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Abstract

We develop tests for the presence of common value components in bidders’ valuations
at symmetric first-price sealed bid auctions. These tests are fully nonparametric and
require observations only of the bids submitted at each auction. The main principle
of the test relies on the observation that the winner’s curse is only present in common
value auctions. We evaluate the performance of the test in a variety of Monte Carlo
experiments and apply it to bidding data from United States Forest Service (USFS)

timber auctions.

1 Introduction

Since the seminal work of Hendricks and Porter (1988), empirical studies of auctions have
played an important role in demonstrating the empirical relevance of economic models of
strategic interaction between agents with asymmetric information. However, a fundamental
empirical issue remains unresolved: how to test between private and common value specifica-
tions of bidders’ preferences. The theoretical importance of this distinction is well-known!,

and empirical strategies are needed to make these theoretical predictions practically useful

*We thank Hai Che and Grigory Kosenok for capable research assistance. Financial support from National
Science Foundation grant SBR 9809082 (to Haile) is gratefully acknowledged. Send e-mail correspondence
to (respectively): phaile@ssc.wisc.edu, doubleh@princeton.edu , mshum@chass.utoronto.ca.

!See Milgrom and Weber (1982) or the surveys of McAfee and McMillan (1988) or Wilson (1992) for
detailed discussions of the distinctions between these models.



for policy purposes (for example, in the design of selling mechanisms).

In this paper, we develop an empirical strategy for testing between the common and private
value paradigms using data on observed bids. The most notable feature of our approach
is that it is nonparametric, in the sense of not requiring strong parametric assumptions
about the distribution functions of bidders’ private information. Previous approaches to
testing between CV and PV have been largely parametric in nature (cf. Paarsch (1992),
Sareen (1998)).2 Our non-parametric approach employs methodology recently developed by
Guerre, Perrigne, and Vuong (1999) (hereafter GPV) and extended by Hendricks, Pinkse,
and Porter (1999) (hereafter HPP) for nonparametric structural estimation of symmetric

first-price auction models.3

Our test relies on detecting the effects of the winner’s curse on equilibrium bidding. The
winner’s curse is a distinctive adverse selection problem which only arises in common value,
but not private value settings. Winning a common values auction reveals to the winner that
he was more optimistic about the object’s value than were any of his opponents. This is
“bad news” (cf. Milgrom (1982)) in any common value auction, but particularly bad news
for a bidder with many opponents, since it implies that his information was particularly
over-optimistic. A rational bidder accounts for this by adjusting his expectation of the value
of winning the auction accordingly. This causes a bidder with a given signal of the object’s
value to have a lower expected value for the object when he faces more competitors. In a
private values auction, by contrast, the value a bidder places on the object does not depend
on his opponents’ information, so the number of bidders does not affect his expectation of

the value of the object conditional on winning.

We are not the first to use the equilibrium bidding restrictions implied by the winner’s curse
to distinguish between the CV and PV hypotheses in first-price auction data: HPP have
also proposed several tests. However, our approach differs markedly from that of HPP:
while HPP test for differences in the equilibrium bid distributions in the PV and CV model

near a binding reservation price, our test is based, loosely speaking, on the implication that

*Furthermore, there has also been reduced-form work addressing this question (eg. Gilley and Karels
(1981)). Our approach is structural, in the sense that our test statistic is derived explicitly from equilibrium
optimality conditions in the Milgrom and Weber (1982) affiliated values model.

3In general, until recently, relatively little attention has been focused on common value models. A result
of Laffont and Vuong (1996) argued that with observed bid data, a common value model was observationally
equivalent to a (correlated) private values model, which raises concerns about the fundamental empirical
applicability of common value models. However, in obtaining this result, Laffont-Vuong do not consider
data variation in reserve prices, numbers of bidders, and ez-post profits, all of which could potentially aid in
distinguishing between the private and common value paradigms.



each bidder’s expectation of the object’s value conditional on winning is decreasing in the

number of bidders in CV auctions.

The remainder of the paper is organized as follows. The following section summarizes the
underlying affiliated values auction model, the method for estimating bidders’ expected
values from the observed bids, and the test statistics we consider. Section 3 then discusses
several potential sources of bias in the tests that dictate key details of the estimation proce-
dure. Section 4 provides derivation of the asymptotic distribution of our fully nonparametric
test. In section 5 we present a bootstrap method for constructing the test, which can also be
applied to a semi-parametric test that allows for unobserved heterogeneity in tracts that is
correlated with the number of bidders. Section 6 provides Monte Carlo evidence regarding
the performance of the tests. In section 7, we consider an application to two sets of auctions
held by the U.S. Forest Service. We conclude in section 8.

2 Description of the Test

2.1 Equilibrium Bidding in a Symmetric First-Price Auction

The underlying theoretical framework is Milgrom and Weber’s (1982) symmetric affiliated
values model, which nests pure private and pure common values models as special cases. An
auction has n risk-neutral bidders (indexed ¢ = 1,... ,n), each of whom has an unknown

valuation v; for the object and receives a private signal x; about v;. Bidders’ valuations and

signals have the joint distribution F(v1,... ,v,,21,... ,z,). Bidders are symmetric, in the
sense that F is exchangeable with respect to the indices 1,... ,n. The random variables
Vlyer 3 UnyTly--- ,Tn

are affiliated.* Let F(x1,... ,7,) denote the marginal distribution of bidders’ signals. The

data consist of by, ... , by, the n bidders’ observed bids from a first-price sealed bid auction.

In symmetric models, it is natural to focus on symmetric Bayesian Nash equilibria in which
bidders use identical strategies in equilibrium: s;(-) = s(-). Furthermore, the affiliation
assumption leads to equilibrium bidding strategies which are increasing in a bidder’s signal.
Symmetry and monotonicity imply that, in equilibrium, the winner is the bidder with the

highest signal: b; > b; & s(z;) > s(z;) & z; > z;.

4 Affiliation, which roughly implies that large values for some of the variables make the other variables
more likely to be large than small, is similar in spirit but weaker than the condition of mutual positive

correlation.



Consider a bidder ¢ at a given first-price sealed bid auction. Given her signal z;, she chooses

a bid b; to maximize her expected payoff, given the other bidders’ equilibrium behavior:
by =argmaxyE [(v; — b)1{z; < s71(b), ] # i}|zi]

=argmaxyF [(v; — b)1{y; < s7'(b)}|z;] for y; = maxuz;

J#i
The first-order condition characterizing the equilibrium bid function s(-) is a differential
equation:
where

U(xaan) =F Uz’|33i =X, MaXT; =Y
J#i

:E[U1|"E1 =Z,T2 =Y, 23 < Y,--. , T <y]

and Fy,(-|z;) is the conditional distribution of the maximum signal among i’s opponents
(with fp(-|z;) the corresponding density). The conditional expectation v(z;, x;,n) above is
decreasing in the number of bidders n whenever the expectation E[v;|z1,... ,z,] depends
on zj,j # 4; i.e., whenever bidders’ valuations contain a common value element. This is
one important manifestation of the winner’s curse, and this monotonicity is the key to our

nonparametric test.

Theorem 1 E[v;|z1,... ,zy] depends on xj,j # i if and only if v(z, z,n) is nondecreasing

in n for all x and strictly increasing in n for some x. O

Proof: to be written.

Roughly speaking, in a common values auction, when a bidder ¢ with signal = conditions on
the event that max;; x; = x, this tends to reduce his expectation of the object’s value v;
relative to his expectation when conditioning just on his own signal z. Even if each signal
z is an unbiased estimate of v;, the highest of n signals is an upwardly biased estimate of
v;. This bias is increasing in n, so the conditional expectation v(z,z,n) will be decreasing

n n.

2.2 Structural Interpretation of Observed Bids

The observed data do not directly reveal the distribution of signals F', but rather the
distribution of bids. The key insight of Guerre, Perrigne, and Vuong (1999) relies on the



observation that the conditional distribution of signals F' is characterized by the conditional

distribution of bids G via the following relations:

Fn (ylz) = Gn (s(y)|s(x)) (2)

and
1
fa (ylz) X T o (s(y)ls(@)) (3)
where G, (-|s(z)) is the conditional distribution (assuming all bidders follow s(-)) of the
highest bid submitted by ¢’s competitors, which, given symmetry, will be the bidder with

the highest signal among these (n — 1) competitors.

Since in equilibrium b; = s(x;), the differential equation (1) can be rewritten
Gn(bi]b:)
9n (bib7)

The left side of this equation gives bidder 7 expected value of the object. These values

= &(b;n). (4)

v(xi, ;,m) = b; +

cannot be observed directly. However, both G, (:|-) and g,(+|-) can be nonparametrically
identified and estimated from a random sample of 7}, auctions, each involving n bidders.?
We will refer to the nonparametric estimates of these functions as, respectively, G,, and
Gn, (where the subscript n emphasizes the fact that different estimates are generated for

auctions with different number of bidders).®

By evaluating Gn and gn at each of the observed bids, we can obtain estimates of the

corresponding pseudo-values using (4):

~

G (bit|bit)
Gn (bit|bit)
This latter insight was first articulated in Hendricks, Pinkse, and Porter (1999), in their

extension of the Guerre, Perrigne, and Vuong (1999) methodology to common value models.

psit = byt + = E(big;n).

®The nonparametric estimates are given by the following formulas:

Th n

G (blb) = m S YK (b _hb“> 103 > b) )

t=1 i=1

and

1 n  (b—b b—b;
i — Ydt — it
" = . 6
N I C I C ®
Here h is the bandwidth, K (-) is a kernel, ¢ indexes all n-bidder auctions, and ¢ indexes each of the bidders.
In addition, b;; is the observed bid of bidder i from auction ¢, and b}; is the highest observed bid among
bidder #’s rival bidders in auction t.
SEstimation of G and g is described immediately below.



2.3 Main Principle of the Test

ps;t is thus an estimate of vy, (2, x;); from Theorem 1, this function is decreasing in n
keeping z;; fixed in a CV setting, but is constant across all n in a PV setting. However,
this reasoning cannot be the basis of a test; we cannot do the experiment of varying n while
holding z fixed because the above procedure does not allow us to recover the signal  which

generated the observed bid”.

However, given bid data, with enough variation across n, we can estimate nonparametri-
cally the distribution of pseudovalues across different n: let F, , denote the distribution of
pseudovalues in n-bidder auctions. Under the private value hypothesis, the distributions
Fyn,n=1,... ,N (where N denotes the maximum number of bidders observed in any auc-
tion in our dataset) should be identical, while under the common value hypothesis, these
distributions should be “increasing” (in some appropriately defined manner) in n. This is

formalized in the following corollary to theorem 1:

Corollary 1 Let F,, denote the distribution function of v(z,z,n), as induced by the dis-

tribution laws on the signals x. Under the private value hypothesis:

Fyi=Fpo=...=FN.

I

Under the common value hypothesis:
Fv,l < Fv’g <. < Fv,N
in the sense of strict first-order stochastic dominance (FOSD).®

Clearly, given corollary 1, a test for common values can be restated in terms of a test for
stochastic dominance of the distributions of the estimated pseudovalues. There are a wide
variety of ways to test either the stochastic dominance hypothesis directly or its implications
indirectly. Anderson (1996) has prescribed nonparametric tests for stochastic dominance,
although these must be extended to account for the sampling error in the nonparametric
first-step employed in computing the pseudovalues. In what follows, we propose two tests

based on comparing the moments of F, ,, across different n.

"Except in private value auctions, which Li, Perrigne, and Vuong (1999) focus on.
8Recall the definition of FOSD: the distribution function G; first-order stochastic dominates another
distribution function G if, for every increasing function U(-),

/U(m)dGl(m) > /U(m)dGQ(x).



2.4 A Quantile Approach

First, we consider comparing pseudovalues for different number of bidders at the same
quantile of the observed bid distribution, instead of at the same bid level. Let x, denote
the 7th quantile of the signals, and v, = v (2, z,,n). Then the private and common value

hypotheses can be written as:

Hy(private values) : v,1 =v;2=... =0, N

Hi(common values) : v;1 > 072> ... > UrN.

In order to estimate v, ,, we exploit the monotonicity properties of our equilibrium bidding
strategy. Given this property, the 7th quantile of the bid distribution is submitted by the
bidder with the 7th most optimal signal. The assumed homogeneity of the underlying joint
distribution allows us to compare the pseudovalues at these equivalent quantile levels.? To
be precise, let I;T,n be the 7th quantile of the observed bid function for n bidders, i.e.:

B‘r,n:Fn_l (T)=1nf(an(m) 27)7

where F,, (-) is the empirical distribution of the all the n x T}, observed bid in auctions with
n bidders. The pseudovalue for the 7th bidder in n bidder auctions is estimated by

G (brnlbron)
gAn(bT,nle,n)

Under the null private value hypothesis, o, is approximately equal across n, while under

Ur,n = b'r,n +

the common value alternative it is decreasing over n.

Since the sample quantile converges at rate \/T}, to the true quantile, the convergence rate
of v; t0 vz, 4., where x; is the 7th quantile of the marginal distribution of bidder signal,
is governed by the slow pointwise nonparametric convergence rate of g, (-). As shown in
Guerre, Perrigne, and Vuong (1999), for fixed b, § (b|b) converges at v/T;,h2 to g (b|b) due to
the estimation of a univariate conditional density. Theorem 2 below describes the limiting

behavior of each 9, p:

9Generally, this invariance property of quantiles to monotonic transformations has been previously ex-
ploited in the literature of semiparametric estimation of limited dependent variable models (Powell (1994)),
but we believe this is the first attempt to use it in other settings. Previously, this monotonicity was ex-
ploited in Hong and Shum (1999) to facilitate estimation of a structural auction model. As we noted there,
these monotonicity properties are potentially very useful in other incomplete information settings where the
equilibrium strategies (or the “policy functions”) are monotonic transformations of the unobserved types:
for example, in nonlinear pricing (and, more generally, mechanism design) models, the policy function p(z)
is often constrained to be monotonic in the type x in order to be implementable (i.e., satisfy incentive
compatibility). See (Fudenberg and Tirole, 1991. 257{F.).



Theorem 2 Assuming (i) K (u) and |pK ()| are bounded. (i) [pK (p)dp = 0. (i)
[ 2K (p)dp < oo. (i) imT,h? = oo and imT,h® = 0. Then for each fized b where

gn (b[b) f (b) > 0:
VTuh2 (0 (s~ (b),s7 1 (b),n) —v (s~' (b),s~ " (b)) ,n)
e (én (blp) _ Gn <b|b)> o (1)

gn (b]B)  gn (B]D)
d 1 %(b|b //
— N (0 ngs b|b) [ y) dxdy
Also let Fy (+) be the marginal distribution function of a bidder’s signal, then
brn— s (F1 (1)) =0 (i)
TN x P \/an

nﬁ(—ii (bie <5 (F; (7)) = 7] +0p (\/}‘p—n)

t=1 i=1

In addition, for distinct values of T1,... ,7TL, assuming
gn (s (B () s (F7" () £ (s (F7 ' (m))) >0
for eachl=1,... L, the L-dimensional vector of
\/Tph? (f) (s_l (ET,,n) 51 (l;rn) ,n) —v (F, Ym),Ft (m)), n)

converges weakly to the vector Z which is jointly normally distributed with diagonal variance-
covariance matriz whose lth diagonal element is given by

= %g(’{ ((F(Fu() |)s) (isl [/ [ wasa

O

In short, test statistics based on comparisons of pseudovalues at a fixed number of quantiles
converge at the slow rate v/T,h2, as a result of the slow pointwise convergence rate of the
nonparametric estimate of the conditional density g, (b|b). The second test we propose is
based on comparing centered moments of the pseudovalues across n, which converge at a

faster rate due to the averaging involved in calculating the sample moments.

2.5 A First Moment Approach

Theorem 1 also implies that E,v(x,z,n) is decreasing in n in symmetric CV auctions, but
is constant across n for PV auctions, where the expectation is taken over the marginal



distribution F(z) (which by symmetry is identical across all bidders). This forms the
basis of our next test. Precisely, the test is based on the same assumption that the joint
marginal distribution for any n — 1 bidders in a n-bidder auction is the same as the joint
distribution for a n — 1-bidder auction. This assumption, of course, can be made conditional
on all observed heterogeneity across objects for sale. It is obvious from the monotonicity
of &,v (z,x,n) that it is well defined for all n as long as it is defined for n = 2, which will
be assumed through the rest of the paper. For example, for a log-normal joint distribution
where (v1,z1,z2) are jointly normally distributed,

Exv (z,2,2) = Epexp (B + )

for # and a determined by the mean p and covariances ¥ of (v1,x1,z2) and is well defined
for all 4 and . On the other hand, for procurement auctions, the pseudovalue v (x,y,n) =
E(ci|lzy =z, 20 =y,23 > y,... ,zp > y) is increasing in n, but since

E(alzr =z, 22 =223 > x,... ,2pn>z)~E(c|lz1=... ,=2, =12)

as © — oo whenever the later is integrable, it suffices to have the later integrable over
the marginal distribution of z, which is true, for example, for (¢, z) jointly log-normally
distributed.

If we assume that signals are drawn randomly across all the observed auctions, we can
estimate &,[v(z,z,n)] for the set of n-bidder auctions using the sample average of the
pseudovalues calculated across all the auctions with n bidders:

Tn

.1 - X
Eav(@,z,n)] = > > psit = fin (7)
" o=1 i=1

where ps;; is the pseudovalue for the ith bidder in auction ¢, and 7;, is the number of

n-bidder auctions observed in the data set.

Under the private value assumption, v (z,z,n) = z, so that E,v(z,z,n) should be constant
across n in a series of auctions where identical objects are being sold.'® The null hypothesis

of private values, then, can be stated as
Hy: &u(z,z,1) = Eyv(x,2,2) =--- = Eyv(z,z,N) = E,x. (8)

We are particularly interested in the common value alternative hypothesis which, as the

above discussion indicates, implies:

Hy : Eyv(z,x,1) > Eyv(z,2,2) > -+ > Eyv(z,z,n). 9)

00r when object heterogeneity is controlled for by regressors in the nonparametric regression, although
for clarity of presentation we do not explicitly condition on regressors in describing the kernel regression
procedure here.
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In the appendix we derive the consistency and asymptotic distribution of f,. We show

that the convergence rate for our estimate of each [, is ﬁ, which is slower than the

1
Ty h?
rate of convergence arises because g, (b) is an

parametric rate %’ but faster than the
" 1
VTnh 8
estimated bivariate density function, but in estimating each V,, we average only along the

rate of the quantiles-based test described

above. Intuitively, the intermediate

one-dimensional 45 line (b;;, bj; = bj;) (cf. Newey (1994)). Furthermore, the asymptotic
distribution of [i,, depends on the kernel function used in the nonparametric estimation.

More precisely:

Lemma 1 Under suitable conditions on the choice of the bandwidth parameter h and the

kernel function K (-), and under smoothness conditions on the joint distribution of bids,

where

V=

[ ([ xoeenn)w] [ ] Gepal

and the double integral is over the support of the kernel function.

While the test based on averaged pseudovalues converges faster than that based on fixed
number of quantiles, but the better rate comes at the cost of more stringent smoothness

conditions at the boundary of the bid distribution.

3 Implementing the test

For the remainder of this paper, we focused on tests based on the first moment approach. We
consider a test based on regressions of pseudo-values on the number of bidders. The primary
advantage of this approach is that it allows the use of instrumental variable techniques.
This can be important in many applications where one may be concerned that observed
heterogeneity in auctions is correlated with the number of bidders. ! This could arise
if, for example, participation is higher in auctions involving more valuable objects, thus

introducing unobserved factors which are correlated with both n; and ps;.

Denote the sample of pseudo-values by {ps;;} for auctions¢ =1,... ,Tand bidsi =1,... ,n

for auction ¢, where n; is the number of bidders in auction ¢. One can then estimate the

Gee, for example, Haile (1999) and Hendricks and Porter (1999).
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regression model:

psit = d(ne) + € (11)

where ¢(n;) is a known function of n;. Letting
¢(ne) = Bn1{n; = n} (12)
n

and testing the hypothesis G, = [ Vn is obviously equivalent to the test proposed in
the preceding section. However, more parsimonious specifications (linear or polynomial
functions, for example) are also possible. The private values hypothesis restricts ¢/(n) =0
for all n while ¢/'(n) < 0 for all n if common values are present. Note that in the affiliated
values framework, which is a maintained assumption throughout the paper, pseudo-values
can only be constant in 7 or strictly decreasing in n. Hence even when ¢(n;) = a+ n: this
test has power to detect all alternatives to the pure private values models. More flexible
specifications like (12), however, will have greater power to detect nonmonotonicities or
other violations of the affiliated values assumption as well as greater power against the

common values alternative.

3.1 Details of the implementation

Li, Perrigne, and Vuong (1997) focus on consistent estimation of pseudo-values given a
sample of auctions with a constant number of bidders. We rely heavily on their work.
However, a potentially significant source of bias can arise when applying their estimation
method to make comparisons across auctions with different numbers of bidders. This is due
to the effects of “trimming” bids near the boundary of the support of the observed data.
This trimming is necessary to obtain consistent kernel estimates of pseudo-values, but care
must be taken to avoid introducing biases that are systematically related to the number of
bidders. We explain below how this can be done. We then point out problems that arise if

one pools data from auctions with different numbers of bidders.

3.1.1 Trimming

Li, Perrigne, and Vuong (1997) describe bandwidth selection for a given sample of ob-
served bids. As usual one must trim observations near the boundaries of the support of the
observed data in order to obtain consistent kernel estimates. Trimming a symmetric distri-

bution leaves the mean (and, therefore, the consistency of our tests) in tact as long as the
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same interval is trimmed off both boundaries. However, this is not the case with an asym-
metric distribution. Furthermore, the bias introduced by trimming depends on the amount
trimmed, which typically varies with n if one trims a fixed number of bandwidths for each

n. As a result, spurious relationships between pseudo-values and n may be detected.

To see this, suppose that private values are 4.i.d. with distribution F(v) = v? and that we

have auctions with n = 2 and n = 3. When n = 2, bids are distributed on the interval

[O7 %] Imagining that we observe bids over this full range, we then trim one bandwidth!?

to use bids on the interval [h, % — h]. When bids are used to estimate pseudo-values, bids

are scaled up by a factor of 2 (since b(z) = %x), giving pseudo-values distributed (ignoring
F(v)=F(3h)

sampling error) on [%h, 1— %h] according to F(T%r;‘(% Similarly, when n = 3, pseudo-

values have a truncated distribution on [3h/,1 — 21'], where A’ is the bandwidth used. Our
test for common values examines E [ps;¢|n; = 2, not trimmed]— F [ps;|n; = 3, not trimmed].

The following table shows this difference for some hypothetical values of h and h'.

n' .10 15 .20 .25 .30
h .1 -012 .017 .040 .058 .071
15 -.043 -.015 .009 .027 .040
20 -.067 -.038 -.015 .003 .016
25 -.083 -.055 -.031 -.013 .000
30 -.092 -.063 .040 .022 .009

This example demonstrates that there is bias that depends on the bandwidths used, and that
this bias is not eliminated by equalizing the range of bids trimmed from each subsample
of auctions, defined by the number of bidders. The bias can, however, be eliminated if
the trimming is equalized across subsamples, not in the space of bids, but in the space of

pseudo-values. In this example, where we know the true distribution, if
3 5
~h=-H
2 4

the bias will be gone. This can be seen in the table above, where h = .25 and h' = .30.
The problem is that we of course don’t know F(-) in practice. However, this problem can

be overcome using the following procedure:

e estimate G,, and gn using the bandwidths h,, specified by Li, Perrigne, and Vuong
(1997)

21i, Perrigne, and Vuong suggest trimming two bandwidths. This does not affect the argument, however.



13

e construct £(b;n) for each n as described above

e choose a “trimming width” h] for each n so that é (hl;n) is the same for all n, with
h! > max,, hy,Vn. Specifically, letting € denote max,, £ (h,;n), choose k!, for each n
so that £(h!;n) = €.

e re-calculate the sample of pseudo-values, using the original estimates Gn and gn, but

trimming based on h/,.

Note that this procedure leaves the consistency of the pseudo-value estimates (shown in

Guerre, Perrigne, and Vuong (1999) and Li, Perrigne, and Vuong (1997)) intact.

3.1.2 Estimation with pooled data

In many cases one will have data from a fairly large number of auctions but a relatively
small number of observations for each value of n. This may suggest pooling data across
auctions with similar numbers of bidders for estimation. However, the derivation of pseudo-
values from the distribution of bids described above assumes a constant number of bidders.
Pooling data from auctions with different numbers of bidders can lead to biased estimates

that render our tests invalid.

Take the case of independent private values distributed uniform [0, 1] and assume the same

number of auctions of each size n. In this case

n

b

§(bin) =

n—1

for given n; so for a fixed b,&(b;n) decreases in n. Since in any private values model
and many/most other affiliated values models raising the number of bidders shifts the
distribution of bids to the right, this monotonicity is likely to hold in many cases. So if
one combines auctions with different n to estimate G and g, this will lead to pseudo-values
within this group that are larger than the true v(z, z) generating the bids when 7 is low and
pseudo-values that are smaller than the true v(x,z) when n is large. So over the sample

one would estimate a spurious negative relation between pseudo-values and n.

Since there are more observations from auctions with n large in this example, this also results
in bias in the estimated average pseudo-value within the group. If one divided the sample
into sets of, say “small n” and “large n” auctions, the size of the bias could vary across the
groups, leading to spurious variation in average pseudo-values across groups. More generally,

the fact that the distribution of n within group may vary across groupings in real data—in
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some cases there may be fewer observations from larger auctions, for example—this could

create unpredictable differences in the bias across groups.

3.2 Bootstrapping

Given the computational difficulties in deriving an approximation of the asymptotic variance
of our regression coefficients (which will be linear combinations of the elements in the
asymptotic covariance matrix (10)), we consider the alternative of using the bootstrap
principle to construct confidence intervals for our regression coefficients.!> The procedure is
straightforward, although we must account for the possibility that bids (pseudo-values) from
each auction are correlated. Hence, we use a simple type of “block bootstrap” procedure.
For simplicity we describe the approach for the regression-based test using the simple linear
specification
P(ne) = o+ myfs.

After obtaining the pseudo-value estimates and an estimate of B of (8, we perform a large

number (R) bootstrap iterations. For each bootstrap iteration r = 1,... , R we:

1. Draw a bootstrap “sub-sample” separately for each value of n, where each subsample
replicates the number of bids from n-bidder auctions in the data. This is done by
drawing with replacement one of the T;, auctions and including all bids from that
auction, thereby incorporating any correlation of bids within auction in the bootstrap

data generating process.

2. Construct the full bootstrap sample of bids by combining the bootstrap sub-samples

across all n.

3. Estimate the pseudo-values associated with the rth bootstrap sample of bids: call

these ps§".

4. Run an OLS regression for the rth sample of pseudo-values ps" on n, and call the

estimate Br

5. Finally, calculate confidence bands around the original estimate ﬁ based on percentiles

of the empirical distribution of the 3,’s across all bootstrap iterations r.14

13For a discussion of the bootstrap, see Hall (1994) or Efron and Tibshirani (1993).
1T wo-sided tests can easily be constructed. Given our focus on a private values null and a common values

alternative, we use a one-sided test.
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4 Monte Carlo Evidence

To assess the performance of our tests we perform several Monte Carlo experiments. We
focus first on the regression-based test. To address both the size and power of the test, we
consider several samples of artificial bidding data, some generated according to a private
values model; others generated by a common values model. We consider three private values

specifications which differ only in the underlying joint distribution of values v(z, z) = :

(1) F(‘Tla"' am’n) = H?:l .’E?,.’Ei € [Oa 1]a
(2) F(z1,...,2n) = [[1=q @i,z € [0,1];

(3) F(z1,...,2n) = fol F(z1,...,zplc)dc = fol [T, % de,z; € [0,1].
The first two are examples of independent private values. The two cases F(z) = zand
F(z) = z? are considered because the effects of trimming on the bias of the test can vary
with the convexity of the distribution. The third case is an example of a correlated private
values environment. Here bidders’ values are ¢.i.d. conditional on an unobserved random
variable C. Conditional on C' = ¢, each z;is distributed uniformly on [0,c]. We include
this example to illustrate that our tests address not the the correlation of bidders’ private
information—often a feature of common values models, although this is neither necessary
nor sufficient for common values—but the winner’s curse that arises from the fact that each

bidder’s expected value for the object depends on opponents’ private information.

This point is emphasized further by the comparison to a pure common value model in
which the information structure is identical to that in the third example above, but now
the (common) value of the object to each bidder is the unknown random variable C. As
above, each bidder ¢observes a signal X; of this value, where each X; is independently

distributed (conditional on ¢) with distribution
T
F(zile) = —, i €0, ¢]

while C' itself is uniform on [0, 1]. The symmetric equilibrium bid function (see Matthews

(1984)) is
b(z) :/Owﬁ(t,n) (”;1) G)Hdt (13)

1
@(t,n):/ cg(clz,n)dc

where
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and!® -
(%)

(&) dw

w

n
glele,n) = ¢

z w
Finally, we consider an affiliated values model with both private and common value com-

ponents. Each bidder ¢ has valuation v; where
Inv; =Ina; +1nv

and signal z; where
Inz; =Ina; +Inv +¢;.

The random variables Inv, Ina;, and ¢; are drawn from standard normal distributions. The

equilibrium bid function for this model (see Hong and Shum (1999)) is ******

With each of these models we consider a sample of auctions with the number of bidders
varying between 2 and 9. To allow for varying precision in the pseudo-value estimates that
is likely to arise in many applications, we consider cases in which the number of auctions
of each size is held fixed (at 100) and in which the number of bids from each auction is
held approximately fixed (at as close to 200 as possible given the divisibility constraints).
These choices reflect typical sample sizes for auction data. To illustrate the importance of
estimating pseudo-values separately for each n, we compare results obtained following this
approach to those obtained when auctions are only divided into “low participation” (n < 5)
and “high participation” auctions for estimation. Finally, we illustrate the importance
of equalizing trimming in the space of pseudo-values by comparing the results obtained
this way with those obtained when we simply trim two bandwidths for each subsample of

pseudo-values (one for each n).

This yields a total of 48 combinations of model and estimation method. For each of these
we perform 1000 Monte Carlo simulations (calculating bootstrap tests using 500 bootstrap
samples at each iteration) and report the mean and standard deviation of the estimated
derivative ddp—rft“. We also report the frequency of rejecting the null hypothesis that this
derivative is zero—an indication of the test size in the case of the private values models and

of the power in the case of the common value models. Tables 1 and 2 report the results.

5To understand the bid function (13), note that each player’s valuation ©(t,n) is his expectation of C'
conditional on his own signal and the inference that when he wins the auction, this signal was the highest
among those of all n bidders. This conditioning is due to the winner’s curse. For strategic reasons, each
bidder then optimally shades his bid below his valuation, bidding his expectation of the second highest
valuation conditional on his own being the highest.
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5 An Application to USFS Timber Auctions

In process

6 Conclusions

We have provided a simple method to test for common values in symmetric first-price sealed
bid auctions. We have also pointed out the applicability of tools developed in Guerre,
Perrigne, and Vuong (1999): not just for structural estimation of auction models, but also
for direct tests of the PV hypothesis. Compared to previous parametric approaches, our test
can be more powerful, since we are not testing against a specific parametric CV alternative,
but rather against the range of all symmetric models where &,v(z,x,n) is not constant

acCross n.

We can extend our testing procedure to detect common value elements with ez ante asym-
metric bidders, as long as it is possible to identify a bidder who competes with two different
set of rivals in two different set of auctions. The only modification of the test is that we focus
on a particular bidder instead of treating them symmetrically in forming the test statistics.

Counsider, without loss of generality, bidder 1. Under the private value hypothesis:

G1(b)

1 -1 .
(b)»xkfs (b)vk#]-v] =r1=b+ ——=—
k ) Ej;él Gy (b)

& (viler = syt (b), 25 = 55

(The index n on the number of bidders has been omitted for clarity.) Therefore a test for the

presence of common values for bidder 1 can be similarly based on the average pseudovalue:

Tn

R 1 é1 (bll)
n = £ n 5 b + —
fun = £ 2 ( o+ Sl

=1

where G (b) and G1; (b) are nonparametric estimates analogous to those in equations (5)
and (6) above, and bj; denotes the highest bid among bidder 1’s rivals in auction /. Under the
private value hypothesis, fi;, should be constant across n. However, under the alternative
common value hypothesis, the magnitude of [i1,, are not clearly ordered in the asymmetric
model, since the combined effect of asymmetry and affiliation can result in either higher or
lower estimated [i1, as n increases. Nevertheless, a test of equality of average pseudovalues

for different n can still suggest absence or presence of common value elements.
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Additional extensions

e simple multi-object environments (multi-object, unit demand, pay-your bid auctions,
as in Weber (1983))7

e Major drawback is that current test requires n to be common knowledge, but test
would also be valid for HPP random-participation model which augments the non-
parametric LPV approach with a parametric model of participation?
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A Consistency of the nonparametric test

The proof essentially follows steps contained in Lavergne and Vuong (1996), as well as Powell, Stock,
and Stoker (1989), Lewbel (1998), Horowitz(1998) (cite?), among others. The steps are standard
and it is only neccessary to give an outline.

Assumption 1 There are n auctions, M bidders for each auction, M > 3. Bidders are ex ante

symmetric. The joint distribution of v,z are exchangeable inl=1,... M.

Define v (z) = E (vi|x1 = 2,22 = 2,23 < x,... ,&n < n). As shown in Guerre, Perrigne, and Vuong
(1999) and Hendricks, Pinkse, and Porter (1999), v (z) = v (s~ (b)) = b+ (;((f‘lf)) =b+ f;((f,f))
Define

b G(b7b) = GBlybl (b7b) = P(Bl <byb = b)
e g (b, b) = 9B ,by (b,b) = f (Bl =b;b = b), where B; = max (bj,j > ].)

Assumption 2 Both G (b;b) and g (b;b) have mth order bounded derivatives. The support of b is
bounded.

As suggested in Guerre, Perrigne, and Vuong (1999) and Hendricks, Pinkse, and Porter (1999), we
estimate G and g at each b; using kernels:

o Gbib) = iy D Tty 1K (U52) 1(By < by), where By = max (bjy, k #1).
. M bj1—b; B b
* g(bi?bi):ﬁﬁzﬁei =1 #K( % )K( 7 )

Assumption 3 The kernel function K () is a mth order kernel with bounded support and bounded
total variation: [ K (u)du =1, [ufK (u)du=0,1<k<m. [u™K (u)|du < 00.

Assumption 4 Let h,, be the bandwidth parameter and let 1,, be a trimming scalar such that h,, — 0,

Tn = 0, Tpy/nh2 (\/log;n)_1 — 00. 1A — 0.

Define the test statistic by: 7' = nLM S Zl]\il [bil + %] 1(g (bi; bit) > ).

Theorem 3 Under assumptions (1), (2), (3), (4), T - Ev (z) = Bv (s71(b)).

Proof: The following uniform nonparametric rates of convergence are standard,

. logn m
g(b;b)—g(b;b)‘=0p< niz ) + O (hy)

A 1
sup |G (b;b) — G (b;b) ‘ =0, ( Og”> +O™)  sup
bER nhy, bER

Consequently, it follows from assumption (2), where G (b;b) = G (b;b) — G (b;b), and §(b;b) =
g (b;b) — g (b; D).

7, b sup |G (b;b) | =0, (1) 7, sup|g(bsb) | = op (1)
b b

Let I,; denote 1 (g (by;bs) > 7). Furthermore, define
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T = nM Zz 1 Zl 1 [ il + —g((blllyb:ll))] Iq—il.
o To =iy Yimy ity (b” + (y;((liizl;;liizl))) Ira.
n M G(bisbs
ST it et y((buly ”z)) Lrat
° T2 = _nLM Z?:l ZIJVII %g (b’tla bll) T4l -

— Girdi Gii =2
e I3 = nM Zz lzl 1 ”l{ g:zgzz + gizlﬁilgil ’

OTl

By construction, T = Ty + Ty + T» + T3. It can be shown, following the same arguments as in
Lavergne and Vuong (1996), that T1 = o, (1), T> = 0, (1), T5 = 0, (1). It also follows by dominated
convergence theorem and Markov inequality that

n

1 G bi;bi 1 ~ G bi;bi

i=1

Application of strong law of large number shows L %, [b,- + (;((z?l,’:z))] 2y Ev(z). The same

arguments can be repeated after replacing Tn by Tn+6n, such that 7,, 'e,, & 0 and €, ! sup, |§ (b;b) | =

, to show that for T'= 1 bi + SN 1 (g (b bi) > 1 + €2) = Ev (z) + 0, (1). The rest
i=1 “g(bi;0:) p

is only to show that

_ 1 &
TZnMZ

i=1

Ms

(bil;bil)]
i+
[ ! 9 (bit; bar)

~
Il

1

{1 (G (g3 big) > Ty g (bit; bat) < T+ €5) + 1(§G (bits i) < Ty g (bit; ) > T + €5) }

is 0, (1). Again this follows the same arguments as in Lavergne and Vuong (1996).
p

B Asymptotic distribution of the nonparametric test

Assumption 5 Conditions on h, and 7, are changed to t2y/nh2 (logn) ' — oo, 7,72/nh™ — 0.

Lemma 2
G (bi, ba) 1 G (bir, ba)
n T/_E il s z'l): n z,bz _E ily Vil
\/_( ! g (ba, bar) \/_nM;;g bit, b 1 ba) g (ba, bar)
n M
1 b, b 1(Ba < by) G (bir, bir)
- Vn—— by) — 2B (q
\/_HMZ;E[ (bit, b g (bit, bar) f (bu) 9 (bit, bar) o (1)
. G(bir,bir
In particular, (Tl Eg((liz, ”))> Op( 1n)
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Proof: Consider T} = \/ﬁ(;‘)_l > ED]- Pn (2, 25) for
<b bjir — by
o) =i 2 [ O <00k (25

I=110=1
1 biz—b'l')]
. 1By <bK j
g (b, bjir) h (Bu < byr) < h

1
First, to use lemma, 3.1 in Powell, Stock, and Stoker (1989), we need to show first F [ n (Zis z]-)2] =
o(n). For that it suffices to show
1 1 1 by —b;
b L1 <o () g
n g (by,bu)” b3 hn

By change of variable it is tedious to verify that the term is O (nh) — oo, since by assumption
72nh? = 0o, 7 = 0, h, = 0. By lemma 3.1 in Powell, Stock, and Stoker (1989),

_2y% Ve —E—Y Y B < bjtr = bi L
TI_HZE(pn(z,,zmz,) Eg(bil’b“)h1(3ﬂ,gb,,)1< - + 0, 7

i=1

+

By another change of variable in integration, together with assumption (2), it can be seen that

1 1 i — G (bs; b;)
E———1(Bjy <by) K | -2 ———=f(b;)db; + O (™
g(bilvbil)h ( jl _bl) ( ) b“b + ( )
Note that A™ = o ( f) by assumption (4). It remains to calculate E (p(z;,2;) |2:), consider two

terms separately

1 1 by — b;
E [Whl( v <by) K (%) |bil]
-b

b — by
Zl’ Zl /h 217 ]ll < 'l h l)db]'ll

1
:7 G (by, by + uh) K du = —— (G (by, by1) + O (hy,
g \0i, 041 / (ba, bi + uh) K (u) du g(bihbil)( (bit,bu) (i)

1 ; bil_b‘p)
E|—— ~1(By < by) K [ 2=
[g (bjir, bjir) 1 (Bu < bir) < h

1

h

1 1 by — by

= _ Bz < i K M L i il
/ g (bjl’abjl’) A ( 1 bjl ) < h ) f (b]l )dbgl

1
= 1(By; < K i
/ (b + uh, by + uh) (Bi < by +uh) K (u) f (by + uh)du

1(By <b; b;
— ( il > zl)f( zl) +0(hm)
g (bir, bir)
The last equality is not immediately obvious due to the nonsmooth indicator function, however,
it becomes obvious when comparing the integral [ g?,;b,-, mlf (u) f (by + uh) du to the
result, taking into account the bounded support of b;. Q.E.D.

bi, Biz]
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Unfortunately, the variation of the second term T is by an order of magnitude larger than /n
and it is the variation of this term that dominates the asymptotic distribution of our test statistics,
regardless of the smoothness of the joint distribution of the bids. It is unfortunately that the
asymptotic distribution depends on both the bandwidth and the Kernel function chose. However
this is unavoidable due to the fact that we are estimating a two dimensional density but are averaging
only along one dimension. This is a similar problem to lemma 5.3 in Newey (1994) in a different
settting.

Lemma 3 Let

/(/K u+v)dv)2dv] [%/(;;((:bb))db]

M(T

then

=
=

n M G(bii;bi) ~ .
where Ty = -0 S, gz((,,fh f,))g (bit; bir).-
Proof: By the same U-statistics projection argument as in lemma 1, it can be shown similarly that
T’—liE (2i,24]2i) — ETy + o ! —2iE (2i,24]2i) = ETy + o 1
2_77/2.:1 Pn \Ziy 25|24 2 'p \/ﬁ —niZI Pn (%, 25|24 2 D m

for
M M
bi,ba) 1 . (bjr — by B — by
i) — K |{—F | K| ——
Pn (i %) ;g [ 2 (bus, b ) 12 ( n ) ( n )"

Ve
G (bjir, bjir) %K (bz’l - bjl’) K (Bil - bjl')]
g by be) B R R
The two terms of E (py, (2;, 2;) |2i), one has variation of f while the other has variation \/_ which
dominates the asymptotic distribution. The O, (%) term is given by
M

M

(bir, b)) 1 bjir —bu\ . [ Bjr —bu bzlabzl 1
il —K K = il
M g [ (bit, bu) 2 ( h h ba| = Z (bit, b Vn

The dominating term of order O, (ﬁ) is given by

M
1 G (b, bjr) 1 (bi — by By — by
Tyy s =— E Bl K —LX K 71 b;
22,3 M |:g2 (bjl’abjl’) h2 h h | !

M
1 Z 1 [ G (by+vh;by +vh) _. [ B; — by
h/92 (bit + vh; by + vh) () — tv) fbu+ovh)dv
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From the following calculation of hVar (T, ;) it will be clear that the vnh< 377 | (T22 i— ET5) 4
N(0,V), for V = lim,—e0 Var (Tha,;). It is also standard that hVar (T4, ) = (T222,,) +0(1),
therefore it suffices to calculate

1

E (Th)” = 5 Eat.B) + (1= 37 ) $Ea0.B) (0. 5)

for

q (b, B)

G (b+ vh;b+vh) . .(B-b
b+vhb+vh)K(v)K(T+v)f(b+vh)dv

It is tedious to verify by pointwise convergence and suitable version of dominated convergence
theorem that
2

G (b+vh;b+vh) B-b
EEq (b, B)? h//[ b+Uhb+vh)K(v)K(T+v)f(b+vh)dv] g (B,b)dBdb

G (b+ vh;b+vh 2
//[ b::))h biZh))K(”)K(“”)f(b”h)dv] 9 (b+uh, b) dudb

— (/ [/K(U)K(u+v)dv]2du>/j;((;;:))db

Similar calculation shows that ; Eq (b, B) ¢ (b, B') = O (h) — 0. This is similar to the asymptotic
independence of nonparametric estimates at distinct points.

Theorem 4 Under the stated conditions on the joint distribution of (By,b;,l =1, M) and under the
stated conditions on the bandwidth and trimming parameters, Vnh (T — Ev (m)) N N(0,V) for

V' the variance-covariance matriz given in the lemma above.

Proof: Define

(bi; bi)

The desired result will follows by combining lemma 1, lemma 2 together with the collection of the
following results(to be completed)
T—T=o ( )

7= 23 o+ EEE 1 0 2+ )
i=1

‘ -

0 - _Zzbzl b:ll: bzl (
i=1 [=1
-1 —op<

T2_T2—Op

2 > >
N—— — " N v

Q.E.D.



