
This draft: 31.01.00

Rotating Savings and Credit Associations as Insurance

Stefan Klonner*
Südasien Institut der Universität Heidelberg

INF 330
69120 Heidelberg

Germany

Abstract:

Recent theoretical research on rotating savings and credit associations (Roscas) suggests that

identical individuals prefer a random to a bidding Rosca when participants save for a lumpy

durable or an investment good. Here,in contrast, under the assumption that participants are

risk averse and that their incomes are stochastic and independent, it is shown that a random

Rosca is not advantageous, while participation in a bidding Rosca improves ex ante expected

utility if temporal risk aversion is less pronounced than static risk aversion. When information

on individual incomes is private, fixed contributions to a bidding Rosca help to mitigate the

problem of information asymmetries. When information on incomes is public, a lack of

enforceability of variable contributions may explain the existence of Roscas instead of more

efficient insurance arrangements.
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1  Introduction

The rotating savings and credit association (Rosca), an informal financial institution observed

around the world, has attracted considerable theoretical and empirical research recently.

Roscas are popular among high as well as low income households1 and flourish in economic

settings where formal financial institutions seem to fail to meet the needs of a large fraction of

the population. In general terms, a Rosca can be defined as ‘a voluntary grouping of

individuals who agree to contribute financially at each of a set of uniformly-spaced dates

towards the creation of a fund, which will then be allotted in accordance with some

prearranged principle to each member of the group in turn’  (Calomiris and Rajarman, 1998).

Once a member has received a fund, also called pot, she is excluded from the allotment of

future pots until the Rosca ends. In a so-called random Rosca, a lot determines each period’s

‘winner’  of the pot. In a bidding Rosca, an auction is staged among the members who have not

yet received a pot. The highest bid wins the pot and the amount the winner pays is distributed

among the members or added to future pots. In a third, empirically relevant, allocation

mechanism, the decision on each period’s allocation of the pot is left to the Rosca organizer.2

The name suggests that Roscas serve as a financial intermediary by transforming the

bundled savings of a group into what might be considered a loan to one Rosca participant in

each period. The theoretical literature on Roscas has entirely focussed on participants with

non-stochastic incomes. Kuo (1993) analyses bidding Roscas when individuals differ in that

they discount future consumption with distinct discount factors. These are drawn from a

common distribution and are private knowledge. Moreover, in every period each participant is

                                               
1 While Levenson and Besley (1996) find that participation is highest among high

income households in Taiwan, Handa and Kirton (1999) report that, in Jamaica, low income

households are most likely to join a Rosca.
2 In Handa and Kirton’s (1999) sample, 53 percent of the Roscas operated in this way.
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assigned a new discount factor. Assuming that all participants share the same beliefs about the

distribution of other participants’  discount factors, the author derives Bayes-Nash equilibrium

bidding strategies. In Kovsted and Lyk-Jensen (1999), each participant can engage in an

investment project and has limited access to outside credit. The revenues of the projects differ

among participants. The revenue yielded by each participant’s project is his private

information, but all participants have the same beliefs about the distribution of revenues of the

other participants’  projects. Deriving Bayes-Nash equilibrium bidding strategies in a bidding

Rosca, the authors find that when either outside credit is not too costly, or the distribution of

revenues is sufficiently widely dispersed, a bidding Rosca is preferred to a random Rosca.

Besley et al. (1993, 1995) assume that participants do not have access to outside credit and

join a Rosca to finance a durable good whose costs require saving for more than one-period. If

participants have identical preferences and incomes, a random Rosca is preferred to the bidding

arrangement. If, however, participants are sufficiently heterogeneous, a bidding Rosca can be

preferred to a random Rosca. In both of the former two papers, the bidding arrangement

provides a mechanism to allocate pots earlier to participants who have a higher willingness to

pay and can therefore be advantageous if participants are not identical.

In many economic settings where Roscas are found, individuals are exposed to both

idiosyncratic and aggregate risks. Examples are farmers’  uncertainty about harvests,

employment uncertainty among casual labourers and individual illness when no health

insurance is available. There is a body of empirical evidence that, when participants are

exposed to risk, Roscas can serve as an insurance mechanism (Calomiris and Rajaraman,

1998). In the approaches taken by Besley et al. (1993) and Kovsted and Lyk-Jensen (1999),

the outcome of the bidding Rosca remains unaltered no matter if the auctions for all future pots

are staged at the beginning of the Rosca or if the auction for each period’s pot takes place in



3

that same period. Calomiris and Rajaraman (1998), however, find that, except for one case3, all

of the empirical literature reports Rosca arrangements where bidding is concurrent with the

allocation of pots. For an actual Rosca in an Indian city, they calculate the implicit interest rate

for the funds each participant received from the Rosca. For each period, this rate depends on

the remaining duration of the Rosca as well as the value of the winning bid. In contrast to the

predictions of the models of Besley et al. (1993) and Kovsted and Lyk-Jensen (1999), they find

that winning bids do not decrease steadily from period to period and that the implicit rate of

interest fluctuates significantly without any obvious trend. Calomiris and Rajaraman (1998)

conclude that, at least for their sample Rosca, deterministic models do not capture the essential

features. Instead, they stress the role of Roscas as an insurance mechanism by allocating each

period’s pot to the bidder who has suffered the most severe shock. Moreover, if several

members suffer a severe shock in the same period, bidding compensates those who do not win

said period’s pot. Besley et al. (1993) argue that Roscas are not suited for insuring against risk

because the fund can be obtained only once while shocks might occur several times during the

duration of the Rosca. Empirical evidence, however, shows that many individuals are members

of several Roscas or hold more than one share in the same Rosca, thus being entitled to bid for

more than one pot.4 Of course, Roscas cannot effectively insure against aggregate shocks when

participants belong to an economically and socially homogenous group like small farmers in a

village whose harvests depend on the weather to a large extent. But even there, as Townsend’s

(1994) results suggest, a variety of mechanisms appear to be at work in providing substantial

insurance against idiosyncratic risks like illness or death of farm animals.

                                               
3 This is Campbell and Ahn (1962) for Korea.
4 Handa and Kirton (1999) report that, in their sample of 1000 Jamaican households,

respondents joined on average 1.4 Roscas during the year prior to the interview and held 1.3

shares in any Rosca they joined.
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The aim of this study is twofold: I analyze how bidding Roscas function under the

following assumptions. Participants are risk-averse and use funds from the Rosca entirely for

consumption, each participant’s income being stochastic. For most of the analysis, I assume,

moreover, that participants cannot observe other participants’  incomes, but all share the same

beliefs about the distribution from which the incomes are drawn. In addition, the case of public

information on incomes is also briefly considered. There are neither credit nor savings

opportunities outside the Rosca. Second, with the results thus derived, it is shown how Roscas

can partly solve the problem of insurance against idiosyncratic risks when no formal insurance

is available.

2 Optimal Ex-ante Insurance among Individuals

As point of departure for the analysis of insurance in the absence of market institutions, this

section outlines the problem of optimal insurance when individual income is private

knowledge. To keep the analysis simple, assume that two identical individuals in period zero

are confronted with stochastic incomes Yi, i = 1, 2 in period one which are drawn from a

distribution F on some domain I. There are neither savings nor borrowing opportunities. Each

agent evaluates period one consumption with a Bernoulli utility function v(yi) where v´ > 0 and

v´´ < 0 for all yi.
5 First assume that the realizations y1 and y2 are observed by both agents and

that they can make binding commitments, i.e., in period zero, they agree on a menu that

assigns a (possibly negative) transfer from agent j to agent i, t(yi, yj) say, to each possible pair

of period one incomes. Restricting attention to symmetric rules for t, i.e. t(yj, yi) = - t(yi, yj), the

task is to maximize ex ante expected utility given by

   E[v(Yj - t(Yj, Yi))] = E[v(Yi + t(Yi, Yj))] = v y t y y dF y dF yi i j i jII
( ( , )) ( ) ( )+ , i, j =1, 2, i ≠ j.

                                               
5 Throughout the paper, random variables are denoted by capital letters, while lower

case letters represent particular values random variables assume.
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It is easily shown that under these assumptions t* (yi, yj) = (yj - yi)/2 and thus

E[v(Yi + t* (Yi, Yj))] = E[v((Yi + Yj)/2)] constitutes the optimal arrangement.

The question is whether this ex ante optimum can also be achieved when each agent

only observes his own income but both agents know F. In the terminology of mechanism

design theory, we now seek a mechanism that implements t*  in Bayes-Nash strategies. In

period zero the agents agree on some rule g(bi, bj) that determines the transfer t in period one

where bi is an announcement i makes after observing yi. Obviously, b is a strategic variable and

depends on g. In a symmetric equilibrium, both agents play b* (y), which must satisfy

(2.1) b* (y) = argmax
b

E[v(y + g(b, b* (Y))]  for all y.

If g* is to implement t* , we must have

(2.2) g* (b* (yi), b* (yj)) = (yj – yi)/2.

Thus

(2.3) g* (b, b* (y)) = h* (b) + y/2  for some function h* .

Substituting g*  for g in (1) and using (3), the b*  corresponding to g*  must satisfy

(2.4) b* (y) = argmax
b

E[v(y + h* (b) +Y/2)]  for all y.

It is immediately seen that the maximizing b of the RHS of (2.4) is independent of y, which

contradicts (2.2). Thus, even if agents can make binding commitments, the ex ante first-best

outcome cannot be achieved when individual income is private information. As long as there

are no outside savings or borrowing opportunities, the above example can be generalized easily

to the situation where agents make an arrangement for more than one future period.

Now consider a two-period bidding Rosca. In period zero the two agents make an

arrangement to pay a stipulated amount m into a pot, both in period one and two. In the first

period, the agents bid for pot one. Assuming that the price b° the winner of this auction has to

pay gets equally distributed among the two participants and that agents bid with identical

bidding functions b(y), we would expect the agent with the higher need for funds to submit the
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winning bid. In our model, ‘higher need’ is equivalent to ‘ lower income’. If b° < 2m, then the

agent with the lower income in period one, say agent one, receives a net transfer from the

other agent. If the bidding functions are such that it is always true that the agent with lower

income in period one receives a net transfer from the other agent, then we have an ex ante

improvement from joining the Rosca when the utility contribution of period two consumption

is neglected. In period two, however, agent one has to pay a net transfer of m to the other

agent. Whether this payment constitutes a transfer from the better to the worse off depends on

the particular values of period two incomes. Adding this effect to the improvement of ex ante

utility the period one transfer has, the question is whether the expectation over the sum of

these two effects still lets the participation in a Rosca appear advantageous. Towards this end,

the functioning of bidding Roscas needs to be analyzed first.

3  Bidding Procedures and Equilibrium Bid Functions

To set out the analytical framework, assume that participant i evaluates period one and two

consumption levels ci1 and ci2 with a bivariate von-Neuman-Morgenstern utility function,

u(ci1, ci2)
6 which is strictly increasing and concave in each argument, and that, in period t, her

income is drawn from a distribution characterized by the smooth distribution function Ft on

domain I t = [ylt, yut]. All yit, i, t = 1, 2 are assumed to be independently and identically

distributed according to Ft. We thus allow for seasonal variations in the income generating

process. The participants have access to neither credit nor savings opportunities outside the

Rosca. Although this is a very restrictive assumption, it is not wholly implausible considering

that, in many parts of the world, Roscas are observed primarily among women.7 If they are not

the heads of their respective household, they might not have control over money that is not

invested in some fixed scheme because heads of households may have different, likely shorter

                                               
6 For ease of exposition, I restrict attention to two-period Roscas.
7 See, for example, Adams and Canavesi de Saherno (1989) for Roscas in Bolivia.
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sighted, ideas about how to use the money.8 In this section it is further assumed that every

agent participates in only one Rosca and that the contribution to the Rosca each member

makes every period, m has been agreed upon beforehand and can be considered fixed.

If any partial derivative of u satisfies a lower Inada condition, define

c x u c c j ii
c c x

i
j i

= = ∞ ≠�max{ :lim ( , ) , }1 2 , where ui(x1, x2) ≡ ∂
∂

u x x

xi

( , )1 2 . To avoid technical

complications, we require ylt - m > ct .

In the literature, a variety of arrangements have been observed when it comes to the

auctioning of the pot. The main differences are the type of auction staged and the rule that

distributes the winning bid among the other participants. As to the latter, the most important

issue is whether the winning bid is distributed among the active participants only or if all

participants receive a fraction. In both cases, the distribution occurs equally. Since this paper

concentrates on two-period Roscas where only one auction takes place, this difference does

not matter for the present analysis. Further, throughout this study, I neglect any problems of

enforceability of contributions to the Rosca by members who have received a pot before and

thus are only left with obligations. It is assumed that defaulting on contributions results in

exclusion from future Roscas and that the disutility therefrom is prohibitively high.9 Another

important empirical feature, the remuneration of the Rosca organizer is also excluded from this

analysis.

The two predominant types of auctions encountered are the so-called first-price sealed

                                               
8 Anderson and Baland (1999) find strong support for this claim in their sample of low

income households in Nairobi. Thomas (1993) reports that income in the hands of women

tends to increase the share of the household budget spent on health, education and housing as

well as improvements in child health.
9 There is sufficient empirical evidence in support of this assumption. See, among

others, Calomiris and Rajaraman (1998).
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bid auction and the oral English auction. In the former, each active member10 submits a closed

envelope with her bid. In a meeting, the envelopes are opened and the highest bid receives the

pot at the price of her bid submitted. Equivalently, each active member communicates her bid

to the organizer of the Rosca privately who then allocates the pot to the participant with the

highest bid.

In an oral English auction, the active participants of the Rosca meet and submit

successive oral bids until only one bidder, the winner, remains. We might ideally think of an

oral English auction as a so called button auction where each bidder presses a button in front

of him as the standing bid continuously increases. A bidder drops out of the bidding process

once she releases the button. The auction is over once there is only one bidder pressing her

button (see Matthews, 1990). She receives the pot at a price equal to the standing bid at the

moment the last bidder dropped out. For the derivation of bidding equilibria in the oral English

auction, it is useful to consider a second price sealed bid auction. In this auction, as in the first

price sealed bid auction, the active participants submit their bids in sealed envelopes. The

highest bid wins but this time the winner does not pay his own bid, but the second highest bid.

Although this type of auction is not reported in any of the Rosca literature, its equilibrium

bidding strategy is the same as in the oral English auction. In the button auction, each bidder’s

problem is to decide when to release the button. Suppose, however, that each agent releases

her button at a standing bid equal to her bid in the second price sealed bid auction. If

participants follow this rule, the payoffs to all participants are equal in the second price sealed

bid and the English auction. In the language of game theory, the reduced normal form games

corresponding to the second price sealed bid and the oral English auction are identical. Thus

they are strategically equivalent, which implies that the equilibrium in the second price sealed

                                               
10 Throughout this paper, those participants who have not yet received a pot are

referred to as ‘active’ .
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bid auction is also the equilibrium of the oral English auction.11

Roscas with an oral English auction are prevalent in rural settings where the meetings

each period also have a socializing function. The members typically belong to the same social

group, e.g. caste (see, e.g., Bouman, 1979). In such cases, it is likely that the participants are

fairly well informed about each other’s incomes. In urban settings, in contrast, while mostly

still belonging to the same social group, participants frequently do not know each other outside

the Rosca. Often, the Rosca is administered by a professional organizer (see, e.g., Kumar,

1991). Consequently, the members know little about the other participants’  incomes. Therefore

the following analysis is limited to the following cases. First we consider Roscas with oral

English auctions under public information on incomes. Secondly we analyze Roscas with first

price sealed bid and oral English auctions under private information on incomes.

A Public Information on Incomes, Oral English Auction

In an oral English auction, if agent two drops out of the bidding process first, agent one’s

consumption in period one is given by y1 - m + (2m – b2 + b2/2) where y1 – m is his period one

income minus his contribution to the Rosca and (2m – b2 + b2/2) is the pot he receives minus

the standing bid at which agent two drops out, plus half of this bid that is redistributed to him.

If he is a period one winner, his period two consumption is y – m where y is agent one’s period

two income. Accordingly, his expected utility is ~( / , )u y m b Y m1 2 2+ − − , where

~u (⋅, X) ≡ E2[u(⋅, X)] = u x dF x
y

y

l

u

( , ) ( )⋅ 2
2

2

. If, on the other hand, agent one drops out of the

bidding process first, his expected utility is given by ~( / , )u y m b Y m1 1 2− + + , where b1 is the

standing bid at which he drops out.

                                               
11 This result is in line with the standard literature on auctions, see, e.g., Matthews,

1990.
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What is a participant’s maximum willingness to pay for the period-one pot, b0 say?

Obviously, at a price of b0, he attains the same level of utility no matter whether he receives the

pot or not. Formally,

(3.1) b0(y) ≡ { b: ~( / , ) ~( / , )u y m b Y m u y m b Y m− + + = + − −2 2 } .

I shall argue that b0 corresponds to a bidder’s value in a standard (not a Rosca) auction with

symmetric independent private value (SIPV) bidders.12 In such auctions, by definition, a bidder

is indifferent between winning and not winning the item auctioned when she has to pay a price

equal to her true value. This definition applies to b0(⋅) in the present case. By (3.1), a bidder

with first period income y is indifferent between receiving pot one or not at a price of b0(y).

In the empirical literature on the role of Roscas as event insurance, it is observed that

the bidder with the most urgent current need submits the highest bid to auction the pot (see

Calomiris and Rajaraman, 1998). For the present model, this gives rise to

Assumption 1: b0 is strictly decreasing in period-one income, formally

db y

dy

0( )  = 2 
~( ( ) / , ) ~( ( ) / , )
~( ( ) / , ) ~( ( ) / , )

u y m b y Y m u y m b y Y m

u y m b y Y m u y m b y Y m
1

0
1

0

1
0

1
0

2 2

2 2

+ − − − − + +
+ − − + − + +

 < 0 for all y.

Assumption 1 states that we exclude decision makers whose maximum willingness to pay for

pot one is not strictly decreasing in period-one income. With this at hand, we can characterize

the bidding equilibrium for the present case.

                                               
12 In a standard SIPV bidder auction, there is one seller who owns a single, indivisible

item and n buyers. Each bidder knows n and his own valuation (or value, in short) for the item,

which is the maximum amount he would be willing to pay for the item, but none of the other

bidders’  values. The values are identically, independently distributed (see Matthews, 1990). It

is further assumed that the seller cannot set a minimum price.
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Proposition 1: If Assumption 1 holds and incomes are publicly observed, the unique

Nash equilibrium of an oral English auction implies that the bidder with the lower

period one income, j say, wins the pot and pays b0(yj) - ε with some small ε.

Proof: For j, it is a dominant strategy not to release his button before b0(yj) while for the other

bidder, i say, b0(yj) - ε is a best reply to j’s playing b0(yj) because, as long as j wins pot one, i’s

utility is increasing in the winning bid. QED

Such ‘crafty’  bidding practices are reported in Bouman (1979) where those in most urgent

need of funds are bid up higher than the actual needs of other participants would require.

B Private Information on Incomes, First Price Sealed Bid Auction

In a first price sealed bid auction, bids are submitted after both agents have observed their

respective period one incomes. If agent one bids higher than agent two, his consumption in

period one is given by y1 - m + (2m – b1 + b1/2) where y1 – m is his period one income minus

his contribution to the Rosca and (2m – b1 + b1/2) is the pot he receives minus his bid he has to

pay as the winner, plus half of this bid that is redistributed to him. If he is a period one winner,

his period two consumption is y – m. Accordingly, his expected utility is

~( / , )u y m b Y m1 1 2+ − − . The probability of this event is P(b1 > B2). If, on the other hand,

agent one submits a lower bid than agent two, his expected utility is

E u y m B Y m B b[~( / , )| ]1 2 2 12− + + > , the probability of this event being P(b1 < B2). Note that it

is assumed that bids range over an interval of the real line, so that the probability of identical

bids is zero. To derive the Bayes-Nash equilibrium bidding strategy, substitute b(Y2) for B2

where b´(⋅) < 0. Thus, agent one assumes that the other participant follows some strategy

according to which she submits higher bids the lower her period one income is. Since b(⋅) is

assumed to be smooth and strictly decreasing, the inverse function b-1(⋅) is defined and
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continuously differentiable. Consequently, agent one’s interim expected utility before

submitting his bid is given by

(3.2) E[U1| y1] = ~( / , )u y m b Y m1 1 2+ − − (1-F(b-1(b1))) 

 + E u y m b Y Y m b Y b[~( ( ) / , )| ( ) ]1 2 2 12− + + > F(b-1(b1)),
13

where the task is to maximize (3.2) over b1. Equating the derivative of (3.2) with respect to b1

to zero and substituting b(y1) for b1, we obtain the Bayes-Nash equilibrium:

-F(y1) d
dx x yE u y m b Y Y m Y x[~( ( ) / , )| ]|1 2 22

1
− + + < = = - ~( ( ) / , )u y m b y Y m1 1 1 2+ − − b´(y1)(1-F(y1))

(3.3) + { E u y m b Y Y m Y y[~( ( ) / , )| ]1 2 2 12− + + <  - ~( ( ) / , )u y m b y Y m1 1 2+ − − }  f(y1).

Equation (3.3) states that the marginal loss of expected utility from pretending to have a

slightly different y1 than that actually realized, equals the marginal gain in expected utility from

doing so. Thus b(⋅) is such that for any x ≠ y1 submitting b(x) is not optimal when one’s true

income is y1. The term on the LHS represents the loss of expected utility when pretending

y1 + dy1 instead of y1 arising from an expected lower winning bid of agent two which,

conditional on agent two winning the pot, implies a higher net transfer from agent one to agent

two. The first term on the RHS of (3.3) is the utility gain resulting from paying a lower price

for pot one in the case agent one wins, while the term in braces is the change in expected utility

arising from the change in the probability of winning the pot in period one.

Rearranging (3.2) gives the differential equation for b(⋅).

Proposition 2:

If Assumption 1 and conditions (i) and (ii) from Appendix 1 hold and incomes are

privately observed, then

                                               
13 For notational convenience, we write F(⋅) instead F1(⋅) and yk instead of yk1, k = l, u,

throughout the paper.
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(i) the symmetric Bayes-Nash equilibrium of a first price sealed bid auction is

characterized by

(3.4) b´(y1) = 2
1

2 2

2
1

1

1 1 1 1

1 1 1

f y

F y

u y m b y Y m u y m b y Y m

u y m b y Y m

( )

( )

~( ( ) / , ) ~( ( ) / , )
~ ( ( ) / , )−

− + + − + − −
+ − −

,

b(yu) = b0(yu),

(ii) bidders underbid, i.e. b(y)< b0(y) for all y < yu,

(iii) bids are strictly decreasing in income, i.e. b´(y) < 0 for all y.

Proof:

(i) Necessity follows from (3.3), sufficiency from (i) and (ii) of Appendix 1.14

(ii) and (iii) Applying L’Hôpital’s rule,15 we find that

0 > b´(yu) = 2
2 2

2 2 2
1 1

1 1

~( ( ) / , ) ~( ( ) / , )
~( ( ) / , ) ~( ( ) / , )

u y m b y Y m u y m b y Y m

u y m b y Y m u y m b y Y m
u u u u

u u u u

+ − − − − + +
+ − − + − + +

> 2
2 2

2 2
1 1

1 1

~( ( ) / , ) ~( ( ) / , )
~( ( ) / , ) ~( ( ) / , )

u y m b y Y m u y m b y Y m

u y m b y Y m u y m b y Y m
u u u u

u u u u

+ − − − − + +
+ − − + − + +

 = b0´(yu).

Thus b(yu-dy) < b0(yu-dy) for some dy > 0. Further, if b(y) < b0(y) it follows from (i) of

Proposition 2 together with Assumption 1 that b´(y) < 0. To show that b(yu-dy) < b0(yu-dy) for

some dy > 0 implies b(y) < b0(y) for all y, assume that for some y0 < yu b(y0) = b0(y0). This

implies b´(y0) = 0 > b0´(y0) and thus b(y0-dy) < b0(y0-dy) for some positive dy. Thus b(y) and

b0(y) do not intersect for y < yu.

To prove that there are no symmetric equilibria with increasing bidding strategies, b+(y)

say, notice that (i) and (ii) of Appendix 1 are sufficient to show that any strategy b+ satisfying a

                                               
14 Note that Appendix 1 only gives sufficient conditions for b being a local maximizer

of (3.2). For sufficient conditions for b being a global maximizer, see the remarks in

Appendix 1.
15 Note that the point (yu, b0(yu)) constitutes a singularity for the differential

equation (3.4).
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first order condition analogous to (3.3) constitutes a local minimum of the bidder’s resulting

interim expected utility analogous to (3.2). QED

C. Private Information on Incomes, Oral English Auction

If agent one bids lower than agent two, his expected utility is ~( / , )u y m b Y m1 1 2− + + . The

probability of this event is P(b1 < B2). If, on the other hand, agent one submits a higher bid than

agent two, his expected utility is E u y m B Y m B b[~( / , )| ]1 2 2 12+ − − < , the probability of this

event being P(b1 > B2). To derive the Bayes-Nash equilibrium bidding strategy, substitute b(Y2)

for B2 where b´(⋅) < 0. Consequently, agent one’s interim expected utility before submitting his

bid is given by

(3.5) E[U2| y1] = ~( / , )u y m b Y m1 1 2− + + F(b-1(b1))

 + E u y m b Y Y m b Y b[~( ( ) / , )| ( ) ]1 2 2 12+ − − < (1-F(b-1(b1))),

Equating the derivative of this with respect to b1 to zero and substituting b(y1) for b1, we

obtain the Bayes-Nash equilibrium:

-(1-F(y1)) d
dx s x yE u y m b Y Y m Y x[~( ( ) / , )| ]|1 2 22

1
+ − − > = = - ~( ( ) / , )u y m b y Y ms1 1 1 2− + + bś (y1)

F(y1))

(3.6)           + { E u y m b Y Y m Y ys[~( ( ) / , )| ]1 2 2 12+ − − >  - ~( ( ) / , )u y m b y Y ms1 1 2− + + }  f(y1).

The subscript s indicates that (3.6) characterizes the equilibrium of a second price sealed bid

auction. Equation (3.6) states that the marginal loss of expected utility from pretending to have

realized a slightly different y1 than is actually the case equals the marginal gain in expected

utility from doing so. The interpretation of the terms in (3.6) is analogous to (3.3). Rearranging

(3.6) yields the differential equation for bs(⋅).

Proposition 3:

If Assumption 1 and conditions (iii) and (iv) from Appendix 1 hold and incomes are

privately observed, then
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(i) the symmetric Bayes-Nash equilibrium of an oral English auction is characterized

by

(3.7) bś (y1) = 2
2 2

2
1

1

1 1 1 1

1 1 1

f y

F y

u y m b y Y m u y m b y Y m

u y m b y Y m
s s

s

( )

( )

~( ( ) / , ) ~( ( ) / , )
~( ( ) / , )

+ − − − − + +
− + +

,

b(yl) = b0(yl),

(ii) bidders overbid, i.e. b(y)> b0(y) for all y > yl,

(iii) bids are strictly decreasing in income, i.e. bś (y) < 0 for all y.

(i) Necessity follows from (3.6), sufficiency from (iii) and (vi) of Appendix 1.

(ii) and (iii) The proof of bś (y) < 0 for all y is analogous to that of b´(y) < 0. One first shows

that 0 > bś (yl) > b0´(yl). Secondly, bs(y) > b0(y) together with Assumption 1 implies bś (y) < 0.

Finally bs(y0) = b0(y0) for some y0 would imply bś (y0) > b0´(y0) and thus bs(⋅) and b0(⋅) do not

intersect for any y > yl.

To show that there are no symmetric equilibria with increasing bidding strategies, an

argument analogous to that in the proof of Proposition 1 can be applied. QED

D Discussion

Figure 1 illustrates that in a first price sealed bid auction, bidders underbid relative to their true

valuation while they overbid in an English auction. Concerning the first price auction, this

result is in line with the equilibrium bidding behaviour in a standard SIPV bidder auction.

Suppose a bidder submits b0(y) when y is her period one income. In this case, winning the pot

does not make her any better off. If she submits a slightly lower bid, however, her probability

of winning decreases slightly, but if she wins she improves her situation. (3.3) and (3.4)

together with (3.6) show that, in equilibrium, the gains from underbidding more than outweigh

the corresponding losses. For a bidder with income yu, however, there is no sense in

underbidding because he loses the pot with probability one. Thus he will submit a bid equal to

b0(yu), which is exactly what the boundary condition (3.4) states.
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Figure 1. Equilibrium bidding strategies in a two-period Rosca.

bs

b0

b

       yl    yu

Turning to the second price auction, the present result of overbidding is in marked

contrast to the equilibrium behaviour in a standard SIPV bidder auction, where bidding one’s

true value is a dominant strategy. Suppose agent i bids b0(yi). If agent j submits a higher bid, i

is not any better off than if she had won the pot at a price of b0(yi). Bidding slightly more than

b0(yi), however, improves her situation if j wins. On the other hand, by bidding b0(yi) + dy, she

takes the chance of winning the pot at a price higher than her valuation with positive

probability. (3.9) and (3.10) together with (3.6), however, show that, in equilibrium, the gains

from overbidding exceed the losses except for a bidder with income yl, who wins the pot with

probability one. Thus bs(yl) = b0(yl). The key lesson from this is that, contrary to the standard

SIPV bidder second price auction, bidding in a Rosca is always strategic and equilibria in

dominant strategies fail to exist. The reason for this arises from the fact that, in the terminology

of Kovsted and Lyk-Jensen (1999), in a Rosca auction, the seller is internalised in the group of

bidders. As a consequence, the loser of a Rosca auction is not left with the same economic

situation as before the beginning of the auction, but rather receives a gain from the share of the

winning bid that is distributed to him.
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Another interesting feature is the relationship between the rate of time preference and

bidding. If participants have utility functions of the form u(x1, x2) = v1(x1) + β v2(x2) where β is

a discount factor, it is easily shown that

db

d
y

E v Y m v Y m

v y m b y v y m b y

0
2 2

1
0

1
02

2 2β
( )

[ ( ) ( )]

( ( ) / ) ( ( ) / )
= − − +

′ + − + ′ − +
 < 0 for all y,

db

d
y

′ >
β

( ) 0 and 
db

d
ys′ <

β
( ) 0  for all y. Thus high discounting of future consumption goes

together with unambiguously higher bids for pot one. This comes as no surprise, as individuals

who care less about future consumption are less concerned about a possible obligation to pay a

net transfer of m one period later than receiving the pot in period one.

4  The Design of Equivalent Rosca Auctions

In this section it is shown that participants’  payoffs are independent not only of how the

winning bid is distributed among participants, but also, more surprisingly, of the amount of the

contribution participants make to the Rosca in period one.

Assume that participants have agreed on redistributing a fraction of (1-δ) of the amount

the winner of pot one has to pay back to the winner, where 0 < δ ≤ 1. Then the winner’s

consumption in period one is (y1 – m) + (2m – b + (1-δ) b) where b is the amount he has to

pay. For the loser, period one consumption is given by (y1 - m) + δ b. Thus, in equilibrium,

expected utility at the interim stage is given by

(4.1) E[U| y1, δ] = E[ ~( ( , , ), )u y m b Y y Y m1 2 1− + +δ δ |Y2 < y1] F(y1)

 + E u y m b y Y Y m Y y[~( ( , , ), )| ]1 1 2 2 1+ − − >δ δ (1-F(y1)),

where E[U| y1] in (4.1) comprises both the English and the first price auction considered in the

previous section. b(⋅,⋅,δ) indicates that bidding now appears to depend on the value of δ.

Substituting b(⋅,⋅,1/2)/(2δ) for b(⋅,⋅,δ), however, transforms (4.1) to interim expected utility

under the rule that distributes the price paid for pot one equally among participants. Thus for
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any δ and any of the auction regimes considered previously, participants will receive the same

payoffs in equilibrium. This means that, theoretically, the participants would not have to decide

on the value of δ until the very start of the auction, no matter what incomes they observe.

What payoffs occur if, in period zero, participants agree not to pay in any contributions

in period one, but only in period two, and stage an auction for pot two in period one? If the

said auction is held as an English auction, participants will receive the same payoffs as in a

usual Rosca where they stage a first price auction for pot one. The payoffs of a usual Rosca

with an English auction, on the other hand, equal those from a Rosca with no contributions in

period one when a first price auction for pot two is staged in period one. To see this, note that,

in equilibrium, interim expected utility in the latter case is given by

(4.2) E[U∆
1 | y1] = ~( ( ), )u y y Y m1 1− +∆ F(y1) + E u y Y Y m Y y[~( ( ), )| ]1 2 2 1+ − >∆ (1-F(y1)),

where ∆(⋅) represents the bidding strategy played in the first price auction in period one. Recall

that equilibrium interim expected utility in a usual Rosca with a second price auction in the first

period is

(4.3) E[Ubs

2 | y1] = ~( ( ) / , )u y m b y Y ms1 1 2− + + F(y1)

 + E u y m b Y Y m Y ys[~( ( ) / , )| ]1 2 2 12+ − − > (1-F(y1)).

Now, for any 
�

bs (⋅), define the one to one mapping

(4.4)
�

∆ (⋅) = m - 
�

bs (⋅)/2.

For any pair of bidding strategies (
�

bs1 (⋅), 
�

bs2 (⋅)) the agents can play in the usual Rosca second

price auction, the pair (
�

∆1(⋅), 
�

∆2 (⋅)) in a first price auction for pot two in period one yields

identical payoffs for all y1. Consequently, the equilibrium in the latter arrangement will involve

∆(⋅) = m - bs(⋅)/2. The proof of the payoff equivalence of a usual Rosca with a first price

auction and a Rosca without period one contributions and a second price auction for pot two

in period one is analogous. There, the equilibrium involves ∆s(⋅) = m - b(⋅)/2.
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These results show that, in a usual Rosca, the net transfer the loser of pot one (‘she’)

pays to the winner can literally be interpreted as her bid for a net transfer of m one-period

ahead. It further highlights the crucial importance of the fixed amount period two transfer as an

incentive for participants to pay an ex ante utility increasing transfer in period one.

5  Preferences for Risk Bearing and Preferences for Roscas

With the results of the previous two sections in hand, we can now ask the question: how do

preferences for risk-bearing influence the decision to participate in a bidding or a random

Rosca? To answer this question, we shall make use of the concept of temporal risk aversion,

which was first defined by Richard (1975) as follows: a decision maker is said to be

multivariate risk averse if, for any pair (x, y), u12(x, y) < 0 and multivariate risk seeking if

u12(x, y) > 0. The case of u12(x, y) = 0 is defined as multivariate risk neutrality. If u’s arguments

refer to consumption at two points in time, ‘multivariate’  may be replaced by ‘ temporal’  (see

Ingersoll, 1987). This concept can be illustrated as follows: Consider two lotteries L1 and L2

that are both resolved in period zero. L1 involves a consumption level of x in both periods with

probability 0.5 and a consumption level of y in both periods with probability 0.5. L2 involves a

consumption level of x in period one and y in period two with probability 0.5, and y in period

one and x in period two with probability 0.5. A temporal risk averse decision maker prefers L1

to L2, while a temporal risk seeking decision maker prefers L2 to L1 for any pair (x, y). Thus,

loosely speaking, a temporal risk seeking agent has a preference for lotteries whose payoffs are

positively correlated over time while a temporal risk averse agent prefers negatively correlated

payoffs.16

A Random Roscas

                                               
16 Ronn (1988) argues that for a temporal risk averse agent, consumption levels in any

two periods are ‘substitutes through time’ while they are complements for a temporal risk

seeker.
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A random Rosca does exactly the latter. While uncorrelated without the Rosca, consumption

levels of random Rosca participants are negatively correlated. To make this argument rigorous,

we write a random Rosca participant’s ex ante expected utility as

(5.1) E[UR] = E u Y m Y m u Y m Y mY Y1 2 1 2 1 2 2, [ ( , ) ( , )] /+ − + − + ,

where EY Y1 2, [⋅] indicates that expectation is taken both over Y1 and Y2. For the sake of analytical

tractability, we concentrate on Roscas with an infinitesimally small contribution m. Evaluating

the derivative of (5.1) w.r.t. m at m = 0 yields zero, while the second derivative

(5.2)
d E U

dm
E u Y Y u Y Y u Y Y

R

m

2

2
0

11 1 2 22 1 2 12 1 22 2
[ ]

[ ( , ) ( , ) ( , )]
| =

= + − .

It is seen that if u12 is positive, equation (5.2) is negative and thus not participating in a random

Rosca is the optimal decision. If, however, u12 < 0, the case is ambiguous. The question then is

whether the effect of temporal risk aversion arising from the negative cross derivative

outweighs the effect of static risk aversion arising from the concavity of u in each argument.17

Formally, similar to Ronn, 1988, define the coefficients of static and temporal risk aversion

RAt(x1,X2) ≡ −
~ ( , )
~( , )

u x X

u x X
tt

t

1 2

1 2

 and TRAkt(x1,X2) ≡ −
~ ( , )
~( , )

u x X

u x X
kt

t

1 2

1 2

,

respectively, to rewrite (5.2) as

(5.3) 
d E U

dm
E u Y Y TRA Y Y RA Y Y u Y Y TRA Y Y RA Y Y

R

m

2

2
0

1 1 2 21 1 2 1 1 2 2 1 2 12 1 2 2 1 22
[ ]

[ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ]
| =

= − + − .

Defining autarky as not participating in a Rosca, we thus have

Proposition 4: If TRA21(y1, y2) ≤ RA1(y1, y2) and TRA12(y1, y2) ≤ RA2(y1, y2) for all

y1, y2, then autarky is preferred to participation in a random Rosca with a small

contribution m.

                                               
17 Notice, however, that - u12 > - u11 - u22 for all x1, x2 implies that (d2x2/dx1

2) < 0

whenever (dx2/dx1) = 1, i.e. u’s indifference curves are not convex.
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A borderline case arises when u(x1, x2) = v(x1 + x2) for some strictly increasing and

concave function v.18 Then TRAtk = RAt = RAk and such individuals are indifferent between

participating in a random Rosca or not. Although a certain degree of temporal risk aversion

seems plausible for individuals whose consumption is not well above the subsistence level, it is

rather unlikely that any individual in this situation would improve her ex ante expected utility

by joining a Random Rosca.19

B Public Information on Incomes, Oral English Auction

If Information on incomes is public and an English auction is staged in period one, it follows

from the results of section 3 that ex ante expected utility in equilibrium is given by

(5.4) E[U3] = EY1
[ ~( ( ), )u Y Y Y m1

0
1+ −∆ (1-F(Y1)) + E u Y Y Y m Y YY2 1

0
2 2 1[~( ( ), )| ]− + <∆ F(Y1)],

where ∆0(y) ≡ m – b0(y)/2. For simplicity, it is assumed here that the winner of pot one pays

b0(y) instead of b0(y) - ε. Integrating by parts and employing a change of variable gives

(5.5) E[U3] = E u Y Y Y m u Y Y Y m Y YY Y1 2 1
0

1 2
0

1 1 2, [~( ( ), ) ~( ( ), )| ]+ − + − + <∆ ∆ .

Defining ω(y,ρ) ≡ 
~ ( , )
~( , )

~( , )
~ ( , )

u y Y

u y Y

u Y

u Y
2

1

1

2

ρ
ρ

 and evaluating the derivative of (5.5) w.r.t. m at m = 0

yields

                                               
18 If v(x) = x, this is the case of risk neutral agents who do not discount future

consumption.
19 Only few studies have addressed the relationship between static and temporal risk

aversion empirically, none of them in the context of a developing country. In a data set of US

consumers, however, Epstein and Zin (1991) find a statistically significant positive

intertemporal elasticity of substitution which, in their framework, implies that static risk

aversion is more pronounced than temporal risk aversion.
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Proposition 5: Assume that information on incomes is public, an English auction is

staged and Assumption 1 holds. Then a sufficient condition for participation in such a

Rosca is

(5.6) [ω(yl,ρ) RA Y TRA Y1 12( , ) ( , )ρ ρ− ]  ≥ 0 for all yu ≥ ρ ≥ yl.

Proof: See Appendix 2, Section A.

Notice that, for arbitrarily small m, Assumption 1 implies that RA Y TRA Y1 12( , ) ( , )ρ ρ>

for all yu ≥ ρ ≥ yl and that ω(y,ρ) is strictly decreasing in ρ.20 Since ω(y,ρ) = 1 whenever y = ρ,

it is clear that Assumption 1 alone is not sufficient for (5.6) to hold. It is obvious, however,

that individuals whose static risk aversion is sufficiently more pronounced than their temporal

risk aversion, participate in such a Rosca.

C Private Information on Incomes, First Price Sealed Bid Auction

Turning to the case of private information on incomes, equilibrium ex ante expected utility

when a first price auction is staged can be written as

(5.7) E[U1] = E u Y Y Y m u Y Y Y m Y YY Y s s1 2 1 1 2 1 1 2, [~( ( ), ) ~( ( ), )| ]+ − + − + <∆ ∆ ,

which is equivalent to (5.5) with ∆s substituted for ∆0. We thus obtain

Proposition 6: Assume that information on incomes is private, a first price sealed bid

auction is staged and Assumption 1 holds. Then

(i) a sufficient condition for participation in such a Rosca is

(5.8) [ω(yl,ρ) RA Y TRA Y1 12( , ) ( , )ρ ρ− ]  ≥ 0 for all yu ≥ ρ ≥ yl.

(ii) for arbitrarily small m, expected ex ante utility from participation in such a Rosca

is as least as high as expected ex ante utility from participation in a bidding Rosca

under public information on incomes when an oral English auction is staged.
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Proof: See Appendix 2, Section C.

Notice that (5.8) and (5.6) are equivalent. Part (ii) of Proposition 6 says that, for

certain preferences, participation in a bidding Rosca under private information on incomes

might be advantageous, while, for the same preferences, this might not be the case if

information on incomes is public.

D Private Information on Incomes, Oral English Auction

Proceeding as in the previous subsection, equilibrium ex ante expected utility when an oral

English auction is staged can be written as

(5.9) E[U2] = E u Y Y Y m u Y Y Y m Y YY Y1 2 1 2 2 2 1 2, [~( ( ), ) ~( ( ), )| ]+ − + − + <∆ ∆ .

We thus obtain

Proposition 7: Assume that information on incomes is private, an oral English auction

is staged and Assumption 1 holds. Then a sufficient condition for participation in such

a Rosca is

(5.10) [ω(yl,ρ) RA Y TRA Y1 12( , ) ( , )ρ ρ− ]  ≥ 0 for all yu ≥ ρ ≥ yl.

Proof: See Appendix 2, Section D.

E Discussion

For both types of auctions, temporal risk seeking and moderately temporal risk averse agents

seek to participate in a bidding Rosca. When m is close to zero and temporal and static risk

preferences are uniform in the sense that temporal are smaller than static coefficients of risk

aversion for all possible realizations of period-one income, then the set of preferences inducing

participation in a random Rosca does not intersect with the set of preferences inducing

                                                                                                                                                  
20 See Appendix 2, Section B for a proof.



24

participation in bidding Roscas with strictly decreasing equilibrium bidding strategies. For

preferences whose coefficient of temporal risk aversion is uniformly higher than the coefficient

of static period one risk aversion, participation in bidding Roscas with strictly increasing

equilibrium bidding strategies can be favourable. All of the qualitative empirical evidence (see,

e.g., Calomiris and Rajaraman, 1998), however, suggests that such bidding behaviour does not

occur in reality, and it is therefore not analyzed in this paper.

6  The Contributions in a Bidding Rosca

In section 3, I assumed m as fixed. The participants’  problem, however, is to determine the

optimal value of m, m*  say, before starting a Rosca, thus maximizing ex ante expected utility

E[Uk], k =1, 2, 3 over m. In general, this problem has no explicit solution. One can, however,

extend some familiar results about decision makers with constant relative (CARA) and

constant absolute risk aversion (CRRA) to the question of optimal contributions to a Rosca.

If agents are temporal risk neutral, their utility function can always be written in an

additively separable form, i.e. u(x1, x2) = v1(x1) + v2(x2) (see Richard, 1975). For CARA, we

consider utility functions of the form u(x1, x2) = v(x1) + β v(x2) with v(y) = -Exp[-ay] and β ≤ 1.

In this case (5.9) evaluated at m*  becomes

(6.1) E[U1] =

− − + − + − + −v y v m b y v y v m b y dF y dF y v Y v m v m
y

y

y

y

ll

u

( ) ( * ( ) / ) ( ) ( * ( ) / )) ( ) ( ) ( / )~( ) ( *) ( *)1 1 2 1 1 22 2 2
2

β ,

where I have used v(x1 + x2) = -v(x1) v(x2) and ~( ) ( ) ( )v X v x dF x
y

y

l

u≡ 2
2

2

. If the range of each

period’s income random variable is shifted upwards by say α dollars, we find that the bidding

strategy remains unaltered and the resulting ex ante expected utility is E[Uα
1 ] = -v(α)E[U0

1 ].

Thus, as expected, m*  is independent of α.
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Turning to constant relative risk aversion, we are interested in period felicity functions

of the form v(y) = (ya – 1)/a. Multiplying the income variable by α and evaluating at the

optimum contribution to the Rosca, mα* , we obtain

(6.2) E[Uα
1 ] =

v y m b y v y m b y dF y dF y v Y m v Y m
y

y

y

y

ll

u

( * ( ) / ) ( * ( ) / )) ( ) ( ) ( / )[~( *) ~( *)]α α β α αα α α α α α1 1 2 1 1 22 2 2
2

+ − + − + + + + − ,

where bα is the equilibrium bidding strategy corresponding to mα* . It can be shown that,

evaluated at mα = αm1* , E[Uα
1 ] =αa E[U1

1 ] + (1+β)v(α) where bα = αb1. Thus, as expected, if

m1*  maximizes E[U1
1 ], then mα = αm1*  maximizes E[Uα

1 ]. In both the CARA and the CRRA

cases, the proof for Roscas with an English auction under both private and public information

on incomes is analogous.

To conclude this section, we consider a numerical example where

u(x1, x2) = log(x1) + β log(x2) and income within each period is uniformly distributed on the

interval [1, 2]. If there is no discounting, i.e. β = 1, the optimum contribution is 0.077 if a first

price auction is staged and 0.083 if the Rosca involves an English auction. If information on

incomes is public and there is an English auction for pot one, 0.075 obtains. For strong

discounting, that is β = 0.5, the corresponding values are 0.104, 0.109 and 0.096, respectively.

7  Ex-ante, Interim and Ex-post Considerations

Section 5 discussed which preferences induce participation in bidding or random Roscas based

on ex ante expected utility. This section focuses on the interim and ex post stages. The former

is most conveniently analyzed graphically. Consider the following zero sum situation after

incomes in period one have been revealed, where the first agent’s utility is ~u (y1+t1, Y+t2) and

the second agent one’s ~u (y2-t1, Y-t2). Their indifference curves can be illustrated in the

t1-t2-plane, where the origin represents autarky. It can be shown that when agents are temporal

risk seeking or when temporal risk aversion is moderate, agent one’s indifference curves are
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convex to the origin while those of agent two are concave. Further, if y1 = y2, they have the

same slope, and if yi < yj, then i’s indifference curve is steeper than j’s at the origin. Without

loss of generality, let y1 < y2. The situation is depicted in figure 2. Agent one’s preferred set is

to the north-east while agent two’s is to the south-west.

Figure 2. Rosca allocations at the interim stage.
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If there is a Rosca with contributions m, then the set of feasible allocations is limited to

R = { (t1,t2): t2=m or t2=-m} . A random Rosca allocates the pots such that C and D of figure 2a

occur with equal probabilities. In the case of a bidding Rosca with private information, since

both types of auctions considered in this paper yield the outcome that pot one is allocated to

the participant with the lower income in period one and that bids are always smaller than 2m,

the actual outcome will always lie on one of the two broken horizontal lines. In the present

example, it is the one marked R´, since y1 < y2. Figure 2a depicts a situation where period one

incomes are such that, in principle, both participants can improve their interim expected utility

through the Rosca. In particular, the core is given by that segment of R´ that lies in the lens

bordered by I1
a and I2

a, which is denoted by Q. In contrast, Figure 2b depicts a situation where

y1 and y2 are not far enough apart from each other to provide gains from the Rosca with

contribution m. It is immediately clear that in this latter case, at the interim stage, both

participants can be worse off through participation in the Rosca than under autarky.

Does a bidding Rosca always imply a Pareto improvement if incomes are sufficiently

different as depicted in figure 2a? The answer is: not always. Consider a first price auction for

pot one. It was shown in section 4 that the resulting payoffs are equivalent to those resulting

from a Rosca with no contributions in period one and a second price auction for pot two

staged in period one. First consider the role of ∆0 in the context of figure 2. Agent one’s

indifference curve corresponding to ∆0(y1) is I1
0 because –t1

A = t1
B = ∆0(y1). Graphically, I1

0 is

found to be that indifference curve which cuts a straight line through the origin (denoted by g)

on both of the broken lines simultaneously. Since, in the present example, agent one’s bid is the

one that determines the actual transfer ∆ and ∆s(y) > ∆0(y) except at yu, it follows that

∆s(y1) > t1
B. However, ∆s(y1) need not fall into the set Q. If y1 is relatively low, overbidding is

high and the participants might end up to the right of Q involving an improvement for agent

one (‘she’) but a deterioration for agent two. If, however, her period one income is high,



28

overbidding is small, and the equilibrium payoffs may lie somewhere to the left of I1
a. With an

English auction for pot one, the case is analogous. Now t1 = ∆(y2), is the resulting transfer and

again, equilibrium payoffs may involve a Pareto improvement or not.

To complete the analysis, we consider the ex post stage. It is clear that, as in the

interim stage, both participants can be worse off than under autarky. Assume, for simplicity,

that they earn yi* , the certainty equivalent to period two income Y given consumption in the

first period, i.e. ~u (yi+ti, Y-m) = u (yi+ti, yi* -m). Then the results from the interim case carry

over directly to the ex post stage. These findings are in marked contrast to Kovsted and Lyk-

Jensen (1999) where, ex post, all members attain a higher level of utility than under autarky,

essentially because their agents face deterministic incomes and the earlier access to an

investment good through funds from the Rosca unambiguously increases every participant’s

utility.

If information on incomes is public and there is an English auction, will the participant

with the higher period-one income always improve his situation at the interim stage? In both

figure 2a and 2b, the Nash equilibrium outcome is approximately B, because agent one

(y1 < y2) is driven down to approximately ∆0(y1). It is thus clear that, compared to autarky,

agent one’s interim situation always deteriorates. Thus, the ex ante attractiveness of

participating in a Rosca under these circumstances arises solely from those cases where a

prospective participant achieves the higher period-one income. But even then, an improvement

is not certain. While agent two unambiguously improves his position in situations like in

figure 2a, where there is scope for a Pareto improvement, in general, his interim and ex post

utility might be lower than under autarky. Such a case is depicted in figure 2b.

8  Conclusion

Roscas can offer insurance for homogenous, risk averse individuals with stochastic incomes

who do not have access to credit. It has been established that, under the assumptions set out
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above, bidding Roscas offer advantages for a wide class of participants’  preferences, namely

when temporal risk aversion is less pronounced than static risk aversion. Under this

assumption, participation in a random Rosca does not occur. If, on the other hand, temporal is

stronger than static risk aversion, participation in a random Rosca increases expected utility,

while participation in a bidding Roscas can be advantageous. Compared to first-best insurance

contracts that can be arranged when individuals observe their contract partner’s income,

Roscas impose severe restrictions on the set of feasible allocations among participants within

each period, arising from a fixed transfer in the last period and strategic behaviour of bidders in

prior periods. By doing this, however, they stimulate a net transfer from the better to the worse

off each time a pot is auctioned and thereby overcome information asymmetries.

When incomes are public knowledge, more efficient insurance arrangements are

available than a Rosca. If, however, commitments involving variable contributions in the future

cannot be enforced, Roscas may also be observed because their key feature is a fixed

contribution in each period, an escape from which is only possible by default. In such

situations, the results derived here suggest that participation in a bidding Rosca is

advantageous to individuals whose static risk aversion is stronger than temporal risk aversion.

In this paper, it has been shown that equilibrium bidding likely causes outcomes that are

inferior to the situation in which incomes are private information. In this connection it should

be noted that the analysis is restricted to a one-shot game. Should participants decide to start a

new Rosca once one is finished, there would be a repeated game, and socially more favourable

forms of bidding might be observed, with participants not complying with such a norm being

excluded from future Roscas.

In Besley et al. (1993) and Kovsted and Lyk-Jensen (1999), it is proved that, for a

group of homogenous individuals, a random Rosca is always preferred. In contrast, the results

derived here suggest that, if reasonable restrictions on preferences are imposed, a bidding
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Rosca is preferred, because it can allocate funds to those with the most urgent current need.

This is, in principle, a similar effect to that observed in the former two studies when individuals

are heterogeneous. There, however, heterogeneity is a permanent individual characteristic and

bidding serves to accommodate those with the highest willingness to pay first, which in turn

generates a gain for the other members through the distribution of the winning bid. In the

model presented in this paper, individuals are identical ex ante and it is individual-specific

uncertainty that generates potential gains from intertemporal trade.

The predictions of the present model better explain the transactions observed in many

actual Roscas, where neither the net transfers to the recipients of pots increase steadily with

the number of rounds played, nor does the implied interest rate for such funds remain constant

or decrease monotonically. Both of these quantities fluctuate significantly in the model

presented here, although, even in the absence of savings opportunities outside the Rosca,

observed transfers to recipients of pots will increase on average if there is a positive rate of

time preference. This is fully in accordance with empirical observation, such as in Calomiris

and Rajaraman (1999).

Many of the results derived in this paper carry over to Roscas with more than two

participants. If individuals are engaged in several Roscas simultaneously whose participants do

not wholly overlap, their bidding strategies, as well as the outcomes, will change. Further

analysis is needed to clarify what constitutes an intertemporally optimal portfolio of Rosca

shares and how the resulting outcome compares to the benchmark case of a complete set of

markets for Arrow-Debreu securities.

Appendix 1

This appendix discusses conditions that ensure that (3.1) and (3.7) assume local maxima when

evaluated at b and bs, respectively. Evaluating the second derivative of (3.1) at b(y) gives
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(A1.1)
d E U y

db b b y
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It has been shown in Section 3 that the second fraction in brackets is positive. Thus, to ensure

that (A1.1) is negative, the first fraction in brackets must be bigger than the second one.

Writing the differences in the numerators of the fractions in (A1.1) as line integrals,

~( ( ), ) ~( ( ), )u y y Y m u y y Y mi s i s1 1 1 1+ − − − +∆ ∆

 = ∆ ∆ ∆( )~ ( ( ), ) ~ ( ( ), )y u y y Y m mu y y Y m di s i s1 1 1 1 2 1 1

1

1

+ − − + −
−

+

ρ ρ ρ ρ ρ , i = 1, 2,

and using the coefficients of static and temporal risk aversion as defined in section 5 allows us

to rewrite (A1.1) as

(A1.2)
d E U y

db b b y

2 1
1

1
2

1 1

[ | ]
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= f(y1)

*{ ∆ ∆ ∆ ∆s s s sy u y y Y m RA y y Y m RA y y Y m d( ) ~( ( ), ) ( ( ), ) ( ( ), )1 1 1 1 1 1 1 1 1 1
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1

+ − + − − + −
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+

ρ ρ ρ ρ ρ∆ ∆ ∆ } .

Since u1 and u2 are strictly positive by assumption, sufficient conditions for the negativity of

(A1.2) are

(i) RA y y Y m RA y y Y ms s1 1 1 1 1 1( ( ), ) ( ( ), )+ − ≤ + −∆ ∆ρ ρ  for all ρ ∈ [-1,1]

(ii) TRA y y Y m RA y y Y ms s12 1 1 1 1 1( ( ), ) ( ( ), )+ − ≤ + −ρ ρ∆ ∆  for all ρ ∈ [-1,1].

If the utility function exhibits utility independence (see Richard, 1975) it follows that the

coefficients of static and temporal risk aversion depend on period one consumption only. In

this case, (i) and (ii) respectively become

(i)’ RA y y RA y ys s1 1 1 1 1 1( ( )) ( ( ))+ ≤ +∆ ∆ρ  for all ρ ∈ [-1,1]
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(ii)’ TRA y y RA y ys s12 1 1 1 1 1( ( )) ( ( ))+ ≤ +ρ∆ ∆  for all ρ ∈ [-1,1].

(i)’  is implied by decreasing absolute risk aversion (DARA) for period one decisions while (ii)’

holds if temporal risk aversion is less pronounced than static period one risk aversion.

For the second price auction, we evaluate the second derivative of (3.7) at bs(y1):

(A1.3)
d E U y

db b b ys

2 2
1

1
2

1 1

[ | ]
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u y y Y ms

1 1 1 1 1 1
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∆

∆ ∆
∆

.

As shown in section 3, the second fraction in brackets is negative. Further, if u12 ≥ 0, then

~( ( ), ) ~( ( ), )u y y Y m u y y Y m1 1 1 1 1 1+ − − − +∆ ∆ ≤ 0. Thus, for the second price auction, temporal

risk neutrality or temporal risk preference ensures a local maximum. If, on the other hand,

u12 ≤ 0, the following sufficient conditions can be obtained.

(iii) RA y y Y m RA y y Y m1 1 1 1 1 1( ( ), ) ( ( ), )− + ≤ + −∆ ∆ρ ρ  for all ρ ∈ [-1,1]

(iv) TRA y y Y m RA y y Y m12 1 1 1 1 1( ( ), ) ( ( ), )+ − ≤ − +ρ ρ∆ ∆  for all ρ ∈ [-1,1]

If utility independence holds,

(iii)’ RA y y RA y y1 1 1 1 1 1( ( )) ( ( ))− ≤ +∆ ∆ρ  for all ρ ∈ [-1,1]

(iv)’ TRA y y RA y y12 1 1 1 1 1( ( )) ( ( ))+ ≤ −ρ∆ ∆  for all ρ ∈ [-1,1].

(iii)’  is implied by non-decreasing absolute risk aversion while, as in (ii)’ , (iv)’  holds if temporal

risk aversion is less pronounced than static risk aversion.

If preferences are such that a ‘≥’  obtains instead of ‘≤’  in (i) and (ii) [(iii) and (iv)]

simultaneously, then b(y) [bs(y)] is a local minimum. In such cases, however, an increasing

Bayes-Nash equilibrium bidding strategy b#(y) [bs
#(y)] exists that maximizes interim expected

utility.

Sufficient conditions for pseudoconcavity of (3.1) and (3.7) in b1 which ensures global

maxima, can be derived along the same lines as for the local maxima. The content of the
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resulting conditions is essentially the same as that of (i)-(iv), although the notation becomes

considerably messier.

Appendix 2

A Proof of Proposition 5

Another way to write equation (5.5) is

(A2.1) E[U3] = ~( ( ), ) ~( ( ), ) ( ) ( )u y y Y m u y y Y m dF y dF y
y

y

y

y

ll

u

1
0

1 2
0
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2
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Taking the derivative of (A2.1) w.r.t. m and evaluating the result at m = 0 yields
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The third equality follows from the fact that, at m = 0, 
∂∆

∂

0( )y

m
 = 

~ ( , )
~( , )

u y Y

u y Y
2

1

. The inequality

follows from the fact that, given the infinitesimal version of Assumption 1 holds, ω(y,ρ) is

strictly increasing in y. See Section B of this appendix. QED

B

For m = 0, b0(y) = 0 for all y. Thus for an arbitrarily small m, Assumption 1 translates into
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(A2.3)
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which implies RA1(y,Y) > TRA12(y,Y) for all y. Further,

∂
∂

ω ρ
ρ

( , )y
 ≡ ω(y,ρ) TRA Y RA Y12 1( , ) ( , )ρ ρ− ,

which is always negative if RA1(y,Y) > TRA12(y,Y) for all y, and

∂
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ω ρ( , )y

y
 ≡ ω(y,ρ) RA y Y TRA y Y1 12( , ) ( , )−

which is always positive if RA1(y,Y) > TRA12(y,Y) for all y.

C Proof of Proposition 6 (i) and (ii)

Write equation (5.7) as

(A2.3) E[U1] = ~( ( ), ) ~( ( ), ) ( ) ( )u y y Y m u y y Y m dF y dF ys s
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Evaluating the derivative of (A2.3) w.r.t. m at m = 0 and proceeding as in (A2.2) yields

(A2.4)
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where the inequality follows from 
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 for all y < yu. To see this, notice that, at

m = 0, ∆0(y) = ∆s(y) = 0 for all y. Further, recall that, as a consequence of Proposition 2,

∆s(y) > ∆0(y) for all m > 0 and all y < yu. Thus, at m = 0, 
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 for all y < yu.

To ensure that, for arbitrarily small m, b(y) is in fact an optimal strategy in the Bayes-

Nash sense, optimality of b(y) requires 
d E U y

db b b y

2 1
1

1
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[ | ]

| ( )=

 from (3.2) to be negative.21 Since

                                               
21 As in Appendix 1, this requirement only ensures local, not global optimality of b(y).
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, evaluated at m = 0, is equal to zero, for an infinitesimally small m,

optimality of b(y) thus requires that
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which is satisfied when TRA y Y RA y Y12 1 1 1( , ) ( , )<  for all y1. But this is exactly what the

infinitesimal version of Assumption 1 says [see equation (A2.3)]. QED

D Proof of Proposition 7

Writing equation (5.9) as
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The inequality follows from the fact that, at m = 0, 
∂∆
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> ∂∆

∂
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m

y

m
l

0

 for all y > yl. To see this,

notice that ∆(y) > ∆0(yl) for all y > yl and m > 0 (see Proposition 3). Further, at m = 0,

∆0(y) = ∆(y) = 0 for all y. Thus, at m = 0, 
∂∆

∂
> ∂∆

∂
( ) ( )y

m

y

m
l

0

 for all y > yl.

Ensuring that, for arbitrarily small m, bs(y) is in fact an optimal strategy in the Bayes-Nash

sense, yields the same expression as equation (A2.5). QED
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