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Abstract

This paper examines a contracting environment where two principals sequen-
tially interact with a common agent. The agent’s private information includes
his original “type” and all payoff-relevant decisions that result from upstream
contracting.

We endogenize the information flow between the two contractual relation-
ships and show how the upstream principal may benefit from offering a contract
that strategically discloses information to the downstream principal. Informa-
tion transmission is motivated by rent extraction: By providing the receiver
with information that is correlated with the agent’s type and his past contrac-
tual experience, the upstream principal succeeds in appropriating part of the
agent’s surplus from downstream contracting. We characterize the equilibrium
contracts and propose a simple implementation in which the agent receives
private or public allocations.

Finally, we show that information transmission between principals, although
strategic, may well result in an increase in welfare since it reduces the (expected)
distortions associated to the asymmetry of information.

Keywords: asymmetry of information, sequential common agency, informa-
tion disclosure, mechanism design, multiprincipals, sequential contracting.



1 Introduction

Several contracting environments can be described as dynamic games in which
different principals sequentially interact with an informed agent (we adopt the
convention of using female pronouns for the principals and masculine pronouns
for the agent). A venture capitalist (upstream principal) who offers a financ-
ing contract to a start-up (agent) usually anticipates that the firm will also
contract with suppliers, retailers and perhaps regulatory agencies (downstream
principals). In organizations, a division manager who hires a worker typically
expects that the latter will be asked to change division after a while and pass
under the control of other managers. Moreover, workers rarely stay within
the same organization for all of their life; rather, they enter into a sequence
of job relationships with different employers. In politics, the ruling adminis-
tration that signs a procurement contract with a contractor, or that offers a
trade policy to a lobby, knows that its counterpart will also interact with the
next appointed administration. Similarly, in e-commerce, a vendor who sets up
a menu of contract-offers, usually expects her customers will need to procure
complementary products and services also from other vendors.

Under sequential contracting, a downstream principal who offers a contract
to an agent usually makes the best possible use of any information that de-
rives from the agent’s upstream contractual experiences. For, the value the
agent attaches to a contract may well depend on the decisions that have been
taken through other contracts: For example, in a labor relationship the ability
for a worker to perform a certain task is typically influenced by the type of
jobs exerted in the past. Similarly, in a trade contract, the willingness to pay
for a certain product or service usually depends on the complementarity with
products and services acquired from other suppliers. In such cases, the more a
principal knows of her agent’s previous contractual activity, the better she can
design her contract.

The observation of the elements of past contractual relationships, whenever
possible, is also a useful signal of the agent’s private information. By observing
a consumer’s shopping activity a vendor can infer the preferences of a customer.
Similarly, the covenants of a financial contract between a venture capitalist and
an entrepreneur convey information on the profitability of the borrower’s project
and may affect the result of subsequent financing stages.

The dynamic interaction between different principals suggests the possibility
of strategic behavior: an upstream principal will typically try to take advantage
of her Stackelberg position with respect to downstream principals by design-
ing the contractual relationship in such a way that optimally controls for the
influence it has on downstream contracting. There are two ways a contract
can affect another one. First directly, though the decisions that are stipulated.
Second, through the information that the contract discloses to outsiders. This
is the main focus of this paper. We investigate how a principal should design
a mechanism that simultaneously screens the private information of her agent
and strategically transmit it to another principal.

Information transmission to an outside party does occur in several bilateral
contractual relationships. Consider, for example, e-commerce. An e-consumer



(agent) who buys a product on line reveals (at least partially) his preferences to
the e-seller (principal). For example, the path the agent follows during the visit
of a website is a signal of his interests, as well as the final choice of a product, or
the request of a certain service, represents valuable information of the agent’s
preferences. When shopping on line consumers are often notified that other
sellers might have access to some of the information consumers are revealing
to the current counterpart (this can be read, for example, in the privacy policy
webpages of the main e-vendors)!.

Other examples of information transmission between two contractual rela-
tionships can be found in labor and insurance contracts. When a worker leaves
a job, he usually receives a letter of recommendation to give to a future em-
ployer; this letter signals the information that the principal has learned from
the interaction with the agent, like for example his talent, fairness and ability to
cope with colleagues. Similarly, insurees who change company are notified that
part of the information collected by the insurance company on the insuree’s
characteristics, like his propensity towards risk, will be transmitted to the new
company.

What motivates a principal to design a contract that discloses the agent’s
information? How does it occur? And is this necessary harmful for the agent?

This paper develops a general model of sequential contracting with multiple
principals that endogenizes the informational linkage between two contracts.
We suggest a possible rationale for information disclosure and derive some im-
portant welfare implications.

In our theory information transmission between the two contractual rela-
tionships is motivated by rent extraction. Through an optimal disclosure policy,
an upstream principal can in fact increase the agent’s surplus from downstream
contracting by reducing the distortions that are associated to the asymmetry
of information. The upstream principal has an interest in favoring the agent
since she can make the latter pay for the increase in his expected utility.

To illustrate the point, consider the following example. Suppose there are
two differentiated e-sellers (principals) that sequentially contract with a com-
mon buyer (the agent). The two contracts consist of a price the buyer has to pay
for the quality (or quantity) of a certain product, or service. Suppose that the
buyer is either unsophisticated, or sophisticated, in which case he has a higher
marginal valuation for quality. As it is well known from the theory of price
discrimination, if the probability of facing a sophisticated consumer is high,
then the profit-maximizing price is so much distorted that it discourages the
purchase from the unsophisticated consumer and leaves no surplus to the buyer.
In a sequential contracting environment the beliefs of a seller can be influenced
by the information provided by another vendor who previously traded with the
same agent. When such information induces the current seller to perceive the
probability of an unsophisticated buyer as being sufficiently high, then the best
she can do is to make a less distorted offer that is always accepted and that

LE-consumers often receive “cookies” during their e-shopping. These cookies are simple
devices to record the agent’s information so that subsequent interactions either with the same
vendor, or with trustworthy business partners, will be modelled in a more personalized way.



necessarily leaves a rent to the consumer.

This idea is consistent with what suggested in several privacy-policy web-
pages: Consumers who accept to let vendors share information with trustworthy
third parties may enjoy a better future shopping experience in terms of per-
sonalized price-discounts, and in general more favorable deals. Not surprising,
those vendors who offer to consumers an optimal information disclosure policy
face higher expected profits: indeed, the price consumers pay for a product, or
a service, incorporates also the value consumers expect from future contractual
experiences.

Our analysis suggests that information transmission is profitable when there
is some complementarity between the two principals’ decisions. This predic-
tion is also in the spirit of several e-vendors’ webpages in which is noted that
consumers’ private information should be shared only with “carefully selected
business partners that offer complementary services and products” (see, for ex-
ample, www.drugstore.com, www.yahoo.com, www.networksolutions.com).

The flow of information occurs even if the upstream principal is not directly
interested in the decisions that are stipulated with the downstream principal,
nor can she make the latter pay for the information she receives. We acknowl-
edge that both information trade and direct payoff-relevant externalities repre-
sent good explanations for which a principal can be interested in disclosing the
information she learns from her agent. Nevertheless, by leaving these effects
out of the analysis we succeed in isolating the rent-extraction behavior that
characterize the design of contracts under asymmetric information.

Our analysis finally suggests that privacy-protecting laws that prevent in-
formation disclosure on consumers’ preferences are not necessarily welfare in-
creasing. We compare the equilibrium contracts when principals cannot release
the agent’s private information with the contracts that emerge when some in-
formation is strategically disclosed. When information transmission is allowed
a downstream principal obtains a finer information structure and reduces the
distortions that are due to the asymmetry of information. At the same time,
since information transmission enables an upstream principal to reduce the in-
formational rent she leaves to the agent, the trade-off between efficiency and
rent-extraction in her optimal contract also changes in favor of efficiency. It
follows that information transmission may well result in an increase of welfare.

Related literature.
e Common Agency.

The literature on common agency has received much attention in the last
few years. Bernheim and Whinston (1986) extend the principal-agent model
with moral hazard (see, for example, Grossman and Hart (1983)) to the case
of multiple principals. Similarly, Martimort (1991, 1996), Martimort and Stole
(1999a,b), Mezzetti (1997) and Stole (1991) extend the principal-agent model
under adverse selection to a contracting environment with multiple mechanism
designers. Biglaiser and Mezzetti (1993) provide an extensive analysis of com-
mon agency in a framework with both adverse selection and moral hazard. Dixit



et Al. (1997) develope a model of common agency without information asym-
metries but they allow for general preferences and in particular nontransferable
utilities.

A standard assumption in the common agency literature is that competition
between principals is simultaneous, in that each principal simultaneously offers
to an agent a contract and then the agent makes his decisions; a decision can
be a (nonverifiable) action, the choice of the principal to deal with, or an option
specified in the contract.

In the real world, common agency relationships need not take place simul-
taneously; rather principals sequentially contract with the agent. For example,
a manufacturer that is going to sell its products to a retailer will typically find
that the latter already contracted with other manufacturers in the past.

To our knowledge, Baron (1985), Martimort (1999) and Prat and Rustichini
(1998) are the only papers that examine common agency models with a sequen-
tial timing. Baron (1985) makes the strong assumption that all the information
elicited by one principal is made public also to the other, so that the leader can
free-ride the incentives problem of the follower. Martimort (1999) drastically
simplifies the incentives problem of the common agency game by assuming the
two principals have perfectly correlated decisions. Prat and Rustichini (1998)
focus on a moral hazard model in which the two principals sequentially and
independently offer contracts to influence the action of a common agent. The
sequentiality in these models is partial since they assume principals sequentially
offer their contracts but the agent has to decide only after receiving all propos-
als. In this paper, we allow the agent first to contract with one principal and
then with another one: It is indeed in such a situation that the information
flow between the two contractual relationships is an issue. With this respect,
although we deal with common agency, our paper is also related to the dynamic
single-principal-agent literature (see, for example, Baron and Besanko (1984)
and Laffont and Tirole (1987, 1988)).

o Information Disclosure Policies.

The possibility of information sharing between firms has been examined in
the literature of oligopolistic competition (see, for example Raith (1998) for
a survey) and in the financial intermediation literature (Padilla and Pagano
(1998) and Pagano and Jappelli (1993)). In these models the informed par-
ties can decide to strategically share information with rivals before competing.
In our model principals are uninformed and learn from the agent through the
screening contract they design. Information transmission between different con-
tractual relationships is motivated by a rent extraction behavior, rather than
by the desire of coordination. Upstream principals commit to disclose informa-
tion that is correlated with the agent’s type and his past contractual experience
in order to appropriate the agent’s surplus from an external contractual rela-
tionship. In this respect our analysis is similar to Lizzeri (1999) who discusses
the role of intermediaries who search out the information of privately informed
parties and then decide what to disclose to uninformed parties. The main
difference with respect to his paper is that we explicitly model information ac-
quisition through the design of a screening contract, whereas he considers an



exogenously specified technology through which an intermediary can test the
quality of a product of a seller.

None of these papers considers the issue which is our main focus here: “Does
a principal want to design a mechanism that simultaneously screens the private
information of her agent and strategically communicates it to another princi-
pal”?

Outline.

The rest of the paper is organized as follows. Section 2 introduces a general
model for sequential contracting with multiple principals. Section 3 character-
izes the pure-strategy equilibrium in case principals do not share any informa-
tion; it solves for general payoffs and provides an example that well describes
a trading game between two sellers and a common buyer. Section 4 is dedi-
cated to the analysis of information transmission between principals. Section 5
concludes. All proofs are in the Appendix.

2 The Model

A single agent, A, sequentially interacts with two principals?, P; for i = 1,2.
Principal one will be referred to as the leader and principal two as the follower.
The set of players in our model is thus represented by I = {P;, Py, A}.

Allocations.

Each principal can contract with the agent over an allocation y; € Y;, where
Y; stands for the set of feasible allocations for principal £;. For simplicity, we
consider allocations y; = {x;,t;} that consist of a decision z; € X; C R4 and
a monetary transfer t; € R that is paid by the agent to principal P;. The
decision z; might represent the quantity (or quality) of principal i’s product, or
the (verifiable) task principal ¢ asks the agent to perform. The transfer may be
positive or negative depending on the particular setting under consideration.
In case of two sellers that compete in nonlinear prices, ¢; are positive transfers
and represent the price that each principal charges for the quantity (or quality)
x; that is sold to the agent. If the two principals stand for two divisions of
an organization that sign contracts with an external consultant, ¢; are negative
transfers and represent the payment the two divisions make to the common
consultant in exchange of his advice.

Let y = (y1,y2) € Y1 x Y2 be the vector representation of a pair of feasible
allocations. For simplicity, we assume that the set of feasible allocations for
principal i does not depend on the allocation chosen by the other principal?.

Payoffs functions.

The agent’s preferences are represented by the payoff function U4 (y1,y2,0).

The two principals have respectively payoff functions U;(y1,y2,6) for i =
1,2.

We make the following assumptions on players’ payoffs.

2Qur analysis could be extended to cover the possibility that several principals sequentially
interact with several agents. For simplicity, we prefer to focus on a simple, yet general, model
in which there are only two principals and a single (common) agent.

3More generally, the two principals might face a joint feasibility constraint represented, for
example, by a frontier g(y1,y2) = 0.



Al: (quasi-linearity):
U’i(yhyQ?e) = Ui(fIfl,fL’Q, '9) + U, for ¢ = 172

Ua(y1,Y2,0) = va(x1, 22,0) — 11 — 1o,

where v;(x1, z2,0) and va(x1,x2,0) are twice differentiable and strictly concave
functions in x = (z1,72) € R2.
A2: (two types): © = {E,Q} and Pr(f) =p =1 —Pr(0).

A3: (Spence-Mirrlees): avgg’e) > 6”‘33(5’
1=1,2.

Ad: vy(2,0) > va(x,0), for any x € R2.

A5: (weak complementarity) % > 0, for any = € 3 and for any 6.

Assumptions Al, A3 and A4 are standard in adverse selection models. As-
sumption A2 is not actually needed; it just simplifies the analysis of the infor-
mation flow between the two principals.

Assumption Ab limits attention to decisions x1 and xo that are either com-
plements or independent in the agent’s payoff. Our decision to rule out in this
paper the substitutes case is motivated by two reasons. First, as suggested
in Mezzetti (1997), common agency is more likely to occur when the agent
faces complementarities between the two decisions, like in case of a worker who
performs related tasks on behalf of multiple employers, a buyer who procures
complementary products or services from multiple vendors, or an entrepreneur
who is jointly-financed by two banks. Second, the substitutes case would re-
quire a separated analysis that cannot be presented, in a simple way, within
the same homogenous framework developed for the complements case.

Note that we allow each principal’s payoff to depend directly on the other
principal’s allocation and on the agent’s type. For example, a venture capital-
ist and a monitor (investment banker) might be interested in the ability of an
entrepreneur (here represented by 6) and in the impact of each other’s activity.
Similarly, two duopolists that procure the same input from a common man-
ufacturer typically exert direct externalities in that their final profits directly
depend on the production capacity of the rival firm which is determined by the
amount of input that is acquired from the common supplier.

We model incomplete information by assuming that the agent has a type
# € ©. Only the agent knows the exact realization of the random variable 0 (his
private information), whose probability distribution p(-) is common knowledge
across players. We assume that @ is a finite set and we will often limit ourselves
to the case in which it contains only two elements, say 8 and 6 respectively with
probability p and 1 — p.

Contracts.

The two principals offer to the agent two mechanisms (also referred to as
contracts). A mechanism is a mapping from a message space to the set of
feasible allocations. We denote with M, the message space of principal ¢ and
with m; € M, a single element of such a space. A mechanism for principal ¢ is
therefore represented by m; : M; — Y; where y; = m;(m;) is the allocation that
P, assigns to the agent when the latter reports m;. Although we focus here on

Q), for any € %2 and for any



deterministic mechanisms, the analysis can be extended to stochastic contracts
in which 7;(y;/m;) is the probability of allocation y; contingent on message m;.
Let II; be the set of all possible feasible mechanisms for principal i.

Information Disclosure Policy.

Information transmission between the two principals is formally represented
by a signal s € S that P, sends to P» at the beginning of stage 2. The signal
can be either soft or hard. It is soft in case of a message that is sent from
Py to P». It is hard, for example, in case it contains y; and this allocation
is verifiable. The use of this abstract information technology enables us to
study the optimal contracts in a general framework. The implementation of
the optimal mechanism will shed some light on the possible interpretations of
s.

To accommodate signalling from Py to P» we need to add to principal one’s
contract a disclosure policy § that maps from messages M to the set of prob-
ability measures upon a (finite) set of signals S. Formally, 6 : M; — A(S).
For each message mq selected by A, P, sends a signal s to P, with probability
8(s/my). Py’s mechanism will then be contingent on the signal s, i.e. my = ma(s).

The agent’s strategy ma = (71'114,71'124) specifies the reports to each principal
as a function of the agent’s information set, i.e. my = 74(8,m), and me =
71'124(9, 7,91, S, 71'2).

Timing: a sequential contracting game.

e At 1 =0, the agent discovers his type which is a realization of the random
variable 6 with support © and distribution p(-).

e At ¢t = 1, principal P, offers to A a mechanism 7 € II; and a disclo-
sure policy 6. If the agent rejects m1 the game ends and all players get
their reservation payoffs that are normalized to zero*. If 71 is accepted,
the agent secretly reports a message mq to P;, he receives the allocation
y1(m1) and the game evolves to stage two.

o Att =2, P, observes a signal s and offers to the agent her own mechanism,
oy € Il5. The agent can accept or reject it. If he rejects it, then the game
ends and Pi, Py and A are left with the payoffs that derive from the first
stage interaction. If the agent accepts 7o, he chooses a message mo € Mo
that he secretly reports to Ps.

The choice of this timing is motivated by three reasons. First, we believe
that several contractual relationships do take place sequentially. Second, se-

4This assumption is much stronger than needed. For example, we could assume that the
agent can reject w1 and directly deal with P,. Alternatively, we could assume that A cannot
reject 71, yet Pp is constrained to give him the possibility to pick up a message m? which is
associated with the null contract. By a null contract we mean a contract for which there is no
trade between A and P;. Yet, the null contract may involve some information transmission to
Ps. For example, P; can always commit to inform P» about the agent’s decision not to trade
with her. For simplicity, we assume here that the game ends if the agent refuses to deal with
P, so that we do not need to examine the out of equilibrium continuation game between A
and Ps.



quential contracting games can be characterized by a strategic information flow
between the two principals. In particular, the leader, anticipating that another
principal will contract with the very same agent in the continuation subgame,
may find it profitable to design a contract that discloses payoff-relevant infor-
mation in order to affect the contract that P, will offer to A. Finally, as we show
at the end of this section, under sequential contracting optimal mechanism can
be derived using an intuitive extension of the Revelation Principle.

Commitment.

We assume that in each bilateral relation both principals can credibly com-
mit to the contract ;.

We also assume that 7 can commit not to release more information than
allowed by the contract she offers to A. For example, an e-seller may want to
establish a reputation not to disseminate information that she is not allowed to
disclose. At the end of Section 4 we will further discuss such assumption.

Observability.

We assume that P is not exogenously constrained to let P> observe y;. In
some situations this assumption might not be adequate. For example, in case
of government procurement contracts, the procurer may be obliged to disclose
the final terms of the agreement with the contractor, like the number of units
supplied and the price. In this case, the first principal might be forced to make
the agent randomize on her contract choice in order not to perfectly inform the
second principal (this possibility is studied in a common-agency framework by
Calzolari and Pavan (2000a) and in the dynamic single-principal literature, for
example, by Bester and Strausz (2000) and Laffont and Tirole (1988, 1990)).

Equilibrium.

Let m = (71,72, m4). A (pure-strategy) profile (7*,6*) is a Perfect Bayesian
FEquilibrium for the sequential common agency game 'y with communication

spaces M = M7 x My if and only if:

1. each principal selects a mechanism that is optimal given the agent’s and
the other principal’s strategies;

2. P selects an optimal disclosure policy;
3. for each signal s, P, updates her beliefs using Bayes’ rule;

4. the agent announces payoff-maximizing messages.

Direct Revelation Mechanisms.

The Revelation Principle (hereafter RP) has proved particularly useful in
contract theory since it offers a simple way to characterize the set of possible
feasible allocations that can be implemented when agents have private informa-
tion. Unfortunately, when multiple principals interact with a common agent the
standard version of the RP has been proved to be usually invalid (see Martimort
and Stole (1999)). As a result, in the last few years many attempts have been
done to provide extensions of the standard RP for contracting environments



with multiple mechanism designers. Epstein (1999) and Epstein and Peters
(1999) have suggested a RP for simultaneous common agency. Calzolari and
Pavan (2000b) have introduced a very simple version of the RP for sequential
common agency games. In that paper they show that at each stage contracting
is Markovian in the sense that there is no loss of generality in assuming that
each principal limits herself to simple direct revelation mechanisms in which the
message space is the set of von Newmann and Morgenstern equivalence classes.
We recall here the main definitions and results. For any further discussion we
refer the reader to that paper.

Definition 1 (Extended type)
The agent’s extended type Gf in a contractual relationship with principal i is

the profile of all payoff-relevant information available to the agent at t =i for
1=1,2.

Let @f denote the extended type space at t = 2. Clearly, for ¢ = 1 we have
that @f = 0. At t9, the extended type space is @5 = O X Y1, since the only
payoff-relevant information regards the agent’s original type and the allocation
y1 selected through the mechanism 7.

A direct revelation mechanism for principal ¢ is a mechanism in which the
message space coincides with the (extended) type space, M; = ©F and in which
the agent truthfully reports his (extended) type to principal P;.

Proposition 1 (The Revelation Principle)

In a sequential common agency game there is no loss of generality in as-
suming that principals use direct revelation mechanisms. For any equilibrium
with arbitrary message spaces, M, there always exists an equilibrium in direct
revelation mechanisms that induces the same final probability distribution over
Y, for any 0 € ©.

This RP (Calzolari and Pavan 2000b) is general enough to include the pos-
sibility of information transmission from one principal to another one: Any
information flow that can be generated through an indirect mechanism, can
always be replicated with a direct revelation mechanism.

Proposition 2 Without loss of generality, Pi makes her mechanism public.
For any equilibrium strategy profile in which the mechanism m is not announced
to Ps, there always exists another equilibrium strategy profile such that:

i) w1 is publicly announced,
i1) it induces the same distribution over Y.

In the next sections we recursively apply Propositions 1 and 2 to characterize
the optimal contracts offered by the two principals.



3 Contracts without Information Transmission

In this section we assume that P; does not disclose the agent’s private informa-
tion to P,. This scenario can represent, for example, a situation in which P;
does not have the possibility to signal the agent’s type to Ps, she lacks of any
commitment to contract with A on the information transmission to P, or she is
prevented by law from disclosing any information on the agent’s characteristics.
Strategic information transmission between the two principals will be addressed
in Section 4.

From the previous section we know that the RP applies so that there is no
loss of generality in looking at equilibria in which the two principals use direct
revelation mechanisms. Formally, we are looking for a pair of contracts

" ={m, T2},

with 7 : ©] — Y; and 75 : ©5 — Y5 that map from the agent (extended)
type space to the feasible allocation set for each principal. We recall that
the extended type space for the leader coincides with the agent’s physical type
space, O©. For P» the extended type space is enriched by the interaction between
A and Pp, so that all the payoff-relevant information for P is captured by
0, =0 x V.

In case of pure-strategy equilibria®, there is perfect correlation between the
agent’s physical type, 6, and the allocation y;(f) the agent receives through the
mechanism 7. It follows that P faces an agent with only two extended types
55 = (0,71,11), Qg = (8,x;,t;), respectively with probability p and 1 — p.

Both mechanisms must induce the agent to truthfully report his (extended)
type to each principal, i.e. 74 (8/7}) = 6 and 7% (0 /7t m5) =0, forall§ € ©
and y; € Y7.

Finally, optimality conditions must be satisfied so that each principal’s
mechanism is a best response to the other principal’s mechanism.

The equilibrium of the game can be found by backward induction.

Let Up = vg (%1,%2,0) —t1 — to and Uy = va (21,29,0) — ; — t5 be the
equilibrium payoff respectively for an agent with physical type 8 (also referred
to as the “good”, “high” or “efficient” type) and @ (“bad”, “low”, “inefficient”
type).

At t = 2 the follower offers to A a contract my = {(&o,15), (Z2,t2)} that

®Throughout this paper we limit our analysis to pure-strategy sequential equilibria in
which none of the two principals randomizes on the contract offer to A and such that the
agent follows a pure-strategy with both principals. In some situations, there might also exist
mixed-strategy equilibria in which, for example, P induces the agent to randomize over the
choice of y; so that he will receive an extra informational rent with Ps. This possibility is
examined in Calzolari and Pavan (2000a).
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solves the following program:

Maz p [va (@1, 22, 0) + 2] + (1 — p) [va(zy, 22, 0) + L]
s.t. B
P, : UA > vA (jlvove) - t717 (mQ)
o :
QA > VA (&17 Ovﬁ)__ 117 (g?)
Ua = va (T1,22,0) —t — 1y, (IC3)
UA 2 vA (&17'@27Q) - il - t27 (EQ)

The individual rationality constraints (IRs) and (IR,) ensure that the agent
accepts the contract offered by P». Note that the (type-dependent) reservation
utility is the payoff that the agent already obtained at ¢ = 1 from the contract
with Py. The incentive compatibility constraints (IC3) and (IC,) guarantee
that the agent has the correct incentives to announce his extended type to Ps.

At t = 1, the leader anticipates the reaction 7o(71) which is the solution of
Py and commits to a contract m = {(z;,;),(Z1,%1)} that solves

Maz p [v1(Z1, Z2(m1), 0) + 11] + (1 = p) [vr(z1, 29(m), 0) + 1]
s.t.

P Uaz0, (TR)
QA 2 07 (ml)
Ug > g (21,2200,2),0) — 1 - t2(0,24), (ICy)
Ua > va(T1,220,71),0) — 11 —t2(0,T1), (ICh)

where (22(0,21),t2(0,21)) and (22(8, Z1),t2(8, Z1)) represent the allocations
that respectively the high and the low type receive with P, when they misreport
to P;. The two individual rationality constraints guarantee that the agent
accepts m1, whereas the two IC constraints that he truthfully reports his private
information.

To solve the two programs, we make use of the following lemma on monotonic-
ity of principals’ decisions.

Lemma 1 (Monotonicity)
Under Assumptions A1-A5, both principals’s decisions are monotonic, i.e.
T1 > 2y and Ty > .

Proof. See Appendix.

As in the single-principal case, when the two decisions, 27 and s, are com-
plements in the agent’s payoff function, a high type must receive more of each
decision than the low type in order to have the correct incentives to truthfully
report his private information.

In Proposition 3 we use Lemma 1 to characterize P»’s optimal contract.

Proposition 3 (The follower’s optimal contract)

11



Py offers to A a contract mo that is characterized by two decisions, Ta,xo,
with o > x5 > 0, such thal

Ty =arg max v (%1, T2, 0) +va (i‘l,l‘g,é) — v (El,O,é) ,
z22>20

2, =arg max (1 —p) [valzy, 22,0) +va (21, 22,0) —va (21,0,0)] — pRa(a2),
2~

where
R2($2) = VA (@17$27§) — VA (@17 ng) — VA (£17$27Q) VA (£1707Q)

is the informational rent that Po must leave to the efficient agent.

Proof. See Appendix.

Proposition 3 shows how P»’s decisions are influenced by P;’s decisions. As
in standard principal-agent models under adverse selection, P, must leave a
rent to the efficient type in order to induce him to truthfully report his private
information. This informational rent can be rewritten in a more familiar way

as
Ro(x2) =04 (22,0) — V4 (22,0),
where
74 (12,@ =y (02’1,@2,@) — vy (il,O,é)
and

614 (£27Q) = VA (£17£27Q) — VA (Elvovg) 9

are respectively the additional utility the high and the low type agent obtain
from z,, conditional on having participated (and truthfully reported) to P;’s
mechanism.

Note that the interaction between A and P; transforms the agent’s payoff
vis & vis Py from v4(0,29,0) to T4 (x9,6), where U4 (z2,0) > v4(0, z2,0) since
the two decisions are complements in the agent’s utility function.

The decision for the high type is the same that would emerge under full
information.

The decision x5 is downward distorted in order to limit the informational
rent P, leaves to the high type. It is worth mentioning that if 71 is charac-
terized by a strongly separating allocation, i.e. if Z; > z;, then P, may be
better off when she “shuts down” the low type and sets z, = 0. Hence, in a
sequential common agency game “shutdown” can be endogenously determined
by the leader through the choice of her contract. In Section 4 we show that this
can be done also by manipulating P»’s posterior beliefs.

We are now in a position to analyze P;’s optimal contract.

The following lemma characterizes the two incentives constraints in Py .

Lemma 2 When the agent lies to P, att = 2 he receives with P, the allocation
designed for the low (extended) type, i.e. x2(0,21) = x2(8,%1) = x9.

12



Proof. See Appendix.

Proposition 4 (The leader’s optimal contract)
At t =1, the leader offers to A a contract ©f that is characterized by two
decisions, 7, x] with ] > z7 > 0, that maximize

Ur(zy,21) = ploi(@,22(n1),0) +va (21,0,0)] — pRy(T1,21)] +
+(1 = p) [v1(zy, 25(77), 8) +va (21,0,0)]

where Ry(T1,2,) is the informational rent that Py must leave to the efficient
agent. This is given by

Rl(flall) = R(‘i‘lvll) - RQ('%hll%

where

R(Z1,21) = va (21, 25(77),0) — va (21, 25(77), 0)
is the total rent that the efficient agent obtains from the two principals and
Ro(Z1,2,) is the informational rent Py leaves to the high type, as described in
Proposition 3.

Proof. See Appendix.

To better understand Proposition 4, let Ay denote the utility differential
function between the high and the low type, so that

AQUA (&1722) =vA (2172279) — VA (&17227Q) > O-

To induce the agent to reveal his private information, the leader must reduce
the transfer she charges to a high type by

R(i’17£1) = AQUA (llv&Q) .

If principal two did not exist, the informational rent P; should leave to A
would simply be Agva (x1,0) . The presence of a subsequent interaction with Py
obliges P; to increase this informational rent by R(Z1,z;) — Agva (z;,0) > 0.

At the same time, the contractual relationship between P, and A increases
the informational rent the agent can obtain from P so that P; can make the
agent pay for this service by increasing his transfer of Rs.

It follows that the “net informational rent” that P; must leave to the high

type is
Rl(ih‘i‘l) = R(fhil) _RQ(EhEl)
= Agvalay, o) — Ngla(as).

Clearly, for the low type there is no informational rent with either principal.

Note that asymmetric information results in an indirect transfer Ro(Z1,x;)
from the follower to the leader. On her part, the leader leaves R(Z1,z;) to the
efficient agent.

13



Summarizing, the three players’ expected payoffs under asymmetric infor-
mation are

Ui = pR(Z7,z27)

Ul* = p[vl(@T7@279)+vA(ml7 ) ]
+(1 = p) [vi(af, 23,8) +va(af,0 Q)} _

UQ* = p{”Q(@imQ?e)"’_vA (.%'1,.%'2 ) '%3{70 0) _REH_
+(1 —p) [valaf, 23, 8) + va (2], 25 Q)—UA(%O 9)]

To derive explicit solutions for the equilibrium decisions, =}, we introduce a
trade example where we completely specify players’ payoff functions and fully
characterize the equilibrium contracts. This simple linear-quadratic model can
easily cover standard screening settings, like regulation of a multinational firm
in an international context, labor contracts offered by two employers, federal
and local taxation of a firm.

Example: trade contracts without information disclosure on con-
sumer’s preferences.

Consider the case of two differentiated sellers (principals) that sequentially
sign contracts with a common buyer (the agent) for the provision of two com-
plementary products, x; for i = 1,2. The two contracts consist of a price t;(x;)
that the buyer has to pay for z; units of output 4°.

Assume that the two principals have the same quadratic cost function,
Ci(z;) = % x2. The common buyer derives an utility 6 (w1 + @2) + @122 from
the acquisition of x1 units of product one and xo units of product two.

Hence, in this simple model the three players have respectively payoffs func-
tions

Ul - Ul(l‘l,xQ,e) +t1 - _%m% +t17
Uy = va(x1,22,0) +t2 = —%mg + to,

Uy = ’UA(.%'l,.%'Q,@) — 11 — 19 = 9(.%’1 —l—.%'g) +xix0 — 11 — 1o.

The buyer has private information about his preferences: he is the only
player who knows the exact value of 8. The two sellers simply know that the
buyer’s preferences may be characterized by a marginal value 8 € {5, Q} , with
probability Pr(f) =p =1 —Pr(0)".

To make the analysw as simple as possible, let § = 1 + &Y Ae and 8 =1—
with A =0 — 0 € [0,2]. In this simple model, A§ represents the difference (m
marginal value) that a high and a low type attach to each product.

From Proposition 3, the informational rent the follower must leave to the
high type reduces to

Ry(Z1,21) = (A0 +T1 — 1) Zo.

b Alternatively, x; may well represent the quality of product i.

"Note that one could reinterpret the model assuming that the two sellers face a continuum
of consumers with preferences 0 (z1 4+ z2) + z122 and that a fraction p of consumers has
marginal valuation @, whereas the complementary fraction, 1 — p, has valuation

14



It follows that for any contract 71, the follower’s optimal contract is character-

ized by the decisions®:
Ty = argmax —%x% + (0 +7T1)70 = 0+ 71,
x02>0
Ty = argmax (1-p) [—%1‘% + @+ zl)xa] —p(A0+ 21 —2p) 22
z9>

= maX{Q+£1—%(A0+@1_£1)70}'

On her part, P; must leave to the high type a net informational rent equal
to (see Proposition 4):

Ri(Z1,21) = R(Z1,21) — Ra(Z1, 1)
= Af0(z) +29) — (A0 + 71 —21) 29
= Abz; — (1 —21) 2o

Notice that no matter what the high type did with P;, he can always guarantee
himself a rent with P, equal to Afz,, simply because he has a higher marginal
value for product two than a low type. Similarly, when contracting with P, the
high type can always obtain Afz; by choosing the contract P; designed for the
low type. If the two decisions were independent the high type would therefore
obtain a total informational rent equal to U4 = Af (2, + 2).

When the two decisions are complements, this is not yet the end of the
story. The interaction between A and P; transforms the marginal value of the
agent for P»’s product from 0 to 0 + x1. If Pi’s optimal contract is such that
Axy = &1 — 27 > 0, then the comparative advantage of the high type with
respect to the low type is increased by the contractual relationship with P;
and enables the high type to obtain from P> an extra payoff, in terms of price
discount, equal to (T1 — z7) Zo.

Nevertheless, it is not A, but P;, who appropriates this extra surplus. In
fact, the complementarity between the two products enables P; to increase the
price t; by (Z1 — 1) Z5 and make the agent pay for the better deal he obtains
with P when he purchases also from Fj.

The next proposition shows how the possibility to extract from the agent
part of his informational rent vis & vis the second principal may induce P; to
distort her mechanism. It turns out to exist two different parameters’ regions.
In the first, P distorts the high type’s allocation but gives to the low type the
same allocation as under full information®. In the second, P; simply offers to A
the standard single-principal screening contract in which only the decision for
the low type is distorted.

Proposition 5 In the absence of information disclosure, the (pure-strategy)
equilibrium is characterized by the following contracts.

8The program is concave so that FOCS are also sufficient.

9Under full information, the leader would sell zF'T = @ and the follower 257 = 26.
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The leader’s decisions are
= _ =FI | 2(0=p)-A0(0+2p) ~ ~FI

n region A,

x; =zt
T =71

in region B.
Z; = max {g{” — T%AG,O} <zl

The follower’s decisions are

7, — 7P | 200=p)—A0(1+2p) 5 ~FI
To=25" + Trp 2 T4
in region A,
— oFI _ p2(1—p)+Ab FI
Lo =Ty — T2 < X3

zg = 28!

m region B.
2y =0<zf’

. . 2(1-p)|/I+p—p
Region A is such that 0 < Af < T (i=p)

Region B is such that 20-p)VTFp-p] < Af < 2.

1+p(1-p)

Proof. See Appendix.

Figure 1 illustrates the optimal contracts of Proposition 5 as a function of
A8.

Put Figure 1 right here

A few comments are in order.
1. Distortions. Under asymmetric information there can be distortions
both for Z; and z;; in this example, there can be either upward or down-

. : . . 2(1-p)
ward distortions for the high type, depending on whether 0 < Af < 5 +2§ , or

21(3_—_2];2 <Al < w. The low type is never upward distorted. The

presence of distortions for both types is to be contrasted with monopolistic
screening models and simultaneous common agency games where all equilibria
are characterized by the “absence of distortions at the top”.

Let us briefly examine the comparison with these models.

e In the standard single-principal setting, P; faces a trade-off between ef-
ficiency and rent-extraction; this trade-off is best struck by distorting
downward the decision for the low type and by offering the efficient out-
come to the high type.
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e In simultaneous common agency games with complementary decisions,
there is a double downward distortion for the decision for the low type;
principal ¢’s reduction in z; makes a reduction in z; more desirable for
principal j. For both principals it is pointless to distort the decision for
the high type since this has no impact on rent extraction (see Martimort

and Stole (1999a,b)).

e In dynamic common agency games, the two principals are not in a sym-
metric position. As already suggested in Proposition 3, the follower can
make both the high and the low type pay for the extra surplus generated
by the complementarity between the two products. On the other hand,
under asymmetric information, the leader can affect the reaction function
of the follower and make the agent pay for the extra informational rent
(R») that P must leave to the high type when his comparative advantage
with respect to the low type is increased by the contractual relationship
with P;. Since the extra informational rent, Rs(T; ), is a function of
x; and T, depending on the elasticity of the reaction function of Py’s
decisions with respect to x; and Z;, Pi’s optimal contract may exhibit
distortions (in both directions) for either decisions.

2. Shut-down. In the absence of any contractual relationship between A
an P (or, equivalently, in case of separable preferences) a single seller finds
profitable to trade with both types if and only if pd < @, or, equivalently, if and
only if A8 < 2(11—_:;2. This condition is exogenous to the model and simply says
that designing a mechanism that attracts both types is profitable if and only if
the percentage of high types is high, or if the difference in marginal valuations
is low. In a dynamic contracting environment, the “shut-down” condition for
principal P, is endogenous and it depends on the contract that A signs with
P;. The interaction between A and the leader transforms the agent’s marginal
valuation for x5 from @ to #4+x1. In equilibrium, the leader may have an interest
in designing a mechanism that forces P> to exclude low-valuation agents from
trade. This occurs if myis such that 8+ xz; < p(§+9_01). In this case, the leader’s
optimal mechanism is simply the standard single-principal screening contract

with 71 = 0 = #{'1 and z; = max {gff — %A@,O}. Conversely, if Py offers

to A a contract for which § + z; > p(f + 1), then P, reacts by designing
a mechanism such that z,(Z1,2;) > 0; in this case P;’s optimal contract is
characterized by 71 = _fl + 2(1—_]3%@2 and x; = gfl.

Proposition 5 shows that the optimal contract induces z4(Z1,2;) > 0 if the
difference between the two types is not too high (region A), and z4(Z1,2,) =0

if such a difference is significant (region B).

In the next section we show that the leader can improve upon this contract
by sharing part of the information she learns from the agent with the follower.
In order to minimize the informational rent she must leave to A, the leader
benefits from manipulating P»’s beliefs by disclosing a signal that is correlated
with the agent’s private information.
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4 Optimal disclosure policy

In this section we examine the possibility that P, commits to a disclosure policy
6 which transmits information to the downstream principal.

At the beginning of the second stage, P» receives a signal s € S that is a
realization of a random variable 5 with support S and distribution §(s/6). Let
(6(s),6(s)) € A(S)? represent respectively the two probability distributions
over S for the high and the low type. As usual, s has no precise meaning: The
signal may represent any information that is correlated with the agent’s type.

At t = 2, after receiving signal s, P» updates her beliefs using Bayes’ rule

and §. Let 5( )
B _ s)p
029 = S el =)

be the posterior probability of facing a high (extended) type 55 = (0,71,11),
conditional on observing signal s. The follower offers to A a contract mo(s) =
(Zg,25,12,15) which is a solution of Py with posterior beliefs p(./s) instead of

p.

At the first stage, P; anticipates the contract 7(s) and offers to A a contract
71 = (21,1, %1,%1) and a disclosure policy!" § = (8(s),8(s)) which solve

Maz pEy,, [v1(21, 22(8),0) + 1] + (1 — p) Egs) [v1(21, 22(5), 8) + 1]
s.t.

p . ) Ua= By {va (@1,22(5),0) — f2(s)} —01 20 (I
Un = Eg(s) {va (z1,22(5),8) —1a(s)} =11 2 0 (L
Ua > Eg) {va (21, 22(0,21/5),0) —t2(0,21/5)) } —h (1
Up 2 By {va (Z1,22(0,71/5)),0) — 12(0,71/5))} — 1 (L

where for any s € 5,
(22(0,21/5),2(0, 21 /5)) and (22(6,71/5), t2(8, 1/5))

represent the agent’s allocation with P», when he misreports to Pp, which is
conditional on the signal s.

The leader must provide incentives against any possible deviation path that
the agent may follow in the continuation game. This explains the presence
of the two incentive compatibility constraints in P;’s program. The first two
individual rationality constraints ensure that the agent accepts ;.

The optimal direct revelation mechanism for P, conditional on s, is simply
the one we obtained in Proposition 3 with p(./s) instead of p. In particular, only
the decision for the low type is (downward) distorted and Z3(s) is constant over
s, since it does not depend on the follower’s beliefs. Using Lemma 2 the out-of-
equilibrium continuation game is characterized by 22(8,2,/s) = x2(8,71/s) =
Zo(s), for any s € S.

The following proposition characterizes P;’s reduced program.

10The disclosure policy, 8, is such that for any 6 € ©:
(a) 6(s/0) € [0,1];
(b) > pes6(s/6) = 1.
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Proposition 6 P offers a contract, 7}, and a disclosure policy, 6*, that solve

Magz pEg) [v1(Z1,T2(s),0) +va (T1,0,0)] + (1 — p) Eg(s) [vi(z1, 25(5), 8) +va (21,0,8)] +

1,0
—-p {Eé(s)R(s) - EE(S)RQ(S)}
s.t.

EQ(S)R(S) < Eg(s) {AevA(jhiQ(S))} 5

where R(s) and Ra(s) are as in Proposition 4.

Proof.  See appendix.

A few comments on P;’s reduced program.

First, P;’s objective function can be decomposed in three terms. The first
two represent the surplus generated by the interaction between A and P;. The
last term

ER(2;,8(s),71,3(s)) = | Eg) R(s) — By(y) Ra(s)]
is the expected informational rent that P; must leave to the efficient type in
order to make him reveal his private information. From Lemma 2 we know that
an efficient type that lies to P, always receives zo(s) with P5. Hence, in order
to create the correct incentive scheme, Py is obliged to reduce #; by Eg R(s),
where

R(s) = Agva(zy,25(s)) = va (21, 25(5),0) — va (21, 29(5),8) >0

is the efficiency gain of a high type with respect to a low type.

When P; discloses information to P», an efficient type who misreports at
t =1, not only gets x; instead of Z;, but also affects the beliefs of the follower
and hence of the expected rent Eg o) R(s).

On the other hand, when contracting with a high type, P realizes that
the payoff the agent obtains with P» depends on the terms of the contract Py
and A sign in the first stage. Clearly, for the low type the continuation game
is irrelevant since any additional surplus from the interaction with P> will be
extracted by the latter with £s.

Conversely, for the high type, the informational rent vis & vis P», conditional
on signal s is

RQ(S) =" (j17£2(5)7 é) -4 (217£2(5)7Q)

where, as in Section 3,
614 ($17£2(8)7 é) = V4 ([Z'MQQ(S))@) —va ([Z'lv 07 é)

o4 (21, 2(5),0) = va (21, 22(5),0) —va (21,0,0)

represent the additional value of z,(s) respectively for the high and the low

type.
The expected rent for the high type vis a vis P», conditional on reporting
truthfully to Py, is thus EE(S)RQ(S).
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It follows that the leader must leave to the high type an expected rent equal
to ER1 = EQ(S)R(S) - EE(S)RQ(S)’

A last comment on the constraint in P;’s reduced program. This represents
the incentive constraint for the low type; as in dynamic single-principal frame-
works, P; cannot reduce #; too much if she does not want to induce the low
type to mimic the high type. This constraint is never binding when P; does
not signal to P»; nevertheless, it might bind when some information is released
and Eg(s)Zy(s) > Ly Lo (s).

The following definition identifies an important benchmark.

Definition 2 The two decisions, x1 and xo, are unrelated if for any x € §R3_
and for any 6 € © :
2
1) A’s marginal value for xg does not depend on x, % =0 (con-
tract externalities);
2) Py is not directly interested in x2, WZ =0 (direct externalities).

2

Proposition 7 relates the role of externalities to information transmission
between principals.

Proposition 7 If the two decisions are unrelated, then Py never finds profitable
to disclose information to Ps.

Proof. See Appendix.

This result is very general and deserves a few comments. Even if P; can
increase the agent’s rent vis & vis P» when she discloses information, she can
never appropriate this rent when v (w1, x2, 0) is separable in the two decisions.
This is a consequence of P;’s own incentive problem.

To make the point clear, consider a situation in which prior beliefs are such
that Py, should she receive no information from P, she would set x5 = 0. In
this case, A receives no rent from his interaction with P». But then P; could
design a signalling mechanism such that she sends a signal s; with probability &
in case she observes a high type and with probability § = 1 in case she observe
a low type. Clearly, for any s # s1, z5(s) = 0 since P» understands that she is
facing a high type with certainty. However, for § low enough, signal s; becomes
sufficiently informative of a low type and induces P» to leave some positive
rent to a high type: the posterior probability of dealing with a high type after
observing s is sufficiently low and it becomes profitable to set zo(s1) > 0. In
this case, P; can induce P» to leave to A a strictly positive rent. Information
transmission is profitable for P; since she can make the agent pay for the extra
surplus with P, by increasing f;. Indeed, this would be the end of the story if
there were no asymmetry of information between A and P;.

1T the contract theory literature this situation is often referred to as the “shut-down case”
and arises when p > p where p is a critical value that depends on all parameters of the model.
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When also P cannot tell the agent’s type, she is obliged to provide A with
incentives for truthtelling. The efficient type can in fact always pretend he is
inefficient. Since in this case signal s is sent with probability one, by mimicking
the inefficient type, the efficient agent can obtain the same rent Rs(s1) with
certainty rather that with probability §. To avoid false reports, P; is therefore
obliged to decrease t; by Ra(s1). It follows that the net effect of information

disclosure on #; is thus —(1 — 6(s1))Ra(s1) < 0 so that P is strictly better off
by keeping secret all the information she learns from A.

Proposition 7 generalizes this reasoning by showing that for any pair of
probability distributions 6(s),8(s) such that Py (partially) informs Py, the most
favorable signals for A (signals such that Rs(s) is high) are always more likely
under §(s) than §(s) so that information disclosure exasperates P;’s incentives
problem.

Proposition 7 is reminiscent of one in Baron and Besanko (1984) for a dy-
namic principal-agent framework. They show that under full commitment the
optimal dynamic contract is the twofold repetition of the static contract. In
other words, principal’s sel f one should not inform self two about what she
learns in the first stage. If a principal lacks of the commitment not to use such
information to turn the contractual relationship to her own advantage, or to
renegotiate the contract in the second period if the two parties both want to
alter the initial agreement, then the optimal contract must be modified in or-
der not to fully inform the principal about the agent’s type (see, for example,
Laffont and Tirole (1988, 1990)).

In our framework there are two different principals acting at £ = 1 and £ = 2.
The agent’s payoff vis & vis P, can differ from that vis & vis P, and the two
principals do not need to have the same preferences. Nevertheless, when the
agent’s payoff is separable in x; and xo we obtain the same result.

Proposition 8 holds even if we allow P; to sell the information she obtains
from A to P». Suppose, for example, that P, has the possibility to make P> pay
for a better information structure. When the agent’s payoff is separable in x;
and s, one can show that P; is still worse off if she releases any information.
The idea is always the same. When preferences are separable, P, can never
appropriate the surplus generated by the finer information structure she gives
to P» because of her incentives problem.

We can conclude that there must be externalities between the two contrac-
tual relationships to induce P; to disclose information to . In the rest of
this section we concentrate on a special class, contract externalities, that are
typical of contracting with common agency. We acknowledge that also direct
payoff-relevant externalities may be relevant in explaining why a principal may
be interested in disclosing the information she learns from her agent. Never-
theless, by leaving these effects out of the analysis we succeed in isolating the
rent seeking effect that characterizes the design of sequential contracts under
asymmetric information.
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Assume that vy (x1,z2,0) is such that the two decisions 1 and x2 are com-
plements so that the marginal value of o increases with the decision z1. If
Py’s mechanism is such that Z; > z;, then although it remains true that
the efficient type can induce a higher expected decision with P» when he
announces he is inefficient [as suggested in the discussion of Proposition 7,
Esg)(22(8)) > Egs) (25(s))], this does not imply that he guarantees himself a
higher expected rent since by mimicking the low type the efficient agent reduces
a1 and therefore the value of xo. It follows that under strict complementarity
the leader can indeed benefit from disclosing some information to Ps. In order
to clarify this we reintroduce the simple linear-quadratic model used in Section
3.

Example: Information Disclosure on Consumer’s Shopping Activ-
ity.

Let the common buyer have preferences v(x1,x2,6) = 0(x1 + x2) + x129.
Think of the two principals as e-sellers who post websites in which they specify
the price-schedule for their product or service, t;(x;), and a disclosure policy
&(.). Both sellers have the same cost function v;(z;) = —x?.

In this setting the signal the second seller receives from the first seller can
represent, for example, the agent’s choice of the quality of Pi’s product, the
number of units that he bought, the price paid, or any other information that is
correlated with the agent’s shopping activity, like for example the path followed
in the website.

Py must leave to the high-valuation buyer an informational rent equal to

FERy (gl,é(s),i’l, 5(5)) = EQ(S)R(S) — ES(S)RQ (S)
= Abzy + AbEs(2o(s) — (A0 + 71 — 1) By 2(s).

As shown in Proposition 6, the leader’s optimal contract, 7} must solve!?

Maz p <§$1 - %UE%) +(1-p) <9_w1 - %ﬁ) — pER1(21,8(s), 71, 6(s))
s.t.
Ty — 21 2 Eg(s)2a(s) — Fy(gZa(s)- (ICy)

This program would still be difficult to solve for any possible disclosure
policy 6 that P; may use to signal information to Ps. The following lemma
proves that P; does not need to use more than two signals, say s; and ss.

Lemma 3 The optimal disclosure policy, 6%, is such that §(s)* and §(s)* are
two Bermoulli distributions. Furthermore, for one of the two signals Py “shuts
down” the low type, i.e. z5(s) = 0.

Proof. See Appendix.

The idea behind this result is simple. The leader wants to manipulate the
follower’s beliefs in order to increase the agent’s rent with P, and in so doing

"2 The monotonicity constraint for 21 is automatically implied by (IC,) since Es(syzo(s) —
B o)z (s) > 0, as suggested in the proof of Proposition 7.
5)=2 S
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reduce the net informational rent that she has to pay to the agent. For this
aim, the leader decides to let P> have access to information that is correlated
with the agent’s preferences. Lemma 3 proves that the best way to increase
the expected rent of the agent vis & vis the second principal is to give to P»
an informational structure such that one of the two signals (say s;) is really
informative of the low type and induces P» to give away a high informational
rent, i.e. a significant price discount. In this case, the other signal (say s2) is
necessarily informative of a high type and hence induces P, to set z5(s2) = 0.

Let 6 = Pr(s1/0) = 1 — Pr(s2/0) and § = Pr(s1/8) = 1 — Pr(s2/8) be the
probability of signal s; respectively for the high and the low-type contracts.
The optimal disclosure policy is depicted in Figure 1.

6
0: ? 51
_ (Figure 2)
g : 4 59
1-3

Furthermore, let (Hc,é) be the set of all mechanisms that satisfy the fol-
lowing constraints:

(a) B+ — 3(A0+ 21 — ;) > 0,

(b) 8+ — BEEHAG + 31 — ) <0,

(d) £y 2 07
(e) 1 — z > (6 —6) zo(s1) (1Cy)
Using Lemma 3, the leader’s optimal mechanism #7,8* = {a%, %, 6%, 8%}
solves

Max p(0z —122) + (1 —p) (Oz; — 122) — pAOz,+
Moz (671 — 323) + (1 — p) (0ay — $a?) .

—p [A08 — (A0 + 71 — )] [0+ 21 — L H(A0+ 21 —2y)]

Note that in general any pair §,§ with § = § represents a contract in which
Py does not signal any information to P». However, since we write the program
such that for sa x9(s2) = 0, then the no-signalling case is uniquely defined by
probabilities §* = §* = 1.

Under full information the last two terms in P;’s objective do not exist. In
the standard principal-agent screening model the rent P; leaves to the efficient
agent is simply Afz;; hence, the last term, [AG — (A0 + Ty —gl)g] 25(s1),
represents the additional rent introduced by common agency.

The expected rent the leader leaves to the agent, F Ry, can be rewritten as

ER; = Abz; — S(Ag.@l)gQ(Sl) — AOzy(s1)Ag0,
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where Agxy =T —x; >0 and Agd =6 —§ < 013,

The second term in FR; represents the rent P is able to extract from P»
via the agent. Given that z,(s2) = 0, this rent exists only with signal s; and it
is then weighted with probability 6.

The third term is the negative incentives-effect generated by information
transmission; by choosing the contract for the low type, the high type can obtain
a rent with Py, Afz,(s1), with probability § instead of 8. In order to prevent
mimicking the high type must therefore increase ER; by Afz,(s1)Agd. 1t is
interesting to note that this effect is larger the more the information transmitted
to P» (i.e. the larger is Ayd).

When P; transmits information to P, z9(s1) > z9(p), where z9(p) stands
for the equilibrium choice of z» in case P> does not receive any information from
Py. This policy has a trade-off. On one hand, disclosing information results in
a reduction of ER; due to the increase of z,(s1); on the other hand, disclosing
information increases ER; because of the extra informational rent P, must
leave to A for incentives-reasons. If the first effect dominates the second, then
releasing some information becomes profitable.

With the following proposition we show that this may well be the case and
we characterize a parameters’ region such that the solutions of the previous
program involves information transmission between the two principals.

Proposition 8 In the parameter region C, the leader offers to the agent a
mechanism, 77, 6%, that involves information transmission to the follower.
71, 48 such that

=% _ =FT
ry =217,

_ 2(1—p)—AG(1+2
zt _2{71 4+ & p217p( +2p) < 2{71_
The optimal disclosure policy is

& = PI‘(Sl/?) _ (1-p)[A6—2(1—p)]

p2(1-p)—3A0] ~
8" =Pr(s1/8) = 1.

Conditional on receiving signal s, the follower offers to the agent a contract
75 (s) such that:

T5(s) =TE! for any s,
af(s1) = b - L <,
x5(s2) =

Region C is defined by:
) 2(1=p) 2(1—p)|vI1+p—p
(i) IJEQP SQAQ) SQ (1+p(1_2p) 10) > 43
.y —(9p+5p+1) A0 +2(6p—Tp* —p°+2 ) A0—4+4p+4p—4p
(i1) PI—pI(I—p)—327] 20

?

Y3This derives from the fact that z,(s2) = 0, as suggested in Lemma 3.
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Proof. See Appendix.

The parameter region C' simply ensures the existence of an interior solution
in which all constraints (a) to (e) are satisfied!*.

Information transmission enables the leader to extract more rent from A by
increasing the informational rent the follower leaves to the agent.

In this trade example, the first seller provides another seller with informa-
tion that is directly correlated with the consumer’s preferences to extract more
surplus from the agent; indeed the final price the customer pays for P;’s prod-
uct incorporates not only the value of the product per se, but also the gains
that the agent obtains in future contractual relationships with other sellers.

Note that P is strictly better off by disclosing information on the agent’s
type even if she does not make P, pay for the signal the latter receives. In case
P; has the possibility to “sell” information on consumer’s preferences to other
sellers, we expect to observe in equilibrium a higher information flow (i.e. a
lower &*).

Implementation.

The optimal disclosure policy §* has a simple implementation. Let s1 cor-
respond to a “secret” contract and s9 to a “public” contract. When the agent
picks up option 27, P; does not disclose the agent’s choice. Conversely, when
A selects option Zj, then the principal discloses the terms of the contract with
probability 1 — §*. Alternatively, P; could offer to the agent the choice be-
tween three options. The first one, (z7,#}) is never disclosed and it is chosen by
unsophisticated consumers (low type). The second, (T3, (s1)) is selected by so-
phisticated customers and is also secret. The third, (Z3,%](s2)) is made public,
in the sense that P; notifies to P» that A selected this option. By playing with
the transfers 7] (s1) and 7] (sg) the seller can make the agent indifferent between
(m%,%,(s1)) and (T},7](s2)), so that the latter randomizes with probability &*.
As suggested in Proposition 8, letting P> observe the realizations of 71 with
a positive probability reduces, on average, the distortions that are due to the
asymmetry of information and induces P> to increase the price discount that
she offers to her customers. Clearly, those consumers who accept to disclose
the terms of their contracts do not receive future rents; it follows that P; must
compensate them through a discount on ¢;.

It is important to point out that in our model it is the leader who offers to
disclose the information on the agent’s type. This decision, although motivated
by profit-maximization, has a direct impact on welfare and consumer’s surplus,
as suggested in the following proposition.

Proposition 9 Strategic information transmission between two sellers of com-
plementary products or services increases welfare and consumer surplus.

"1t is possible to verify that region C' is not empty (one can take for example p = .5 and
explicitly solve the double inequality).
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Proof. See Appendix.

Clearly, if P, receives a finer information structure, then she reduces the
distortions of her contract. Since information transmission enables P, to re-
duce the net informational rent she leaves to the agent, the trade-off between
efficiency and rent-extraction in her optimal mechanism also moves in favor of
efficiency. This results in an increase of welfare. 1f information disclosure occurs
with the customer’s approval, it also increases consumer surplus, as suggested
in many privacy policy webpages. Not surprising, as we argue here, it also
favors those vendors who organize it.

Commitment.

The analysis of Sections 3 and 4 has been performed assuming full com-
mitment. This means that we ruled out the possibility that P; discloses more
information than actually allowed by the contract m1. When P; is not directly
interested in 9, nor can she sell the information to P, as we assumed at the end
of Section 4, then she has no reason to deviate from the disclosure policy 6(.).
Conversely, if P; can collude with P, and share the extra surplus that the lat-
ter derives from a better information structure, then cheating on 6(.) becomes
attractive. In this case, the optimal collusion-proof contract must be such that
Py herself does not fully learn from the agent’s choice. This requires the agent
to randomize over (w1,%1), as suggested in the literature on the ratchet effect
(see, for example, Freixas, Guesnerie and Tirole (1985), Hart and Tirole (1988),
Laffont and Tirole (1988), Malcomson and Spynnewyn (1988), among others).

We also implicitly assumed that P; does not collude with the agent. As
suggested in Caillaud, Jullien and Picard (1995), P; could publicly announce
m and 6 and then sign a secret side contract with A. For example, once
she has manipulated P»’s beliefs, P, could offer to A an agreement on the
basis of which she sends only the most favorable signal, s1. Fquivalently, she
could modify x7 to extract further surplus from the agent. If the commitment
assumption is removed, then we are back to a contracting game in which 7,6
must be a best response to my. In such a case the optimal contracts would
be the ones derived in Propositions 3 and 4 (with x rather than xa(m)).
When P; lacks of any commitment not to privately renegotiate m1,6 with A,
information transmission to P» does not occur in equilibrium, since it cannot
be credible (the coalition between A and P; can always improve upon é by
selecting only payoff-maximizing signals). The commitment towards 71, § seems
reasonable when the interaction between P; and A is not too personal, as in
case of a seller that screens many consumers with a nonlinear price schedule.
It is much harder to defend in case of a personalized one-shot relationship.
Nevertheless, if P; is involved in a long-term interaction with P, like in case
of two differentiated sellers, then private renegotiation with the agent is also
associated to a reputational cost.

5 Conclusions

This paper has examined the dynamic interaction between two principals that
sequentially design their contractual relationships with a common agent.
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We have shown that the optimal contracts can be characterized by an en-
dogenous information flow between the two principals.

When receiving information that is correlated with the agent’s type and
his past contractual activity, a downstream principal may be induced to leave
out a higher (expected) informational rent to the agent. For example, in case
of price-discrimination, providing a downstream seller with information that is
correlated with consumers’s preferences may well result in a lower distortion on
the price-schedule which eventually favors consumer’s surplus.

In our model the disclosure of information is organized by an upstream prin-
cipal, for example a seller that previously traded with the same agent. This
principal has her own interest in favoring the agent with the second principal
since she can appropriate the extra surplus that is generated by the disclosure of
information. Although the leader is concerned only about her own payoff, in re-
leasing information she also increases welfare by reducing the overall distortions
that are due to the asymmetry of information.

The dynamic common agency model can accommodate direct externalities
between the two mechanism designers. If the upstream principal is also directly
affected by the decision of the downstream principal, there might be other
reasons for information transmission that add to the rent-extraction one we
proposed in this paper. For example, consider the case of a jointly-financed
project. Two large investors that provide funding to a common borrower usually
design contracts that (at least partially) release to each other the information
that is obtained from the common borrower. The latter usually has better
information than external investors on the characteristics of the project like, for
example, the probability of success or its final cost. Under adverse selection,
information sharing between investors is usually motivated either by a rent-
extraction behavior, or by the need of coordinating the two investments. In
this paper we provide a rationale based on the first effect. The possibility
that principals communicate the agent’s private information in order to better
coordinate their policies also represents an interesting area for future research.
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Appendix: Proofs. Proof of Lemma 1.

e First, assume that a (pure-strategy) equilibrium exists in which 7; < z;

and Zy > zo. We show that P; cannot be incentive compatible since the
agent benefits from lying with P, and then truthfully reporting to P».
Adding constraints (IC1) and (IC;) one gets

UA('i.h Z2, 0) - UA(ih Z2, 0) > UA(EhiQ?Q) - UA(£17£27Q)'
This condition is never verified for Z; < z; and Zy > zy because of
Assumptions A3 and A5.
Second, assume that #; < z; for both ¢ =1, 2.

Considers the case in which A lies to both principals. Adding constraints
(IC1) and (IC4) one gets

VA (@17'@270) —vA (£17£270) EA (.’Z’l,i’g,ﬁ) — VA (£17£27Q) )

which is never compatible with Z; < z; for both ¢ = 1,2 because of
Assumption A3.

Finally, consider the case in which 29 < 2y and 1 > z;.
The sum of (ICs) and (IC,) requires that

VA (jlv'f%e) +va (217£27Q) 2 VA (i‘17£270) +UA (£17i27Q) .

This condition is never satisfied for Z» < z, and Z; > z; because of
Assumptions A3 and A5.

29



It follows that any pure-strategy equilibrium, (z;,Z1,xq,T2) of the game
must have z; > z; and 73 > z,. A

Proof of Proposition 3.
This is the standard principal-agent screening problem applied to a common-
agency framework. The solution is in three steps.

e First, we show that if constraints (ICs) and (IR,) are satisfied so is (T Rz).
Using

Uy vA (Z1,T2,0) —t1 — 12

Ua

VA (£17£27Q) =1 — by,
constraint (IC3) can be rewritten as
UA 2 QA — VA (&17&27Q) +£1 + VA (@17£27 é) - 1?1~

From (IR,) we have that U > va (21,0,8) — t;. If (IC2) and (IR,) are
satisfied, then

UA Z UA (£17O7Q) - UA (&17227Q) +UA ('i.17£270_) - t_l 2 UA (j1707 0_) - t_l
for Assumptions A3 and Ab5.
e At the solution (IR,) and (IC3) bind and (IC,) is slack.

Using the expressions for U, and Uy, P»’s objective function can be
rewritten as

Uy = p {02(5/‘1@2,5) ~ U4 +va (T1,72,0) — 51} +
(1 =p) a2y, 29,8) = U +va(21,22,0) — 1] -
In a similar way, constraint (IC5) can be reduced to
Ua <Upy+u (21,22,0) — v (21,22,0) + 1, — 1,
which together with (IC5) gives

gA +v4 (@lvibg) - UA_(EDE%Q) +1 - 1?1 < Uﬁ
UpaSUp+va(21,22,0) —va (21,22,0) + 11 — 1.

The r.h.s. term of this double inequality is (weakly) larger than the Lh.s.
by monotonicity in decisions (Lemma 1). Since Us is decreasing in both
rents U 4 and U 4, then for any z, and % it is always optimal to make
(IR,) bind and to reduce Uy at its lower bound, which requires setting
(IC3) binding.
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e P’s program reduces to

Max p{UQ(@lv'i'Qae) +vA (@17@270) — V4 (T1707§>} _pR2(£2)+

Lo,T2

+(1 _p) {v2(£17£27ﬁ) +va (£17£27Q) — VA (£1707Q)}

s.t. RQ(&Q) = vA (f17£270_) — VA (T17O7§> - {UA (217227Q) — VA (ilvovg)} )

The solution to this reduced program gives Proposition 3. W

Proof of Lemma 2.
First, take a high type that misreports to ;. We have to prove that

vA (21,29,0) — 1y > va (21, T2,0) — 12

Furthermore, since participation with P» is voluntary it must be that
VA (£17£27§) _22 Z VA (&1707§) .

The transfers £, and fs can be recovered from the proof of Proposition 3. Sub-
stituting £, and ?2 and using the monotonicity of z2 one can show that the two
inequalities are always satisfied under A3 and A5.

Similarly, take a low type who lies to ;. We have to show that

VA (@17£27Q) _LQ EA (@17@27Q) _1?2

and
VA (i‘17£27Q) _22 Z VA ('@17O7Q) -

Using o, t2 the first inequality reduces to

VA (571757270) — VA (@17£270) > vA (i'bi'Q?Q) —vA (ilvﬁ%Q)

which is always true for Zo > z, and A3. The second inequality is always
true under Ab. We can conclude that an agent who lies to P; always receives
allocation (z9,1,) in the out-of-equilibrium continuation game with P,. W

Proof of Proposition 4.
To simplify notation we drop the dependence of P%’s optimal mechanism 73
on 71 when not explicitly needed.

e If constraints (IC1) and (IR,) are satisfied, so is (IR;). Rewrite con-
straint (1C1) to get

UA Z QA + VA (&17&2707) — VA (ll?ﬁ??Q) .

Clearly, if (IR,) is verified so is (IR;) for Assumption A4.
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e We are left with (IC1), (IR;) and (IC;). We show that only the first two
bind. With standard substitutions for ¢, and %2, (IC7) and (IC;)can be
reduced to the following double inequality

Untva (z1,29,0)—va (21,29,0) <Ua <Up+va (T1,29,0)—va (T1,29,0)

where the Lh.s. term is smaller than the r.h.s. term for Assumption
A3. Since Py’s objective function is decreasing in both U 4 and U 4, it is
optimal to make both (IC;) and (IR;) bind. In this case, (IC;) is slack
and can be neglected.

e Substituting (IC1) and (IR;) into P;’s objective we obtain that 7} is the
solution of the reduced program
Af(%l‘ p |: vl(i'l?TQ(ﬂ-l%é) + VA (@17 07 é) :| _pRl('flvil)
L1,T1

+(1 =) [vi(21, 22(7m1), 8) +v4 (21,0, 8)]

Proof of Proposition 5.

As suggested in Proposition 4, the leader’s optimal contract is the solution
of

Maz p (6 — 323) + (1 —p) (6z) — 3a}) — p[Abz; — (@1 — 212 (31,21)]
Zq1,%1
s.t.

(2): 2y(21,21) = max {B + 2, — 125 (A0 + 21 — )0},

e We solve this program by comparing the maximal payoff P} can achieve
by designing contracts {x;, %1} such that z5(Z1,2;) = 0 with the maximal
payoff P; can obtain with mechanisms that induce 25(Z1,2;) > 0. To this
aim, we deliberately neglect all constraints and verify them ex-post.

e For any contract, {z;, 71}, such that zo(Z1,z;) = 0, Pi’s program reduces
to the standard single-principal screening problem whose solution is
xr1 = é,
] = max {Q — T%)AQ, O} )

Replacing Z; and z, into the objective function and using 8 = 1 + %
and § =1-— %, we obtain that the maximal payoff for any contract that
induces xo(Z1,21) =0 is

(3p+1)A02—4(1—p)AO+4(1—p) 2(1—p
S(1=7) it 0<Af< A2,

Uy =
81+ 47 e
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e If, instead, P selects a mechanism such that zo(Z1,21) > 0, then 2o(Z1,2;) =
O+a — 15 (A0 + a1 —z).
In this case, the contract that maximizes Pi’s objective is recovered from
the system of FOCS!®

— _ _ _ 8 >
PO —F1) = p |—zy(Fr,2p) — (B — zy) 2] =0
et ~ &/ z =
(1=p)@—z1) = p [A0 + 2p(Fr, ) — (71 —y) 22| =0
Substituting the reaction function z(Z1,2;) and its derivatives into the
system we get:

- =FI 2(1—p)—A8(1+2p
Ty =11 + ( Ttp ’
Iy = E{U-

The payoff associated to this contract is

4p3 — p? + 1)A0% +4(4p® — 3p? — 1)A0 + 4(4p® — 9p? +4p + 1)

(
U= S

e The optimal mechanism is obtained by comparing the value functions
associated to these two focal contracts.

e i) For 0 < AH < 2(11;5), then

(4p® —p? +1)AG? +4(4p° —3p° —1) AO+4(4p® —9p> +4p+1) > (3p+1)A02 —4(1—p) AO+4(1—p)
8(1-p?) - 8(1—p)

if and only if
AG? 1+ p(1 — p)] +4p(1 — p)AY — 4(1 — p)® < 0.

The left hand side of this condition identifies a second order polynomial

with roots At = 2PVTP L & g A = 20PNV p]

1+p(1-p) 1+p(1-p)
It follows that the optimal contract is such that zo(Z1,2,) > 0 if

0<Af< 21 —p) [VI+p—p] < 2(1 —p)
1+p(1—p) 1+p

7

which corresponds to region A.

On the other hand, the optimal contract induces z5(Z1,2;) = 0 if

20-p) [VT+p=p] _ zy . 20-P)
14+p(1—p) - T 1+4p

It remains to verify that all constraints are satisfied in these two regions.

In region A, 721 = i + Q(I—w%ﬂl and z; = z!'!. Constraint (b)
requires that
2(1 —p)

b

A <

'5One can verify that the program is concave so that FOCS are also sufficient.
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. 20-p) _ 20—p)[VIFp—p)|
Since - 1+p(1-p)

requires that zy(%1,2;) = 25! — ﬂ%ll;_pp;ﬂl > 0. This is the case for

, this constraint is verified. Constraint (a)

AQSM-
1+p(1—p)

. 2(1-p) 2(1—p)[vIFp—p|
Since 1+p(1—p), 1+p(1—p)
verified in region A.

For 1—1];-%1<A9<M then;ﬁlzé,andglzﬁ—ﬁA0>
0. Clearly constraint (b) is verified. It remains to check that indeed

, we can conclude that all constraints are

o2 o )2
Zo(Z1,21) = 0. This is the case for A§ > %. Since % <
% then all constraints are satisfied also in this region.
e ii) For %%l < A6 <2, then
(4p® — p? + 1)AG? + 4(4p® — 3p? — 1) A0 + 4(4p® — 9p? + 4p + 1) S Dy A0
8(1 —p?) -2

2(1—p) (5p*+2p+1-2VEpy/(p+1))

if AG < Af; and AO > Aby, where Af, = e —

2(1-p) (5p>+2p+14+2v5py/(p+1))
5p3—p2+1-p )

and Afy =

Since Af; < 2(1 p) , then the optimal contract is such that z4(Z1,2;) >0

only if Af > A@g However, Afy > Apl(—pr, and therefore xo(Z1,2;) is
never strictly positive for A > A#s. It follows that the unique candidate
is #; = 0, and 2; = 0. This contract satisfies both constraints (a) and (b)
and it is thus the optimal contract for this region.

e Combining i) with ii) we can conclude that in region B the optimal con-
tract is characterized by Z; = 6, z; = max {Q - TinAe, O}.

e The follower’s decisions are obtained by replacing the leader’s decisions
into the reaction functions derived in Proposition 3. H

Proof of Proposition 6.
First we prove that if (IC7) and (IR;) are satisfied so is (IR;). Using
Lemma 2 we obtain that (IC) is equivalent to

Ua>Upy + Egq) [Dgvalay, z2(s))] >0,

because of Assumption A4 and (IR;).
Second, we show that (IC1) and (IR;) bind. Using Lemma 2 and ,(s),
ta(s), (IC;) reduces to
T < Ua+ By [Bovalen ()]
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Replacing t,(s), #1(s) with Ua and U, into Pi’s objective function it is
immediate to see that it is optimal to make both (IC7) and (IR;) bind. M

Proof of Proposition 7.

Take the reduced program as in Proposition 6. When the two decisions
are independent, the payoff of the agent is separable in the two decisions, i.e.
va (71,79,0) = g} (21,0) + g4 (x2,0) . In this case the agent’s rent conditional
on signal s is

R(s) = Dgva(zy, 22(s)) = Doga(z1) + Dogih (2(s))
and
Ry(s) = Npgia(za(s)).
It follows that P; must give to the efficient type an expected rent

ER(21,6(5),21,0(s)) = LEgs)R(s) — B, Ra(s)
= Aogh(a) + | Bs Dogi(a(s)) — Bsy Mogi (a(s))]

where for any s € S, z5(s) = max {z5,0} with x4 implicitly defined by

005 (5:) g3 (ab,0)
_ —0.
Oz 0

Ovs(ay,0) 09 (ah,6) <u(5/8)>
oo Oz (@/s)

The optimal contract 7} must be characterized by two probability distributions
that minimize [Eé(s)Agg%(gg(s)) - EE(S)Agg%@Q (s))} .

2(. 9 2 (o
Since vo(zh, 8) and g% (), 8) are concave and 69“‘6%2’9) - agAa(:iQ’Q)

A3, zy(s) is decreasing in the hazard rate Zgﬁ; = (1@()2(5)~

> (0 under

The hazard rate is increasing in &(s) and decreasing in §(s). But then
Agg%(z5(s)) is decreasing in &§(s) and increasing in §(s).

Suppose to start with 6(s) = §(s) for all s € S and then increase by ¢ the
probability of signal s; conditional on # and decrease by ¢ the probability of
signal sy, again conditional on . In other words, let 8 (s;) = 8(s;) 4+ € and
8'(sk) = 8(s) — . In this case

| Eo(s) D2 (2(5)) — By Dogi(2a(s))] = & [Bogh(za(sr)) — Dogia(s,))] -

. . . . . 2(0/s5) w(8/s)
Since the hazard rate in s is smaller than in s, i.e. u(Q/s:) < u(Q/sj-)’ then
[Agg? (zo(sk)) — Dogi(z2(s;))] > 0. Repeating the argument for any pair of
signals, we have that

[Eg(s)Aegi(zg(S)) - Eg(s)Aegi(zg(s))} >0

as long as §(s) # &(s) and it is minimized for §(s) = 6(s) Vs € S which implies
no information transmission between the two principals. Finally, since (IC) is
always satisfied when 1 is monotonic and §(s) = &(s) Vs € S, this is indeed a
maximal point with respect to §(s) and §(s). W
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Proof of Lemma 3.

We prove this lemma by showing that for any pair of probability mea-
sures 6* (./0) ,6* (/) that give strictly positive probabilities to more than two
signals, there always exists another pair of probability measures with § =
Pr(s1/0) = 1 — Pr(s2/0) and § = Pr(s1/8) = 1 — Pr(s2/8) such that Py is
(weakly) better off.

Clearly, this is true if it is optimal for P, not to signal any information to
Ps.

Let us then concentrate on optimal contracts that involve information trans-

mission between the two principals. )
For any s € S, z5(s) = max {Q—Fgl — TLLP%%)Z [AO + T — 2] ,0}, or

equivalently, z5(s) = max {a - b%i;—g%, 0} where a = f+x; and b = [AG + 3 —xq].

Let S = {s € S /zy(s) > 0} and 5 = S\S'.

Assume &* (./0) ,6* (./8) are not Bernoulli so that they assign positive prob-
ability to more than two signals, and let #(S') = m > 2. Let § = Sseg 0% (s/6)
and § = 37 o 6" (s/0) be respectively the probability that z,(s) > 0 under
8% (./0) and 6* (./6).

Py’s reduced program shows that P;’s objective function is strictly increasing
in Eé*(_/e—)gg(s) and decreasing in Eg+( jg)25(s). Thus, for 6* (./0),6*(./8) to
be part of P;’s optimal mechanism, it is necessary that there does not exist
another pair of probability measures § (./0), &' (./8) that increase Py’s objective
function while relaxing the constraint (ZC;). We show that this is indeed the
case only if §* (./6) ,6* (./8) are two Bernoulli distributions.

Ese(joy2a(s) = ) l — b Ejz;] §* (s/0) = ad — b3.
ses’ -

Similarly,

_ 8 (5/0) | o 8% (s/6)
Eé*(./e—)gg(s)— > [a—bé*( /0)]6 (s/@)-aé—bz 5 (5/8)

ses’

Suppose P replaces §* (./6) ,6* (./8) with a pair of Bernoulli of parameters
6 and § so that & = Pr(s1/0) = 1 —Pr(se/f), and § = Pr(s1/0) = 1 —PI‘(SQ/Q).

Let Esxo(s), Eszo(s) be respectively the expectation of 2o(s) under 6 and §.
We claim that Esz,(s) > Eé*(/é).rg( s) and Fgzy(s) = Es«( j9)22(s). To

prove this claim we first show that z3(s2) = 0 when & and § are the two Bernoulli

distributions defined above. Let é be the critical ratio such that a — bd = 0. By

construction, for all s € S we have that (%(%)2 > § and therefore z5(s) = 0. It

follows that ) e §* (s/0) > 6% g §* (s/8), or equivalently 1 — 8 > 6(1 — §).

Hence under the probability measures 6, §, for s = sy we have Tg > § so that
x3(s2) = 0. .
It follows that Eszy(s) =4 [a - b%} = ad — b6 = Ege( jg2s(s).
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_ =2
Similarly, Fszo(s) = ad — b%.
To prove the lemma it suffices to show that Fsxy(s) > Eé*(./é)EQ(S) or,

equivalently,

£ (6/0) _ [Sees " (510] 7
(/0 T Teg 0 (/0

We make use of the following mathematical property. For any strictly positive
2

scalars a,b, ¢, d, % +5 > %ﬁ. In fact, rearranging we have a?d (b + d) +
2d (b+ d) > bd (a + ¢)* which is equivalent to (ad — cb)* > 0.

This simple property shows that P} can increase the expected value of z,(s)
replacing the initial pair of probability measures 6* (./0), 6* (./8) with a pair
&' (./6), 8 (./8) such that for all the first m —2 signals s € S’ &% (s/0) =6 (s/0)
and &6* (s/8) = & (s/8) and for the last two signals 8 (s;,_1/0) =8 (8m_1/8) +
8 (sm/0) and & (s/0) = 6 (sm_1/0) + 6 (sm/0) .

Repeating this argument recursively we can conclude that P, must use a
pair of Bernoulli probability distributions. H

Proof of Proposition 8.

For any contract such that z9(s;) > 0, then z5(s1) =0 4+ z; — %
jl — 21) B

Taking the derivatives for Z; and ¢ and equating them to zero, with simple
algebraic manipulations, we obtain

(A0 +

SRS A

= 8[2(1—p)+A0(1—3p)]+8p(4+6A0)
=1 (1-p)s+2ps
o =z{T=1+£"

Replacing z; and Z; into the derivative of the objective function w.r.t. §
we obtain

P2 [A05(1 — p) + 82p (1 + AG) — 5(2 + A)]?
12
(1—p) [8(1 = p) + 2pd]
which is always positive. Tt follows that §* = 1.
Taking the first order condition for § and substituting §* = 1, 25 = 1+ %,
2, = 2(1—p)+A6(1—3p)+6p(4+-6A0)

= (1-p)+2pb
and z5(s1).

Now we prove that there exist a parameters’ region in which this interior
solution satisfies all the constraints in II¢.
First note that when ¢ = 1, constraint (b) is immediately satisfied.

Constrained (c) requires that §* = A-pIAs 2 p)| ¢ 0,1].

we obtain §*. Substituting 6* we finally get %

- P2(1_p) 340
6* > 0 for
2
20-p<a0<201-p)
5* <1 for
M < Af
1+2p
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It follows that ¢* € [0,1] for

2(1 —p)
1+2p

< A0 <2(1 —p).

Moreover, z5(s1) > 0 and z; > 0 for Af < 2(11T;p).
Hence all constraints (a) to (d) are satisfied in the region defined by:

20-p) _ gy 20-D)
14+ 2p 1+p
It remains to verify that P; is not better off by designing a mechanism such
that z4(s1) = a5(s2) = 0. Following the proof of Proposition 5, this is never the

2(1-p)[vIFr—p| _ 201 p)
case for A8 < TTp=p) < T
Under condition (i) the optimal contract is indeed the one of Proposition 8

and it satisfies all constraints (a) to (d).
Finally, condition (ii) assures that also constraint (e) is verified. W

Proof of Proposition 8.

Let us assume that the parameters of the model are as in region C' C A.
If P, does not disclose information to Ps, the equilibrium allocations are given
by Proposition 5 (region A). Under no information transmission (NIT') the
three players obtain an expected payoff equal to

gNIT 4(1 — AB) + AG? + 16p — 36p* — AG?*p? + 16A0p> + 4A6%p® — 12A0p* + 16p°

8(1 —p?)
UENIT 4(1 — AB) + A% + 8p — 12p? — AG?p? + 4A0p° — AG?*p? + 2A92p7
2(1+p)(1 —p?)
AOp[6 — 3A0 — 2p(2 + AD) — p?(2 — 3A0))
2(1 - p?)

Conversely, when 7 involves information transmission (I7") we have

UZNIT

20(1 — AG) — 4p(9 — AB) + AG%(5 4 11p + 4p?) + 16p*(1 + A6)

o= 8(1—p)
UHT 4(1 — AG)(1 —p) + (1 + 3p)AG?
2 2(1—p)
[T 5A0p[2(1 — p) — AO(1 +p)]
A 2(1 —p)

Comparing the expected payoffs we obtain that

IT N7 [2(1—p) — AO(1 +p)]
UFT _gpNIT =) >0,

[T _ [peNIT p(—4(1 + AG) + 3A62 + 8p + 4A0p + 8AH*p — 4p? + 4AH?p?)
2 — Y2

2(1+p)(1 —p?)
Abp(1 +2p)(2(1 — p) — AO(1 +p))
1—p?

UZIT . UZNIT > 0.
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It follows that all players gain with information transmission. ll
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