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Abstract 

It is now well known that standard asymptotic inference techniques for instrumental variable estimation 
perform very poorly in the presence of weak instruments. Specifically, standard asymptotic techniques 
give spuriously small standard errors, leading investigators to accept apparently tight confidence regions 
which unfortunately may be very far from the true parameter of interest. We present an improved 
technique for inference on structural parameters based on reduced form estimates. The “S-statistic” 
produces confidence regions based on a joint test of the structural hypothesis and the identification 
condition. The S-statistic converges to the standard asymptotic Wald statistic as identification becomes 
certain, has much better size properties when the instruments are weak, and may be inverted in closed 
form to conveniently compute confidence regions. In addition to providing improved inference for 
instrumental variable estimation, the technique suggested here may be useful in other applications where 
weak identification is important. 
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1 Introduction 
It is now well known that standard asymptotic inference techniques for instrumental variable 

estimation perform very poorly in the presence of weak instruments. The failure is of the worst kind — 

false results are accompanied by reported confidence intervals which lend an appearance of great 

precision. That point estimates of coefficients do a poor job of telling us the true values of those 

coefficients is probably irremediable, after all if an equation is poorly identified then the data do not tell 

us much about the parameters of the system. However, it is possible to create test statistics and 

confidence intervals that work quite well in the sense that they lead to reasonably accurate inference 

when instruments are poor and that are essentially identical to the asymptotic test statistics and 

confidence intervals when the instruments are good. 

The usual asymptotic Wald statistic asks how far an estimated structural parameter is from some 

hypothesized value, where the metric for “how far” is based on an estimated asymptotic standard error 

which is itself calculated from the estimated structural parameters. When the structural parameters are 

poorly identified, this leads to misleading inference. The S-statistic we introduce here is based on three 

principles (the first two of which may also be useful in other cases of weak identification). First, we wish 

to reject the structural hypothesis only if the estimated parameter is far from its hypothesized value and 

the model is identified. Equivalently we should fail to reject if the parameter is close to the specified 

value or the model is unidentified. We accomplish this task by multiplying the distance between the 

estimated and hypothesized value of the parameter by an “identification statistic” which equals zero if 

and only if the parameter is unidentified. In this way we have a joint test statistic which is close to zero if 

either the estimated parameter is close to the specified value or if the data does not support 



 

-2- 

identification. The converse is that if the parameter is identified with (near) certainty, we have multiplied 

the usual asymptotic statistic by a (near) constant, leaving inference unchanged. Second, we “studentize” 

the joint statistic by an estimated standard deviation that can be computed from reduced form 

parameters, which are consistent whether or not the structural parameter is identified. The third 

principle, specific really to instrumental variables, is that the inaccuracy of IV under weak identification is 

due in part to a “dividing by zero” phenomenon which multiplication by the identification statistic 

substantially mitigates. 

Having introduced the S-statistic, we show how the corresponding confidence regions, which 

we call S-intervals, can be computed in closed form. When an equation is well-identified, S-intervals are 

quite close to traditional asymptotic confidence intervals. When an equation is weakly identified S-

intervals are appropriately wide, indeed they may be unbounded. Where much of the existing literature 

on weak instrument instrumental variables has focused on the case of a single endogenous right hand 

side variable, the method we introduce provides for testing each individual coefficient in the general k-

variable model. We further allow for the situation where some coefficients are well-identified while 

others are not. 

The principal goal of the paper is to provide practitioners with improved tools for inference in 

the presence of weak instruments – tools which can augment or replace the traditional asymptotic tests. 

Specifically, the S-statistic and corresponding confidence regions are computed for each coefficient and 

can be used in place of the traditional t-statistics and associated confidence intervals. The asymptotic 
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distribution theory for our new statistic is completely standard.1 The advantage of the S-statistic lies in its 

better finite sample properties under weak identification. We provide analytic results for a special case 

and then present further evidence through Monte Carlo simulations.  

To set out notation, we begin with a review of the standard instrumental variable model and the 

corresponding reduced form. We then give a brief literature review. Next we present the S-statistic. We 

investigate the one endogenous variable/one instrument case, where we can give exact finite sample 

results. For the multiple endogenous variable/multiple instrument case we present Monte Carlo 

simulations to appraise the performance of the S-statistic. We conclude with a brief summary. 

2 The General Model 

2.1 The Structural Model 

We begin with the classic statements about instrumental variables, in the process defining 

notation for the paper. Consider the structural linear equation with k right-hand side variables 

( ) ( ) ( ) ( )11 1 nn n k k
y X uβ

×× × ×
= + . (1) 

Suppose that the right-hand side variables are correlated with the errors, ( )1plim 0n X u′ ≠ , but there 

exists a set of q instruments Z, q k≥ , ( ) ( )1 1plim 0, plim 0n nZ u Z X′ ′= ≠ , where ( )1plim n Z Z′  is of 

full rank q and ( )1plim n Z X′  is of rank k. We further assume that the errors are homoskedastic, 

( )( )2
1 0,plim u

d

nn
Z u N Z Zσ′ ′→ . β  is commonly estimated by instrumental variables (equivalently two 

stage least squares or generalized method of moments). The instrumental variable estimator is 

                                                 
1 The statistical theory pretty much amounts to nonlinear tests on least squares coefficients, which is why 
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( ) ( )1 1
, where IV Z Z ZX P X X P y P Z Z Z Zβ

− −′ ′ ′ ′= ≡ . (2) 

The asymptotic distribution of IVβ  is given by ( )~ ,
A

IV AN Vβ β . It is useful to define 

ˆ
ZQ X P X′≡ , so the asymptotic variance is given by ( )2 1

1 ˆplimu
A n nV Qσ

−
 =   . 

The reduced form of the model consists of the regression of y and each column of X on all the 

instruments, 

( ) ( ) ( ) ( )11 1q nn n q
y Z vθ

× ×× ×
= + , (3) 

( ) ( ) ( ) ( )n k q n kn q k
X Z ε
× × ××

= Γ + , (4) 

where θ  is 1k × ,  is q kΓ × , and  is n kε × . Substitute equation (4) into equation (1), deriving 

( ) ( )y Z u Z uε β β εβ= Γ + + = Γ + + . (5) 

Comparison of equations (3) and (5) highlight the restrictions imposed by identification: 

θ β= Γ . (6) 

It is useful to note that Q̂  can also be written in terms of the reduced form parameters, 

( )1 1 1ˆ ˆ ˆ
Zn n nQ X P X Z Z′ ′ ′≡ = Γ Γ . The asymptotic variance may be expressed in terms of the reduced form 

parameters as ( )( )2 1
1plimu

A n nV Z Zσ −
′ ′= Γ Γ . 

                                                                                                                                                             
the tests work pretty well. 
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2.1 Estimation of the Reduced Form 

The reduced form coefficients are, of course, estimated by least squares, ( ) 1ˆ Z Z Z yθ
−′ ′=  and 

( ) 1ˆ Z Z Z X
−′ ′Γ = . Because we need the covariance matrix of the estimated coefficients, it is convenient 

to think of the reduced form as a system of seemingly unrelated regressions 

( ) ( ) ( ) ( )vec , vec , vec ,y X Z I vθ ε= ⊗ Γ + . (7) 

Define λ  to be the ( )1 1q k⋅ + ×  column vector of reduced form coefficients in equation (7) and λ̂  to 

be the corresponding estimated least squares coefficients, 1
ˆ ˆ ˆ ˆ

kλ θ
′ ′ ′′= Γ Γ  

L  and 

[ ] [ ]1 2 1 2r k kE v vε ε ε ε ε ε ′Σ =  
 

L L , then ( ) ( )( ) 1
1 1ˆcov plimrn n Z Zλ

−
′= Σ ⊗ . If we 

condition on Z and the reduced form errors are normal, or if the sample is reasonably large, then λ̂  will 

be normally distributed. 

Note that the 2SLS interpretation of the instrumental variable estimator is 

( ) ( ) ( ) ( )
1

2
ˆˆ ˆ ˆ

IV SLS Z Z Z Zβ β θ
−

 ′ ′= = Γ Γ Γ 
 

. The order condition for identification is q k≥ . The rank 

condition is usually written ( )rank kΓ = . For our purposes it is more useful to write 

( )1rank plim n Z Z k′ ′Γ Γ = , which implies ( )( )1plim 0n ii
Z Z i′ ′Γ Γ > ∀ .2 When the rank condition is 

satisfied and q k= , equation (1) is just identified and the indirect least squares interpretation of the 

instrumental variable estimator is 1 ˆˆ
IV ILSβ β θ−= = Γ . 

                                                 
2  If any diagonal element of a symmetric matrix A is zero, the matrix cannot be positive definite since the 

quadratic form ′ =d Ad 0 for the vector d = 0 except di = 1. 
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3 A Brief Review of the Literature 
A series of recent papers have examined the distribution of the instrumental variable estimator 

under weak identification and the related issue of the performance of the traditional asymptotic tests. 

Papers include Bekker (1994), Bound, Jaeger, and Baker (1995), Hahn and Hausman (1999), 

Maddala and Jeong (1992), Nelson and Startz (1990a, b), and Staiger and Stock (1997). Dufour 

(1997) gives general results for obtaining correct probability levels with weak identification. In 

particular, Dufour shows that for a statistic of nominal size α  to be valid under weak identification, the 

confidence intervals implied by the statistic must be unbounded at least 1 α−  percent of the time. We 

return to this point in section 4.2. 

Half a century ago, Anderson and Rubin (1949) and Anderson (1950) described the 

Anderson-Rubin (AR) statistic, which under normality provides an exact small sample test of a 

hypothesis which specifies values for every element of the β  vector. Zivot, Startz, and Nelson (1998) 

(ZSN) and Dufour and Jasaic (1996) show how to use the AR-statistic to construct confidence regions 

in the case of a single endogenous variable. ZSN also provide improved statistics for maximum 

likelihood estimates based on degrees-of-freedom-corrected LR and LM tests. Wang and Zivot (1998) 

provide an asymptotic justification using the Staiger and Stock local-to-zero asymptotics for these 

results. Note that these papers are limited to inference in the case of a single endogenous right hand side 

variable or to hypotheses specifying values for the entire vector of coefficients; here we deal with 

inference on individual coefficients in the general k-right hand side variable case. Note additionally that 

while these papers provide confidence intervals for β , the confidence intervals are not in general based 
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on the instrumental variable estimator. The computed confidence intervals may reject the estimated value 

of IVβ , which is at least a nuisance although probably not a fatal flaw. 

Stock and Wright (forthcoming) provides a general procedure for inference for gmm with weak 

instruments which for the linear single equations model is based on LIML estimates. Stock and Wright 

point out that using their method “construction of asymptotically valid confidence intervals for subvectors 

… is somewhat … difficult,” but that an asymptotically conservative confidence interval can be found by 

projecting out parameters as suggested in Dufour (1997). As a practical matter using the procedure to 

test a hypothesis is relatively straightforward but inverting the test to find confidence intervals requires a 

numerical search. 

Hall, Rudebusch, and Wilcox (1996) examine direct tests of the rank condition based on the 

size of the smallest canonical correlation. They also point out that for the usual asymptotic Wald statistic 

screening based on such a pre-test, of which the first-stage 2R  is a special case, can introduce an 

intended selection bias that worsens rather than mitigates finite sample bias. 

Shea (1997) presents a diagnostic for identification. (See also Godfrey (1999).) We examine 

Shea’s measure in detail because it provides insight on the statistic we propose here. One normally 

thinks of “weak instruments” as meaning that the instruments and right hand side endogenous variables 

are poorly correlated. Shea presents a useful extension which we discuss after defining a few symbols. 

Let iX  be the ith column of X  and ~ iX  be the remainder of X . Define 

~the residual from regressing  on i i iX X X≡
(

, or if 1k =  simply i iX X≡
(

. Similarly, where 

ˆ ˆ
ZX Z P X= Γ =  are the fitted values from the first-stage, let ˆ

iX  be the ith column of X̂  and ~
ˆ

iX  be the 
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remainder of X̂ . Define ~
ˆ ˆ ˆthe residual from regressing  on i i iX X X≡
(

, or if 1k =  simply ˆ ˆ
i iX X≡

(
. 

Shea calls the squared correlation between iX
(

 and ˆ
iX

(
 the “partial 2R ” for the ith endogenous variable. 

(Note that for k=1 the partial 2R  is simply the first-stage 2R .) While the exact distribution for partial 

2R  is unknown, Shea uses Monte Carlo experiments to show that partial 2R  is close to zero when 

weak instruments force the actual distribution of IVβ  far from its asymptotic approximation. 

Shea’s simulations show that his partial 2R  does a good job of signaling weak instruments. We 

pick up this idea but use only the numerator of Shea’s statistic, noting that the population value of partial 

2R  equals zero if and only if the numerator equals zero. A little algebra, which is implicit in Shea’s 

paper, shows that this numerator equals ( )( )1

~ ~ ~ ~
ˆ ˆ ˆ ˆ ˆ ˆ

i n i i i i iX I X X X X X
−

′ ′ ′−  which equals ( )1ˆ1
ii

Q− . 

Therefore the population value of the numerator of Shea’s statistic for the ith coefficient equals zero if 

and only if the asymptotic variance of ,IV iβ  is infinite (n.b. ( ) ( )( )2 1
1

,1 AVAR 1 plimu
IV i n n

ii
Qσβ

−
 =    – 

so that the ith coefficient is not identified.) 

4 The S-Statistic 

4.1 Combining tests of the structural hypothesis and identification 

We introduce the S-statistic in this section as a joint test of a structural hypothesis and 

identification and give its asymptotic distribution. In section 5 we give finite sample results for the one-

endogenous variable/one instrument case and present intuition for thinking of S as a scaling correction to 

the asymptotic t. Define 
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( )1
ˆ 1

ˆi

ii
Q−

∆ ≡ . (8) 

Computationally ˆ
i∆  is the square root of the reciprocal of the ith diagonal element of ( ) 1

ZX P X
−′ or, 

equivalently, the reciprocal of the reported standard error of ,IV iβ  divided by 2s , the standard error 

of the regression from the IV estimation. Note that 0i i∆ > ∀  is necessary for the rank condition to 

hold. 

Suppose we wish to test that the ith coefficient equals a hypothesized value, for example that 

0
i iβ β= . Standard practice is to compare 0

iβ  to ,IV iβ  using an asymptotic t-test. We augment this 

comparison so that the test statistic will be close to zero either if the estimated deviation is small or if the 

evidence for identification is weak by forming 

( )0
,

ˆ
i i i IV iβ βΨ ≡ ∆ − . (9) 

It is useful to re-write iΨ  as a function of the instruments and the estimated reduced form 

parameters, Γ̂  and θ̂ : 

( )
( )( )

( ) ( )( )1
0 0

1

1ˆ ˆˆ ˆ ˆ ˆ, ; ;
ˆ ˆ

i i i
i

ii

Z Z Z Z Z
Z Z

θ β β θ
−

−

 ′ ′ ′ ′Ψ Γ = − Γ Γ Γ 
 ′ ′Γ Γ

. (10) 

In order to studentize iΨ  we require an estimate of ( )var iΨ . Since the estimated reduced 

form parameters are asymptotically normal, we can estimate ( )var iΨ  by the usual Taylor series 
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approximation by conditioning the distribution of iΨ on the list of instruments. With this addendum the 

S-statistic is defined as follows 

( )2

2
ˆˆ, where cov

ˆ ˆˆ i

i

i i iS σ λ
λ λσ

Ψ

Ψ

′Ψ ∂Ψ ∂Ψ
≡ ≡

∂ ∂
. (11) 

Note that S is a function of the reduced form parameters, which can be consistently estimated even 

when the structural parameters are not identified, and Z. The partial derivatives ˆˆ
i λ∂Ψ ∂  are 

conveniently calculated by the numerical delta method and ( )ˆcov λ  follows immediately from the 

reduced form estimates.3 

Under standard regularity conditions4, the S-statistic is approximately standard normal, or 

equivalently 2S  is approximately ( )2 1χ . Inference may be made by comparing computed S  to the 

usual normal critical values.5 In a sufficiently well-identified model, ( )ˆvar i∆  and ( ),
ˆcov ,i IV iβ∆ are both 

close to zero, so ( ) ( )0
, ,vari IV i IV iS β β β≈ −  is close to the usual asymptotic t. Below, we show 

that in the one endogenous variable/one instrument case under normality S has an exact t-distribution in 

small samples regardless of the degree of identification. 

                                                 
3  Matlab® code for computing the S-statistic and associated confidence regions is contained in an 

appendix available from the authors. 
4  Regularity conditions may include that the parameters are identified. In section 6 we consider improved 

approximations for cases where β  is unidentified rather than merely “weakly” identified. 
5  Because the sign of the square root in equation (8) is arbitrary one-tailed tests aren’t possible in most 

cases. Additionally, ( )2 2~ 1S χ  is a better finite sample approximation than is ( )0,1S N∼ . 
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Our interest is in inference for weak instruments. There is, however, an interpretation with more 

general applicability. iΨ  augments the structural hypothesis of interest by requiring the parameters of 

interest be identified. The estimated value of iΨ  will be close to zero either if the hypothesized value of 

the structural coefficient is correct or if the model is not well-identified. This sort of joint test, which will 

be rejected only if the structural hypothesis is false and the model is well-identified, may be useful in 

other contexts as well. 

4.2 Confidence Regions Based on the S-Statistic 

S-confidence regions are computed by “inverting” the S-statistic; that is by finding the values of 

0
iβ  such that S c< , where c is the critical value for the desired size. In this section we show how to 

compute S-confidence regions in closed form and show that such regions take one of three shapes. We 

show that the confidence regions, and therefore the underlying S-statistics, converge on the usual 

asymptotic statistic as uncertainty about identification goes to zero. Finally, we demonstrate that the S- 

confidence region asymptotically satisfies Dufour’s (1997) condition for unboundedness. 

It is convenient to think of the S-confidence region as defined by 2 2 2ˆ cσ ΨΨ < ⋅  (equivalently 

2 2S c< ). The region takes one of three shapes: a familiar connected interval of the form ( ),L Hβ β ; the 

union of two rays ( ) ( ), ,L Hβ β−∞ ∪ ∞ ; or the entire real line. Note that the latter two forms are 

unbounded. 

Figure 1 shows a plot of the (square of the) S-statistic and corresponding asymptotic Wald 

statistic for the first, of two, coefficients for a particular Monte Carlo realization generated with the true 

1 1β = . Confidence intervals are the values of 0
1β  such that the test statistic lies below the appropriate 
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critical value, say 2 21.96c = . The Wald statistic plots as a parabola and the corresponding 95 percent 

confidence region is a closed interval around IVβ , ( )90.13,156.43 , a region which excludes the true 

value. Indeed, the t-statistic against 1β =  is 7.23. The S-region is the union ( ) ( ),86.29 97.15,−∞ ∪ ∞ , 

which includes the true β . The S-statistic against 1β =  is 1.40. 

Figure 1 illustrates how the shape of the S-region depends on the size of the test. At a larger 

size, and correspondingly smaller value of c, the S-region would be a connected interval around IVβ . 

Conversely, at a small size and high value of c, the S-region will be the entire real line. The confidence 

region always includes the estimated value IVβ  in contrast to the AR statistic which may reject IVβ , the 

latter presumably reflecting a failure of the overidentifying restrictions. 
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In order to compute confidence intervals it is useful to define ˆˆ IVϕ β≡ ∆  and then note6 

22 2 0 0 2ˆ ˆ ˆ ˆ2β ϕβ ϕΨ ≡ ∆ − ∆ + , (12) 

( ) ( ) ( )22 0 0ˆ ˆˆ ˆ ˆvar 2 cov , varσ β β ϕ ϕΨ = ∆ − ∆ + . (13) 

Evaluating the ratio of 2Ψ  to 2σ̂ Ψ  as 0β → ±∞ , it follows immediately that 
( )0

ˆ
lim

ˆvar
S

β →±∞

∆
=

∆
. 

Therefore, the S-interval is unbounded iff the “Z-score” for identification is not significantly different from 

zero, as in this case S asymptotes to a value less than c.7 Said differently, if 
( )

ˆ

ˆvar
c

∆
<

∆
, then S c<  

for large values of 0β  so extreme values of 0β  are not rejected. It follows that the S-statistic 

asymptotically satisfies Dufour’s (1997) condition requiring, in the case of a near non-identification, that 

a statistic be unbounded at least 1 α−  percent of the time for the statistic to attain size α . 

From equations (12) and (13), the condition 2 2 2ˆ cσ ΨΨ < ⋅  gives the confidence region defined 

by the quadratic inequality8 

( )( ) ( )( ) ( )( )22 2 0 2 0 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆvar 2 cov , var 0c c cβ ϕ ϕ β ϕ ϕ∆ − ∆ + −∆ + ∆ + − < . (14) 

                                                 
6 We drop the subscripts indicating coefficient number where there is no danger of confusion, i.e. $∆  in 

place of $∆ i . 
7  Note the parallel to the unbounded confidence intervals corresponding to first stage F-statistics in Zivot, 

Startz, and Nelson. 

8  Computationally we estimate var $ $
$ cov $ $

$ cov $ , $
$
$ cov $ $

$∆
∆ ∆

∆
∆c h d i c h d i=

∂

∂

′ ∂

∂
=

∂

∂

′ ∂

∂λ
λ

λ
ϕ

λ
λ

ϕ

λ
 and , where the 

vectors of partial derivatives can be computed numerically. 
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The confidence region is defined by the roots of equation (14). 9 Let 

( )( ) ( )( ) ( )( )
2

2 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆcov , var varR c c cϕ ϕ ϕ ϕ= −∆ + ∆ − ∆ − ∆ − , (15) 

{ } ( )( )
( )

2

2 2

ˆ ˆˆ ˆcov ,
,

ˆ ˆvar
L U

c R

c

ϕ ϕ
β β

∆ − ∆ ±
=

∆ − ∆
. (16) 

As can be seen in Figure 1, for small critical values the S-statistic cuts the horizontal critical value 

in two places and the confidence region lies between the two cut points. Specifically, if 

( )
ˆ

ˆvar
c∆ >

∆
, then the confidence region from inverting the S-statistic is the connected interval 

( ),L Uβ β . In Figure 1, the 60 percent confidence region is ( )111.44,175.54 . In the particular 

example, the identification Z-score is 1.187, so the S-statistic asymptotes to 1.187 and the S-region is 

connected for sizes less than ( )( )2 1 1.187 0.235⋅ − Φ = . 

For higher critical values, if 
( )var

c∆ <
∆

, the confidence region is the union of two rays 

defined by ( ) ( ), ,L Uβ β−∞ ∪ ∞  if R is real, and the entire real line otherwise. The corresponding 

confidence region is the entire real line when the argument to the root in (15) is negative, which occurs 

for critical values above *c , where 

                                                 
9  It may be helpful to note that Ψ

Ψ

2

2$σ  is the ratio of two quadratics in β 0, accounting for the 

characteristic shape illustrated in Figure 1. Zivot, Startz, and Nelson show that the Anderson-Rubin 
statistic can also be written as a ratio of two quadratics in β 0, so the AR-confidence regions can also 
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( ) ( ) ( )
( ) ( ) ( )

2 2

*

2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆvar var 2 cov ,

ˆ ˆˆ ˆvar var cov ,
c

ϕ ϕ ϕ ϕ

ϕ ϕ

∆ + ∆ − ∆ ∆
=

∆ − ∆
. (17) 

In Figure 1, the 95 percent confidence region is ( ) ( ),86.29 97.15,−∞ ∪ ∞ . In this example, 

* 2.01c = ; therefore no values of β  can be rejected with size less than ( )( )2 1 2.01 0.044⋅ − Φ = . 

In sufficiently well-identified models the uncertainty about ∆̂  is negligible, so ( ) 2ˆ ˆvar ∆ < < ∆ , 

( )ˆ ˆˆ ˆcov ,ϕ ϕ∆ << ∆ , and ( ) ( )2ˆˆvar var IVϕ β≈ ∆ . Equations (14) through (16) reduce to 

( ) ( ) ( )( )2 22 0 2 0 2 2ˆ ˆ ˆ2 var 0IV IV IVcβ β β β β∆ + −∆ + ∆ − < , (14’) 

( ) ( ) ( )( ) ( )
2 22 2 2 2 2ˆ ˆ ˆ ˆvar varIV IV IV IVR c cβ β β β= −∆ − ∆ ∆ − = ∆ , (15’) 

{ } ( ), varL U
IV IVcβ β β β= ± . (16’) 

This establishes that S-intervals approach the intervals based on the asymptotic t-statistic as 

identification becomes certain. 

The S-test and the corresponding confidence region is asymptotically valid and easy to compute. 

It is much more accurate than the traditional asymptotic statistic in the sense that it gives much wider 

confidence regions when the parameters are not well identified. 

                                                                                                                                                             
take on the same three shapes and a plot of AR β 0c h  exhibits the same basic functional form as does the 

plot of S 2 0βc h. 
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5 The One RHS Variable Model 
The case of one right hand side variable is particularly amenable to theoretical analysis and 

provides much intuition. In the first three parts of this section we consider the one right hand side 

variable/one instrument model. We show that for this case that the S-statistic is exactly, rather than 

approximately, normal (conditional on z and assuming normal errors.) In the fourth subsection we derive 

the exact distribution of 2∆̂  for the general 1, 1k q= ≥  case. 

5.1 Distribution of the structural coefficient 

For the one RHS-variable/just identified model we can write the structural equation as 

y x uβ= + , (18) 

and the two reduced form equations 

,
,

y z v
x z

θ
γ ε

= +
= +

 (19) 

Substituting the reduced form equation for x into the structural equation leads to an alternative 

representation of the first reduced form equation 

( )y z uβγ βε= + + . (20) 

Thus the identifying restriction is θ βγ= . Note that the instrumental variable estimator of β  is given by 

ˆ ˆIV OLS OLSβ θ γ= , where ˆ ˆ and OLS OLSθ γ  are the reduced form coefficients, which simply says that the 

IV estimator can be thought of as the indirect least squares estimator. 
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Traditional asymptotic distribution theory states 

( ) ( )
( )

( )( )2 2
21

1
2 21

2
1

plim
~ , , plim

plim
u unA

IV A A n n n

n

z
N V V z

xz

σ σβ β γ
−

= =
∑ ∑
∑

. Inference usually proceeds using 

the Wald statistic, that is the square of the “asymptotic t.” The IV, 2SLS, and GMM estimators are all 

the same here (as is, for that matter, the LIML estimator). We are interested in the case of weak 

identification. It is illuminating to consider what happens as 0γ → . The answer depends on the 

correlation between u  and ε . Write ( )2, where  and 0uu Eε
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The extreme case is when 0γ →  so 
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 (22) 

The IV estimator is β τ+  plus a multiple of a Cauchy random variable since the fraction in equation 

(22) is the ratio of uncorrelated mean zero normals.10 The OLS estimator is also β τ+  plus a random 

                                                 
10 Phillips (1989) and Staiger and Stock (1997) show this result for the general k-RHS variable, completely 

unidentified case. 
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variable which converges quickly to zero. In particular, in this unidentified case the median of IV and the 

median of OLS are approximately the same, β τ+ . For this reason Hausman-Wu endogeneity tests, 

which look at the difference between IV and OLS parameter estimates, are likely to be of low power 

(see Staiger and Stock (1997)). 

In the absence of endogeneity, 0τ = , both IV and OLS are approximately median unbiased, 

although OLS would obviously be the preferred estimator. It is more interesting to study IV when there 

is endogeneity. Consider the case of maximum endogeneity, ( )var 0ε ⊥ = . Here, both IV and OLS 

collapse on β τ+ , so IVβ  and OLSβ  are both very tightly distributed around the biased estimate. When 

this happens, the residuals also converge to zero as y v uβε βε τε= = + = + , x ε= , and 

( ) ( ) 0IVy xβ βε τε β τ ε− = + − + = . Thus the reported asymptotic standard errors are spuriously 

small. 

5.2 Test statistics in the simple case 

When 1q = , 1k =  the various test statistics are amenable to analysis in closed form. In this 

section we make three points. First, the (squares of the) S-statistic and the t-statistic can both be written 

as nonlinear Wald tests of the same hypothesis on the reduced form coefficients. The two differ by a 

scaling factor, in that computation of the S-statistic essentially undoes a division-by-zero problem, and 

differ further by the fact that the S-statistic satisfies Dufour’s (1997) requirement for unbounded 

confidence intervals where the t-statistic does not. Second, the S-statistic is closely related to the 

Anderson-Rubin statistic. Third, we show that the S-statistic has an exact finite sample t- distribution 

(conditional on z and assuming normal errors). 
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First some intuition on the division-by-zero issue. In the simple case the IV estimator is simply 

the ratio of θ̂  to γ̂ ; and other relevant computations are 2ˆ ˆ zγ∆ = ∑ , 
( ) ( )

ˆ ˆ
ˆ ˆvarvar

γ
γ

∆ =
∆

, 

and ( )0 2ˆˆ zβ γ θΨ = − ∑ .11 When γ  is close to zero, or more to the point when much of the 

probability mass of γ̂  is close to zero, then IVβ  is a fraction, ˆ ˆθ γ , whose denominator is close to zero. 

Division by zero has undesirable side effects, including violation of the usually innocuous regularity 

conditions needed for asymptotic theory. In essence Ψ  is computed by multiplying the numerator of the 

asymptotic t, 0 ˆ
ˆ

θβ γ− , by ∆  to achieve just the desired scaling, 0 ˆˆβ γ θ− , to eliminate the division-

by-zero problem and give a well-behaved statistic. Note further that the statistic for testing for 

identification, ( )ˆ ˆvar∆ ∆ , is also the statistic for how far the denominator of the IV estimator is from 

zero, ( )ˆ ˆvarγ γ , and is also the standard test for the significance of the first stage regression. The S-

statistic is unbounded when ( )ˆ ˆvar∆ ∆  is small, meeting Dufour’s criteria for unbounded Wald tests 

exactly when much of the mass of the denominator of the IV estimator is close to zero. 

The S-statistic and the asymptotic t test alternative normalizations, 0 0β γ θ− =  versus 

0 0θβ γ− = , of the same hypothesis. It may be useful to see that these differing normalizations account 

for the different behavior of the two statistics.12 In what follows it will be convenient to note two 

different computations of residuals and residual variances, based on IVβ  and on the Anderson-Rubin 

                                                 
11 Note that we have passed γ̂ implicitly through the root so that unlike in the general case the sign of ∆̂  is 

determinate. 
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regression respectively. For the latter note that the Anderson-Rubin statistic tests 0a =  in the 

regression 0 ary x az uβ− = + . The estimated AR coefficient is 
( )0

02
ˆˆ ˆ

y x z
a

z
β

θ β γ
−

= = −∑
∑
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. (24) 

We begin with the S-statistic. We have 

( ) ( ) ( )0 2 0 0 2ˆ ˆˆ ˆˆIV z zθβ β γ β β γ θγΨ ≡ ∆ − = − = −∑ ∑  (25) 

To compute the denominator of S we need the partial derivatives of Ψ  w.r.t. the reduced form 

coefficients ˆ ˆ ˆλ θ γ ′ =   . The derivative is 2 01ˆ z β
λ

′∂Ψ  = ⋅ − ∂ ∑ , so 

2
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ε ε
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∑ ∑∑

.(26) 

Note that the denominator of the S-statistic is 2
aruσ  so we can rewrite the S-statistic as 

( )0 2 2ˆˆ
aru zβ γ θ σ− ∑ . The S-statistic is simply a Wald test of a linear restriction from a particular 

least squares regression. 

                                                                                                                                                             
12 As reminder the formal claims in this section apply when q = 1 and k = 1, although we hope the reader 

will find the intuition useful more generally. 
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It turns out that the asymptotic t can be rewritten as the reduced form nonlinear Wald statistic 

on 0 0θβ γ− = . The numerator of the t is 0 ˆ ˆβ θ γ− . The denominator comes from the usual Taylor 

series approximation for the variance of IVβ , 

( ) ( )2 2

2
ˆ ˆ 2 2 21 1

ˆ ˆ 2 2 2 2ˆ ˆ

ˆ1ˆ ˆ ˆˆ ˆ ˆvar cov , 2
ˆ ˆ

IVu
IV v vz z

θ θ
ε εγ γγ γ

σ
β θ γ β σ βσ σ

γ γ
− − ′     ≈ = − + =     ∑ ∑

. (27) 

The last term in (27) is the reported value of AV  for the usual asymptotic t-test, so in this special case 

the asymptotic statistic is exactly the reduced form nonlinear Wald statistic on 0 0θβ γ− = . The 

performance difference between the S-statistic and the t-statistic arises out of different normalizations for 

the nonlinear Wald test.  

Finally, note that in this special case the S-statistic and AR statistic are identical. The numerator 

of S and the AR statistics are equal except for a constant factor, as 2â z =−Ψ∑ . From the standard 

least squares regression results the standard error of â  is 
2

2
aru

z
σ

∑ . In comparing the S and AR the 

constant 2z∑  cancels between the numerator and denominator proving the equality of S and AR. 

Since the S-statistic is a Wald test of a linear restriction from a particular least squares 

regression, it follows immediately that the S-statistic is distributed 1nt −  (conditional on z and assuming 

normal errors). Alternatively, the S-statistic is distributed 1nt −  because it equals the AR statistic. 
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5.3 The exact distribution of the structural coefficient and the role of uncertainty 
about identification 

Because the 1q = , 1k =  model is analytically tractable, we can demonstrate just how badly 

the asymptotic distribution approximates the true distribution and make precise the sense in which the 

reported asymptotic t reflects a limiting distribution in which uncertainty about the rank condition 

disappears. In the one-by-one case, the IV estimator is the ratio of the reduced form coefficients θ̂  and 

γ̂ . The numerator and denominator are distributed bivariate normal, assuming z is fixed and the errors 

are normal: 

2

2

ˆ
~ ,

ˆ
N θ θγ θ γ

θγ θ γ γ

σ ρ σ σβγθ
ρ σ σ σγγ

     
            

, (28) 
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. (29) 

Since IVβ  is the ratio of two normal variables, its density follows directly from Hinckley (1969) who 

cites Fieller (1932). The pdf for IVβ  is 
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( ) ( ) ( ) ( )
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One might remark that, in general, equation (30) does not look much like a bell curve.13 

We can now make more precise the sense in which the asymptotic t- describes the limiting 

distribution of IVβ  as identification becomes certain. Hinckley (1969) looks at the cdf corresponding to 

the pdf in (30) and shows 

( )
( )

lim IV
IV

IV

F
a

γ

γ
θ γσ

γβ γβ
β

σ σ β→∞

 −
= Φ  

 
. (32) 

The denominator on the right of (32) is 

( ) ( ) ( )0.5 0.5 0.52 22 2 2 2 22 2IV IV IV v IV v zγ θγ θ γ θ ε εβ σ ρ σ σ β σ β σ σ β σ
−

− + = − + ∑ . (33) 

Evaluating this denominator at the estimated parameters, see equation (23), gives ( )0.5
2 2ˆ

IVu z
β

σ ∑ . So 

evaluating the right-hand side of (32) at the estimated parameters gives 

( )0.5
2 2 2ˆ ˆ

IV

IV

u z
β

β β

σ γ

 
− Φ 

 
 ∑

 (34) 

                                                 
13 The pdf described by equation (30) can be bimodal. With very weak instruments and high endogeneity 

the density has two modes which collapse around the point of concentration of the IV estimator. 
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which is the standard asymptotic result. Thus the standard asymptotic result is equivalent to evaluating 

the true distribution at the estimated parameters under the assumption that identification is known to hold 

with certainty. 

5.4 The exact distribution of 2∆̂  

Computation of the confidence region for the S-statistic depends on the Z-score for the 

identification statistic, ( )ˆ ˆvar∆ ∆ . Furthermore, when identification fails completely the distribution of 

IVβ  collapses to a point so the distribution of S is essentially the same as the distribution of ∆̂ . We 

show here that 2∆̂  obeys a noncentral 2χ  distribution. When the model is not identified the distribution 

of 2∆̂  simplifies to a central ( )2 qχ . When the model is identified, in contrast, 2∆̂  is asymptotically 

normal. 

The precise statement is about the distribution of 

2

2 2

ˆ
ˆ ˆZ Z

ε εσ σ
 ′∆

′= Γ Γ 
 

. (35) 

A quadratic form Aω ω′  in normal variates ( )~ ,N Vω µ  is noncentral 

( )( )2 ,rank AV Aχ µ µ′ ′  if and only if the product of the weighting matrix and the variance-covariance 

matrix is idempotent.14 Here ( )( )12ˆ ~ ,N Z Zεσ
−′Γ Γ  and the product ( ) 12

2 q

Z Z
Z Z Iε

ε

σ
σ

− ′
′⋅ = 

 
 is 

idempotent so, assuming Z is of rank q 

                                                 
14 Searle (1971), p. 57. 
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2
2

2 2

ˆ
~ ,

Z Z
q

ε ε

χ
σ σ

′   ′∆
′Γ Γ     

. (36) 

If 0Γ =  - so the model is not identified - the noncentrality parameter is zero and 2∆̂  is 

(proportional to) a central ( )2 qχ . If 0Γ ≠  - so the model is identified - the noncentrality parameter 

grows without limit as the sample size increases.15 The limit of a noncentral 2χ  as the noncentrality 

parameter goes to infinity is a normal distribution,16 so 

( ) ( )( )( )2 2 2 21 1ˆ plim ,2 2 plimd
n nN q n Z Z q n Z Zε ε εσ σ σ′ ′ ′ ′∆ → + Γ Γ + Γ Γ . (37) 

6 Monte Carlo Results and An Alternative Distributional 
Assumption 

If the model is identified, then the square of the S-statistic is asymptotically ( )2 1χ . In the 

previous section we showed that when the model is not identified 2∆̂  is ( )2 qχ  for 1k = . In this 

section we argue that ( )2 1q kχ − +  is a good approximation to the distribution of 2S  for the general 

model with k right hand side endogenous variables in the unidentified case. We then present Monte 

Carlo results using both the normal and the 2χ  distributions. 

6.1 An Alternative Distribution 

Returning to Shea’s results, it is useful to write 2∆̂  as 

( ) ( )( )1
2 1

~ ~ ~ ~
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 i n i i i i i

ii
Q X I X X X X X

−
− ′ ′ ′∆ = = − . (38) 

                                                 
15 Note that there are several conventions for describing the noncentrality parameter. We follow Johnson 

and Kotz (1970) with the notation that if u N Iq~ ,µc h, then ¢ ¢¢u u q~ ,χ µ µ2 b g. 



 

-26- 

Equation (38) is a quadratic form, ( )2ˆ ~ ,
ii i ZX N Z PεσΓ , and if the system is unidentified ˆ

iX  

has mean zero. The arguments used in section 5.4 do not hold precisely because the weighting matrix is 

stochastic. However, ( ) [ ]
1

~ ~ ~ ~
ˆ ˆ ˆ ˆ 1n i i i i Zrank I X X X X P q k

−  ′ ′− ≤ − +    
 and Monte Carlo experiments 

suggest that in the unidentified case ( )2 1q kχ − +  is a reasonable, albeit slightly conservative, 

distribution from which to draw critical values for the S-statistic. 

6.2 Monte Carlo Results 

We present the results of two sets of Monte Carlo experiments here.17 The first set of 

experiments show the relative performance of the S-statistic and the asymptotic t for a relatively good 

instrument. The simulations show that in a well identified model the S- and t-statistics essentially lead to 

the same conclusions. The second set of experiments use a weakly identified model with very strong 

endogeneity. Here the S-statistic works much better than does the t. We also show the results of using 

critical values from the ( )2 1q kχ − +  in place of ( )2 1χ . 

6.2.1 Empirical performance of the S- and t-statistics for a well identified model 

The Monte Carlo results presented here shows the relative performance of the S- and t-statistics 

over a range of sample sizes for a well identified model. Figure 2 shows the empirical rejection 

frequencies as the sample size varies from 100 to 10,000. 

                                                                                                                                                             
16 Ibid., p. 135. 
17 The Monte Carlo designs have two RHS endogenous variables and four instruments. In each case we 

report results for β 1. Details of the design and further results based on a number of designs created by 
Dufour and Khalaf (1997) are in an appendix available from the authors. 
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Figure 2 

Panel (A) of Figure 2 shows the empirical rejection rates for the S- and t-statistics as the sample 

size rises from 100 to 10,000. For the design we used both statistics are a little undersized at small 

sample sizes and both rise to the nominal 0.05 level when the sample size reaches 1,000. Panel (B) 

shows three measures of dispersion. The dashed line is the distance between the 2.5th and 97.5th 

percentiles of IVβ . The solid line reports the median value of 2 1.96×  times the reported asymptotic 

standard error. The dotted line gives the median distance between Lβ  and Uβ  for the set of closed S-

intervals. (For 100n =  78 percent of the S-intervals are closed. All simulated S-intervals are closed for 

100n > .) At all sample sizes the width of S-intervals gives a better approximation to the width of the 
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actual distribution than does the width of the asymptotic confidence intervals, although by 500n =  the 

differences are quite small. 

In summary, for a well-identified model the results are about the same whether one uses the S-

statistic or the asymptotic t-. 

6.2.2 Empirical performance of the S- and t-statistics for a weakly identified model 

 

Figure 3 

The solid lines in Figure 3 show empirical rejection rates for the S-statistic; the dashed lines for 

the t-statistic. In each case the upper line gives the empirical size with critical values drawn from the 

normal distribution and the lower line shows the size with critical values drawn from the more 
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conservative ( )2 1q kχ − + . The t-statistic performs abysmally, especially at “small” sample sizes, 

typically leading to rejection of the true value. The performance of the S-statistic is far superior, although 

it too rejects too often. Using the more conservative ( )2 1q kχ − +  critical values the actual size of the 

2-statisticS  is actually a little under the nominal five percent level. Using the same critical values for the 

square of the t- still leaves far too large a rejection rate. 

(1) n 100 500 1000 5000 10000
(2) size t  on normal 0.966 0.880 0.805 0.490 0.311
(3) size t 2  on χ2(q-k+1) 0.942 0.810 0.711 0.341 0.170
(4) size S  on normal 0.201 0.175 0.165 0.110 0.075
(5) size S 2  on χ2(q-k+1) 0.031 0.028 0.026 0.020 0.015
(6) median β 100.251 96.892 93.216 74.293 59.720
(7) 95% coverage width 42.124 94.283 127.559 263.903 315.569
(8) median asymp conf. 25.852 55.974 78.137 157.961 206.143
(9) median closed interval 40.764 92.332 124.236 253.121 327.172

(10) percent closed 0.202 0.195 0.200 0.240 0.260
(11) size|closed 0.907 0.751 0.648 0.318 0.177
(12) percent two rays 0.176 0.181 0.182 0.177 0.168
(13) size|two rays 0.103 0.160 0.195 0.192 0.170
(14) percent whole line 0.622 0.625 0.618 0.583 0.572
(15) size|whole line 0.000 0.000 0.000 0.000 0.000
(16) median βL|closed 85.207 61.265 39.983 -56.745 -118.921
(17) median βU|closed 114.749 123.484 128.062 133.989 134.694  

Table 1 

The upper panel of Table 1 presents the details behind Figure 3. The lower panel provides 

further insight. The central tendency of the instrumental variable estimator falls from 100 to 60 as the 

sample size rises from 100 to 10,000 – as compared to the true value 1β = . The next row in Table 1 

shows the distance between the 2.5th and 97.5th percentiles of IVβ . At 100n = , IVβ  is tightly 

concentrated around a value far from the true value. With a sample size of 10,000, IVβ  remains 

centered far from the true β  but the distribution has spread out considerably. Line (8) reports the 

median value of 1.96 times the reported standard error. Comparing lines (8) and (7) shows that 
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reported 95 percent confidence intervals are about a third smaller than the actual distribution. The 

combination of the miscentering of IVβ  with the too small intervals is responsible for the high rate of 

false rejections of the traditional asymptotic statistics. 

S-intervals come in one of three forms: closed, the union of two rays, or the entire real line. The 

latter two are unbounded, which Dufour (1997) shows to be a desirable characteristic. Line (9) of 

Table 1 gives the median distance between Lβ  and Uβ  for the set of closed intervals. Note that lines 

(9) and (7) are essentially equal, so the width of closed S-intervals does a good job at matching the true 

width of the distribution of IVβ  for this particular Monte Carlo design. Miscentering nonetheless leads to 

considerably too many rejections for closed intervals, albeit fewer than from the asymptotic statistics. 

Lines (10) through (15) show the division of S-intervals into the three types and rejection rates 

within each type. As the sample size grows there is, as one would expect, an increase in the fraction of 

closed intervals and a decrease in the rejection rate among those closed intervals. In this very weakly 

identified model the majority of intervals are unbounded. Even at a sample size of 10,000, the majority 

of 95 percent S-intervals cover the entire real line – which, in light of the absence of much connection 

between IVβ  and β , is probably the sensible conclusion. 

7 Conclusion 
We offer the S-statistic as an alternative to the traditional asymptotic t for tests and confidence 

intervals for individual coefficients estimated by instrumental variables. The “S-statistic” produces 

confidence regions based on a joint test of the structural hypothesis and the identification condition. The 

S-statistic converges to the usual asymptotic statistic as identification becomes certain, has much better 
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size properties when the instruments are weak, and may be inverted in closed form to conveniently 

compute confidence intervals. We recommend that confidence regions based on the S-statistic be 

reported in addition to or in place of the traditional statistics. 
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Appendix – Not for publication 
Here we collect some results that, while memorable, are probably not suited for a journal which 

faces page constraints. 

A1. Relating Shea’s statistic to ours 

The numerator of Shea’s partial 2R  is ˆ
i iX X′

((
. Following the argument in Shea, particularly his 

equation (6), we can write 
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Now w.o.l.g. partition ~
ˆ ˆ ˆ

i iX X X =    so that ~

~ ~ ~

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
i i i i

i i i i

X X X X
Q X X

X X X X

 ′ ′
′= =  

′ ′  
. By the usual 

formula for a partitioned inverse ( ) ( )( ) 11
1

~ ~ ~ ~
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i i i i i i i iii
Q X X X X X X X X

−−
− ′ ′ ′ ′= − . Thus the reciprocal of 

the numerator of Shea’s statistic is exactly ( )1

ii
Q− . 

A2. Documentation of the Monte Carlo behind Figures 2 and 3 

The Monte Carlo behind Figures 2 and 3 is for a model with very strong endogeneity. The 

model has four instruments and two right-hand-side variables. The reduced form coefficients equal zero 

except that for Figure 2 11 22 1Γ = Γ =  and for Figure 3 11 22 .01Γ = Γ = . Results are reported for 

10,000 Monte Carlo trials.  
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function Figure2_IV_99_Gen(n,nTests); 
% n is length of data series 
% nTests is number of Monte Carlo trials 
 
randn(‘state’,0); 
 
q = 4 %% number of instruments 
k = 2 %% two RHS for the moment, not everything works for general k 
cZ = eye(q); 
for i =1:q 
for j=1:q 
cZ(i,j)=7*(.9^abs(i-j)); 
end 
end 
cEps = eye(k); 
for i =1:q 
for j=1:q 
cZ(i,j)=3*(.8^abs(i-j)); 
end 
end 
cEps = chol(cEps); % used below for generating random numbers 
 
 
Z = rand(n,q)*chol(cZ); %% be sure nothing magic about Z 
 
b = ones(k,1);  %% true beta 
 
gamma = zeros(q,k); 
gamma(1,1) = .01; 
gamma(2,2) = .01; 
 
r = 100  %% used for correlation between errors 
for i = 1:nTests    
epsilon = randn(n,k)*cEps; % be sure nothing funny about epsilon 
x = Z*gamma + epsilon; 
y = x*b + randn(n,1) + r*epsilon*b; 
%% Compute the statistics here 
end 

 

A3. Monte Carlos using the Designs of Dufour and Khalaf 

Dufour and Khalaf (1997) present a series of Monte Carlo designs. We used versions of their 

designs which compare results with good instruments ( )rank kΓ = , very weak instruments 

( ) 0rank Γ → , and instruments which do a good job in an individual equation but result in highly 

correlated fitted values from the first stage, ( ) 1rank kΓ → − . The designs specify two endogenous left 
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hand side variables, a constant, and a varying number of excluded exogenous variables In all cases only 

two instruments are relevant; where 3q >  the extra instruments have 0γ = . We simulated the versions 

of the Dufour and Khalaf designs for both the asymptotic t- and for the S-statistic. Both statistics are 

compared to five percent critical values from the normal distribution. In all the simulations 1 10β = , 

100n = , we report statistics for the coefficient of the first endogenous variables. Results are reported 

for 1,000 simulations. 

Design median std. dev. empirical empirical # excluded instrument
Number βIV  βIV size t size S exogenous quality

1 10.006 0.061 0.047 0.053 2 good
2 10.122 0.573 0.020 0.036 2 good, collinear
3 10.130 0.183 0.031 0.027 2 good, collinear
4 10.152 0.579 0.040 0.017 2 good, collinear
5 10.282 3.127 0.066 0.021 2 medium, collinear
6 11.124 0.252 0.493 0.020 2 poor, collinear
7 11.148 0.106 0.616 0.021 2 poor, collinear
8 10.127 0.138 0.066 0.047 3 good, collinear
9 10.156 0.174 0.071 0.044 3 good, collinear

10 10.203 0.502 0.107 0.032 3 good, collinear
11 10.395 0.573 0.196 0.052 3 medium, collinear
12 11.127 0.138 0.838 0.088 3 poor, collinear
13 11.155 0.078 0.896 0.088 3 poor, collinear
14 10.146 0.123 0.153 0.075 5 good, collinear
15 10.199 0.143 0.190 0.078 5 good, collinear
16 10.288 0.165 0.260 0.087 5 good, collinear
17 10.569 0.205 0.541 0.141 5 medium, collinear
18 11.134 0.149 0.983 0.322 5 poor, collinear
19 11.150 0.053 0.990 0.329 5 poor, collinear  

Table A1 

Table A1 confirms the expected results. For models where the asymptotic statistics work well 

(designs 1-5, 8, and 9), the S-statistic also works relatively well. For models where the asymptotic 

statistics perform poorly, the S-statistic continues to work well. The exception is models 18 and 19. 

Here the performance of the S-statistic is mediocre, although far superior to the performance of the t. 
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This is consistent with the suggestion in section 6.1 that the normal distribution is insufficiently 

conservative when 0Γ = . 
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A4 A Matlab® Program to Compute the S-Statistic 

function [S,betaL,betaU,intervalType,deltaStat,betaHat,asympSE] = Sstat(y,X,Z,beta0,c); 
%% function [S,betaL,betaU,intervalType,deltaStat,betaHat,asympSE] = Sstat(y,X,Z,beta0,c); 
%% Compute S-statistic and related statistics 
 
%% from “Improved Inference for the Instrumental Variable Estimator” 
%% Startz, Nelson, and Zivot 
%% April 1999 
 
%% Input arguments: 
%% y     - LHS endogenous variable, n by 1 
%% X     - RHS variables, n by k 
%% Z     - instruments, n by q, q>=k 
%% beta0    - hypothesized values of beta (defaults to 0) 
%% c     - critical value used computing for confidence regions (defaults to 1.96) 
 
%% Output arguments: 
 
%% S     - S statistic for each coefficient 
%% betaL    - lower limit of S-interval 
%% betaU    - upper limit of S-interval 
%% intervalType - 1 for closed interval, 2 for union of rays, 0 for whole line 
%%       if intervalType==0, betaL and betaU are not defined 
%% deltaStat  - delta/sqrt(var(delta)) for each coefficient 
%% betaHat   - TSLS coefficients 
%% asympSE   - asymptotic standard errors 
 
 
nArgs = nargin; 
 
if nArgs < 3 
   error(‘At least three input arguments are required’) 
end 
 
[n ky] = size(y); 
 
if ky ~= 1 
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   error(‘y should have 1 column’) 
end 
 
[nx k] = size(X); 
 
[nz q] = size(Z); 
 
if (n ~= nx) | (n ~= nz) | (n == 1) 
   error(‘y, X, Z must have the same number of rows and there must be more than one data point’) 
end 
 
if (q<k) 
   error(‘Order condition fails’); 
end 
 
if nArgs < 5 
   c = 1.96; %% default 5 percent size 
end 
if nArgs == 3 

beta0 = zeros(k,1); 
end 
if max(size(c) > 1 

error(‘c must be a scalar’); 
end 

[bRows bCols] = size(beta0); 

if (bRows ~= k) | (bCols ~= 1) 
error(‘beta0 is the wrong size’); 

end 
 
%% Computational note: Most time is spent in computing the product-moment 
%% matrix. This should be precomputed where possible, in particular to avoid 
%% order-n operations in the derivative routines 
 
zPz = Z’*Z;  
zPzInv = inv(Z’*Z); 
ZPX = Z’*X; 
ZPy = Z’*y; 
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gammaHat = zPzInv*ZPX; %% reduced form coefficients; 

thetaHat = zPzInv*ZPy;  

%% in what follows we’re going to need to Vec all the coefficients 

lambdaHat = [reshape(gammaHat,1,q*k) , thetaHat’]’; 

Q = gammaHat’*zPz*gammaHat; 
V = inv(Q); 
 
betaHat = V*(gammaHat’*zPz*thetaHat); %%2sls coefficients 
uHat = y-X*betaHat;    %% compute residuals to get std err. 
sig2U = uHat’*uHat/(n-k); 
asympSE = diag(sqrt(sig2U*V)); 
 
 
%% compute reduced form vcov (with a little work, the order-n operations 
%%  could be avoided 
eps = X - Z*gammaHat; 
v =   y - Z*thetaHat; 
errTemp = [eps v]; 
vc = errTemp’*errTemp/(n-q); 
jointErrCov =  kron(vc,zPzInv);  
 
psi = PSI(lambdaHat,zPz,q,k,beta0); %% compute psi function 
deriv = dFdlVec(‘PSI’,lambdaHat,zPz,q,k,beta0); 
vcov = deriv’*jointErrCov*deriv; 
denom = sqrt(diag(vcov)); 
S = psi./denom; 
 
delta = DELTA(lambdaHat,zPz,q,k,beta0); %% compute delta function 
derivd = dFdlVec(‘DELTA’,lambdaHat,zPz,q,k,beta0); 
vd = diag(derivd’*jointErrCov*derivd); 
denomd = sqrt(vd); 
deltaStat = delta./denomd; 
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%% Now get things for confidence intervals 
 
phi = PHI(lambdaHat,zPz,q,k,beta0); %% compute phi function for conf. ints. 
derivp = dFdlVec(‘PHI’,lambdaHat,zPz,q,k,beta0); 
vph = diag(derivp’*jointErrCov*derivp); 
 
covdph = diag(derivp’*jointErrCov*derivd); 
rHart = (-delta.*phi + c^2*covdph).^2 - (delta.^2-c^2*vd).*(phi.^2-c^2*vph); 
R = sqrt(rHart); 
betaL = ((delta.*phi - c^2*covdph) - R)./(delta.^2-c^2*vd); 
betaU = ((delta.*phi - c^2*covdph) + R)./(delta.^2-c^2*vd); 
intervalType = zeros(k,1); 
intervalType = 1*(deltaStat > c) + 2*((deltaStat < c) & rHart>0); 
%% end function Sstat 
  
 
function p = PSI(lambdaHat,zPz,q,k,beta0); 
 
%% return numerator of S-stat 
 
gammaHat = reshape(lambdaHat(1:q*k),q,k); 
thetaHat = reshape(lambdaHat(q*k+1:(k+1)*q),q,1); 
 
Qinv = inv(gammaHat’*zPz*gammaHat); 
bHat = Qinv*(gammaHat’*zPz*thetaHat); 
 
p = (1./sqrt(diag(Qinv))).*(beta0-bHat); 
 
function d = DELTA(lambdaHat,zPz,q,k,beta0); 
 
%% return delta 
gammaHat = reshape(lambdaHat(1:q*k),q,k); 
Qinv = inv(gammaHat’*zPz*gammaHat); 
d = (1./sqrt(diag(Qinv))); 
 
 
function p = PHI(lambdaHat,zPz,q,k,beta0); 
 
%% return phi  
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gammaHat = reshape(lambdaHat(1:q*k),q,k); 
thetaHat = reshape(lambdaHat(q*k+1:(k+1)*q),q,1); 
 
Qinv = inv(gammaHat’*zPz*gammaHat); 
bHat = Qinv*(gammaHat’*zPz*thetaHat); 
 
p = (1./sqrt(diag(Qinv))).*bHat; 
 
function d = dFdlVec(F,lambdaHat,zPz,q,k,beta0); 
 
% return numerical derivatives of vector function F 
 
nCoefs = length(lambdaHat); %% note that nCoefs might equal q*(k+1) 
d = zeros(nCoefs,k); 
F0 = feval(F,lambdaHat,zPz,q,k,beta0); 
for iCoef = 1:nCoefs 
   dL = .0001*lambdaHat(iCoef); 
   if dL == 0 
dL = .0001; %%  to handle coefficients being exactly zero 
end 
   newLambda = lambdaHat; 
   newLambda(iCoef) = newLambda(iCoef) + dL; 
d(iCoef,:) = ((feval(F,newLambda,zPz,q,k,beta0) - F0)/dL)’; 
end 


