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Abstract

It isnow well known that stlandard asymptotic inference techniques for instrumenta variable estimation
perform very poorly in the presence of weak ingruments. Specificdly, standard asymptotic techniques
give spurioudy smadl stlandard errors, leading investigators to accept apparently tight confidence regions
which unfortunately may be very far from the true parameter of interest. We present an improved
technique for inference on Structura parameters based on reduced form estimates. The “S-datidtic”
produces confidence regions based on ajoint test of the structura hypothesis and the identification
condition. The S-gtatistic converges to the standard asymptotic Wald statistic as identification becomes
certain, has much better Sze properties when the insruments are wesk, and may be inverted in closed
form to conveniently compute confidence regions. In addition to providing improved inference for
insrumentd variable estimation, the technique suggested here may be useful in other applications where
weak identification isimportant.
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1 Introduction
It is now well known that stlandard asymptotic inference techniques for instrumental varigble

estimation perform very poorly in the presence of weak insruments. The falure is of the worst kind —
fase results are accompanied by reported confidence intervals which lend an gppearance of great
precision. That point estimates of coefficients do a poor job of telling us the true values of those
coefficientsis probably irremediable, after dl if an equation is poorly identified then the data do not tell
us much about the parameters of the system. However, it is possble to create test Satitics and
confidence intervas that work quite well in the sense that they lead to reasonably accurate inference
when instruments are poor and that are essentidly identical to the asymptotic test Satistics and

confidence interva's when the instruments are good.

The usua asymptotic Wald datistic asks how far an estimated structurd parameter is from some
hypothesized value, where the metric for “how far” is based on an estimated asymptotic standard error
which isitsdf caculated from the estimated structura parameters. When the structural parameters are
poorly identified, thisleads to mideading inference. The Sdtatistic we introduce here is based on three
principles (the first two of which may aso be useful in other cases of week identification). First, we wish
to rgect the structurd hypothesis only if the estimated parameter isfar from its hypothesized vaue and
the mode isidentified. Equivadently we should fail to reject if the parameter is close to the specified
vaue or the modd is unidentified. We accomplish this task by multiplying the distance between the
edimated and hypothesized vaue of the parameter by an “identification statistic” which equals zero if
and only if the parameter is unidentified. In thisway we have ajoint test Satistic which is closeto zero if

ether the estimated parameter is close to the specified vaue or if the data does not support



identification. The converseistha if the parameter isidentified with (near) certainty, we have multiplied
the usua asymptotic satistic by a (near) congtant, leaving inference unchanged. Second, we “ studentize”
the joint gtatigtic by an estimated standard deviation that can be computed from reduced form
parameters, which are consistent whether or not the structura parameter isidentified. The third

principle, specific redly to insrumenta varigbles, isthat the inaccuracy of 1V under wesk identification is
duein part to a“dividing by zero” phenomenon which multiplication by the identification Satistic

ubgtantidly mitigates.

Having introduced the S-tatistic, we show how the corresponding confidence regions, which
wecdl Sintervals, can be computed in closed form. When an equation is well-identified, S-intervals are
quite close to traditiona asymptotic confidence intervals. When an equation is weskly identified S-
intervals are appropriately wide, indeed they may be unbounded. Where much of the existing literature
on weak ingrument instrumental variables has focused on the case of a single endogenous right hand
sde variable, the method we introduce provides for testing each individua coefficient in the generd k-
variable model. We further alow for the Situation where some coefficients are well-identified while

others are not.

The principa god of the paper isto provide practitioners with improved tools for inferencein
the presence of weak instruments — tools which can augment or replace the traditional asymptotic tests.
Soecificdly, the S datistic and corresponding confidence regions are computed for each coefficient and

can be used in place of the traditional t-gtatistics and associated confidence intervas. The asymptotic



distribution theory for our new gtatistic is completely standard." The advantage of the S-dtatistic liesin its
better finite sample properties under week identification. We provide andytic results for a special case

and then present further evidence through Monte Carlo smulations.

To st out notation, we begin with areview of the sandard insrumenta variable modd and the
corresponding reduced form. We then give a brief literature review. Next we present the S-statistic. We
investigate the one endogenous variable/one instrument case, where we can give exact finite sample
results. For the multiple endogenous variable/multiple instrument case we present Monte Carlo

smulations to appraise the performance of the Sdatidtic. We conclude with a brief summary.

2 The General Model

2.1  The Structural Model
We begin with the classic statements about insrumenta variables, in the process defining

notation for the paper. Consider the structural linear equation with k right-hand side variables

y=X b+u. @
(M) (k)(kD (n1)

Suppose thet the right-hand side variables are correlated with the errors, plim( X@)* 0, but there
exissasgt of gingrumentsZ, q2 k, plim(1Z&) =0, plim(:Z&)* 0, where plim(£Z®) isof
full rank g and plim (2 Z& ) isof rank k. We further assume that the errors are homoskedastic,

+768 N(o,pnm(%zsz)). b iscommonly estimated by instrumental varizbles (equivalently two

dtage least squares or generdized method of moments). The instrumental variable estimator is

! The statistical theory pretty much amounts to nonlinear tests on least squares coefficients, which is why
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by =(X®X) " X®y, whereP, © Z(z€) " z¢. )
The asymptotic digtribution of b, isgivenby b, éN(b,VA) . Itis useful to define

~ 2 2 Aya-l

Q° X® X, 0 the asymptotic varianceisgiven by V, :ST“gplim(%Q)H .

The reduced form of the mode conssts of the regression of y and each column of X on dl the

indruments,
y=2Zq+v, 3)
() (a)(qy (n2)
X=Z G+ e, (4)

(k) @a)(a k) (k)
whereq isk”™ 1, Gisq” k,and eisn” k. Subgtitute equation (4) into equation (1), deriving
y=(ZG+e)b +u=2ZGb +(eb +u). (5)
Comparison of equations (3) and (5) highlight the restrictions imposed by identification:
qg=Cb. (6)

It is useful to notethat Q can also be written in terms of the reduced form parameters,

1Q0 1 X® X =132 )G. The asymptotic variance may be expressed in terms of the reduced form

-1

parametersas V, =%(G¢plim(%2¢1) G

the tests work pretty well.



2.1 Estimation of the Reduced Form

The reduced form coefficients are, of course, estimated by least squares, q = (ZSZ)'l Z$ and

G=(Z®) " Z& . Because we need the covariance matrix of the estimated coefficients, it is convenient

to think of the reduced form as a system of seemingly unrlated regressions

vec(y, X) =(Z A1) vec(q,G) +vec(v,e). 7
Define | to bethe g1+k)" 1 column vector of reduced form coefficientsin equation (7) and | to

N Ao ~ 0
be the corresponding estimated |east squares coefficients, | :%d: G¢ - Gﬂd and

Sr:Egv e e - elfve e - ek]g,thm cov(IA):%S,A(plim%(zqz))'l.lfwe

condition on Z and the reduced form errors are normal, or if the sampleisreasonably large, then I will

be normdly distributed.
Note that the 2SL S interpretation of the instrumenta variable esimator is
by =b,qs = gZG)Q(ZG)gl(ZG)q:(Zd) . The order condition for identification is g 2 k . Therank
@
condition is usudly written rank (G) = k. For our purposesit is more useful to write
rank (plim2GEZEG) = k , which implies (Gtplim%(Z€)G) > 0" i .2 When the rank condition is

satisfied and q = k, equation (1) isjust identified and the indirect least squares interpretation of the

instrumental varigble esimatoris b,, =b , =Gg .

2 |f any diagonal element of a symmetric matrix A is zero, the matrix cannot be positive definite since the
quadratic form d¢Ad = O for the vector d = 0 except d, =1.
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3 A Brief Review of the Literature
A series of recent papers have examined the distribution of the insrumental variable estimator

under week identification and the related issue of the performance of the traditional asymptotic tests.
Papersinclude Bekker (1994), Bound, Jaeger, and Baker (1995), Hahn and Hausman (1999),
Maddaa and Jeong (1992), Nelson and Startz (1990a, b), and Staiger and Stock (1997). Dufour
(1997) gives generd results for obtaining correct probability levels with wesk identification. In
particular, Dufour shows that for agatistic of nomind Sze a to be vaid under wesk identification, the
confidence intervas implied by the gatistic must be unbounded at leest 1- a percent of the time. We

return to this point in section 4.2.

Half a century ago, Anderson and Rubin (1949) and Anderson (1950) described the
AndersonRubin (AR) gatistic, which under normality provides an exact smal sampletest of a
hypothesis which specifies values for every dement of the b vector. Zivot, Startz, and Nelson (1998)
(ZSN) and Dufour and Jasaic (1996) show how to use the AR-datistic to construct confidence regions
in the case of a single endogenous variable. ZSN aso provide improved gatigtics for maximum
likelihood estimates based on degrees-of-freedom-corrected LR and LM tests. Wang and Zivot (1998)
provide an asymptotic judtification using the Staiger and Stock loca-to-zero asymptotics for these
results. Note that these papers are limited to inference in the case of a single endogenous right hand side
variable or to hypotheses specifying vaues for the entire vector of coefficients, here we ded with
inference on individua coefficientsin the genera k-right hand side variable case. Note additionally that

while these papers provide confidence intervasfor b , the confidence intervas are not in genera based



on the ingrumenta variable estimator. The computed confidence intervals may reject the estimated value

of b,,, whichisat least anuisance dthough probably not afatd flaw.

Stock and Wright (forthcoming) provides agenerd procedure for inference for gmm with weak
instruments which for the linear sngle equations mode is based on LIML estimates. Stock and Wright
point out that using their method “congtruction of asymptoticdly vaid confidence intervas for subvectors
... Issomewhat ... difficult,” but that an asymptotically conservative confidence interva can be found by
projecting out parameters as suggested in Dufour (1997). As apractical matter using the procedure to
test ahypothessisrdatively sraghtforward but inverting the test to find confidence intervas requires a

numerica search.

Hall, Rudebusch, and Wilcox (1996) examine direct tests of the rank condition based on the
gze of the smdlest canonica correlation. They dso point out thet for the usud asymptotic Wald satistic
screening based on such a pre-test, of which the first-stage R? isa specia case, can introduce an

intended selection bias that worsens rather than mitigates finite sample bias.

Shea (1997) presents a diagnogtic for identification. (See dso Godfrey (1999).) We examine
Shed s measure in detall because it provides ingght on the statistic we propose here. One normaly
thinks of “wesk indruments’ as meaning that the ingruments and right hand side endogenous variables
are poorly corrdated. Shea presents a useful extension which we discuss after defining afew symbols.

Let X, bethei™ columnof X and X_, betheremainder of X . Define
X, © theresidual from regressing X, on X_, , orif k =1 smply X, © X.. Similarly, where

X =2G=P,X aethefitted vauesfrom thefirst-stage, let X, bethei® columnof X and X_, bethe



remainder of X . Define X, © theresidual from regressing X, on X_,, orif k =1 smply X, © X,.

Shea calls the squared correlation between X, and )X(i the“partid R?” for the i" endogenous variable.

(Note that for k=1 the partial R? issmply thefirg-stage R®.) While the exact distribution for partial
R? is unknown, Shea uses Monte Carlo experiments to show that partidd R® is close to zero when

wesk instruments force the actua digtribution of b, far from its asymptotic gpproximation.

Shed s smulations show that hispartid R® does agood job of signaling weak instruments. We
pick up thisidea but use only the numerator of Sheal s Satigtic, noting that the population vaue of partia

R? equas zero if and only if the numerator equals zero. A little dgebra, which isimplicit in Shed's

A A A A -1 A A A
paper, shows that this numerator equals Xiil(ln - X, (X$X~i) Xﬂ:) X, which equals ]/(Q'l)

Therefore the population value of the numerator of Shed s statistic for the i™ coefficient equals zero if

and only if the asymptotic variance of b, , isinfinite (nb. :I/AVAR(b,V,i):]/(S—fgalim(%Q)g'l) -

so that the i" coefficient is not identified.)

4 The S-Statistic

4.1 Combining tests of the structural hypothesis and identification
We introduce the S ddtidtic in this section as ajoint test of a structurd hypothesis and

identification and give its asymptotic didtribution. In section 5 we give finite sample results for the one-
endogenous variable/one instrument case and present intuition for thinking of S as a scaling correction to

the asymptotic t. Define



B, © /V(Q_l) . ®)

Computationally D, isthe square root of the reciprocal of the ™ diagonal element of (X® X) or,

equivaently, the reciprocal of the reported standard error of b, ; divided by \/? , the standard error
of the regresson from the IV estimation. Notethat D, >0" i isnecessary for the rank condition to

hold.

Suppose we wish to test that the i™ coefficient equals a hypothesized value, for example that
b, =b. Standard practiceisto compare b’ to b, ; using an asymptotic t-test. We augment this
comparison so that the test statistic will be close to zero ether if the estimated deviaion issmdl or if the

evidence for identification is wesk by forming

Y, oD (b-by,). (9)

Itisuseful to re-write Y, asafunction of the instruments and the estimated reduced form
parameters, G and q;
1

\/((éqmé)'l)

In order to studentize Y, we require an estimate of var( Y, ) . Since the estimated reduced

Y, (Ga:z:b?)=

gbio . ((éqzqé‘;)'1(6;(124&:}))i g (10)

form parameters are asymptoticaly normd, we can estimate var (Yi ) by the usud Taylor series



approximation by conditioning the distribution of Y, on the list of instruments. With this addendum the

S-datigic is defined asfollows

. . ¢ ~TY .
So L where s 3 ° YA' cov(l )ﬂ‘l;l(: : (11)

Note that Sisafunction of the reduced form parameters, which can be consstently estimated even

when the gtructural parameters are not identified, and Z. The partid derivetives ‘H\?i / ‘HIA are
conveniently calculated by the numerica delta method and cov (IA) followsimmediady from the

reduced form estimates.®

Under standard regularity conditions’, the S-gtatistic is approximately standard normd, or

equivdently S* is approximately ¢ *(1) . Inference may be made by comparing computed |S] to the
usudl norm aritical values® In asfficiently well-identified modl, var (D, ) and cov(D, by, , ) are both
closeto zero, s0 S» (b - blv,i)/A/var(b,V,i) is close to the usual asymptotic t. Below, we show

that in the one endogenous variable/one instrument case under normdity S has an exact t-digributionin

smdl samples regardiess of the degree of identification.

3 Matlab® code for computing the S-statistic and associated confidence regions is contained in an
gopendix available from the authors.

* Regularity conditions may include that the parameters are identified. In section 6 we consider improved
approximations for cases where b is unidentified rather than merely “weakly” identified.

> Because the sign of the square root in equation (8) is arbitrary one-tailed tests aren’t possible in most
cases. Additionally, S ~ ¢ ? (1) isabetter finite sample approximation thanis S~ N (0,1).
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Our interest isin inference for wesak instruments. There is, however, an interpretation with more
generd applicability. Y, augments the structurd hypothesis of interest by requiring the parameters of
interest beidentified. The estimated vaue of Y, will be close to zero ether if the hypothesized value of

the structurd coefficient is correct or if the modd is not well-identified. This sort of joint test, which will
be rgected only if the structural hypothesisis false and the modd is well-identified, may be useful in

other contexts aswdl.

4.2 Confidence Regions Based on the S-Statistic
S-confidence regions are computed by “inverting” the S-gaidtic; thet is by finding the vaues of

b such that |S| <c, wherecisthe critica vaue for the desired size. In this section we show how to

compute S-confidence regions in closed form and show that such regions take one of three shapes. We
show that the confidence regions, and therefore the underlying S-datistics, converge on the usud
asymptotic statistic as uncertainty about identification goes to zero. Findly, we demondrate that the S
confidence region asymptoticaly satisfies Dufour's (1997) condition for unboundedness,

It is convenient to think of the S-confidence region asdefined by Y ? <$'2 xc? (equivaently

S? <¢?). The region takes one of three shapes: afamiliar connected interval of the form (b tb" ) ; the
union of two rays (-¥ b L) E (b H,¥) ; or the entire redl line. Note that the latter two forms are

unbounded.

Figure 1 shows a plot of the (square of the) S-gatistic and corresponding asymptotic Wald
datigtic for the firdt, of two, coefficients for a particular Monte Carlo redization generated with the true

b, =1. Confidenceintervals are the values of b, such that the test statistic lies below the gppropriate
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aritica valug, say ¢ =1.96. The Wald gtatistic plots as a parabola and the corresponding 95 percent

confidence region is aclosed interval around b, (90.13,156.43) , aregion which excludes the true

value. Indeed, the t-statistic againgt b =1 is 7.23. The Sregionisthe union (- ¥,86.29)E (97.15,¥ ),

whichincludesthetrue b . The Sdatisicagang b =1 is1.40.
Figure 1 illugtrates how the shape of the S-region depends on the size of the test. At alarger
Sze, and correspondingly smdler vaue of ¢, the S-region would be a connected interval around b, .
Conversdly, at asmdl sze and high value of ¢, the S-region will be the entire redl line. The confidence

region dways includes the estimated value b,,, in contrast to the AR gatistic which may rgject b, , the

latter presumably reflecting afalure of the overidentifying restrictions.

S2 and asymptotic Wald statistics, b,=1, b, =123.3
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In order to compute confidence intervalsit is useful to define ™ © f)b,v and then note®

Y20 Db % - 2D b +j"2, (12)
2= b°2var(l5)- 2b°cov(|5 'A)+ i
2= g ) +var (7). (13)
Evdudingtheratioof Y? to S as b°® =¥ , it folowsimmediaely that im Q=%
* var (D

Therefore, the S-intervd is unbounded iff the “Z-score’ for identification is not Sgnificantly different from

for large values of |b°| so extremevaluesof b® arenot rejected. It follows thet the S-statistic

zero, asin this case Sasymptotes to avaue lessthan c.” Sad differently, if <c,then | <[c|

asymptotically satisfies Dufour’s (1997) condition requiring, in the case of a near non-identification, that

adatistic be unbounded at least 1- a percent of thetime for the Setidic to atansze a .

From equations (12) and (13), the condition Y * <S'2 »c? gives the confidence region defined

by the quadratic inequality?

A

(IAD2 - ¢ var(f))) b% +2(- D" +¢° cov(f),jA)) b° +(jA2 - ¢ var(j“)) <0. (14)

® We drop the subscripts indicating coefficient number where there is no danger of confusion, i.e. D in
place of D, .

’ Note the paralld to the unbounded confidence intervals corresponding to first stage F-statisticsin Zivot,
Startz, and Nelson.

AC g A SE
8 Computationally we estimate varCBh = "llTT:? covdl |% and covCD,jAh = E:? covdl |jIJ|A , where the

vectors of partial derivatives can be computed numerically.
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The confidence region is defined by the roots of equation (14). ° Let

R:\/(- f)j“+c2cov(f),j“))2- (If)z- c var(f)))(j”- c? var(jA)) , (15)

(16)

As can be seenin Figure 1, for smdl critica vauesthe S-qatigtic cuts the horizonta critica vaue

in two places and the confidence region lies between the two cut points. Specificaly, if

% ( — ) > ¢, then the confidence region from inverting the S-gatidtic is the connected interva
var|D

(b L bV ) .In Figure 1, the 60 percent confidence region is (111.44,175.54) . In the particular

example, theidentification Z-score is 1.187, so the S-statistic asymptotes to 1.187 and the Sregion is

connected for sizeslessthan 2x{(1- F (1.187)) =0.235.
For higher critical vaues, if D < ¢, the confidence region is the union of two rays
g / D) ey Y

defined by (-¥,bL) E (b”,¥) if Risred, and the entire red line otherwise. The corresponding

confidence region is the entire red line when the argument to the root in (15) is negetive, which occurs

for critical vaues aove ¢, where

® It may be helpful to note that Y%Z isthe ratio of two quadraticsin b°, accounting for the

Y

characteristic shapeillustrated in Figure 1. Zivot, Startz, and Nelson show that the Anderson-Rubin
statistic can also be written as aratio of two quadraticsin b°, so the AR-confidence regions can also
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D? var(jA)+jA2var(IA3) - ZIjAcov(IAD,jA)

¢ = var(f)) var (j°) - covz(f),j“)

(17)

In Figure 1, the 95 percent confidence region is (- ¥,86.29)E (97.15¥ ). In this example,

¢ =2.01; thereforeno valuesof b can be rejected with Sizelessthan 2X(1- F (2.01)) =0.044.

In auffidently well-identified models the uncertainty sbout D is negligible, s var( E)) <<[F,

A

cov(f),jA) <D, and var(i") » D? var(b,,) . Equations (14) through (16) reduce to

(6*)b* +2(- B, )0+ ©7(b,, - ¢ var (b)) <0, (14)

R:\/(- Db, )2 - (If)z)lf)z(b,\,2 - var(b,v)) =Devar (b, ), (15)
{bt,b"}=b, tcfvar(b,). (16)

This establishes that S-intervas gpproach the intervals based on the asymptotic t-datistic as

identification becomes cartan.

The Stest and the corresponding confidence region is asymptoticaly vaid and easy to compute.
It is much more accurate than the traditiond asymptotic satistic in the sense that it gives much wider

confidence regions when the parameters are not well identified.

take on the same three shapes and a plot of AR(b On exhibits the same basic functional form as does the
plot of s?(b°].
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5 The One RHS Variable Model
The case of oneright hand side variable is particularly amenable to theoretical andysis and

provides much intuition. In the first three parts of this section we consder the one right hand sde
variable/one ingrument modd. We show that for this case that the S-gatidtic is exactly, rather than
approximately, norma (conditiona on z and assuming normd errors.) In the fourth subsection we derive

the exact distribution of D? for thegeneral k =1,q3 1 case.

5.1 Distribution of the structural coefficient
For the one RHS-variablejust identified modd we can write the structurd equation as

y=bx+u, (18

and the two reduced form equations

y=qz+yv,

19
x=gz+e, (19)
Substituting the reduced form equation for x into the tructural equation leads to an dternative
representation of the first reduced form equation
y=bgz+(be+u). (20)

Thusthe identifying redtriction is = bg . Note that the insrumenta variable estimator of b isgiven by

b,y =Gors/GoLs » Where 0, s and g, are the reduced form coefficients, which smply says that the

IV estimator can be thought of asthe indirect least squares estimator.

-16-



Traditiona asymptotic distribution theory states

by 2N(b,V,), V, =2 — A :T(g2 pim(1§ zz))_l. Inference usuially proceeds using

the Wad datitic, that isthe square of the “asymptotict.” ThelV, 2SLS, and GMM estimators are dl
the same here (as s, for that matter, the LIML estimator). We are interested in the case of weak

identification. It isilluminating to condgder what hgppensas g ® 0. The answer depends on the

correlation between u and e. Write u=te+e", wheret :S—uze and E(ee“):O.TheIV and OLS

e

edimators are
] %ézy 14 z(bgz+( e+u) 14 z(bgz+(be+(te+e“)))
-1 13 z(gz+e) 13 z(gz+e) ’ -
o, A8 18 (bgz+(beu))(gzre) _+8 (bgze(berfrere’)))gzre)
BEE-ES & (ozve) 18 (oz+e) |
The extreme caseiswhen g ® 0 so
b, _1a z(tze: [teve )) =b +t +%a e ~<_>Cauchy,
Fa Ze na Ze ‘
: A @
1 b o
by = A (( e+o(te2+e )))e =b +t +”—ao—» b +t.
tae tae’

ThelV edimator is b +t  plusamultiple of a Cauchy random variable since the fraction in equation

(22) istheratio of uncorrelated mean zero normals.’® The OLS estimator isaso b +t  plusarandom

19 phillips (1989) and Staiger and Stock (1997) show this result for the general k-RHS variable, completely
unidentified case.
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variable which converges quickly to zero. In particular, in this unidentified case the median of IV and the

median of OLS are gpproximately the same, b +t . For this reason Hausman-Wu endogeneity tests,

which look at the difference between IV and OL S parameter estimates, are likely to be of low power

(see Staiger and Stock (1997)).

In the absence of endogeneity, t =0, both IV and OLS are gpproximately median unbiased,

athough OL S would obvioudy be the preferred estimator. It is more interesting to study 1V when there

isendogeneity. Consder the case of maximum endogeneity, var (e“ ) =0. Here, both 1V and OLS

collapseon b +t ,so b, and b ¢ areboth very tightly distributed around the biased estimate. When
this happens, the resduals also convergeto zeroas y=v=be +u=he+te, x=e, and
y- by x=(be+te)- (b +t)e=0. Thusthe reported asymptotic standard errors are spurioudy

sndl.

5.2  Test statistics in the simple case

When g =1, k =1 thevarious test satistics are anenable to anayssin closed form. In this

section we make three points. Firdt, the (squares of the) S-datistic and the t-gtatistic can both be written
as nonlinear Wad tests of the same hypothesis on the reduced form coefficients. The two differ by a
scaling factor, in that computation of the S-datistic essentidly undoes a divison-by-zero problem, and
differ further by the fact that the S-qatistic satisfies Dufour’ s (1997) requirement for unbounded
confidence intervals where the t-statistic does not. Second, the S-statistic is closdly related to the
Anderson-Rubin gatistic. Third, we show that the S-datistic has an exact finite sample t- distribution

(conditiond on z and assuming normd errors).
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Firg some intuition on the divison-by-zero issue. In the Smple case the IV estimator is smply

theratio of d to ¢ ; and other relevant computations are I5=Q é z, b\/iﬁ:y —,
\ va(B) /v (g)

and Y :(b°g - qA),/é 7> *'When g iscdloseto zero, or more to the point when much of the

probability massof g iscloseto zero, then b, isafraction, d/(j , whose denominator is close to zero.

Divison by zero has undesirable side effects, induding violation of the usualy innocuous regularity

conditions needed for asymptotic theory. Inessence Y  is computed by multiplying the numerator of the

A

asymptotict, b - % by D to achievejust the desired scaling, b %G - q , to eiminate the division
by- zero problem and give awel-behaved satistic. Note further that the Satistic for testing for
dentification, B/ [ver (D) , is also the statistic for how far the denominator of the IV estimator isfrom
zero, g / m , and isaso the standard test for the significance of the first stage regresson. The S
datistic is unbounded when If)/ W issmall, meeting Dufour’ s criteria for unbounded Wald tests
exactly when much of the mass of the denominator of the IV estimator is close to zero.

The S-dtatigtic and the asymptotic t test dternative normdizations, b°g - g =0 versus

b°- % =0, of the same hypothesis. It may be useful to see that these differing normalizations account

for the different behavior of the two statistics.*? In what followsit will be convenient to note two

different computations of residuals and residual variances, based on b,,, and on the Anderson-Rubin

 Note that we have passed g implicitly through the root so that unlike in the general casethe sign of D is
determinate.
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regression respectively. For the latter note that the Anderson-Rubin getigtic tests a =0 inthe

bx
regresson y- b,x=az+u, . The edimated AR coefficient is a = a—(yéz—) q bg . Define

° y- by x=(qz+7)- b, (§z+€)=0- b,é

X . o : (23)
Siv :b|v Sez' 2bIVSve +55
°© y-byx- &z=y- byx- (d bog“)z:y-qu- by, (X- §z) =V- byé
(24)
—b s -2b%  +S?
We begin with the S-gatistic. We have
Yo D(b°- b, )=6 ézz(b(’-q@)=(b°gﬂd) 37 (25)

To compute the denominator of Swe need the partid derivativesof Y w.r.t. the reduced form
.. PSRN | i Y _ o 5. o~@
coefficients | =& gH.Thederlvatlvelsﬂ/ﬂlA —Ja Zxgl by, 0

2

s .. Ué-1u - A A2 A
S = A/az 21 b° Hw—e Zugb(,u&/ =b¥$2-2b%, +$2 =57 (26)

az éve

Note that the denominator of the Sdatidticis , /s jﬁ S0 we can rewrite the S-detitic as

(b %9 - qA)/4 Is i/é 7> . The Sdatigtic issimply aWald test of alinear restriction from a particular

least squares regression.

12 As reminder the formal claimsin this section apply when g =1 and k = 1, although we hope the reader
will find the intuition useful more generdly.

-20-



It turns out that the asymptotic t can be rewritten as the reduced form nonlinear Wald statistic

onb?- % =0. The numerator of thet is b° - d /g . The denominator comes from the usuad Taylor

series approximetion for the varianceof b, ,

, s ~ \xz _A\¢ 1 ) ~ S SL\
Va(blv)>)g§} #HCOV(q,g)% E(ZLS Zg_zﬁgb Se - 2bs ve +SVH=gA_Zé.V_ZZ. (27)

Thelagt termin (27) isthe reported value of V, for the usua asymptotic t-test, so in this specid case

the asymptotic statigtic is exactly the reduced form nonlinear Wald statisticon b ° - % =0.The

performance difference between the S-datistic and the t-Satigtic arises out of different normdizations for

the nonlinear Wald test.

Findly, note that in this specia case the S-datigtic and AR daitic are identica. The numerator

of Sand the AR datistics are equal except for a congtant factor, as a é 7> =-'Y . From the standard

2
least squares regression results the standard error of & is F % 2 In comparing the Sand AR the

constant é z° cancdls between the numerator and denominator proving the equdity of Sand AR.

Since the Sdatistic isaWad test of alinear redtriction from a particular least squares

regresson, it followsimmediately thet the S-gatistic is distributed t,, , (conditiond on z and assuming

normd errors). Alternatively, the S-statigtic isdigtributed t,, , because it equalsthe AR Statistic.

-21-



5.3 The exact distribution of the structural coefficient and the role of uncertainty
about identification

Becausethe q =1, k =1 modd isandyticaly tractable, we can demongrate just how badly
the asympitotic distribution approximates the true distribution and make precise the sense in which the
reported asymptotic t reflects alimiting digtribution in which uncertainty about the rank condition
disappears. In the one-by-one case, the IV estimator istheratio of the reduced form coefficients d and

g . The numerator and denominator are distributed bivariate normal, assuming z isfixed and the errors

aenormd:
&u &gy é s’ Mo ¢S o U0
e.u~Nge (¢ T (29)
aa €9 U 8o S Sy Uy

where
é s? rss.U 1 ébs?+2bs_+s? bs’+s_ U 1 &°?2 U
A q %ﬁq g, ~ Se Seu Su Se SaJ,_ XV Sm S 29
e 2 =g e o, : 0T g e > 0 (29)
@rCBSng Sg GI aZ é Se Seu se u az @ve Seu

Since b, istheratio of two norma varigbles, its densty follows directly from Hinckley (1969) who

citesFidler (1932). The pdf for b, is

f(b,)= Fli(by))-F(-](b + ex
o) o pafe O I P )
, (30)
where
3, 2rgby 10" b, Ty (bI+h), g
a(by) =g 51 b(b,, ) =——*- = tZ
Sq qug Sg b Sq qug Sg
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= = v, (3
TR e, s B R AT A
| b(byy)

blV = .
i{bw) a(by)Ji- 12

One might remark that, in generd, equation (30) does not look much like abell curve™

We can now make more precise the sense in which the asymptotic t- describes the limiting

digribution of b,,, asidentification becomes certain. Hinckley (1969) looks at the cdf corresponding to

the pdf in (30) and shows

i — Z-:egblv'g) O
yr&F(b,v)—F s.s.a(by)g 2

Sg

The denominator on the right of (32) is

0.5

(bIVZng_ 2r S (Sgby +Sq2) :(bIVZSez_ 2 .by, ts 3)0.5(5_ Zz)-o.s. (33

© a9

05
Evaluating this denominator at the estimated parameters, see equation (23), gives (sAj / a 22) . So

by

evauating the right-hand side of (32) a the estimated parameters gives

P2 <! o]
£ ¢ b,-b -

e /eaz) s

(34)

3 The pdf described by equation (30) can be bimodal. With very weak instruments and high endogeneity
the density has two modes which collapse around the point of concentration of the IV estimator.
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which is the tandard asympitotic result. Thus the standard asymptotic result is equivaent to evauating
the true distribution at the estimated parameters under the assumption that identification is known to hold

with certainty.
5.4  The exact distribution of D?

Compuitation of the confidence region for the S-dtatistic depends on the Z-score for the
identification statistic, f)/ \/\T(E) . Furthermore, when identification fails completely the distribution of
b,, collapsesto apoint so the digtribution of Sis essentidly the same as the distribution of D. We
show herethat D? obeys anoncentral ¢? digtribution. When the modd is not identified the distribution
of D* smplifiestoacentra ¢ ?(q). When the mode! isidentified, in contrast, D? is asymptotically

normd.
The precise statement is about the distribution of

D?
S 2
e

er?z—z (35

A quadratic form wdAw in normdl variates w ~ N (mV) isnoncentra

c**(rank (AV), miam) if and only if the product of the weighting metrix and the variance-covariance

matrix isidempotent.** Here G~ N (Gs z (ZGZ)'l) and the product g@z
Se @

s2(ze) " =1, is

idempotent so, assuming Z isof rank q

14 Searle (1971), p. 57.
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= C2¢ q,qu;_—GT (36)
e

If G=0 - sothe modd isnot identified - the noncentrality parameter is zero and D? is

(proportional to) acentrl ¢*(q). If G* O - sothe modd isidentified - the noncentrality parameter
grows without limit as the sample Size increases™ The limit of anoncentral ¢ ? asthe noncentraity

parameter goesto infinity isanorma distribution,™® so

D’ %9%® N (qs: +nG®pIim(%Z(Z)G,25j(qu+nZGDplim(%Z(Z)G)). (37)

6 Monte Carlo Results and An Alternative Distributional
Assumption

If the model isidentified, then the square of the S-gtatistic isasymptoticaly ¢?(1). Inthe
previous section we showed thet when the model is not identified D? is ¢?(q) for k =1. Inthis

sectionwe arguethat ¢ *(q- k +1) isagood gpproximation to the distribution of S* for the generd

modd with k right hand side endogenous variablesin the unidentified case. We then present Monte

Carlo results using both the normal and the ¢ * digtributions.

6.1 An Alternative Distribution

Returning to Shed s reaults, it is useful to write D? as

6°=1/(¢%) = xa(l X, (ReR, )R g) X, (38)

>Note that there are several conventions for describing the noncentrality parameter. We follow Johnson
and Kotz (1970) with the notation that if u~ N{m 1 qn, then u'u~ c 2[q, rrfrrg.
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Equation (38) isa quadratic form, Xi ~N (ZGI,sj’iPZ) , and if the system is unidentified )A(i
has mean zero. The arguments used in section 5.4 do not hold precisaly because the weighting matrix is

stochastic. However, rankggln - )A(~i ()A(_tl,i)A(_i)_l )A(ﬂ;g[PZ]QEq- k +1 and Monte Carlo experiments
@

suggest that in the unidentified case ¢ *(q- k +1) isaressonable, abeit dightly conservative,

digtribution from which to draw criticd vduesfor the S-qatidtic.

6.2 Monte Carlo Results
We present the results of two sets of Monte Carlo experiments here.™” Thefirst set of

experiments show the relative performance of the Sdatistic and the asymptotic t for areatively good
ingrument. The smulations show that in awell identified mode the S- and t-datistics essentialy lead to
the same conclusions. The second set of experiments use aweskly identified modd with very strong

endogeneity. Here the S-gtatistic works much better than does the t. We also show the results of using

critical vduesfromthe ¢?(qg- k+1) inplaceof ¢*(1).

6.2.1 Empirical performance of theS- and t-statisticsfor a well identified model
The Monte Carlo results presented here shows the relative performance of the S- and t-datistics

over arange of sample sizesfor awell identified mode. Figure 2 shows the empirica regjection

frequencies as the sample size varies from 100 to 10,000.

®1hid., p. 135.

The Monte Carlo designs have two RHS endogenous variables and four instruments. In each case we
report results for b, . Details of the design and further results based on a number of designs created by
Dufour and Khalaf (1997) arein an appendix available from the authors.
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Figure 2

Panel (A) of Figure 2 shows the empirica regjection ratesfor the S- and t-datistics as the sample

szerisesfrom 100 to 10,000. For the design we used both statistics are alittle undersized at small
sample sizes and both rise to the nomina 0.05 level when the sample size reaches 1,000. Pand (B)
shows three measures of digpersion. The dashed line is the distance between the 2.5" and 97.5™

percentilesof b, . The solid line reports the median vaue of 2” 1.96 times the reported asymptotic
standard error. The dotted line gives the median distance between b and b for the st of closed S

intervas. (For n =100 78 percent of the Sintervas are closed. All smulated S-intervals are closed for

n>100.) At dl sample szesthewidth of S-intervas gives a better approximation to the width of the
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actud digtribution than does the width of the asymptotic confidence intervals, dthough by n =500 the

differences are quite smdl.

In summary, for awell-identified modd the results are about the same whether one usesthe S

datistic or the asympitotic t-.

6.2.2 Empirical performance of theS- and t-statistics for a weakly identified model

Empirical rejection rate of nominal 5% test
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The solid linesin Fgure 3 show empirical rgection rates for the S-datistic; the dashed lines for
the t-datidtic. In each case the upper line gives the empirica sze with critical vaues drawn from the

normal digtribution and the lower line shows the size with critica values drawn from the more
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consarvative ¢ ”(q- k +1) . Thet-gatistic performs abysmally, especialy a “small” sample sizes
typicaly leading to rgection of the true vaue. The performance of the S-datistic isfar superior, athough

it too rejects too often. Using the more conservative ¢ (- k+1) critical vauesthe actudl size of the

S*-statistic isactualy alittle under the nomind five percent level. Using the same critical values for the

square of thet- ill leavesfar too large argjection rate.

1) n 100 500 1000 5000 10000
(2 size t on normal 0.966 0.880 0.805 0.490 0.311
(3)  size t? on c*(g-k+1) 0.942 0.810 0.711 0.341 0.170
4 size S on normal 0.201 0.175 0.165 0.110 0.075
(5) __ size S® on C*(g-k+1) 0.031 0.028 0.026 0.020 0.015
(6)  median b 100.251  96.892  93.216  74.293  59.720
7) 95% coverage width 42.124 94.283 127.559 263.903 315.569
(8) median asymp conf. 25.852 55.974 78.137 157.961 206.143
(9) median closed interval 40.764 92.332 124.236 253.121 327.172
(10)  percent closed 0.202 0.195 0.200 0.240 0.260
(11 size|closed 0.907 0.751 0.648 0.318 0.177
(12)  percent two rays 0.176 0.181 0.182 0.177 0.168
(13) size|two rays 0.103 0.160 0.195 0.192 0.170
(14)  percent whole line 0.622 0.625 0.618 0.583 0.572
(15) size|whole line 0.000 0.000 0.000 0.000 0.000
(16) median b“|closed 85.207 61.265 39.983 -56.745 -118.921
(17)  median b"|closed 114749 123.484 128.062 133.989 134.694
Tablel

The upper panel of Table 1 presents the details behind Figure 3. The lower pane provides
further ingght. The centrd tendency of the indrumentd variable estimator falsfrom 100 to 60 asthe

sample size rises from 100 to 10,000 — as compared to thetrue vaue b =1. Thenext row in Table 1
shows the distance between the 2.5 and 97.5" percentilesof b,,,. At =100, b,, istightly
concentrated around a vaue far from the true value. With a sample size of 10,000, b,,, remans
centered far from thetrue b but the distribution has spread out considerably. Line (8) reports the

median value of 1.96 times the reported standard error. Comparing lines (8) and (7) shows that
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reported 95 percent confidence intervas are about athird smdler than the actua distribution. The

combination of the miscentering of b,, with thetoo smal intervasis respongble for the high rate of

fdse rgections of the traditiona asymptotic satistics.

Sintervals comein one of three forms: closed, the union of two rays, or the entire redl line. The
latter two are unbounded, which Dufour (1997) shows to be a desirable characteristic. Line (9) of

Table 1 givesthe median distance between b and b" for the st of closed intervals. Note that lines

(9) and (7) are essentidly equd, so the width of closed S-intervals does agood job a matching the true

width of thedidtribution of b, for this particular Monte Carlo design. Miscentering nonetheless leads to

congderably too many rgections for closed intervas, dbeit fewer than from the asymptotic Satigtics.

Lines (10) through (15) show the divison of S-intervasinto the three types and rgection rates
within each type. Asthe sample sze growsthere is, as one would expect, an increase in the fraction of
closed intervals and a decrease in the rejection rate among those closed intervals. In this very weakly
identified model the mgority of intervals are unbounded. Even at a sample size of 10,000, the mgority
of 95 percent S-intervas cover the entire red line— which, in light of the absence of much connection

between b,, and b , is probably the sensible concluson.

7 Conclusion
We offer the S datidtic as an dternative to the traditiond asymptotic t for tests and confidence

intervasfor individua coefficients estimated by indrumenta variables. The“S-dtatistic” produces
confidence regions based on ajoint test of the structurd hypothesis and the identification condition. The

S-dtidtic converges to the usua asymptotic satistic as identification becomes certain, has much better

-30-



Sze properties when the instruments are wesk, and may beinverted in closed form to conveniently
compute confidence intervals. We recommend that confidence regions based on the S-gtatistic be

reported in addition to or in place of the traditiona Satistics.
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Appendix — Not for publication

Here we collect some results that, while memorable, are probably not suited for ajourna which

faces page constraints.

Al. Relating Shea’s statistic to ours
The numerator of Shealspatid R’ is )?ﬂf(i . Following the argument in Sheg, particularly his

equation (6), we can write

xlzgln-x~|(xg|:x~|)lqu:8xl
X _é ~ ~ ~ -1 A UA
x,_é|n-x~i(x$x_,) X aX

Thus the numerator of Shea'spartia R is

X, =X, 081, - X, (XX, ) "X eBG - X (XeX,) T Relx
e ue ¢!
=X &, - XK (XeX, ) TXER, - X, (XEX,,) XEX,
#X,C (XEX, ) XER, (XEX,) T XX
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A LA A -~ . EX
Now w.ol.g. partition X =gX; X Usothat Q=XK=¢_' .
é

1

- )@)A(i)_ . Thusthe reciprocal of

—_——
p S
AN
@)
L.

N —

AN

formulafor a partitioned inverse (Q‘l)ii :()A(itlf(i - XX

the numerator of Shea's statitic is exactly (Q' 1)

A2. Documentation of the Monte Carlo behind Figures 2 and 3

The Monte Carlo behind Figures 2 and 3 isfor amodel with very strong endogeneity. The
model has four insruments and two right-hand-sde variables. The reduced form coefficients equal zero
except that for Figure2 G, =G,, =1 and for Figure 3 G, = G,, =.01. Results are reported for

10,000 Monte Carlo trids.
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function Figure2_|IV_99 Gen(n, nTests);
% n is length of data series
% nTests is nunber of Monte Carlo trials

randn(‘state’, 0);

g = 4 %o nunber of instrunments

k =2 % tw RHS for the nmoment, not everything works for general k
cZ = eye(q);

for i =1.q

for j=1:q

cZ(i,j)=7*(.9%abs(i-j));

end

end

cEps = eye(k);

for i =1.q

for j=1:q

cZ(i,j)=3*(.8"abs(i-j));

end

end

cEps = chol (cEps); % used bel ow for generating random nunbers
Z = rand(n, q)*chol (cZ); %bbe sure nothing nagic about Z
b = ones(k, 1); %Wotrue beta

gamma = zeros(q, k) ;

gamua(1,1) = .01;

gamua(2,2) = .01;

r = 100 %6 used for correlation between errors

for i = 1:nTests

epsilon = randn(n, k) *cEps; % be sure nothing funny about epsilon
X = Z*gamma + epsilon;

y = Xx*b + randn(n, 1) + r*epsilon*b;

%0 Conpute the statistics here

end

A3. Monte Carlos using the Designs of Dufour and Khalaf
Dufour and Khaaf (1997) present a series of Monte Carlo designs. We used versions of their

designs which compare results with good insruments rank (G) =k, very week indruments
rank (G) ® 0, and instruments which do agood job in an individual equation but result in highly

correlated fitted values from thefirst stage, rank (G) ® k- 1. The designs specify two endogenous left
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hand sde variables, a congtant, and a varying number of excluded exogenous variables In al cases only
two indruments are rlevant; where q > 3 the extrainstruments have g = 0. We smulated the versons
of the Dufour and Khalaf designs for both the asympitatic t- and for the S datistic. Both statistics are
compared to five percent critical values from the normal digtribution. In al the smulations b, =10,

n =100, we report satistics for the coefficient of the first endogenous variables. Results are reported

for 1,000 amulations.

Design median  std. dev. empirical empirical # excluded instrument
Number by by, sizet size S exogenous quality

1 10.006 0.061 0.047 0.053 2 good

2 10.122 0.573 0.020 0.036 2 good, collinear

3 10.130 0.183 0.031 0.027 2 good, collinear

4 10.152 0.579 0.040 0.017 2 good, collinear

5 10.282 3.127 0.066 0.021 2 medium, collinear

6 11.124 0.252 0.493 0.020 2 poor, collinear

7 11.148 0.106 0.616 0.021 2 poor, collinear

8 10.127 0.138 0.066 0.047 3 good, collinear

9 10.156 0.174 0.071 0.044 3 good, collinear
10 10.203 0.502 0.107 0.032 3 good, collinear
11 10.395 0.573 0.196 0.052 3 medium, collinear
12 11.127 0.138 0.838 0.088 3 poor, collinear
13 11.155 0.078 0.896 0.088 3 poor, collinear
14 10.146 0.123 0.153 0.075 5 good, collinear
15 10.199 0.143 0.190 0.078 5 good, collinear
16 10.288 0.165 0.260 0.087 5 good, collinear
17 10.569 0.205 0.541 0.141 5 medium, collinear
18 11.134 0.149 0.983 0.322 5 poor, collinear
19 11.150 0.053 0.990 0.329 5 poor, collinear

Table Al

Table A1 confirms the expected results. For models where the asympitotic statistics work well
(designs 1-5, 8, and 9), the S-qtatistic also works relatively well. For modds where the asymptotic
gatigtics perform poorly, the S-statistic continues to work well. The exception is models 18 and 19.

Here the performance of the S-qtatistic is mediocre, athough far superior to the performance of thet.
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Thisis consgent with the suggestion in section 6.1 that the norma digtribution isinsufficiently

consarvativewhen G=0.
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A4 A Matlab® Program to Compute the S-Statistic

function [S,betal ,betalJ interva Type,ddtaStat, betaHat ,asympSE] = Sstat(y,X,Z,betad,c);

%% function [S,betal ,betal,interva Type,deltaStat, betaHat,asympSE] = Sdtat(y,X,Z,betal,c);
%% Conmpute S-statistic and related statistics

%o from“Inproved Inference for the Instrunental Variable Estimator”
%0 Startz, Nelson, and Zivot
%0 April 1999

%% | nput argunents:

%0 y - LHS endogenous variable, n by 1

90 X - RHS variables, n by k

%o Z - instrunents, n by g, g>=k

%% bet a0 - hypothesi zed val ues of beta (defaults to 0)

%% C - critical value used conmputing for confidence regions (defaults to 1.96)

%% Qut put argunents:

%0 S - S statistic for each coefficient

%% bet aL - lower limt of S-interval

%0 bet aU - upper limt of S-interval

%0 i nterval Type - 1 for closed interval, 2 for union of rays, 0 for whole |ine
2% if interval Type==0, betalL and betaU are not defined

%% del t aSt at - delta/sqgrt(var(delta)) for each coefficient

%% bet aHat - TSLS coefficients

%6 asynpSE - asynptotic standard errors

nArgs = nargin;
if nArgs < 3

error(' At least three input argunents are required’ )
end

[n ky] = size(y);

if ky ~= 1
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error('y should have 1 colum’)
end

[ nx K]

si ze(X);

[nz q] size(2);

if (n ~=nx) | (n~=nz) | (n==1)

error(‘'y, X, Z must have the sanme nunber

end

if (qg<k)
error(‘Order condition fails’);
end

if nArgs <5
c = 1.96; %0 default 5 percent size

end
if nArgs ==
beta0 = zeros(k,1);
end
if max(size(c) > 1
error(‘c nmust be a scalar’);
end
[ bRows bCol s] = size(betal);

if (bRows ~= k) | (bCols ~= 1)
error(‘beta0 is the wong size’);
end

%6 Conput ational note: Most tine is spent

%Womatrix. This should be preconputed where possible,

of

rows and there nust

%0 order-n operations in the derivative routines

zPz = 7' *Z;
zPzinv = inv(Z *2);
ZPX = Z' *X;
ZPy = Z'*y;
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gammaHat = zPzl nv*ZPX; %% reduced form coefficients;

thetaHat = zPzInv* ZPy;

%6in what follows we're going to need to Vec all the coefficients
| ambdaHat = [reshape(ganmaHat, 1, q*k) , thetaHat’']’;

gammaHat ' * zPz* gammaHat ;

Q
V=inv(Q;

bet aHat = V*(ganmaHat’' *zPz*thetaHat); %@sls coefficients

uHat = y- X*bet aHat ; %0 conpute residuals to get std err
si g2U = uHat’ *uHat/ (n-k);

asynpSE = di ag(sqrt(sig2Uu*V));

%0 conpute reduced formvcov (with a little work, the order-n operations
90 coul d be avoi ded

eps = X - Z*gammaHat ;

v = y - Z*thetaHat;

errTenp = [eps V];

vc = errTenp’ *errTenp/ (n-q);

jointErrCov = kron(vc, zPzlnv);

psi = PSI (|l anbdaHat, zPz, q, k, beta0); %% conpute psi function
deriv = dFdl Vec(* PSI’, | anbdaHat , zPz, q, k, bet a0) ;

vcov = deriv'*jointErrCov*deriv;

denom = sqrt(di ag(vcov));

S = psi./denom

delta = DELTA(I anmbdaHat, zPz, q, k, bet a0) ; %0 conpute delta function
derivd = dFdl Vec(‘' DELTA’', | anbdaHat , zPz, q, k, bet a0) ;

vd = diag(derivd’' *jointErrCov*derivd);

denond = sqrt(vd);

deltaStat = delta./denond;
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%% Now get things for confidence intervals

phi = PHI (| anbdaHat , zPz, q, k, bet a0); %% conpute phi function for conf. ints.
derivp = dFdl Vec(' PH ', | anmbdaHat , zPz, q, k, bet a0) ;
vph = di ag(derivp’ *jointErrCov*derivp);

covdph = di ag(derivp’ *joint ErrCov*derivd);

rHart = (-delta.*phi + c”"2*covdph).”2 - (delta.”2-c"2*vd).*(phi.”"2-c”r2*vph);
R = sqrt(rHart);

betalL = ((delta.*phi - c”"2*covdph) - R)./(delta.”2-c”2*vd);

betaU = ((delta.*phi - c”2*covdph) + R)./(delta.”2-c”2*vd);

i nterval Type = zeros(k, 1);

i nterval Type = 1*(deltaStat > c¢) + 2*((deltaStat < c¢) & rHart>0);

%0 end function Sstat

function p = PSI (Il anmbdaHat, zPz, q, k, bet a0) ;

%% return nunmerator of S-stat

gammaHat = reshape(l anbdaHat (1: g*k), q, k) ;
t het aHat = reshape(l anbdaHat (q*k+1: (k+1)*q), q, 1);
Q nv i nv(gammHat’ *zPz*gammuaHat ) ;

bHat Q nv*(gammaHat ' *zPz*t het aHat ) ;

p = (1./sqrt(diag(Qnv))).*(betal-bHat);
function d = DELTA(| anbdaHat, zPz, q, k, bet a0) ;
Woreturn delta

gammaHat = reshape(l anbdaHat (1: g*k), q, k) ;

Q nv = inv(ganmmHat’' *zPz*gammuaHat ) ;

d = (1./sqgrt(diag(Qnv)));

function p = PH (Il anmbdaHat, zPz, q, k, bet a0) ;

%o return phi
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gammaHat = reshape(l anbdaHat (1: g*k), q, k) ;
t het aHat = reshape(l anmbdaHat (q*k+1: (k+1)*q), q, 1);
Q nv i nv(gammHat’ *zPz*gammuaHat ) ;

bHat Q nv*(gammaHat ' *zPz*t het aHat ) ;

p = (1./sqrt(diag(Qnv))).*bHat;
function d = dFdl Vec(F, | ambdaHat, zPz, q, k, bet a0) ;
% return nunerical derivatives of vector function F

nCoefs = | engt h(Il anmbdaHat) ; %0 note that nCoefs m ght equal qg*(k+1)
d = zeros(nCoefs,k);
FO = feval (F, | anbdaHat, zPz, q, k, bet a0) ;
for i Coef = 1:nCoefs

dL = .0001*I anbdaHat (i Coef);

if dL ==
dL = .0001; %% to handle coefficients being exactly zero
end

newLanbda = | anrbdaHat ;

newLanmbda(i Coef) = newLanbda(i Coef) + dL
d(i Coef,:) = ((feval (F, newLanbda, zPz, q, k, beta0) - F0)/dL)’;
end



