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Abstract

In this paper we propose a multivariate analysis of a cointegrated vecto-
rial autoregressive model with structural breaks a�ecting the cointegrating
vectors.

These changes are previously recognized using a single-equation method-
ology. Asymptotic properties of the breaks dates estimators allow us to
implement a full information maximum likelihood analysis with the breaks
identi�ed considered as �xed. Thus, a VECM is estimated, providing a
relevant framework to test for non-causality and neutrality tests, as well as
impulse response analysis of the dynamics. The methodology is applied to
the trivariate system analysed by Gregory and Hansen (1996), with a money
variable, an interest rate and the output for the US over the 1960-1990 period.

Keywords: Cointegration, structural breaks, full information maximum
likelihood analysis,.causality, neutrality, impulses-responses.

JEL classi�cation: C32.



1 Introduction

The econometric literature has witnessed recently an upsurge of interest in
testing for structural breaks. In a non-stationary framework Gregory and
Hansen (1996) propose a test of no-cointegration against the alternative of
cointegration with a single structural break of unknown timing in the cointe-
grating vector. More recently, Bai and Perron (1998) consider issues related
to multiple structural changes in the linear regression model estimated by
least squares. We follow them to propose an estimation of structural breaks
in cointegration vectors in a multivariate framework along the lines of Jo-
hansen (1988, 1991).

More precisely, our methodology is based on a two-steps approach. First
we implement the estimation procedure of Gregory and Hansen (1996) to
recognize the possible breaks of the system. Second, we use the results of
Bai and Perron (1998) to show that the estimators of the breaks converge suf-
�ciently rapidly so that we can consider them as known, when we implement
the test procedure, as proposed by Andrade and Bruneau (1999) to estimate
the cointegration rank of the system.. We refer to Bruneau (2000) to write
the di�erent equivalent multivariate representations of the dynamics. In par-
ticular, we use the VECM representation to implement non-causality tests in
the Granger sense, following Toda and Phillips (1993). Moreover, we propose
impulse-response analysis of the dynamics, along the lines of Bruneau and
Nicolaï (1995), King and Watson (1993), and Lütkepohl and Reimers (1992),
by focusing on the long-run dynamic multipliers which are involved in the
characterization of neutrality or persistent causality properties.

The paper is structured as follows. In section 2 we give the assumptions
of the analysis and we write the related multivariate model with the di�erent
equivalent parametrizations, VAR, VECM, RVAR, MA. In Section 3 we recall
brie�y the results obtained by Andrade and Bruneau (1999) concerning the
rate of convergence of the estimators of the dates of breaks for cointegrated
I(1) variables. In Section 4 we present the likelihood ratio approach to
estimate the cointegration rank with the necessary extensions of Johansen's
procedure to estimate the vector error correcting model with the structural
breaks previously recognized. In section 5 we apply the methology to the
triavriate system analysed by Gregory and Hansen (1996), with a money
stock variable, an interest rate and the output for the US over the 1960-1990
period. Section 6 concludes.
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2 The data generating process and the repre-

sentation of the dynamics

In this section we characterize the processes we want to study.
Let us consider a p�dimensional I(1) processXt whose components de�ne

r cointegrating vectors with possible structural breaks. In what follows, for
sake of simplicity, we focus on the simpli�ed case, where all cointegration
relationships display a single structural break at the same date, which is
supposed to be given and to occur at t0 = [� 0T ], with 0 < � 0 < 1 the relative
timing of the break and T the sample size. Notice that we are not interested
here in investigating the case where the cointegration rank di�er from one
regime to another.

Thus, �t is the p� r matrix of the cointegrating vectors: Accordingly, the
related cointegrating vectors zt = � 0tXt de�ne r I(0) processes of dimension
p.

Let us suppose that the dynamics of the previous process is described by
a VECM model of order k :

�Xt =
k�1X
i=1

�ti�Xt�i +�tXt�k + �t + "t;

with p � pmatrices �ti supposed time dependent, as well as the p � r
matrices �t = �t�

0
t, where �t and �t are of full column rank r. More precisely,

they evolve in the following way:

�ti = �
(1)
i 1t�t0 + �

(2)
i 1t>t0

�t = �(1)1t�t0 +�(2)1t>t0

�t = �(1)1t�t0 + �(2)1t>t0

�t = �(1)1t�t0 + �(2)1t>t0

The deterministic part �t also shifts over time in the same way:

�t = �(1)�(1)1t�t0 + �(2)�(2)1t>t0

where �(1); i = 1; 2 denote two r�dimensional column vectors. Indeed, we
suppose that the system has a cointegrated �constant� term for each of the
two regimes t � t0 and t > t0.
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The innovation process "t = Xt�EL(Xt=Xt�1) is supposed to be a gaus-
sian white noise N(0;
), with a constant variance matrix 
:

Now, we are looking for a VAR representation of the dynamics, equivalent
to the previous ECM representation:

At(L)Xt = �t + "t

If such a VAR speci�cation exists, it has to obey:

At(L) =
kX

i=0

At;iL
i

with At;0 = Id

At;i = Id �
iX

j=1

h
1t�t0�

(1)
j + 1t>t0�

(2)
j

i
; i = 1; :::; k � 1

and Atk = 1t�t0
�
��(1)�(1)0 + �

(1)
k�1

�
+1t>t0

�
��(2)�(2)0 + �

(2)
j

�
A useful alternative representation of VAR in levels and ECM is the re-

stricted VAR representation (RVAR) (see Campbell and Shiller, 1988, Mel-
lander et alii, 1990 and Warne, 1993):

Bt(L)Yt =Mt�t + �t,

where:

Yt = D?(L)MtXt; with Mt =

"
Sp�r;t

� 0t

#
; �t = Mt"t;

D(L) =

"
Ip�r 0
0 (1� L)Ir

#
, D?(L) =

"
(1� L)Ip�r 0

0 Ir

#
.

The (p�r; p) matrix Sp�r;t is a selection matrix such that the p�p matrix

Mt =

"
Sp�r;t

�0t

#
is of full rank p.

It is easy to see that if fXtg is cointegrated of order (1; 1), with r cointe-
gration relationships, then the following relation holds between the parame-
ters of the ECM and the RVAR models:

Bt(L) =Mt

h
�t(L)M

�1
t D(L)� ��tL

k
i
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where ��t
(p;p)

=
h
0(p;p�r) �t

i
, with the time dependent operator Bt(L) such

that:

Bt(L) = 1t�t0M
(1)
�
�(1)(L)

�
M (1)

��1
D(L)� �(1)�Lk

�
+1t>t0M

(2)
�
�(2)(L)

�
M (2)

��1
D(L)� �(2)�Lk

�
with:

�(h)(L) = Id �
k�1X
i=1

�
(h)
i Li , h = 1; 2

M (h) =

"
Sp�r;t

�(h)0

#
, h = 1; 2

Given the RVAR representation, we also get a generalized MA represen-
tation of the dynamics with time dependent dynamic multipliers:

�Xt = Ct(L) [�t + "t]

by simply inverting the Bt(L) matrix of polynomials as:

Ct(L) =M�1
t D(L)Bt(L)

�1Mt (1)

which proves that the Wold decomposition is generalized as follows:

Ct(L) = 1t�t0
�
M (1)

��1
D(L)

�
B(1)(L)

��1
M (1)

+1t>t0

�
M (2)

��1
D(L)

�
B(2)(L)

��1
M (2)

Notice that the deterministic part disappears, because �t = �(1)�(1)1t�t0+
�(2)�(2)1t>t0 , while Ct(L)can be decomposed into:

Ct(L) =
h
1t�t0C

(1)(1) + 1t�t0C
�(1)(L)(1� L)

i
+
h
1t>t0C

(2)(1) + 1t>t0C
�(2)(L)(1� L)

i
with C(h)(1)�(h) = 0;and (1� L)�(h) = 0, for h = 1; 2.

Then from (1), the long-run dynamic multipliers Ct(1) shift at the date
of the structural break t0 as following:

Ct(1) = 1t�t0C
(1)(1) + 1t>0C

(2)(1)
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with the property:
�(i)0C(i)(1) = 0 for i = 1; 2

It is easy to express the the long-run dynamic multipliers by focusing on
Bt(1) and more precisely on Ft(1) = M�1

t Bt(1) which obeys:

Ft(1) =
h
�t(1)M

�1
t D(1)� ��t

i
= 1t�t0

�
�(1)(1)

�
M (1)

��1
D(1)� �(1)�

�
+ 1t>0

�
�2)(1)

�
M (2)

��1
D(1)� �(2)�

�
so that, one can write:

Ct(1) = M�1
t D(1)Ft(1)

�1

= 1t�t0
�
M (1)

��1
D(1)

�
F (1)(1)

��1
+ 1t>0

�
M (2)

��1
D(1)

�
F (2)(1)

��1

More generally, the common trend representation of the dynamics can be
written as:

Xt = 1t�t0C
(1)(1)

t0X
s=1

"s + 1t>t0C
(2)(1)

tX
s=t0+1

"s

+1t=t0

h
C(1)�(L)� C(2)�(L)

i
"t + 1t<t0C

(1)�(L)"t + 1t>t0C
(2)�(L)"t

with the common trend characterized as the sum of two random walks:

Tt = 1t�t0C
(1)(1)

t0X
s=1

"s + 1t>t0C
(2)(1)

tX
s=t0+1

"s

and the cyclical part de�ned as:

C�
t (L)"t = 1t=t0

h
C(2)�(L)� C(1)�(L)

i
"t

+1t<t0C
(1)�(L)"t + 1t>t0C

(2)�(L)"t

Here we write the model in the simpli�ed case where all cointegration
relationships display a single structural break at the same date. The general
case is analysed in a companion paper Bruneau (2000). In what follows, we
estimate the di�erent parameters of interest for the di�erent equivalent rep-
resentations of the dynamics. First, we recall the results obtained in Andrade
and Bruneau (1999), concerning the rate of convergence of the estimators of
the parameters characterizing the structural break.
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3 Single equation and estimation of the dates

of shifts

Andrade and Bruneau (1999) proved that the estimate of the date of the
structural break, identi�ed along the lines of Gregory and Hansen (1996),
converge at the rate O(T 2). Accordingly, in the multivariate analysis of the
cointegrated dynamics, we can suppose that the date of the shift is known.

Let us partition Xt into (yt xt)
0, with yt a univariate process and xt

= (1; x1t; :::; xp�1;t)
0, a p�vector. We choose to normalize the �rst row of � 0t

to one, so that we associate the cointegration relationship with the following
regression:

yt = x0t�t + zt (2)

= �0t +
p�1X
j=1

�jtxjt + zt

where �t = �(1)1t�t0 + �(2)1t>t0 .
The multiple regression (2) also expresses in matrix form:

Y = �X� + Z

where �X = diag(X1; X2) with X1 = (x1; : : : ; x[�T ])
0, X2 = (x[�T ]+1; : : : ; xT )

0

and � = (�(1)0 �(2)0)0 denoting the parameters of the cointegration relationship,
with � such that 0 < � < 1: In the following we denote � 0 the value of �
associated with the structural break t0 = [� 0T ], wich allows the cointegration
property.

We recall the necessary assumptions given in Andrade and Bruneau (1998):

Assumption A1: De�ning T0 = 1; T1 = t0 and T2 = T; we assume that,
for each i = 1; 2, the matrix X00

i X
0
i =(Ti� Ti�1)

2 , i = 1; 2, converges in
probability to some nonrandom positive de�nite matrix, not necessarily
the same for all i.

Assumption A2: There exists an l0 > 0 such that for all l > l0; the min-
imum eigenvalues of Ail = l�2PTi+l

t=Ti+1 xtx
0
t , for i = 0; 1 and the min-

imum eigenvalues of A�il = l�2PTi
t=Ti�l

xtx
0
t ,for i = 1; 2, are bounded

away from zero.
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Assumption A3: The matrix Bkl =
Pl

t=k xtx
0
t is invertible for l�k � p the

dimension of xt:

Assumption A1 is standard for multiple non-stationary regressions. As-
sumption A2 states that there are enough observations near the true break
point so it can be identi�ed. Assumption A3 is imposed because Gregory
and Hansen procedure estimates the break point by referring to a global
least squares criterium.

Gregory and Hansen test the null of no cointegration against the alterna-
tive of cointegration with one unknown structural break in the cointegrating
vector as in (2). Identi�cation of the breaks is achieved by minimizing the
Phillips and Perron (1988) statistics of the zt; where zt is the residuals from
an OLS estimation of equation (2). Therefore when the null is rejected, the
procedure provides OLS estimates of the �j's (j = 1; 2).

First, one can prove, the following lemma:

Lemma 1 Under A1-A3, T�2PT
t=1 ytd

0
t = op(1); where dt = (�̂k��

0
j)
0xt with

�̂k the OLS estimator of �k; k = 1; 2: Under A1-A4, �̂ 0p� 0 implies that:

lim
T!1

supP

 
T�2

TX
t=1

dtd
0
t > C

�(0)1 � �02
2! > �0;

for some p� p matrix C positive de�nite and some �0 > 0:

Next, we prove the proposition which establishes the consistency of the
estimators proposed by Gregory and Hansen:

Proposition 2 Under A1-A3, the OLS estimator of � 0; �̂ 0; obeys: �̂ 0 !p � 0:

Finally the rate of convergence of the estimate of the date of the break is
characterized as follows:

Proposition 3 Under A1-A3, for every � > 0; there exists a C < 1; such
that for a large T , P (T 2 j�̂ 0 � � 0j > C) < �:

The test procedure proposed by Gregory and Hansen is based on a single-
equation analysis. Therefore, this may induce some bias in the estimation of
the �j's in (2) as it may exist several cointegration vectors and non-exogeneity
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e�ects. Indeed, for a cointegrated rank r > 1; the long-term parameters esti-
mated from a single-equation analysis will be in fact a nonlinear combination
of the true long-term parameters of the system (Johansen, 1992). Neverthe-
less, in what follows, we use the results of the single equation analysis to
implement the multivariate test procedure which identi�es the cointegration
rank of the trivariate dynamics analysed by Gregory and Hansen (1996).
More precisely, we extend the Johansen procedure, by supposing that all
possible cointegration relationships display a single break at the same date
t0 estimated by the single equation analysis of Gregory and Hansen. From
proposition 2, the estimated date of break can be considered as known in
the test procedure, because the convergence rate of the estimator �̂ 0 is T 2:
We choose to exclude the cases where cointegration relationships between
two of the three variables could be estimated with several structural breaks.
Accordingly, we test for the cointegration rank with the single structural
break at [�̂ 0T ] but check whether the cointegration relationship estimated by
Gregory and Hansen belongs to the cointegration space. Before empirically
implementing this procedure, we recall the principles of the test to identify
the cointegration rank of the system, as described in details in Andrade and
Bruneau (1999).

4 FIML approach

To save space, we refer closely in this section to Andrade and Bruneau (1999)
and Bruneau (2000), without giving any proof of the di�erent propositions.

4.1 Statistical analysis

Considering the VECM representation of the previous section, let us intro-
duce the following notations

Z0t = �Xt;

Z1t =

"
Xt�k

Xt�k

#
;

��0 =
h
�(1)1t�t0 �(2)1t>t0

i
;
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Z2t =

2666664
...

�Xt�i

�Xt�i
...

3777775 ; i = 1; : : : ; k � 1

	�0 =
h
� � ��

(1)
i 1t>t0 �

(2)
i 1t>t0 � � �

i
; i = 1; : : : ; k � 1

so that Z0t Z1t and �� 0 are repectively of dimension p� p; 2p� p and p� 2p,
while Z2t and 	�0 are respectively 2p(k� 1)� p and p� 2p(k� 1) matrices.
This model can be rewritten as:

Z0t = ��0Z1t +	�0Z2t� + "t; t = 1; : : : ; T (3)

with

��0 = ��0�
0
�0 ;

��0 =
h
�(1)1t�t0 �(2)1t>t0

i
;

��0 =

"
�(1)1t�t0 0

0 �(2)1t>t0

#
;

where �(1); �(2); �(1) and �(2) are p� r matrices and 1t�t0 = 1 if t � t0, and
0 otherwise.

When the date of shift, � 0; is known, the log-likelihood function to max-
imize is:

logL(	�0; ��0 ; ��0 ;
) = �Tp log� �
1

2
T log j
j

�
1

2

TX
t=1

(Z0t � ��0��0Z1t +	�0Z2t)
0
�1(Z0t � ��0��0Z1t +	�0Z2t);

which is equivalent to

logL(�(1); �(2); �(1); �2;
) = �Tp log� �
1

2
T log j
j

�
1

2

TX
t=1

(R0t � ��0��0R1t)
0
�1(R0t � ��0��0R1t);

where R0t and R1t are the residuals obtained by regressing Z0t and Z1t on
Z2t.
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Introducing the product moment matrices of the residuals:

S00 = T�1
[�0T ]X
t=1

R0tR
0
0t + T�1

TX
t=[�0T ]+1

R0tR
0
0t = S

(1)
00 + S

(2)
00 ;

S01�0 = T�1
h P[�0T ]

t=1 R0tR
0
1t

PT
t=[�0T ]+1R0tR

0
1t

i
=
h
S(1)
01 S(2)

01

i
;

S10�0 =

"
S
(1)
10

S
(2)
10

#
;

S11�0 = T�1

" P[�0T ]
t=1 R1tR

0
1t 0

0
PT

t=[�0T ]+1R1tR
0
1t

#
=

"
S
(1)
11 0

0 S
(2)
11

#
;

one �nally gets

L�2=T (��0(��0); ��0 ; 
̂(��0)) = (2�e)2p
���
̂(��0)

��� ;
where,

���
̂(��0)
��� =

���S00 � S01�0��0(��0S11�0��0)
�1��0S10�0

��� ;
which also expresses after concentrating all parameters except the �-parameters.

L�2=T (�(1); �(2))

=
���S(1)

00 + S
(2)
00 � S

(1)
01 �

(1)(�(1)S
(1)
11 �

(1))�1�(1)S
(1)
10 � S

(2)
01 �

(2)(�(2)0S
(2)
11 �

(2))�1�(2)0S
(2)
10

��� :
Suppose we have a consistent estimator ��1 of the p� r matrix �(1) (under

the constraint
n
rank(�(1)) � r

o
) and thus let us consider the test statistic

de�ned as:

2Log
Max e��2=��1L(��1; f��2)
Max��2=��1L(�

�
1; �

�
2)

where f��2 (resp.��2 ) denotes a p � p (resp. p � r ) matrix and both maxima
are computed for the given p� r matrix ��1.

This statistic has the following property:

Proposition 4 Under the null
n
rank(�(1)) � r and rank(�(2)) � r

o

2Log
Max e��2=��1L(��1; f��2)
Max��2=��1L(�

�
1; �

�
2)
' �
T!1

T
pX

i=r+1

Log(1� ��i (�
(1)))
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for the ��1(�
(1)) � ��2(�

(1)) � ::: � ��p(�
(1)) solutions of the equation:�����S(2)

11 � S
(2)
10

�
S
(2)
00 (�

(1))
��1

S
(2)
01

���� = 0:

with

S(2)
00 (�

(1)) = S(1)
00 + S(2)

00 � S(1)
01 �

(1)(�(1)S(1)
11 �

(1))�1�(1)S(1)
10

A sketch of the proof goes as follows. L�2=T (�(1); f��2) is obtained by solv-
ing a minimization problem which is equivalent to the one considered by
Johansen (1988):

Min�2

���S(2)
00 (�

�
1)� S

(2)
01 �

(2)(�(2)0S
(2)
11 �

(2))�1�(2)0S
(2)
10

���
where S

(2)
00 (�

�
1) = S

(1)
00 + S

(2)
00 � S

(1)
01 �

�
1(�

�0
1 S

(1)
11 �

�
1)
�1��01 S

(1)
10 :

Thus, as ��1 is a consistent estimator of �(1), the solution ��2 of the previous
minimization problem must tend to the solution of the minimization problem:

Min�2

���S(2)
00 (�

(1))� S
(2)
01 �

(2)(�(2)0S
(2)
11 �

(2))�1�(2)0S
(2)
10

���
So we are led to solve the following eigenvalue problem (see lemma A.8

of Johansen, 1995) �����S(2)
11 � S

(2)
10

�
S
(2)
00 (�

(1))
��1

S
(2)
01

���� = 0:

By noting the n eigenvalues ��1(�
(1)) � ��2(�

(1)) � ::: � ��p(�
(1)), and the

associated n eigenvectors vi; 1 � i � p, which are normalized such that:

v0iS
(2)
11 vj =

(
1 for i = j
0 otherwise

; 1 � i; j � p:

one gets for the factor L�2=T (��1; e��2)
L�2=T (��1;�

�

2)
the expression:

L�2=T (��1;
f��2)

L�2=T (��1; �
�
2)

'
T!1

pY
i=r+1

(1� ��i (�
(1))):

It is easy to prove that the following dual property holds, for a consistent
estimator ��2 of the p�rmatrix �2. Finally, the test statistic which is proposed
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to identify the cointegration rank of the system with the structural break at
t0 is the following one:

2Log
Max e��2=��1L(��1; f��2)
Max��2=��1L(�

�
1; �

�
2)

+ 2Log
Max e��1=��2L(f��1; ��2)
Max��1=��2L(�

�
1; �

�
2)

One can give an asymptotically equivalent distribution of this statistic,
under the null hypothesis, according to the proposition:

Proposition 5 Under the null
n
rank(�(1)) � r and rank(�(2)) � r

o

2Log
Max e��2=��1L(��1; f��2)
Max��2=��1L(�

�
1; �

�
2)

+ 2Log
Max e��1=��2L(f��1; ��2)
Max��1=��2L(�

�
1; �

�
2)

' �
T!1

T

24 pX
i=r+1

Log(1� ��i (�
(1))) +

pX
i=r+1

Log(1� ��i (�
(1)))

35
for the ��1(�

(1)) � ��2(�
(1)) � ::: � ��p(�

(1)) and ��1(�
(2)) � ��2(�

(2)) �

::: � ��p(�
(2))

solutions of the equations:�����S(2)
11 � S

(2)
10

�
S
(2)
00 (�

(1))
��1

S
(2)
01

���� = 0:

with

S
(2)
00 (�

(1)) = S
(1)
00 + S

(2)
00 � S

(1)
01 �

(1)(�(1)S
(1)
11 �

(1))�1�(1)S
(1)
10

and �����S(1)
11 � S

(1)
10

�
S
(1)
00 (�2)

��1
S
(1)
01

���� = 0

with
S
(1)
00 (�2) = S

(1)
00 + S

(2)
00 � S

(2)
01 �2(�

0
2S

(2)
11 �2)

�1� 02S
(2)
10 :

The next step is to show that the previous test statistic has an asymptotic
distribution which is free of nuisance parameters under the null hypothesis.
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4.1.1 Asymptotic properties

Starting from the generalized Wold decomposition of the �rst di�erentiated
process:

�Xt = C1(L)"t; for t � [�T ];

�Xt = C2(L)"t; for t > [�T ];

let us introduce the following notations which are similar to the ones which
are used by Johansen (1995):

M
(1)
ij =

1

T

[�0T ]X
t=1

�Xt�i�X
0
t�j; M

(2)
ij =

1

T

TX
t=[�0T ]+1

�Xt�i�X
0
t�j

M
(1)
1i =

1

T

[�0T ]X
t=1

Xt�k�X
0
t�i; M

(2)
1i =

1

T

TX
t=[�0T ]+1

Xt�k�X
0
t�i

M
(1)
11 =

1

T

[�0T ]X
t=1

Xt�kX
0
t�k; M

(2)
11 =

1

T

TX
t=[�0T ]+1

Xt�kX
0
t�k;

i; j = 0; :::k � 1;

and their theoretical counterparts:

�
(1)
ij = E(�Xt�i�X

0
t�j1t�t0); �

(2)
ij = E(�Xt�i�X

0
t�j1t>t0);

�
(1)
1i =

1X
j=k�i

E(Xt�k�X
0
t�j1t�t0); �

(2)
1i =

1X
j=k�i

E(Xt�k�X
0
t�j1t>t0);

i; j = 0; :::; k � 1:

Furthermore, letting C1 = C1(1); C2 = C2(1) and W (r) be a brownian
motion of dimension p and covariance matrix 
; we have the following lemma:

Lemma 6 As T �!1;

T�1=2X[Tr]
w
�! C1W (r); 0 � r � 1; r � � 0; (4)

T�1=2X[Tr]
w
�! C2W (r); 0 � r � 1; r > � 0; (5)

M
(1)
ij

a:s:
�! � 0�

(1)
ij ; i; j = 0; :::k � 1; (6)

M
(2)
ij

a:s:
�! (1� � 0)�

(2)
ij ; i; j = 0; :::k � 1; (7)

M
(1)
1i

w
�! C1

Z �0

0
WdW 0C 0

1 + �
(1)
1i ; i = 0; :::; k � 1; (8)

M
(2)
1i

w
�! C2

Z 1

�0
WdW 0C 0

2 + �
(2)
1i ; i = 0; :::; k � 1; (9)
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T�1M
(1)
11

w
�! C1

Z �0

0
W (u)W 0(u)duC 0

1; (10)

T�1M
(2)
11

w
�! C2

Z 1

�0
W (u)W 0(u)duC 0

2; (11)

�(1)M
(1)
11 �

(1) a:s:
�! �(1)�

(1)
pj �

(1); (12)

�(2)0M
(2)
11 �

(2) a:s:
�! �(2)0�

(2)
pj �

(2): (13)

Proof. (4) and (5) are application of the standard multivariate invariance
principle. (8) and (9) are direct applications of equation A.4 of Gregory and
Hansen (1996a). (10) and (11) hold from, respectively, (4) and (5) and the
continuous mapping theorem, since

R �0
0 WW 0 and

R 1
�0
WW 0 are continuous

with respect to � 0: Finally, (6), (7), (12) and (13) come from the stationarity
properties of the �Xt's and of �(1)0Xt�k:1t�t0 ; (resp., �

(2)0Xt�k:1t>t0(since
�(i)0Ci = 0; i = 1; 2).

Now let us de�ne the theoretical counterparts of the product moment of
the residuals

V ar

"
Z0t

�0�0Z1t
jZ2t�0

#
= V ar

"
R0t

� 0�0R1t

#
=

"
�00 �0��0

���00
���0��0

#

where:

�00 = � 0�
(1)
00 + (1� � 0)�

(2)
00

�
(1)
00 = lim

T!1
[� 0T ]

�1
[�0T ]X
t=0

R0tR
0
0t;

�(2)
00 = lim

T!1
[(1� � 0)T ]

�1
TX

t=[�0T ]+1

R0tR
0
0t;

�0��0
=

h
�0�(1) �0�(2)

i
;

���00
= �00��0

;

���0��0
=

"
��(1)�(1) 0

0 ��(2)�(2)

#
;

Let B
(1)
T and B

(2)
T be two p� (p� r) matrices such that:

B
(i)
T = �i(�

0
i�i)

�1; i = 1; 2
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where �1and �2 are orthogonal to, respectively, �(1) and �(2). Let also G1

and G2 be two brownian motions such that

Gi = �i(�
0
i�i)

�1CiW; i = 1; 2:

With this notations, we have the following lemma:

Lemma 7 As T �!1;we have

S
(1)
00

a:s:
�! � 0�

(1)
00 ; S

(2)
00

a:s:
�! (1� � 0)�

(2)
00 ; (14)

�(1)S
(1)
10

a:s:
�! � 0��(1)0; �

0
2S

(2)
10

a:s:
�! (1� � 0)��20; (15)

�(1)S
(1)
11 �

(1) a:s:
�! � 0��(1)�(1); �

0
2S

(2)
11 �2

a:s:
�! (1� � 0)��2�2 ; (16)

T�1B
(1)0
T S

(1)
11 B

(1)
T

w
�!

Z �0

0
G1(u)G

0
1(u)du; (17)

T�1B
(2)0
T S

(2)
11 B

(2)
T

w
�!

Z 1

�0
G2(u)G

0
2(u)du; (18)

B
(1)0
T

h
S
(1)
10 � S

(1)
11 �1�

(1)
i

w
�!

Z �0

0
G1dW

0; (19)

B
(2)0
T

h
S
(2)
10 � S

(2)
11 �2�

0
2

i
w
�!

Z 1

�0
G2dW

0; (20)

B
(1)0
T S

(1)
11 �

(1) � Op(1); B
(2)0
T S

(2)
11 �2 � Op(1); (21)

�
(i)
00 = �i��i0 + 
; i = 1; 2; (22)

�0�i = �i��i�i i = 1; 2; (23)

�(i)
00 = �i��i�i�

0
i + 
 i = 1; 2; (24)

Proof. (14) to (16) are immediate since�Xt; �
(1)Xt�k:1t�t0 and �

(2)0Xt�k:1t>t0

are stationary. (17) to (21) come from Lemma 2 and the continuous mapping
theorem (see lemma 10.3 in Johansen (1995, pp.146-148). (22) to (24) follow
directly from (3).

Lemma 8 The asymptotic limit of S
(1)
00 + S

(2)
00 when T goes to in�nity is:

� 0�1��i0 + (1� � 0)�2��20 + 
; (25)

Accordingly we have the following theorem:
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Theorem 9 Under the null hypothesis

H0 :
n
rank(�(1)) � r

o
[
n
rank(�(2)) � r

o
;

with �(1) and �(2) the matrices de�ned in (3) against the alternative that

Ha :
n
rank(�(1)) � p

o
[
n
rank(�(2)) � p

o
;

and for consistent constrained estimators ��1 and ��2, one has the limit prop-
erty:

2Log
Max e��1=��2L(f��1; ��2)
Max��1=��2L(�

�
1; �

�
2)

+ 2Log
Max e��2=��1L(��1; f��2)
Max��2=��1L(�

�
1; �

�
2)

!
T!1

tr

(Z �0

0
FdB0

�Z �0

0
FF 0du

��1 Z �0

0
(FdB0)0

)

+tr

(Z 1

�0
FdB0

�Z 1

�0
FF 0du

��1 Z 1

�0
(FdB0)0

)

where B is a standard brownian motion of dimension p � r and F is such
that: Fi(u) = Bi(u); i = 1; p � r and Fp�r+1(u) = 1, because the constant
term is cointegrated.

Thus, the relevant critical values to test whether the cointegration rank is
smaller than r, depend on the dimension of the system, p, as of the relative
date(s) of shift, � 0:

In what follows, we propose to estimate �(1)and �(2 by implementing a
sequential procedure suggested by Johansen (1995), for testing linear con-
straints on the � parameters of the type: � = (H1�

(1); H2�
(2)). Indeed, this

procedure has been proved to provide consistent estimators of the � param-
eters (see Boswijk, 1995) in speci�c cases.

Let us �rst notice that the minimization problem:

Minf�(1); �2g

���S(2)
00 (�

(1))� S
(2)
01 �

(2)(�(2)0S
(2)
11 �

(2))�1�(2)0S
(2)
10

���
(resp.Min�(1)

���S(1)
00 (�

�
2)� S

(1)
01 �

(1)(�(1)S
(2)
11 �

(1))�1�(1)S
(1)
10

���) is solved as the eigen-
value problem examined in Johansen (1995):�����H 0

2S11:�(1)H2 �H 0
2S10�(1)

�
S00:�(1)

��1
S01�(1)H2

���� = 0
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for �(1) = �(1), ( resp.
�����H 0

1S11:�(2)H1 �H 0
1S10�(2)

�
S00:�(2)

��1
S01�(2)H1

���� = 0,

for �(2) = ��2), with the 2p� 2p matrices H1 and H2 de�ned as:

H1 =

"
Idp 0
0 0

#
and H2 =

"
0 0
0 Idp

#

Indeed, the problem at hand when maximizing the likelihood, for a given
(unknown) rank r; with a structural break is equivalent to solving, for each
r, a Johansen's problem, with the 2p� 2r dimensional � matrix, constrained
as:

V ec(�) = H

"
V ec(�(1))

V ec(�(2))

#

with �(i), i = 1; 2, denoting two p� r dimensional matrices, and H, a known
4pr � 2pr matrix of full column rankde�ned as:

H =

26664
Idpr 0
0 0
0 0
0 Idpr

37775
Notice that the � matrix is also constrained in the same way:

V ec(�) = H

"
V ec(�1)
V ec(�2)

#

Under such constraints, it can be proved (Boswijk, 1995)1 that the fol-
lowing sequential estimation procedure provide consistent estimators of the
� parameters.

More precisely, the sequential estimation procedure (Johansen,1995) goes
as follows:

1) estimate the 2p� 2pmatrix ' = ('1; '2) by solving the eigenvalue prob-
lem:

min
(�(1);�2)

�('1; '2) = Minf�g det(Id;2r �
h
'1 '2

i0
V
h
'1 '2

i
)

1Recently, Hansen (1999) extends this procedure.
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under the constraint:

h
'1 '2

i0 " S
(1)
kk 0

0 S(2)
kk

# h
'1 '2

i
= Id2r

with

V =

"
S
(1)
k0 (S00)

�1S
(1)
0k S

(1)
k0 (S00)

�1S
(2)
0k

S
(2)
k0 (S00)

�1S
(1)
0k S

(2)
k0 (S00)

�1S
(2)
0k

#

2) Construct an initial estimate of �(1) by solving����b'0 b'� b'0H1(H
0
1H1)

�1H 0
1b'��� = 0

as indicated in Johansen.

3) For �xed �(1);estimate �2 by solving the eigenvalue problem�����S(2)
11 � S

(2)
10

�
S
(2)
00 (�

�
1)
��1

S
(2)
01

���� = 0:

with S
(2)
00 (�

�
1) = S

(1)
00 + S

(2)
00 � S

(1)
01 �

�
1(�

0�
1 S

(1)
11 �

�
1)
�1�0�1 S

(1)
10

4) For �xed ��2, estimate �1 by solving the eigenvalue problem:�����S(1)
11 � S

(1)
10

�
S
(1)
00 (�

�
2)
��1

S
(1)
01

���� = 0:

with S
(1)
00 (�

�
2) = S

(1)
00 + S

(2)
00 � S

(2)
01 �

�
2(�

0�
2 S

(2)
11 �

�
2)
�1�0�2 S

(2)
10

5) Continue with 3) and 4) until convergence.

In the next section, we implement the procedure in order to test the
cointegration rank of the triavariate case analyzed by Gregory and Hansen
(1996). So we can replace the single equation analysis of this system by a
multivariate analysis of the dynamics, taking into account simultaneously,
the cointegration properties and the existence of one structural break in the
cointegration relationships.
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5 Application: US money demand

The components of the trivariate dynamic system examined by Gregory and
Hansen are:

Xt = (mt � pt; it; yt)
0

where mt denotes the logarithm of the M1-money stock, pt is the implicit
output de�ator, yt is the logarithm of the real output, while it is a nominal
interest rate (6 months commercial paper rate). The series are from the Fed
of St-Louis (FRED database) and of monthly frequency. Implementing LM
tests onto the VAR in level lead us to retain an order of 2 lags for the system.

The empirical study goes as follows. First we test for the cointegration
rank according to the procedure proposed in the previous sections, with the
structural break identi�ed by means of Gregory and Hansen's test. Next, we
estimate the VECM representation of the dynamics, and implement several
causality - in the Granger sense - tests. Finally, following Lütkepohl and
Reimers (1992), we do not infer any long run causality properties from the
estimates of the parameters of the cointegration relationships. We prefer to
we compute long run dynamic multipliers in order to investigate neutrality
properties �rst, in the spirit of King and Watson (1993), and second, along
the lines of Bruneau and Nicolaï (1995).

5.1 Estimation of the cointegration rank

The implementation of the previous rank test procedure leads us to conclude
that we can not reject a cointegration rank of 1; with a structural break at
the date identi�ed in the single equation analysis of Gregory and Hansen,
that is in april 1975.2

Cointegration with structural breaks
Gregory and Hansen's test

Z�� (C/S) 90 % 95 % date of break
-54.18 -58.33 -52.85 75:4

2This corresponds to the results Gregory and Hansen found since their date of break
is 75:2 using quaterly data.
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Cointegration with structural breaks
The trace test

H0 trace 90 % 95 %
r = 0 60.21 58.11 62.03
r � 1 26.10 31.98 34.83
r � 2 5.55 13.00 14.98

Moreover, we test the null hypothesis which states that the cointegration
vector estimated by the single equation analysis of Gregory and Hansen be-
longs to the cointegration space, by implementing a standard likelihood ratio
test . We do not reject this null hypothesis.

LR test p-value
0.994 0.998

This justi�es the choice expressed before, concerning the speci�cation of
the cointegration space with just one structural break. In general, the exo-
geneity topic should be examined when comparing the information provided
by a single equation analysis compared to the one obtained in a multivariate
approach. Perhaps, we could estimate a �second� cointegration relationship
with multiple structural breaks. Such an estimation could be justi�ed by eco-
nomic arguments. However, we have thus to extend the Gregory and Hansen
procedure to the case of several structural breaks (see Andrade, 1998) and
this would complicate the present study. We prefer to base the further anal-
ysis on the multivariate results and keep the two cointegration relationships
with the single structural break estimated by Gregory and Hansen (1996).
However, in the general case, it would be necessary to implement weak ex-
ogenity tests in order to trust the results obtained in the single equation
analysis, concerning in particular the estimation of the date of the break.
This is left for further research.

We can have a look at the cointegrating vectors and propose some com-
ments about the corresponding targets and their evolution over time.

On the �rst period we obtain

mt � pt = 7:769� 0222� yt + 0:084� it

and on the second
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mt � pt = �1:171 + 0:937� yt � 0:027� it

Although the second regime long-term equilibrium relationship is consis-
tent with the standard monetary demand theory, this is not the case for the
�rst one. Therefore, we prefer to investigate the properties of the long-run
dynamics multipliers as suggested by Lütkepohl and Reimers (1992). How-
ever, even if we cannot interpret it by simply observing the cointegrating
vectors, when can already see that the structure of the economy did clearly
change over the two periods identi�ed.

Moreover, we verify the signi�cance of the long-run error correcting mech-
anism, described by the � vector. Indeed, we check that, over each period,
at least one of the variable is signi�cantly a�ected by the error mecanism of
the VECM.

Error correcting mechanisms

Coe�cient 1st period 2nd period
�1 �0:00073

(�2:003)�
�0:00164
(�4:502)�

�2 �0:03444
(�1:468)

�0:04498
(�1:918)�

�3 �0:00049
(�5:360)�

�0:00014
(�1:485)

The number in brakets give the t-stat of the coe�cients.
� indicates signi�cance at the 5 % level.

5.2 VECM and Causal links in the Granger sense

We can easily test for non-causality from component Xj to component Xi, in
the Granger sense, by implementing likelihood ratio tests which are, under
the null of non-causality, asymptotically distributed as �2 distribution with
k degrees of freedom.

Toda and Phillips (1995) formulate the null hypothesis of non-causality
onto the VECM as

f�ij;1 = ::: = �ij;k�1 = �ij = 0g

For the case of study, we obtain the following results:
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Non-Causality Test - First Period

Causality from

to

mt � pt it yt
mt � pt . 10:755

(0:005)
0:698
(0:705)

it 0:976
(0:614)

. 0:709
(0:701)

yt 0:076
(0:963)

12:610
(0:002)

.

The table reports value of the �2 statistic.

The number in brakets are the signi�cance level.

On the �rst subsample, signi�cant causal links semerge from the interest
rate to the money stock and the output.

Non-Causality Test - Second period

Causality from

to

mt � pt it yt
mt � pt . 47:227

(0:000)
18:270
(1:000)

it 13:895
(0:001)

. 14:723
(0:001)

yt 0:015
(0:992)

5:411
(0:067)

.

The table reports value of the �2 statistic.

The number in brakets are the signi�cance level.

On the second period, still the interest rate causes real money stock as
real output, but the converse also holds. Money as output cause the interest
rate.

Notice that the results of the previous test do not allow us to distinguish
short-run from long-run causal links as pointed out by Bruneau and Jondeau
(2000). That is the reason why we turn to impulse response analysis of the
dynamics and focus on long run dynamic multipliers which can be used to
characterize long run causality.

5.3 Long run dynamic multipliers, neutrality and long

run causality properties

In this section, we focus on the e�ects of shocks, in the spirit of Sims (1980,
1981). More precisely, we are interested in the long run e�ects of the stochas-
tic shocks which are characterized as canonical or orthogonalized statistical
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innovations. In what follows, we �rst focus on �canonical� long run dynamic
multipliers in order to test for neutrality properties (in a statistical sense) as
investigated by King and Watson (1993).

5.3.1 (Statistical) Neutrality properties

A variable Xj is said (statistically) neutral for the Xi variable, if the corre-
sponding long-run dynamic multiplierCij(1) is equal to zero. Once the VECM
has been estimated, we have the expression of the long run dynamic multipli-
ers as functions of the parameters of the VECM. Moreover, the asymptotic
normality of the estimators holds. Accordingly, a neutrality test is just a stan-
dard likelihood ratio test, with a �2(1) asymptotic distribution of the test
statistic, if one limits the analysis to each sub-periods, or a �2(2) asymptotic
distribution, if the neutrality property is analysed over the whole period. The
results are the following:

Neutrality Test - First period
Long-run Neutrality from

over

mt � pt it yt
mt � pt . �0:019

(2:597)
�0:027
(0:258)�

it �18:158
(2:793)

. 7:701
(4:078)

yt �0:134
(1:899)�

�0:003
(2:320)

.

The number in brakets give the t-stat of the coe�cients.
� indicates signi�cance at the 5 % level.

Neutrality Test - Second period

Long-run Neutrality from

over

mt � pt it yt
mt � pt . �0:012

(3:788)
0:527
(2:539)

it �15:018
(2:162)

. �9:967
(1:050)�

yt �0:027
(1:457)�

�0:000
(0:925)�

.

The number in brakets give the t-stat of the coe�cients.
� indicates signi�cance at the 5 % level.

Over the two subsamples, money is neutral over output. If the interest
rate signi�cantly in�uences money and output over the �rst subperiod (we
cannot accept the nul of neutrality), it does not in�uence output over the
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second regime. Finally, output is neutral with regards to money over the �rst
regime, but not over the second one and conversely neutral over the interest
rate over the second subsample but not over the �rst one.

5.3.2 Long run causality along the lines of Bruneau and Nicolaï
(1995)

The notion of statitical neutrality has been questioned because there are
instantaneous correlations between the variables, and, accordingly, between
the canonical innovations "i; i = 1; :::3. As a consequence, it is not easy to
comment separately the e�ects of the di�erents innovations.

Sims (1981) propose to orthogonalized the innovations by introducing a
Choleski decomposition of the variance of the canonical innovations. Thus, an
implicit causal ordering has to be chosen a priori, from the most exogeneous
variable to most endogeneous one. For example, in Lütkepohl and Reimers
(1992), the variables are ordered as following: Xt = (it; yt; mt � pt)

0: Once
a causal ordering has been chosen, a Choleski decomposition of the variance
matrix of the innovations 
 provides a inferior triangular matrix P such that:

PP 0 = 


Thus, one can characterize the e�ects of the orthogonalized innovations:

�t = P�1"t

by focusing on the long run dynamic multipliers [Ct(1)P ]ij.
However, in these impulse response analysis, the results depend on the

causal ordering of the variables which is chosen a priori. One can prefer to
characterize long run causal links along the lines of Bruneau and Nicolaï
(1995). Indeed, the properties which are investigated do not rely on any
causal ordering and can be interpreted as long run prediction improvement.

If one chooses as the �rst compent the presumed causal variable and
if one computes the matrix P associated with the corresponding Choleski
decomposition of the variance matrix of the canonical innovations, one can
prove that the nullity of the long run dynamic multiplier [C(1)P ]i1 can be
interpreted as a non-causality property in the long run, from the presumed
causal variable to the variable Xi as follows:

Proposition 10 : The nullity of the long run dynamic multiplier [C(1)P ]i1,
for the choleski decompition PP 0 = 
, is equivalent to the non-causality
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property from the �rst component to the Xj variable, as charaterized by:

lim
H!+1

EL(Xit+H=X1t;X1t�1; :::; Xpt�1) = lim
H!+1

EL(Xit+H=X1t�1; :::; Xpt�1)

where EL denotes the linear regresion operator and Xjt�1 is the set of the
lagged variables Xjt�k; k � 1:

Implementing this procedure of test leads to the following results:

Long-Run Non-Causality Test - First period
Persistent Causality from

to

mt � pt it yt
mt � pt . �0:008

(1:946)
�0:0000
(0:474)�

it �0:126
(2:666)

. 0:013
(2:259)

yt �0:001
(0:447)�

�0:001
(1:944)

.

The number in brakets give the t-stat of the coe�cients.
� indicates signi�cance at the 5 % level.

Long-Run Non-Causality Test - Second period
Persistent Causality from

to

mt � pt it yt
mt � pt . �0:006

(2:310)
0:001
(2:339)

it �0:104
(3:508)

. �0:017
(2:355)

yt �0:0001
(0:162)�

�0:0002
(2:305)

.

The number in brakets give the t-stat of the coe�cients.
� indicates signi�cance at the 5 % level.

Therefore, over the two regimes, money persistantly causes the interest
rate but not ouput. By contrast, still over both regimes, the interest rate
persistently causes money as output. Lastly, output cuses over the long-run
the interest rate over the �rst subsample and money and the interest rate
over the �rst one.

The results may be summarized as follows. On the �rst regime there
seems to be an unilateral causal links from the interest rate to the other
variables of the system. By contrats the second one is characterized by cross
causality relations, which may be interpreted as monetary policy reaction
functions.
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6 Conclusion

This paper extends the test of cointegration with one structural break of
Gregory and Hansen (1996) in a single equation approach framework to a
multivariate one. This allows �rst to verify this hypothesis in a generalized
framework and to perform analysis of the long run properties of the dynamics.
Our results show that once the structural break hypothesis is accepted, the
dynamics exhibit strong di�erent properties over the two regimes identi�ed
in term of long-run equilibrium as long-run dynamics multipliers. Allowing
for di�erent ranks over these two periods presents an interesting development
and is dedicated for further research.
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