1 ¡ si2):

In case we want to use multiply a function of the regressors with moments that are based
on arti¯cial censored data then we need to regress 4wi on s1 and d1; where, with an abuse
of notation, s1 denotes the integrated hazard of the possibly censored spell. Note that the
arti¯cial censoring should be such that the probabilities of censoring should not be a function
of the endogenous elements of 4wi. In that case

Et1;t2(di2si1 ¡ di1si2) = Et1fEt2(di2si1 ¡ di1si2)jt1g
= Edi2Esi1 ¡ Edi1Esi2 = 0

Following previous notation we de¯ne ~wmi as a constant plus the residuals from regressing
4wi on s1 and d1 :

~wmi = ®̂mc + emi :
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Note that emi is not correlated with di2si1 ¡ di1si2 and therefore

E
1

N

X

i

~wmi (di2si1 ¡ di1si2) = 0:

So the integrated hazard provides moment functions for duration models with endogenous
regressors and makes consistent inference possible for a wide range of models with uncensored
observations.

4.3.1 Piecewise-constant hazard with endogenous censoring and endogenous re-

gressors

In section 3 we derived estimators for duration models with endogenous censoring. The main
insight was to remove the endogeneity of the censoring of the second period. Therefore, the
line of thought and algebra of section 3 is very close to the last section where the endogeneity
of the censoring is caused by regressors that depend on ti1: Combining these two section gives
a repetition of the last section were the arguments of theorem 1 and 2 are replaced by theorem
6 and the discussion of section4.1. The problem with endogenous censoring is that the second
spell may not be observed at all. Therefore we need an estimator for the expectation of di2.
A good estimator for Edi2 is uncorrelated with yi1 and has an expectation equal to Edi2
19. Following previous notation we denote this estimator by ~di2: To assure the existence of a
good estimator we may need to arti¯cially censor the ¯rst period as is discussed in 3. After
construction ~di2 we can use exactly the same moment functions as in the last section.

Theorem 10
Suppose we follow N individuals for a period with length cD: Assume that the hazard rate
is piecewise-constant with exponential regressors:

µi1 = fi¼(t)

µi2 = fie
4wi¯¼(t)

where 4wi = wi2¡wi1: Assume that the piecewise-constant hazard has L breaking points and
that these breaking points are at u1; u2; ::: uL and that uL < 0:5cD : Assume that f¯; °g 2 £;
which is compact and that we can ¯nd an estimator ~di2 is uncorrelated with yi1 and E
~di2 = Edi2: Let gPC(¯; °), gE(¯; °) and g¤E(¯; °) be de¯ned as above where ~di2 replaces di2:
The system of equations EgPC(¯; °) = EgE(¯; °) = Eg¤E(¯; °) = 0 is uniquely solved for
f¯0; °0g and the resulting GMM estimator is consistent. Proof: Similar to theorem 9.

Other hazard function can be dealt with by using the following moment function:

g(µ) =
1

N

X

i

( ~di2si1 ¡ di1si2):

19where yi1 = min(y
D
i1; ci1) and di2 is an indicator that equals one if the unobserved ti2 is larger than ci2:
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More moment function are generated by arti¯cial censoring. Endogenous regressors are
projected in the space spanned by s1 and d1 as was done in the last section; we de¯ne
~wmi = ®̂mc + emi and use the following moment vector function:

g¤(µ) =
1

N

X

i

~wmi ( ~di2si1 ¡ di1si2):

As was shown in section 2, the moment functions that are suggested by the integrated hazard
can deal with a wide range of models. Moreover, it can also deal with more realistic data
than uncensored spells with exogenous regressors.

5 Single spell

In the previous sections we assume that we observe more than one spell for each individual.
In this section we assume that we have only one spell for each individual. We therefore
cannot allow for a ¯xed e®ect since the common parameters would be no longer identi¯ed.
However, we can do something that is at least mathematically similar to the previous sections:
Instead of having another spell of the same person we can use a weighted average of other
individuals whose observed characteristics suggest that their values of the ¯xed e®ects may
be similar. Powell (1987) develops this idea and Powell and Honor¶e (1998, PH from now
on) apply it to a number of estimation procedures that are based on di®erencing out the
¯xed e®ect. PH make certain assumptions about how to compare the dependent variable of
an individual with a weighted average of dependent variables of similar individuals. Under
these, as well as under slightly weaker assumptions, the estimating functions of the earlier
sections give consistent estimates of the common parameters. Note that these estimating
functions were based on the integrated hazard and, therefore, do not belong to the class of
\di®erence estimators". Indeed, an important motivation of this paper is the unsatisfactory
assumptions of the di®erence estimator for the duration model20. Nevertheless, we ¯nd the
framework of PH and Powell (1987) very useful and therefore follow their assumptions about
matching of individuals.

Suppose that the ¯xed e®ect can be written as an unknown function of a vector of
regressors wi, fi = v(wi): PH and Powell (1987) note that a feasible version of the idea of
`di®erencing away' uses all pairs of observations and gives bigger weight to pairs for which
wi is close to wj: The weights are chosen in such a way that asymptotically, only pairs with
wi ¡ wj in a shrinking neighborhood of 0, matter.

Assumption Kernel. K is bounded, di®erentiable with bounded derivative K0, and of
bounded variation. Furthermore,

R
K(u)du = 1,

R jK(u)jdu < 1, and
R jK(u)j k ´ k d´ <

1.

The assumptions made on the kernel are satis¯ed for most kernels. As usual in semiparamet-
ric literature, the bandwidth shrinks with increasing n : When we compare the duration of

20If we take the di®erence in the logarithms of the durations then we need to observe these durations, i.e.
no censoring of any kind. Another disadvantage is that the form of the baseline hazard is restricted to the
Weibull.
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individual i we compare it to individuals with wj in the neighborhood of wi; this neighbor-
hood shrinks with increasing n: We can think of the neighborhood of wi as an L dimensional
ball. How fast the radius of this ball can shrink depends on the dimension of wi as is shown
in the following assumption about the bandwidth:

Assumption Bandwidth hn > 0; hn = o(1) and h¡1n = O(n1=2L) where L is the dimension
of w:

We make the following assumption on the data:

Assumption Data wi is continuously distributed with bounded density.

These three assumptions enable us to modify Theorem 1 and Theorem 2. These theorems
required panel data; here we give single spell variants. For theorem 1 we had the following
estimating function:

gl(¯) =
1

N

NX

i=1

f
X

s

dis
X

s

xisldise
xis¯yis ¡

X

s

xisdis
X

s

dise
xis¯yisg for l = 1; :::K:

In the case that T = 2 we could simplify this:

gl(¯) =
1

N

NX

i=1

(xi1 ¡ xi2)fexi2¯0yi2di1 ¡ exi1¯0yi1di2g for l = 1; :::K:

Instead of using two spells of the same period we will now use a spell of some individual and
the weighted average of a group:

gl(¯) =

µ
n

2

¶¡1X

j<i

1

hLn
K(

wi ¡ wj
hn

)(xi ¡ xj)fexj¯0yjdi ¡ exi¯0yidjg for l = 1; :::K:

Theorem 1A.
Suppose Assumption Kernel, Assumption Bandwidth and Assumption Data hold. Assume
¯ 2 £; which is compact. De¯ne Q(¯) = ¡P

l gl(¯)2 where gl(¯) is de¯ned as above.
Maximizing Q(¯) w.r.t. ¯ gives a consistent estimate for ¯; i.e.

^̄ = arg max
¯

Q(¯) !p ¯0 for N ! 1:

Proof:
The function g(¯) is continuous in ¯: Let Eg2l(¯) for l = 1; :::K; denote the expectation of
the estimating function of theorem 1 and Q2;0 = ¡P

l g
2
2l(¯)2 denote the objective function

of theorem 1. Now g(¯) !U Eg2l(¯) and Q(¯) !U Q2;0: The objective function Q2;0 is

maximized at the truth (see appendix 1) and consistency of ^̄ follows.

In section 2 we derived a general theorem for single parameter hazards. When assump-
tions Kernel, Bandwidth and Data are mode we can derive a similar theorem for single spell
data. De¯ne:
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g(°) =

µ
n

2

¶¡1X

j<i

1

hLn
K(

wi ¡ wj
hn

)fsjdi ¡ sidjg

where si is the integrated hazard divided by the `¯xed e®ect' function:

si =
zi

g(wi)
=

R ci
0 µids

g(wi)
:

Theorem 2A
Suppose Assumption Kernel, Assumption Bandwidth and Assumption Data hold. De¯ne
Q(°) = ¡g(°)2 where g(°) is de¯ned as above. If g(°) is continuous in ° and if either
assumption I or II are satis¯ed,

I. g(°) is monotonic in ° and E sup° jjg(°)jj < 1;
II. ° 2 £ which is compact; Eg(°) = 0 only if ° = °0 and E sup°2£ jjg(°)jj < 1; then

°̂ = argmax° Qn(°) is a consistent estimate for °0; i.e.

°̂ = argmax
°

Qn(°) !p °o:

Proof:
The function g(°) is continuous in ° and it convergence to the objective functions of Theorem
2. To be more speci¯c: Let Eg2l(¯) for l = 1; :::K; denote the expectation of the estimating
function of theorem 2 and Q2;0 = ¡P

l g
2
2l(¯)2 denote the objective function of theorem 2.

If assumption I then is converges in probability to is satis¯ed then g(°) is monotonic and
Q(°) = ¡ g(°)2 is concave in ° and therefore EQ(°) = Q2;0 is uniquely maximized at the
truth. Therefore, maximizing Qn(°) gives a consistent estimate; see Newey and McFadden,
1994, Theorem 2.7.

If assumption II is satis¯ed then the conditions of Newey and McFadden, 1994, Theorem
2.6 are satis¯ed and g(¯) !U Eg2l(¯) and Q(¯) !U Q2;0: The objective function Q2;0 is
maximized at the truth consistency of °̂ follows. Q.E.D.

In theorem 1A and theorem 2A we assume that the \constructed ¯xed e®ect" depends only
on the observable characteristics wi: v(wi): We can relax this assumption a bit for uncen-
sored spells. Let the `constructed ¯xed e®ect' depend on the wi and an error term, "i; that is
independent of wi and xi : v(wi; "i): Or the \constructed ¯xed e®ect" can depend on unob-
served characteristics, ui; as well, i.e. v(wi; "i; ui) and we want to estimate a single parameter
model. The function v(wi; "i; ui) is continuous in wi and wi is continuously distributed.

Theorem 2B
Suppose we observe N uncensored spells and want to estimate the exponential hazard model.
Assume we are willing to match observations using the vector of regressors w: De¯ne g(¯)
as above and further assume that, for matched spells, E( 1

v(wj;"j)
) = E( 1

v(wi;"i)
) and "i "j are

independent of xi ¡ xj so Cov((xi ¡ xj); (
1

v(wi;"i)
¡ 1

v(wj;"j)
)) = 0: Assume ¯ 2 £; which is

compact. Then estimate for ¯ is consistent.

In many applications, 1
v(wj;"j)

¡ 1
v(wi;"i)

is correlated with at least one element of x: In that case

we can adjust theorem 2A and allow for that correlation. However, the matching becomes
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trickier since we want to assure monotonicity of g(¯): If xj < xi for most pairs then g(¯) is
monotonic and consistent inference is possible.

Theorem 2C
Suppose we observe N uncensored spells and want to estimate the single parameter expo-
nential hazard model. Assume we are willing to match observations using the vector of
regressors w: De¯ne g(¯) =

¡
n
2

¢¡1P
j<i

1
hLn

K(
wi¡wj
hn

)fsjdi ¡sidjg: Assume that, for matched

spells, E( 1
v(wj;"j ;uj)

) = E( 1
v(wi;"i;uj)

) and that xj < xi for a su±cient number of pairs so that

g(¯) is monotonic. The error term u may be correlated with x; i.e. the di®erence 1
vj

¡ 1
vi

may be correlated with x but is on average zero. Assume ¯ 2 £; which is compact. Then
the estimator ¯ = arg max¡g(¯)2 is a consistent estimate for ¯.

Note that theorem 2C does not restrict the relation between x and v to a particular
form. This makes it a unique matching estimator21. Its result is driven by the fact that the
matching is on average right and that the ¯rst spell has a value for x that is usually larger
than that of the second spell.
The ¯nal case were we can use the moment functions of 1A and 2A is where ui is only
correlated with one regressor but independent of the other. The number of regressors is not
restricted and theorem 2A replaces the estimating function for the dependent regressor in
theorem 1A. The resulting method of moments estimator gives consistent estimates.

5.1 Concluding remarks about estimation using single spell data

Mathematically the \constructed ¯xed e®ect", fi = v(wi); can be treated in nearly the same
way as the ¯xed e®ects of the previous sections. However the motivation and assumptions
on the data are di®erent. The following list shows under which assumptions we can make
consistent inference about the common parameters and it shows the di®erence between the
assumptions for the `constructed ¯xed e®ect' and the usual ¯xed e®ect of the previous sec-
tions.

1. The `constructed ¯xed e®ect' depends only on the observable characteristics wi: v(wi):
The function v(wi) is continuous and wi is continuously distributed.

2. The `constructed ¯xed e®ect' depends on the wi and an error term, "i; that is indepen-
dent of wi and xi : v(wi; "i): The function v(wi; "i) is continuous in wi and wi is continuously
distributed.

3a. The `constructed ¯xed e®ect' can depend on unobserved characteristics, ui; as well,
i.e. v(wi; "i; ui) and we want to estimate a single parameter model. The function v(wi; "i; ui)
is continuous in wi and wi is continuously distributed.

3b. As assumption 3a but now the ui is only correlated with one regressor and the number
of regressors is not restricted.

4. The ¯xed e®ect, fi; can have any ¯nite value which can di®er for each i; i.e. no
assumptions about the distributions of the ¯xed e®ects are made. This includes that fi =

21The most common restriction being v and x being independent.

36



vi(wi; "i; ui) can di®er across individuals, be discontinuous and that "i; ui can be correlated
with xi: Multiple observations are needed for each individual.

PH use assumption 1 and discuss several non-linear models including selection models.
We will use assumption 1 trough 3b and focus on the moment conditions that were developed
in the previous sections.

Mundlak (1961) argues that the ¯xed e®ect will often be correlated with the regressors, as
when the regressor (input) is chosen in by an agent who knows his ¯xed e®ect fi: If one knows
which characteristics are important for the constructed ¯xed e®ect and if there is only one
input then the assumptions of case 3a are satis¯ed. If there is more than one variable that is
correlated with the ¯xed e®ect then none of the assumptions 1 through 3b hold. For linear
models, Mundlak (1978) suggests to replace the ¯xed e®ect by a function that is a linear
function of the regressors and a normally distributed error term, i.e. fi(xi; e; ®) = x0i® + e
where e » N(0; ¾2): For a linear model we can estimate the common parameters by general
least squares. By taking the logarithm of the ¯rst and second duration we can use that
framework for the estimation of duration models22 However, the linearity assumption seems
often even less attractive than the matching assumptions of (1) through (3b).

It can be argued that allowing for ¯xed e®ects gives us a semiparametric hazard since
the distribution of the individual e®ect given the regressor is not speci¯ed. That it would
be a nice kind of semiparametric and in the case we have more than one observation per
individual it is preferable above the semiparametric matching techniques that are discussed
in this section.

6 Compare estimators

Cox' Estimator applied to a stratum
The partial likelihood estimator of Cox (1972) can be applied to di®erent observations

for the same individual. Chamberlain (1985) shows that the resulting estimator is consis-
tent in the case that the durations are uncensored and the regressors are exogenous. In the
framework of uncensored observations, Yamuguchi (1986) compares this estimator to random
e®ects estimators and estimators for the exponential hazard model with ¯xed e®ects. Re-
cently, the estimator is discussed by Ridder and Tunali (1999) and Lancaster (1999a, 6.8.2).
The estimator that is consistent for the exponential hazard model as well as for other baseline
hazards. That is, the hazard is

µis(t) = exis¯+viki(t)

where ki(t) denotes an individual, unspeci¯ed baseline hazard. We can consider the rank
ordering of yi1; yi2: If complete spells are observed then Pr(yi1 < yi2jxi1; xi2; vi; ki0(:)) =

exi1
exi1+exi2 : Lancaster (1999a) suggests to use the same formula for data with censored ob-
servations. If the censoring times are unequal for the di®erent spells we can censor each
individual at the smallest observed censoring time. Individuals for whom both spells are

22In the case that no spell is censored.
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censored are discarded. Since an endogenous selection criterion is used (the outcome of the
dependent variable determines whether an individual is discarded or not) consistency is not
obvious. We discuss this estimator and then compare the asymptotic variance with the earlier
estimator of theorem 1.
We can write the probability that the ¯rst spell lasts shorter than the second one as follows:
Pr(yi1 < yi2jxi1; xi2; vi; ki0(:)) = e

xi1¯

e
xi1¯+exi2¯

gives us the following log likelihood:

L(¯) = mxi1¯ + (1 ¡ m)xi2¯ ¡ ln(exi1¯ + exi2¯)

where m = 1(yi1 < yi2) and the subscript i is suppressed.

L¯ = mxi1 + (1 ¡ m)xi2 ¡ xi1e
xi1¯ + xi2e

xi2¯

exi1¯ + exi2¯

= m(xi1 ¡ xi2) + xi2 ¡ xi1e
xi1¯ + xi2e

xi2¯

exi1¯ + exi2¯

We introduce arti¯cial censoring by the econometrician at the minimum censoring time of
the individual: So the econometrician censors at c = mins(cis) and discards observations
that are censored twice. This endogenous selection does not a®ect the consistency of the
estimator:
For duration models with hazard µis(y) = exis¯+viki(y) with two spells for each individual
and exogenous censoring we can write the log likelihood of the order statistic as

Li(¯) = mxi1¯ + (1 ¡ m)xi2¯ ¡ ln(exi1¯ + exi2¯):

Consider the following estimator:

^̄ = arg max

P
iLi(¯)

N

^̄ is a consistent estimate for ¯0: See Appendix 14 for a consistency proof.

Asymptotic variance
The asymptotic variance for the rank estimator is (see Appendix 15 for details):

varL¯ =

PN
i=1(x1 ¡ x2)2var(m)

N2

=

PN
i=1(x1 ¡ x2)2(

1
exi1¯+exi2¯

)2

N2
since Pr(m = 0) =

exi1¯

exi1¯ + exi2¯

=

PN
i=1(

x1¡x2
e
xi1¯+e

xi2¯ )2

N2

Note that this is also the expression of the asymptotic variance in the case that the data
are not censored. However, in the case of censoring we discard observations, so N is smaller
than when there would be no censored observations. Assume that a spell will be censored if
tis > c: If the second observations have a chance of p of being censored at censoring time c
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(i.e. Pr(ti2 > c) = p) then the chance that the data of that individual are being discarded
are:

Pr(i discarded) = Pr(fti1 > c and ti2 > c)

= Pr(ti1 > c)Pr( ti2 > c)

=
exi2¯

exi1¯ + exi2¯
p

=
exi2

exi1¯ + exi2¯
p:

So the fraction of observation that we use is:

Pr(i not discarded) = 1 ¡ Pr(i discarded)

= 1 ¡ exi2

exi1 + exi2
p:

6.1 Comparison of the asymptotic variances

Now we have two estimators for the exponential hazard model. Since both are consistent we
can compare them by comparing their asymptotic variances for the case T = 2: For the ¯rst
estimator, Q¯(¯) = (xi1 ¡ xi2)fexi2¯yi2di1 ¡ exi1¯yi1di2g the information equality does not
hold.
The asymptotic variance, ¾2¯ is (see appendix 14)

¾2¯ = J¡1I J¡1

=
(xi1 ¡ xi2)2

2
f 1

Pr(di1 = 1)Pr(di2 = 1)
g2

f1 +
zi1maxzi2maxe

¡(zi1max+zi2max)

(1 ¡ e¡zi1max)(1 ¡ e¡zi2max)
g

=
(xi1 ¡ xi2)2

2
f 1

(1 ¡ e¡zi1max)(1 ¡ e¡zi2max)
g2

f1 +
zi1maxzi2maxe

¡(zi1max+zi2max)

(1 ¡ e¡zi1max)(1 ¡ e¡zi2max)
g:

The rank estimator has the following asymptotic variance

¾2¯ =
N

varL¯
=

ÃPN
i=1(

x1¡x2
exi1¯+exi2¯

)2

N

!¡1

:

7 Conclusion

In this paper we use the integrated hazard to derive estimators for duration models. Van den
Berg notes in his handbook chapter23 that current estimation methods of duration models

23\Duration Models: Speci¯cation, Identi¯cation, and Multiple Duration," in Handbook of Econometrics,
Vol. 5. Amsterdam: North-Holland.
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are sensitive to censoring. For a wide range of models we ¯le that \caveat". We further
derived consistent estimators for ¯xed e®ect models that can deal with

² time varying regressors (e.g. unemployment rate)

² lagged duration dependence

² regressors that are endogenous in the sense that they depend on the length of earlier
spells.

We do not strongly belief in \matching models"24 but showed consistency of the estima-
tors. We summarize our ¯ndings by saying that the integrated hazard is a useful concept in
the sense that it can suggest consistent estimators.

8 Appendices

Appendix 1
We de¯ne zis;max =

R cis
0 µ(s; x)ds

Edis = Prftis � cisg = Prf
Z tis

0
µ(s;x)ds �

Z cis

0
µ(s; x)dsg = Prfzis �

Z cis

0
µ(s; x)dsg

= 1 ¡ e¡zis;max

Ezis =

Z zis;max

0
zise

zisdzis + zzis;maxe
zzis;max Pr(zis = zis;max)

= 1 ¡ e¡zis;max = Edis:

Q.E.D.

Appendix 2
Proof of theorem 1:
The moments function has expectation zero at the truth, i.e. Eg(¯0) = 0 and therefore
Q0(¯0) = ¡fEg(¯0)g0fEg(¯0)g = 0; i.e. Q0(¯0) is maximized at the truth. The di±cult
part of the proof is to show that Q0(¯0) is a unique maximum. A su±cient condition for
this is that Eg(¯) = 0; is uniquely solved for ¯ = ¯0: In the case that ¯ is a parameter and
we observe two durations for each individual (i.e. K = 1 and T = 2) then the objective
function Qn(¯) is concave. We ¯rst give the proof for this easy case and than proof that
Q0(¯0) has a unique solution in the general case. For K = 1 and T = 2 we have:

µi1 = vi

µi2 = vie
4xi¯

24Since individuals di®er in more ways than is revealed by the regressors.
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which gives

g(¯) = ¡
PN
i=14xife4xi¯yi2di1 ¡ yi1di2g

N

and

@g(¯)

@¯
= ¡

PN
i=1(4xi)

2fe4xi¯yi2di1g
N

< 0 for all ¯:

Since the derivative is always negative the solution to g(¯) = 0 is unique. Therefore Eg(¯0) =
0 is uniquely solved for ¯ = ¯0:

For the general case we need that Eg(¯) = 0 is uniquely solved for ¯ = ¯0, where

g(¯) =
1

N

X

i

gi(¯)

and

gi(¯) =
X

s<r

f(xir ¡ xis)(dire
xis¯yis ¡ dise

xir¯yir)g s; r = 1; :::; Ti:

Note that ¯ and (xir ¡ xis) are vectors with length K (the number of regressors). It was
shown in section 2.2.1 that

Eg(¯0) = 0:

We de¯ne kis = E(dis) = Eexis¯0yis=fi, gis = exis(¯¡¯0) and a weighted mean of gi for each
individual, ¹gi = 1

Ti

P
s giskis = 1

Ti

P
s e
xis(¯¡¯0)kis: The following relations hold:

Eg(¯) =
1

N

X

i

E[
X

s<r

f(xir ¡ xis)(dire
xis¯yis ¡ dise

xir¯yir)g]

=
1

Nfi

X

i

[
X

s<r

f(xir ¡ xis)(kirgiskis ¡ kisgirkir)g]

=
1

Nfi

X

i

[
X

s<r

f(xir ¡ xis)(gir ¡ gis)kirkisg]:

If ¯ = ¯0 then gir = gis = 1 and gir¡gis = 0 so Eg(¯0) = 0: If gir¡gis depends on (xir¡xis)
(e.g. if ¯ 6= ¯0) then it seems that gir¡gis is `correlated' with (xir¡xis)kirkis and Eg(¯) 6= 0:
Therefore the only solution seems to be that gis is a constant. We will now argue that gis is
only a constant at the true value ¯0 : The function gis was de¯ned as gis = exis(¯¡¯0); the
matrix X has full rank and therefore there is no ¯0 6= ¯0 s.t. xis(¯

0¡¯0) = 0; and therefore
there is no ¯0 6= ¯0 s.t. gis = exis(¯¡¯0) is a constant (i.e. the only value for which gis does
not vary with xis is ¯0): Therefore, ¯ = ¯0 is the unique solution of Eg(¯) = 0:

We use lemma 2.4 of Newey and McFadden to prove the conditions for uniform conver-
gence: The data are i.i.d. (follows from the hazard function), the parameter space is compact
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(was assumed), gl(¼; °) is continuous and has ¯nite expectation (dominance condition) for
all ¯ and all l: Using lemma 2.4 uniform convergence is ensured.

The limit of the objective function, Q0(¯) is uniquely maximized at the truth. The
objective function Qn(¯) = g2(¯) converges uniformly to Q0(¯): Therefore, maximizing Q(¯)
gives a consistent estimate (see Newey and McFadden, 1994, page 2133). Q.E.D.

Appendix 3
Proof of lemma 2:

Eg(°0) = E[
1

Nfi

NX

i=1

f
X

s<r

(dirzis ¡ diszir)g]

=
1

Nfi

NX

i=1

f
X

s<r

(EdirEzis ¡ EdisEzir)g using independence.

By lemma 1 we have Ezis = E
R yis
0 µ(s;x)ds = Edis and therefore

Eg(°0) =
1

Nfi

NX

i=1

f
X

s<r

EdisEdir ¡ EdirEdisg = 0.

Q.E.D.

Appendix 4

g¤(¯; °) =

µ
gW (¯; °)

gE(¯; °)

¶

Note that

EgW (¯0; °0) =
1

N

NX

i=1

f
X

s<r

E(ḑire
xis¯ y̧°is ¡ ḑise

xir¯y̧°ir)g

=
1

Nfi

NX

i=1

f
X

s<r

(EḑirEz̧is ¡ EḑisEz̧ir)g

= 0 since Eḑir = Ez̧ir and Ez̧is = Eḑis

and

EgE(¯0; °0) =
1

N

TiX

i=1

[
X

s<r

f(xir ¡ xis)E(dire
xis¯y°is ¡ dise

xir¯y°ir)g ]

=
1

Nfi

TiX

i=1

[
X

s<r

f(xir ¡ xis)(EdirEzis ¡ EdisEzir)g ]

= 0 since Edir = Ezir and Edir = Ezir:

The rest of the proof is similar to the proof of theorem 1; the extra moment condition requires
that E(kirgiskis ¡ kisgirkir) = 0.
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Appendix 5
Proof of theorem 4: Note that Ln; the number of individuals in each interval, and M;
the number of intervals, are de¯ned in such a way that as N ! 1 then Ln,M ! 1.
Q0 = ¡PM

l=1fg0;l(°)g2 is uniquely maximized at the truth (see above).
We use lemma 2.4 of Newey and McFadden to prove the conditions for uniform conver-

gence: The data are i.i.d. (follows from the hazard function), the parameter space is compact
(was assumed), gl(°) is continuous and bounded in probability for all ° and all l: Using lemma
2.4 uniform convergence is ensured so gl(°) !U g0;l (°) and therefore Qn(°) !U Q0:

We write the mean square error (MSE) as the addition of the variance and the squared
bias:

MSE = Ef(^̧n(t) ¡ ¸0(t))
2g

= Ef(^̧n(t) ¡ ¹ + ¹ ¡ ¸0(t))
2g where ¹ = E(^̧n(t))

= Ef(^̧n(t) ¡ ¹)2g + Ef(¹ ¡ ¸0(t))
2g:

The limit of the variance is zero for n; k ! 1:

lim
n;k!1

Ef(^̧n(t) ¡ ¹)2g = 0:

The limit of the bias is zero as well as n; k ! 1:
Therefore, the limit of the MSE is zero.

lim
n;k!1

Ef(¹ ¡ ¸0(t))
2g = 0:

Q.E.D.

Appendix 6
Proof of theorem 5: Similar to the proof of theorem 4. The limit of the objection function,
Q0 = ¡fPM

l=1fg0;l(°)g2 +
PK
r=1fg0;r(°)g2g is uniquely maximized at the truth; gl(°) con-

verges uniformly to g0;l (°) and Qn(°) converges uniformly to Q0 and limn!1Ef(^̧n(t) ¡
¸0(t))

2g = 0:Q.E.D.

Appendix 7

~di2 = dDatai2 + (1 ¡ dDatai2 )ind

So

E ~di2 = EdDatai2 + Ef(1 ¡ dDatai2 )indg:

As was explained in the text, EdDatai2 = E(di2jti2 � cData2 )P (ti2 � cData2 ) and Ef(1 ¡
dDatai2 )indg = (di2jti2 > cData2 )P(ti2 > cData2 ): Therefore,

E ~di2 = E(di2jti2 � cData2 )P(ti2 � cData2 ) + E(di2jti2 > cData2 )P (ti2 > cData2 )

where the last expression is, by de¯nition, equal to Edi2:
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Appendix 8
Proof of lemma 4:

E(zisdis) = E(zisjdis = 1)Pr(dis = 1)

=

Z zismax

0
z

e¡z

1 ¡ e¡zismax
dz(1 ¡ e¡zismax)

=

Z zismax

0
ze¡zdz

= 1 ¡ zismaxe
¡zismax ¡ e¡zismax :

Eg(°0) =
1

fi
E(zi1di1di2 ¡ zi2di2di1)

=
1

fi
E(zi1di1di2 ¡ zi2di2di1)

=
1

fi
E(zi1di1jdi2 = 1)g Pr(di2 = 1) ¡ 1

fi
fE(zi2di2jdi1 = 1)gPr(di1 = 1):

Where Pr(di2 = 1) = Pr(di2 = 1) = 1 ¡ e¡zmax: The conditional expectations, E(zi1di1jdi2 =
1) and E(zi2di2jdi1 = 1) equal the unconditional expectations, i.e. E(zi1di1jdi2 = 1) =
E(zi1di1) and E(zi2di2jdi1 = 1) = E(zi2di2) and therefore

Eg(°0) =
1

fi
fE(zi1di1) ¡ E(zi2di2)g(1 ¡ e¡zmax)

=
1

fi
fE(zi1di1) ¡ E(zi2di2)g(1 ¡ e¡zmax) using Lemma 3

= 0 since zi1max = zi2max and therefore E(zi1di1) = E(zi2di2):

Q.E.D.

Appendix 9
Proof of theorem 6:

The standard conditions for Q(¯) hold:
(i)Eg(¯0) = 0 (see above);
(ii) g(¯) is continuous in ¯ (by inspection);

(iii)@Eg(¯)@¯ < 0 g(¯) is monotonic in all elements of ¯ since their derivatives are always
negative (see above); fcomplete the proof that Eg(¯) = 0 is uniquely solved for ¯ = ¯0.g;

(iv) EQ(¯) = ¡Efg(¯)0Ig(¯)g is concave and therefore EQ(¯) is uniquely maximized at
the truth, ¯0;

(v) Q converges uniformly to EQ fto be proven, seems to hold).
Therefore, maximizing Q(¯) gives a consistent estimate for ¯0 (see Newey and McFadden,
1994, page 2133). Q.E.D.

Appendix 10
The standard conditions for concave extremum estimators hold:
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(i)Eg(°0) = 0 by Lemma 4;
(ii)g(°) is continuous in ¯ (by inspection);

(iii)g°(°) = ¡a(t1)ti2di2di1 < 0 so g°(°) is monotonic in ° and Q(°) = ¡(
P
g°(°)P
di1di2

)2 is

concave in °. So EQ(°) is uniquely maximized at the truth;
(iv) g(°) converges in probability to E g(°) (no need for uniform convergence since Q(°)

is concave in °:

Therefore, maximizing Q(°) gives a consistent estimate for °0 (see Newey and McFadden,
1994, page 2133). Q.E.D.

Appendix 11
To be proven:

Eg¤(°0) =
1

N
E

X

i

~wmi gi(°0) = 0

where ®mc
¹1
fi

gi(°0) = ti1 ¡ e4wi°ti2:

Note that
1
N

P
i ~wmi ti1 = 1

N

P
i(®̂

m
c + emi )ti1 = 1

N ®̂mc
P
i ti1 ¡ P

i e
m
i ti1 = ®̂mc ¹t1 since

P
i e
m
i ti1 = 0:

Using the law of iterated expectations: E(®̂mc ¹t1) = EfE(®̂mc ¹t1jti1; ::; tiN)g = ®mc E¹t1 =
®mc

P
i
1
Nfi

E ~wmi ewis°0ti2 = E(®̂mc + emi )ewis°0ti2 = Ef(®̂mc + emi )zi2fi g = E®̂mc
zi2
fi

= ®mc
P
i
1
Nfi

:
Therefore, Eg¤(°0) = 0:

Appendix 12
Proof of theorem 8.
De¯ne ~wi = f ~w1i ; ~w2i ; :::; ~wMi g: The matrix with rows fti1;4w0ig has full column rank and
therefore the matrix with rows fti1; ~w1i ; ~w2i ; :::; ~wMi g = fti1; ~wig has full column rank as well.
Consider estimating the following hazard:

µi1 = fi

µi2 = fie
4 ~wi°+±ti1 :

Theorem 1 and 2 suggest the following moment equations:

h(°; ±) =
1

N

X

i

(ti1 ¡ e4 ~wi°+±ti1ti2)

h¤(°; ±) =
1

N

X

i

f4 ~wi(ti1 ¡ e4 ~wi°+±ti1ti2)g
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and consistent estimation of f°; ±g is possible:

(i)Eh(°0; ±0) = Eh¤(°0; ±0) = 0, arguments similar to Eg(°0) = Eg¤(°0) = 0 in the text;
(ii) h¤(°; ±) is monotonic decreasing in each element of ° since the derivative is always
negative:

@h¤(°; ±)

@°l
=

P
i¡(4 ~wi)2e4 ~wi°+±ti1)ti2

N
< 0;

(iii) h(°; ±) is monotonic decreasing in ± since the derivative is always negative:

@h(°; ±)

@±
=

P
i¡4 ~wie4 ~wi°+±ti1)ti1ti2

N
< 0.

For a one parameter model it is enough that one parameter g() is monotonic in its parameter
to ensure uniqueness of g() = 0 . For a model with more parameters we know that the matrix
with rows fti1; ~wig has full rank. So only at f°; ±g = f°0; ±0g we have 4 ~wi° + ±ti1 = 0
for all i: If 4 ~wi° + ±ti1 6= 0 then the value of this equation will be correlated with 4 ~wi
and ti1: The moment function h¤(°; ±) \adds up" without weighting the observation; the
other equations weight according to the values of 4 ~wi; so correlation causes at least one
equation to be nonzero, see the proof of theorem 1, appendix 1. Therefore, the maximum of
Q(°; ±) = ¡fh(°; ±)2 + h¤(°; ±)0h¤(°; ±)g is at the truth;

(iv)We use lemma 2.4 of Newey and McFadden to prove the conditions for uniform con-
vergence: The data are i.i.d. (follows from the hazard function), the parameter space is
compact (was assumed), gl(¼; °) is continuous and bounded in probability for all ¼; ° and all
l: Using lemma 2.4 uniform convergence is ensured.

Consider the restriction ± = °0® where ® = f®̂1s; ®̂2s; :::; ®̂Ms g; this restriction does not
e®ect identi¯cation or consistency. Plugging this restriction in the hazard for the second
period gives

µi2 = fie
4 ~wi°+±ti1 = fie

4wi°

which is the hazard of theorem 8 and consistency of that hazard model follows.

Appendix 12 A
fprove concavity in Theorem 5g

g(¯) = (xi2 ¡ xi1)fexi1¯yi1di1di2 ¡ exi2¯yi2di2di2g

g(¯) = di1di2(xi2 ¡ xi1)fexi1¯yi1 ¡ exi2¯yi2g

g(¯)2 = (di1di2)
2(xi2 ¡ xi1)

2(exi1¯yi1 ¡ exi2¯yi2)
2

@g(¯)2

@¯
= 2(di1di2)

2(xi2 ¡ xi1)
2(exi1¯yi1 ¡ exi2¯yi2)(xi1e

xi1¯yi1 ¡ xi2e
xi2¯yi2)

= 2(di1di2)
2(xi2 ¡ xi1)

2fxi1(exi1¯yi1)2 ¡ (xi1 + xi2)e
xi1¯yi1e

xi2¯yi2 ¡ xi2(e
xi2¯yi2)

2g
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fxi1(exi1¯yi1)2 ¡ (xi1 + xi2)e
xi1¯yi1e

xi2¯yi2 ¡ xi2(e
xi2¯yi2)

2g

xi2 = ¡xi1

fxi1(exi1¯yi1)2 + xi1(e
xi2¯yi2)

2g:

Appendix 12 B

At the truth, the expectation of the moment function equals zero.

Eg(°0) =
1

Nfi

X

i

Efdi2yi1 ¡ di1e
°r(yi)yi2g =

1

Nfi

X

i

Efdi2zi1 ¡ di1zi2g = 0:

For uncensored observations, @gi(°)
@° = ¡e°r(yi)yi2 < 0: Note that Edi2 = 1 ¡ ez1maxwhere

z1max = e¡°r(yi)e°0r(yi)ci2 and @Edi2
@° > 0. Furthermore, Eyi2 = Edi2 and the derivatives are

equal as well and in general, Eg(°) is uniquely solved for ° = °0:
Appendix 13
Proof of theorem 9:
The moments function has expectation zero at the truth, i.e.

EgPC(¯0; °0) = 0

EgE(¯0; °0) = 0

Eg¤E(¯0; °0) = 0:

We can a construct the usual GMM objective functions. Giving equal weight to all the
moments gives

Qn(¯; °) = ¡fgPC(¯; °)g0fgPC(¯; °)g ¡ fgE(¯; °)g2g ¡ fg¤E(¯; °)g0fg¤E(¯; °)g

Q0(¯0) = ¡fEgPC(¯0; °0)g0fEgPC(¯0; °0)g ¡ fEgE(¯0; °0)g2g ¡ fEg¤E(¯0; °0)g0fEg¤E(¯0; °0)g = 0

Thus Q0(¯0) is maximized at the truth. Arguments similar to earlier proofs (theorem 1 and 8)
show thatQ0(¯0) is a unique maximum. We use lemma 2.4 of Newey and McFadden to prove
the conditions for uniform convergence: The data are i.i.d. (follows from the hazard function),
the parameter space is compact (was assumed), the moment functions are is continuous and
has ¯nite expectation (dominance condition) for all ¯ and all °: Using lemma 2.4 uniform
convergence is ensured.

The limit of the objective function, Q0(¯; °) is uniquely maximized at the truth. The
objective function Qn(¯; °) converges uniformly to Q0(¯; °): Therefore, maximizing Q(¯; °)
gives a consistent estimate (see Newey and McFadden, 1994, page 2133). Q.E.D.
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Appendix 14
Notation: fs = f(yis) = µis(yis)e¡

R yis
0 µis(s)ds ;

¹Fs(yis) = ¹F (yis) = e¡
R yis
0 µis(s)ds; note that ¹Fs(yi1) = e¡

R yis
0 µi1(s)ds = e¡®

R yis
0 µi2(s)ds =

( ¹Fs(yi2))® with ® = e(xi1¡xi2)¯

and ¹Fs = ¹Fs(c) where c = mins(ci1; ci2)

Pr(ti1 < ti2jti1; ti2 < c) = 1 ¡ Pr(ti1 < ti2jti1; ti2 > c)

= Pr(ti1 > ti2jti1; ti2 > c):

notation:

Pr(ti1 > ti2jti1; ti2 > c) =

Z 1

c
f
Z 1

t2

f1
¹F1

dt1g
f2
¹F2

dt2

=

Z 1

c
f1 ¡ F1(t2)

¹F1
gf2

¹F2
dt2

=

Z 1

c
f

¹F1(t2)
¹F1

gf2(t2)
¹F2

dt2

=

Z 1

c

f2(t2)
¹F2

½ ¹F2(t2)
¹F2

¾®
dt2 since ¹F1() = ¹F®

2 where ® = e(xi1¡xi2)¯

= ¡ 1

® + 1

½ ¹F1(t2)
¹F2

¾®+1
j1c

=
1

® + 1
=

1

e(x1¡x2)¯ + 1

=
ex2¯

ex1¯ + ex2¯
:

And therefore

Pr(ti1 < ti2jti1; ti2 > c) =
ex1¯

ex1¯ + ex2¯
:

So Pr(ti1 < ti2jti1; ti2 > c) = Pr(ti1 < ti2):
Now we can calculate Pr(ti1 < ti2jti1; ti2 < c) :

Pr(ti1 < ti2) = Pr(ti1 < ti2jti1; ti2 < c)P (ti1; ti2 < c)

+Pr(ti1 < ti2jti1; ti2 > c)P (ti1; ti2 > c):

And therefore:

Pr(ti1 < ti2jti1; ti2 < c) =
Pr(ti1 < ti2)

P (ti1; ti2 < c)
f1 ¡ P (ti1; ti2 > c)g

= Pr(ti1 < ti2):

So the rank ordering is correct and indeed is the expectation of the score zero:

E[mjti1; ti2 < ci] = Pr(ti1 < ti2jti1; ti2 < c) =
ex1¯

ex1¯ + ex2¯
:
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And therefore:

EL¯ j¯=¯0 = (x1 ¡ x2)Em + x2 ¡ xi1exi1¯ + xi2exi2¯

exi1¯ + exi2¯

= (x1 ¡ x2)
ex1¯

ex1¯ + ex2¯
+ x2 ¡ xi1exi1¯ + xi2exi2¯

exi1¯ + exi2¯

= ¡x2
ex1¯

ex1¯ + ex2¯
+ x2 ¡ xi2e

xi2¯

exi1¯ + exi2¯
= 0:

L(¯) is concave in ¯ and consistency follows. Q.E.D.

Appendix 15
By the usual delta method, we expand Q¯(¯) around ^̄ and assume that the law of large
numbers applies:

p
n(^̄ ¡ ¯0) =

N

Q¯¯(¯0)

Q¯(¯0)p
n

:

The Information matrix and the Hessian are I = varQ¯(¯0)
J = EQ¯¯(¯0) and therefore

p
n(^̄ ¡ ¯0) » N(0; J¡1I J¡1):

Calculation of the Hessian:

J = EQ¯¯(¯0) = E(xi1 ¡ xi2)fxi2exi2¯0yi2di1 ¡ xi1e
xi1¯0yi1di2g

=
(xi1 ¡ xi2)

ev0
Efxi2ev0+xi2¯0yi2di1 ¡ xi1e

v0+xi1¯0yi1di2g

=
(xi1 ¡ xi2)

ev0
Efxi2di2di1 ¡ xi1di1di2g

=
(xi1 ¡ xi2)2

ev0
Efdi2di1g

=
(xi1 ¡ xi2)

2

ev0
Pr(di1 = 1)Pr(di2 = 1):

Calculation of the Information Matrix:

I = varQ¯(¯0) = E[(xi1 ¡ xi2)
2fexi2¯yi2di1 ¡ exi1¯yi1di2g2]

= (xi1 ¡ xi2)
2E[fexi2¯yi2di1 ¡ exi1¯yi1di2g2]

= (xi1 ¡ xi2)
2E[(exi2¯yi2di1)

2 ¡ 2(exi2¯yi2di1)(e
xi1¯yi1di2) + (exi1¯yi1di2)

2]

where

E[(exi2¯yi2di1)
2] = E[(exi2¯yi2)

2]E[(di1)
2]

=
1

e2v0
E[(exi2¯+v0yi2)

2]E[(di1)]

zis = exis¯+v0yis has a Unit Exponential distribution, censored at zismax = exis¯+v0cis:
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Ez2is = 2f1 ¡ e¡zismax ¡ zismaxe
¡zismaxg

And therefore

E[(exi2¯yi2di1)
2] =

1

e2v0
E[(zi2)

2]E[(di1)]

=
2

e2v0
f1 ¡ e¡zi2max ¡ zi2maxe

¡zi2maxg(1 ¡ e¡zi1max):

Similar,

E(exi2¯yi2di1)(e
xi1¯yi1di2) = E(exi1¯yi1di1)E(exi2¯yi2di2)

=
1

e2v0
E(zi1di1)E(zi2di2)

E(zisdis) = E(zisjdis = 1)Pr(dis = 1)

=

Z zismax

0

ze¡z

1 ¡ e¡zismax
dz ¤ (1 ¡ e¡zismax)

=

Z zismax

0
ze¡zdz

= f1 ¡ e¡zi2max ¡ zi2maxe
¡zi2maxg:

Now we can calculate the Information Matrix:

I = varQ¯(¯0)

= (
xi1 ¡ xi2

ev0
)2E[(zi2di1)

2 ¡ 2(zi2di1)(zi1di2) + (zi1di2)
2]

= 2(
xi1 ¡ xi2

ev0
)2f1 +

zi1maxzi2maxe¡(zi1max+zi2max)

(1 ¡ e¡zi1max)(1 ¡ e¡zi2max)
g:
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