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ABSTRACT: We analyze optimal trading mechanisms in an exchange economy where each

trader owns some units of a good to be traded and may be either a seller or a buyer, depending on

the realization of the privately observed valuations. The concept of virtual valuation is extended to

ex ante unidenti¯ed traders; contrary to the case where each trader is assigned a role as either a

buyer or a seller, the traders' virtual valuations now depend on the choice of the trading mechanism

and are generally non-monotonic even if the distribution of valuations is regular. We show that the

trading mechanisms that maximize a broker's expected pro¯t or expected total gains from trade

are generalized double auctions which maximize the gains from trade measured in some modi¯ed

monotonic virtual valuations for the traders. The bunching phenomena, which are here speci¯c

to ex ante unidenti¯ed traders, will be a general feature in these mechanisms. Furthermore, the

randomization rule by which ties are broken is now part of the design of the optimal mechanisms.

Finally, we show that the optimal mechanism converges toward a simple bid-ask mechanism as the

number of participants in the market increases.

KEYWORDS: Mechanism design, e±cient trading, intermediation, double auctions, ask-bid

mechanism.

JEL Classi¯cation Numbers: D44, D82.
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1 I ntr oduction

Myerson and Satterthwaite [15] consider bargaining problems between one buyer and one seller for a

single object. They show that the buyer and seller are unable to exhaust gains from trade if they have

incomplete information about each other and there is positive probability that there are no gains

from trade. They also show how to compute mechanisms that maximize expected total gains from

trade, and mechanisms that maximize a broker's expected pro¯t. Since Myerson and Satterthwaite's

work, the literature has explored the implementability of ex post e±cient allocations and mechanisms

which are e±cient in some sense other than ex post.1 With some exceptions, it is assumed in the

literature, as in Myerson and Satterthwaite, that traders are ex ante identi¯ed buyers or sellers; that

is, either a seller sells a buyer a single unit, or no trade occurs. In Cramton, Gibbons, and Klemperer

[2], McAfee [11], and Spulber [19], this assumption is relaxed. Spulber [19] considers interim e±cient

mechanisms, McAfee [11] examines ex post e±ciency with continuous quantities, and Cramton et al.

[2] investigate e±cient mechanisms for dissolving a partnership.

This paper considers the problem of designing a rule to determine the terms of trade among

several traders who own some units of a good to be traded and have private information about

their preferences. In this context, a trader holding some units of the good (but less than his satiated

demand level) may be either a seller or a buyer, depending on the realization of the privately observed

information and the choice of the mechanism; his role as a buyer or a seller is endogenously determined

by the traders' bids, but cannot be identi¯ed prior to trade. The multilateral trading problem studied

here extends models of Myerson [13], Myerson and Satterthwaite [15], and Gresik and Satterthwaite

[3] in which one unit of the good is demanded or supplied inelastically by each trader, and the model

of Cramton et al. [2] in which traders have the highest level of demand possible (the economy wide

endowment). The fact that a trader may be on either side of a trade creates di±culties beyond those

of the standard mechansim design problems and has important implications for the nature of the

optimal mechanisms.

Myerson and Satterthwaite [15] show that with incomplete information ex post e±ciency cannot

be achieved when the asset is owned by a single party. In contrast, Cramton, Gibbons, and Klemperer

1 T he se issue s ha v e be e n the fo c us o f a numbe r o f pa pe rs inc luding Gre sik a nd Sa tte rthw a ite [3 ], Le ining e r et al. [7 ],
M a k o w sk i a nd M e z z e tti [9 ], Rustic hini et al. [1 7 ], Sa tte rthw a ite a nd Willia ms [1 8 ], Willia ms [2 0 ], a nd Wilso n [2 1 ].
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[2] show that if the ownership is distributed among a partnership, ex post e±cient allocation is

possible provided no single partner owns too large a share. McAfee [11] reinforces the conclusion of

Cramton et al. [2] by considering the hidden endowments model which symmetrizes the agents. Lu

[8] gives an explanation to these contrasting results by considering di®erent preferences. He shows

that the implementability of e±cient allocations is primarily determined by the degree of revelation

of private information required in achieving it. If the achievement of ex post e±ciency requires full

revelation of private information, it may be impossible to achieve ex post e±ciency when traders

are not ex ante identical. If the traders have inelastic demands for a ¯xed number of units, partial

revelation of private information is su±cient to allocate the goods e±ciently, and this allows for ex

post e±ciency to be possible for su±ciently symmetric distributions. Thus, the results of Myerson

and Satterthwaite and Cramton et al. are two extreme cases.

This paper characterizes the revenue-maximizing mechanism and the ex ante e±cient mechanism

(in the sense of HolmstrÄom and Myerson [4]) when the traders have inelastic demands for a ¯xed

number of units. In the standard mechansim design literature (Myerson and Satterthwaite [15], and

many other similar papers), the minimum utility is always achieved by the highest or lowest type

independently of the choice of the mechanism, and the continuum of individual rationality constraints

are reduced to those for the highest or lowest types that are binding at the optimum. As a result,

the only constraints are the monotonicity of the allocations, which can also be ignored by assuming

that the distribution of types is regular, and optimal allocations are given by pointwise solutions.

In the present model, since it is no longer clear who is selling and who is buying prior to revelation

of types, traders with high types typically expect to be buyers, those with low types expect to be

sellers, and those in the middle do not expect to trade. Thus, contrary to the standard cases, the

minimum utility types for ex ante unidenti¯ed traders are those in the middle and generally depend

on the choice of the trading mechanism. Moreover, the monotonicity of a trader's virtual valuations

fails even if the distribution of types is regular, since high types expect to be buyers who have an

incentive to understate their valuations and low types expect to be sellers who tend to overstate

their valuations. Thus we must consistently determine the traders' worst-o® types who expect to

be neither a buyer nor a seller as well as the allocation rules and, at the same time, maximize the

objective function.
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The revenue-maximizing mechanism and the ex ante e±cient mechanism are characterized by

solving the trading mechanism that maximizes a weighted sum of expected total gains from trade

and expected pro¯t to the market maker. The optimal trading mechanism is characterized by some

modi¯ed monotonic virtual valuations: the goods will be assigned to the traders whose modi¯ed

virtual valuations are highest and ties will be broken by randomizing. In the optimal mechanism,

the participation constraints will be binding for some types other than the highest and lowest types,

and the bunching phenomenon which here is speci¯c to ex ante unidenti¯ed traders will be a general

feature. An algorithm is provided to compute the ranges of bunching that are uniquely determined

by the traders' initial endowments. The characterization of the optimal trading mechanism must also

include a randomization rule by which ties are broken. Unlike the standard models where bunching

is due to the irregularity of the distribution of valuations and all randomization rule is valid to break

ties, now the tie breaking rule is strictly restricted: it must make types in the middle to have expected

net trade zero. Hence the randomization rule becomes an important instrument in the design of the

optimal mechanism. Such rules can be constructed by an algorithm.

Finally, we consider what happens to the optimal mechanisms when the market becomes large.

We show that they converge towards simple bid-ask price mechanisms. Bid-ask price mechanisms are

common in many trading institutions, in particular ¯nancial market conducted by market makers.

The paper provides some theoretical justi¯cation for these institutions.

The rest of the paper is organized as follows. In section 2, we ¯rst de¯ne the formal structure of the

multilateral trading problem. We then present a general characterization of all incentive compatible

and individually rational mechanisms. In section 3, we show how to construct the trading mechanism

that maximizes a weighted sum of expected total gains from trade and expected pro¯t to the market

maker. In section 4, we show that the ex ante e±cient mechanism can be characterized by the optimal

mechanism obtained in section 3 for some weight. In section 5, we consider where the number of

agents in the economy becomes large, we show that the optimal mechanism converges to a ask-bid

mechanism.
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2 An E xchange E conomy with E x Ante Unidenti¯ed T r ader s

We consider an exchange economy composed of n traders indexed by i 2 N = f1; 2; ¢ ¢ ¢ ; ng. Each

trader i owns ki units of an indivisible good to be traded and is privately informed about a preference

parameter (his \type") vi. Other traders do not observe a trader's type vi, but it is common

knowledge that the types are drawn independently from a distribution F with support [v; v] and

positive continuous density f . Throughout, we shall assume that the traders want to hold at most

k0 units of the good and ki · k0 for all i 2 N ; that is, no trader is initially endowed with more than

what he wants to hold. The fact that traders all have some endowments means that any trader may

be a buyer or a seller in the trading game, and trader i has an inelastic demand for k0 ¡ ki units or

supply of ki units when he is a buyer or seller.

A trader with type vi and initial endowment ki has preferences represented by the utility function

ui(q; t; vi) = vi min(q; k0 ¡ ki) ¡ t;

where q ¸ ¡ki is the net number of units bought by the trader and t is total spending on these units.

Each trader's utility function is normalized so that if he is to neither trade units nor make or receive

a cash payment, then his utility is zero for all type vi.2 Note that vi is the trader's reservation price

or valuation for each of the k0 ¯rst units of the good.3

The traders are going to participate in some trading mechanism to determine, ¯rst, who will

purchase additional units and who will sell their initial endowments and, second, how much a buyer

should pay for the units he bought and how much a seller should be paid for the units he sold. Our

general question is: what kinds of trading mechanisms can be designed that have good economic

e±ciency properties?

We consider the direct revelation mechanisms in which traders simultaneously report their valuations4

v = (v1; v2; ¢ ¢ ¢ ; vn) to a coordinater or market-maker who then determines an allocation q(v) =

2By no rma liz ing the utility func tio n, the re se rv a tio n utility ui(0 ; 0 ; vi) = 0 is bro ug ht to be inde pe nde nt o f ty pe ,
but w e w ill se e , no t a s g e ne ra lly a ssume d in the lite ra ture , tha t the e x pe c te d utility is no t mo no to nic a lly inc re a sing
w ith the ty pe . If the utility is e x pre sse d in te rms o f g ro ss surplus, the re se rv a tio n utility is the n ty pe de pe nde nt.

3 A n a lte rna tiv e a ssumptio n is tha t e a c h tra de r ha s a v e c to r o f v a lua tio ns vi = (v1
i ; v2

i ; ¢ ¢ ¢ ; vk0
i ), w he re vj

i re pre se nts
the tra de r's v a lua tio n o f his jth unit o f the g o o d. If the se v a lua tio ns a re no t pe rfe c tly c o rre la te d, it inv o lv e s a pro ble m
o f multidime nsio na l unc e rta inty w hic h a ppe a rs to be muc h mo re c o mplic a te d. (se e La ®o nt, M a sk in, a nd Ro c he t [6 ],
a nd Ro c he t [1 6 ]) F o r simplic ity , w e re stric t o urse lv e s to the o ne -dime nsio na l c a se .

4We a ssume tha t the initia l e ndo w me nts (k1; k2; : : : ; kn) a re c o mmo n k no w le dg e , but it is no t e sse ntia l. If the to ta l
numbe r o f units o f the g o o d K =

Pn

i=1
ki is k no w n, w e c a n a sk the tra de rs to re po rt the ir numbe rs o f units a nd the n

fo rbid tra de if the to ta l numbe r re po rte d do e s no t e q ua l K, a nd imple me nt the me c ha nism if the re po rts a g re e w ith K.
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(q1(v); ¢ ¢ ¢ ; qn(v)) and a payment t(v) = (t1(v); ¢ ¢ ¢ ; tn(v)), where qi is the net trade for trader i and

ti is the net money transfer from trader i. We require that these allocations balance:
Pn

i=1 qi(v) = 0

for all v 2 [v; ¹v]n. For the moment, no restriction is made on
Pn

i=1 ti(v), but the budget balance

condition will be required in section 4 when we look for ex ante e±cient mechanisms. Since all

traders want to hold at most k0 units, we can assume that ¡ki · qi(v) · k0 ¡ ki for all v 2 [v; v]n

and i 2 N . Also, we assume that each trader is endowed with enough money that any required

transfer is feasible. The pair of outcome functions fq; tg is referred to as a direct trading mechanism.

Let ¡i = Nnfig and let E¡i[ ¢ ] be the expectation operator with respect to v¡i. Then Qi(vi) =

E¡i[qi(vi; v¡i)] is i's expected net trade, and Ti(vi) = E¡i[ti(vi; v¡i)] is i's expected payment when

he announces vi. Consequently, the trader's expected payo® is

Ui(vi) = E¡i[ui(qi(v); ti(v); vi)] = viQi(vi)¡ Ti(vi):

The trading mechanism fq; tg is incentive compatible if each type of each trader wants to report his

private information truthfully when others report truthfully:

Ui(vi) ¸ viQi(v̂i) ¡ Ti(v̂i); 8i 2 N 8vi; v̂i 2 [v; v]: (1)

By the Revelation Principle (Myerson [13], among others), there is no loss of generality in restricting

our attention to incentive compatible direct mechanisms. The mechanism fq; tg is interim individually

rational if all types of all traders are better o® participating in the mechanism (in terms of their

expected payo®) than holding their initial endowments:

Ui(vi) ¸ 0 8i 2 N and vi 2 [v; v]: (2)

The mechanism fq; tg is incentive feasible if it is incentive compatible and individually rational. We

will also say that an allocation q is implementable if there exists a transfer function t such that

fq; tg is an incentive feasible mechanism. The following lemma develops a necessary and su±cient

condition for a mechanism to be incentive feasible. The proof is in the Appendix.

Lemma 1. A trading mechanism fq; tg is incentive feasible if and only if for every i 2 N , Qi(vi) is

non-decreasing and

Ui(vi) = Ui(v
¤
i ) +

Z vi

v¤
i

Qi(u)du 8vi 2 [v; v] (3)
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Ui(v
¤
i ) ¸ 0; (4)

where5

v¤i 2 V ¤(Qi) = fvijQi(u) · 0;8u < vi;Qi(w) ¸ 0;8w > vig: (5)

For any allocation q = (q1; ¢ ¢ ¢ ; qn) such that Qi(vi) is non-decreasing for all i 2 N , V ¤(Qi) is

well-de¯ned in (5) and will be called the worst-o® types of trader i under allocation q. Equation (3)

implies that expected net utility Ui(vi) is continuous and convex in vi. Moreover, from (3) and (5),

Ui(vi) is minimized at any v¤i 2 V ¤(Qi), so the continuum of constraints in (2) can be reduced to the

individual rationality constraint for a single v¤i in (4). It is easy to show that V ¤(Qi) is a singleton

or a closed interval and all worst-o® types in the interior of V ¤(Qi) satisfy Qi(v¤i ) = 0. Intuitively,

as in Cramton et al. [2], a worst-o® type expects on average to be neither a buyer nor a seller of the

good, and therefore he has no incentive to overstate or understate his valuation. Hence, he does not

need to be compensated in order to induce him to report his valuation truthfully. In general, given

an incentive feasible mechanism fq; tg, it is no longer clear who is selling and who is buying prior to

revelation of types, but on average trader i is a buyer if his type vi ¸ max V ¤(Qi) and a seller if his

type vi · minV ¤(Qi).

Let us de¯ne, for any ¸ ¸ 0 and v 2 [v; v]

®(vj¸) = v ¡ ¸
1¡ F (v)

f(v)
and ¯(vj¸) = v + ¸

F (v)

f(v)
:

®(vj¸) and ¯(vj¸) are referred to as the ¸-virtual valuation of \buyer-type" and \seller-type", re-

spectively. Given an incentive feasible mechanism fq; tg, for any v¤i 2 V ¤(Qi), let

´(vijv¤i ; ¸) =

8
><
>:

¯(vij¸); if vi < v¤i ;
v¤i ; if vi = v¤i ;
®(vij¸); if vi > v¤i :

(6)

´(vijv¤i ; ¸) is referred to as a ¸-virtual valuation under allocation q.6 Virtual valuations will play a

crucial role in construction of optimal trading mechanisms.

5 T his le mma c a n be se e n a s a c o mbina tio n o f Le mma s 1 -3 o f C ra mto n et al. [2 ] e x c e pt tha t w e re de ¯ne V ¤(Qi)
by no nstric t ine q ua litie s. V ¤(Qi) is no w w e ll-de ¯ne d fo r a ll no n-de c re a sing func tio n Qi. If V ¤(Qi) w a s a s de ¯ne d in
Le mma 2 o f C ra mto n et al. by stric t ine q ua litie s, V ¤(Qi) w o uld be e mpty w he n Qi is c o nsta ntly z e ro o n a n inte rv a l.
Sinc e C ra mto n et al. o nly inv e stig a te the po ssibility o f e x po st e ±c ie nc y a nd the e x pe c te d ne t tra de Qi(vi) is stric tly
inc re a sing in a n e x po st e ±c ie nt a llo c a tio n, V ¤(Qi) is a sing le to n in the ir pa pe r. But w e lo o k fo r o ptima l tra ding
me c ha nisms tha t ma y ha v e Qi c o nsta nt o n a n inte rv a l (a s w ill be se e n, a c tua lly a po sitiv e ma ss o f ty pe s in the middle
e x pe c t to be ne ithe r a buy e r no r a se lle r in the se me c ha nisms), so the de ¯nitio n must be c o rre c te d so tha t V ¤(Qi) is
me a ning ful fo r a ll imple me nta ble a llo c a tio ns.

6M y e rso n [1 4 ] intro duc e d the c o nc e pt o f v irtua l v a lua tio n fo r e x a nte ide nti ē d tra de rs. We e x te nd this c o nc e pt to
e x a nte unide nti¯e d tra de rs.
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Before proceeding further we should discuss virtual valuations. As observed earlier, a trader's

worst-o® types V ¤(Qi) typically are between v and v, then his virtual valuations are of both \buyer-

type" and \seller-type". If ¸ = 0, then ´(vijv¤i ; 0) = vi. The virtual valuations equal the true

valuations under any implementable allocation. If, however, ¸ > 0, then ®(vij¸) < vi < ¯(vij¸) for

all vi 2 (v; v). Thus, for ¸ > 0, a trader's virtual valuations are distorted downward (upward) to be

below (above) his true valuations when he expects to be a buyer (seller). Intuitively, these distortions

express the strategic behavior that buyers have an incentive to understate their valuations and sellers

tend to overstate their valuations. Moreover, since ®(vij¸) < vi < ¯(vij¸) when ¸ > 0, ´(vijv¤i ; ¸)

is discontinuous at vi = v¤i and is not monotonically increasing in vi over [v; v] for all distribution

of valuations. If ®(vij1) and ¯(vij1) are both strictly increasing, it is straightforward to verify that

for every ¸ 2 [0; 1], ®(vij¸) and ¯(vij¸) are also strictly increasing, so ´(vijv¤i ; ¸) is increasing over

[v; v¤i ) and (v¤i ; v] but there is a \buyer-seller" spread at v¤i .

The following lemma characterizes implementable allocations and expresses the expected rev-

enue from incentive feasible mechanisms solely in terms of the allocation rule. The proof is in the

Appendix.

Lemma 2. For any allocation q = (q1; ¢ ¢ ¢ ; qn) such that Qi(vi) is non-decreasing for all i 2 N , there

exists a payment function t such that fq; tg is incentive feasible. The maximum expected revenue

from any incentive feasible mechanism implementing q is given by

R(q) = E

"
nX

i=1

´(vijv¤i )qi(v)

#
= E

"
nX

i=1

´(vijv¤i )Qi(vi)

#
(7)

where ´(vijv¤i ) = ´(vijv¤i ; 1) and v¤i 2 V ¤(Qi) for which the individual rationality is binding,7 i.e.,

Ui(v¤i ) = 0.

3 Optimal T r ading M echanisms

We now consider the case where the traders are intermediated by a broker (or market-maker) who

can be a net source or sink of money, but he cannot himself own the good. First, as in Myerson and

Satterthwaite [15], an interesting question is to ask for the mechanism which maximizes the expected

7 N o te tha t w he n V ¤(Qi) is a n inte rv a l, sinc e the e x pe c te d ne t tra de Qi(vi) is z e ro o n this inte rv a l, the e x pe c te d
re v e nue in (7 ) do e s no t de pe nd o n the c ho ic e o f v¤

i 2 V ¤
i (Qi).
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revenue to the broker, subject to the incentive compatibility and individual rationality constraints.

More generally, we can introduce an objective function that is a weighted sum of expected total gains

from trade and expected revenues to the market maker, and seek a mechanism that maximizes this

objective function subject to the incentive feasibility constraints for traders.

First, we de¯ne the objective function. For any ¸ 2 [0; 1], let

W¸(q) = (1 ¡ ¸)E

"
nX

i=1

viqi(v)

#
+ ¸R(q);

where R(q) is given by (7) of Lemma 2. Our question is to seek a trading mechanism that maximizes

W¸(q) among all incentive feasible mechanisms. Substituting from (7), W¸(q) can be expressed as

W¸(q) = E

"
nX

i=1

´(vijv¤i ; ¸)qi(v)

#
; where v¤i 2 V ¤(Qi):

Hence, from Lemmas 1 and 2, the maximization problem can be written as

P¸

8
><
>:

max W¸(q) = E[
Pn

i=1 ´(vijv¤i ; ¸)qi(v)]
s.t. ¡ki · qi · k0 ¡ ki for all i and

Pn
i=1 qi = 0

Qi(vi) is non-decreasing and v¤i 2 V ¤(Qi):

Thus solving for the incentive feasible mechanism that maximizes W¸(q) boils down to ¯nding the

allocation that maximizes the expected total gains from trade measured in ¸-virtual valuations.

Obviously, when ¸ = 1, P1 is the maximization of the expected revenue to the broker subject

to the incentive feasibility constraints. When ¸ = 0, P0 is the maximization of expected total gains

from trade and its solution is the ex post e±cient allocation, which can be formally de¯ned as8

qe
i (vi; v¡i) =

8
><
>:

k0 ¡ ki; if vi is among the n0 highest values
r ¡ ki; if vi is the (n0 + 1)st highest value
¡ki; otherwise

(8)

where n0 and r are nonnegative integers such that n0k0 + r equals the total number of units
Pn

i=1 ki

and 0 · r < k0. In Section 4, we consider more carefully the problem of maximizing expected gains

from trade when the budget balance condition is required.

Notice that the virtual valuations ´(vijv¤i ; ¸) now depend on the allocation rules q through the

traders' worst-o® types V ¤(Qi), which may vary as q vary. Thus, to solve P¸, the main di±culty is

that we must consistently determine the traders' worst-o® types who expect to be neither a buyer

8 N o tic e tha t sinc e tie s o c c c ur w ith z e ro pro ba bility , the y w ill no t a ®e c t e x pe c te d q ua ntitie s a nd so w ill be ig no re d
in w ha t fo llo w s.
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nor a seller as well as the allocation rules and, at the same time, maximize the objective function.

Since ex ante any trader can be either a buyer or seller, optimally the worst-o® types of traders are

unlikely to have an extreme valuation and there can be a positive measure of such traders.

To simplify matters, we will assume that the distribution F (v) is regular in the sense that ®(¢j1)

and ¯(¢j1) are both strictly increasing9 and concentrate our attention on the more interesting type

of bunching that is speci¯c to ex ante unidenti¯ed traders. For a given ¸, let x be such that

¯(xj¸) = ®(vj¸) = v, and for any xi 2 [v; x], let yi be such that ®(yij¸) = ¯(xij¸). De¯ne

±(vijxi; ¸) =

(
´(vijxi; ¸); if vi =2 [xi; yi]
¯(xij¸); if vi 2 [xi; yi];

then from the regularity assumption, ±(vijxi; ¸) is non-decreasing in vi. We can now state and prove

the main results of this paper.

Theorem 1. (a) Suppose that there exists an x¤ = (x¤
1; ¢ ¢ ¢ ; x¤

n) 2 [v; x]n for which there exists at

least one allocation q = (q1; ¢ ¢ ¢ ; qn) which satis¯es

(A) q solves

(
max E[

Pn
i=1 ±(vijx¤

i ; ¸)qi(v)]
s.t. ¡ki · qi · k0 ¡ ki for all i and

Pn
i=1 qi = 0

(B) 8i;Qi(vi) = E¡i[qi(vi; v¡i)] = 0 for vi 2 (x¤
i ; y

¤
i );

then an allocation q¤ = (q¤1; ¢ ¢ ¢ ; q¤n) is a solution to P¸ if and only if it satis¯es (A) and (B) for this

vector x¤. (b) If such a vector x¤ exists, it is unique.

Proof: (a) Su±ciency: Assume that q¤ satisfy (A) and (B) for some vector x¤ 2 [v; x]n, then q¤

must be a solution to P¸.

The allocation q¤ solves (A) if and only if for any v, q¤(v) satis¯es:

q¤i (vi; v¡i) =

8
><
>:

k0 ¡ ki; if ±(vijx¤
i ; ¸) > l(vjx¤; ¸)

randomizing; if ±(vijx¤
i ; ¸) = l(vjx¤; ¸)

¡ki; otherwise
(9)

where l(vjx¤; ¸) for any v is such that the number, N1, of traders with types vi for which ±(vijx¤
i ; ¸) ¸

l(vjx¤; ¸) is at least n0 + 1, and the number, N2, for which ±(vijx¤
i ; ¸) > l(vjx¤; ¸) is at most n0.

10

9 T his is the c a se fo r mo st c o mmo n distributio ns. Se e , e .g ., M y e rso n [1 4 ], fo r mo re de ta ils in the c a se w he re the
distributio n o f v a lua tio ns is no t re g ula r.

10 T he a llo c a tio n q¤ a s de ¯ne d in (9 ) w ith a ny ra ndo miz a tio n rule so lv e s the pro g ra m in (A ), but in o rde r to sa tisfy (B),
the ra ndo miz a tio n rule is stric tly re stric te d a nd must be c o nstruc te d in so me spe c i c̄ w a y (se e Le mma 4 ). Obv io usly ,
a ny a llo c a tio n q(v) di®e ring fro m q¤(v) o nly o n a se t o f z e ro me a sure a lso so lv e s the pro g ra m in (A ), but suc h di®e re nc e s
w ill be ig no re d.

11



Since ±(vijx¤
i ; ¸) is non-decreasing in vi, then q¤i (vi; v¡i) is non-decreasing in vi, and so for Q¤

i (vi).

Also, condition (B) implies that x¤
i 2 V ¤(Q¤

i ) for all i. Thus, q¤ satis¯es all the constraints in P¸.

Now consider any alternative implementable allocation q̂ = (q̂1; ¢ ¢ ¢ ; q̂n), we have:

E

"
nX

i=1

´(vijv¤i ; ¸)Q¤
i (vi)

#
= E

"
nX

i=1

±(vijx¤
i ; ¸)Q¤

i (vi)

#
(10)

¸ E

"
nX

i=1

±(vijx¤
i ; ¸) bQi(vi)

#
(11)

¸ E

"
nX

i=1

´(vijv̂i; ¸) bQi(vi)

#
: (12)

Equality (10) follows immediately from the fact that by de¯nition, ±(vijx¤
i ; ¸) = ´(vijv¤i ; ¸) for vi =2

[x¤
i ; y

¤
i ] and from (B), Q¤

i (vi) = 0 for vi 2 (x¤
i ; y

¤
i ). Inequality (11) follows immediately from the fact

that q¤ satisfy (A). Inequality (12) follows from the fact that when vi < v̂i, ±(vijx¤
i ; ¸) · ´(vijv̂i; ¸)

and bQi(vi) · 0 , and when vi > v̂i, ±(vijx¤
i ; ¸) ¸ ´(vijv̂i; ¸) and bQi(vi) ¸ 0. Hence, ±(vijx¤

i ; ¸) bQi(vi) ¸

´(vijv̂i; ¸) bQi(vi) for all vi. Hence q¤ solves P¸.

Necessity: Now let x¤ and q¤ satisfy (A) and (B) and assume that some alternative solution q̂

to P¸ exists. Clearly, (11) cannot hold with strict inequality: contradicting the assumption that q̂

solves P¸. So q̂ must solve the program in (A). Now suppose that q̂ does not satisfy (B), i.e., for at

least one i there is a type u 2 (x¤
i ; y

¤
i ) such that bQi(u) 6= 0. Since bQi(vi) is non-decreasing in vi, then

bQi(vi) > 0 for all vi 2 [u; y¤i ] or bQi(vi) < 0 for all vi 2 [x¤
i ; u]. If bQi(u) > 0, then u ¸ maxV ¤( bQi) and

±(vijx¤
i ; ¸) > ´(vijv̂i; ¸) for all vi 2 (u; y¤i ) and v̂i 2 V ¤( bQi). If bQi(u) < 0, then u · minV ¤( bQi) and

±(vijx¤
i ; ¸) < ´(vijv̂i; ¸) for all vi 2 (x¤

i ; u) and v̂i 2 V ¤( bQi). Hence in both cases, the inequality in

(12) is strict, which contradicts the assumption that q̂ is a solution to P¸. Therefore, q̂ must satisfy

(A) and (B).

(b) Uniqueness: Suppose that x¤ and z¤ are two vectors satisfying the conditions in (a) and

x¤
i 6= z¤i for at least one i. From (a), there exists an allocation q¤ satisfying (A) and (B) for x¤, so q¤

is a solution to P¸. Since q¤ solves P¸, q¤ must also satisfy (A) and (B) for z¤, but it is impossible

because x¤
i 6= z¤i . Q.E.D

Theorem 1 characterizes the functional form of the solution to P¸. The optimal allocation can be

expressed in terms of non-decreasing virtual valuations ±(vijx¤
i ; ¸) modi¯ed from ´(vijx¤

i ; ¸) for some

appropriate values (x¤
1; ¢ ¢ ¢ ; x¤

n). Roughly speaking, the goods will be assigned to the traders whose

12



modi¯ed virtual valuations are highest. The optimal allocation is designed in such a way that a high

(low) type expects on average to be a net buyer (seller), and a positive mass of types in the middle

expect to be neither buyer nor seller. Thus the bunching phenomena in intermediate ranges, which

is here speci¯c to ex ante unidenti¯ed traders, will be a general feature in the optimal mechanism

even if the distribution of valuations is regular. Also from (9), when two traders or more have the

same ranges of bunching in the optimal allocation, ties occur with positive probability and must be

broken by randomizing. Unlike standard models where bunching is due to the irregularity of the

distribution of valuations and ties can be broken by any randomization rule, now the tie breaking

rule is strictly restricted: it must make types in the middle to have expected net trade zero. Hence

the randomization rule becomes part and parcel of the design of the optimal allocation.

To complete the characterization of the solution to P¸, we next show how to compute the vector

of worst-o® types and the randomization rule by which ties can be broken.

Theorem 2. There exists a unique x¤ = (x¤
1; ¢ ¢ ¢ ; x¤

n) 2 [v; x]n for which there will exist at least

one randomization rule such that the allocation q¤ = (q¤1 ; ¢ ¢ ¢ ; q¤n) as de¯ned in (9) satis¯es for all i,

Q¤
i (vi) = E¡i[q

¤
i (vi; v¡i)] = 0 for vi 2 [x¤

i ; y
¤
i ].

In order to provide the basic intuition for Theorem 2, we consider the problem for 2 traders. For

simplicity, we let k0 = k1 +k2, where ki is the initial endowment of trader i. Here one trader receives

all the units of the other. Without loss of generality, we let k1 · k2. We wish to identify a set of x¤
i 's

and, if necessary, arandomization rule that satisfy the conditions of Theorem 2. One of two cases are

possible, either traders share the same x¤ or they do not. We ¯rst suppose that they do and have

the same modi¯ed virtual valuation function. Since traders share a common bunching range over

which their virtual valuations are the same, there will be a positive probability of ties. Let p be the

probability that in such a case, the units are allocated to trader 1. Since Q¤
i (vi) = E¡i[q¤i (vi; v¡i)] = 0

for vi 2 [x¤; y¤] and for i 2 f1; 2g (recall that y¤ is de¯ned by ®(y¤j¸) = ¯(x¤j¸)), p and x¤ must be

such that the following holds:

k0F (x¤) + k0p [F (y¤) ¡ F (x¤)] ¡ k1 = 0 (13)

k0F (x¤) + k0(1 ¡ p) [F (y¤) ¡ F (x¤)] ¡ k2 = 0 (14)

13



Adding these two equations yields the following condition:

2k0F (x¤) + k0 [F (y¤) ¡ F (x¤)] = k1 + k2 = k0 or F (x¤) + F (y¤) = 1 (15)

Since y¤ is continuously increasing in x¤, there will exists a unique x¤ (and y¤) that satis¯es

the above condition. Note that x¤ is independent of p. So, the idea is to ¯rst ¯nd x¤ and y¤

using condition (15) and then calculate the probability p so as to solve equation (13). If k1 = k2,

we need simply to let p = 1=2. If k1 < k0=2 < k2, we need to move away from the symmetric

randomization rule. As long as [k1 ¡ k0F (x¤)] is non-negative, the conditions of Theorem 2 are met

with p = k1¡k0F (x¤)
k0[F (y¤)¡F (x¤)] . Here the randomization rule matters, any alternative rule will move us

away from the zero-expected net trade condition.

However when [k1 ¡ k0F (x¤)] is negative (which implies that [k2 ¡ k0F (y¤)] is positive), there is

no positive p which satis¯es equation (13) for x¤ and y¤. This will occur when the inital endowments

are su±ciently asymmetric. In this case, we must have x¤
1 < x¤ < x¤

2 and the traders will not have

the same virtual valuation function. Indeed, for all v 2 [x¤
1; y

¤
1]; we have ±(vjx¤

1; ¸) < ±(vjx¤
2; ¸), so

whenever v1 2 [x¤
1; y

¤
1]; trader 1 of type v1 wins only if v2 < x¤

1: Hence, we need to ¯nd x¤
1 such

that k1 = k0F (x¤
1). Similarly, y¤2 is such that k2 = k0F (y¤2): Note that if [k1 ¡ k0F (x¤)] is negative

and [k2 ¡ k0F (y¤)] is positive, we must have x¤
1 < x¤ and y¤2 > y¤, which in turn implies that

x¤
1 < x¤ < x¤

2. In this latter case, randomization rules do not matter since ties almost never occur,

however the mechanism discriminates in favor of trader 2 since his virtual valuation function lies

above that of trader 1.

The formal proof of Theorem 2 is a generalization of the above example with an arbitrary number

of traders. First, we ¯nd the vector of x¤
i 's and in particular which groups of traders will share a same

x¤
i and modi¯ed virtual valuations. How to do this is explained in the Lemma 3, below. Second, for

those groups of traders that share a same x¤
i and have positive probability of ties, we must specify

a randomization rule that induces zero-expected net trade. This is done in Lemma 4.

Proof: Without loss of generality, we can assume that k1 · k2 · ¢ ¢ ¢ · kn. Since ±(x¤
i jx¤

i ; ¸) <

±(x¤
j jx¤

j ; ¸) when x¤
i < x¤

j , from (9), we are clearly looking for a vector x¤ such that x¤
1 · x¤

2 · ¢ ¢ ¢ ·

x¤
n.

For now, consider the solution to (A) ~q(v) (given some x¤ with x¤
1 · x¤

2 · ¢ ¢ ¢ · x¤
n) where ties

14



are always broken in favor of those with the highest indexes. Let eQi(x¤
i ) = E¡i[~qi(x¤

i ; v¡i)] be the

expected net trade for participant i of type x¤
i under this alloaction rule (generally, eQi(x¤

i ) 6= 0).

eQi(x
¤
i ) is well-de¯ned and independent of x¤

¡i provided the rank of x¤
i is preserved.11

Lemma 3. (a) A vector x¤ with x¤
1 · x¤

2 · ¢ ¢ ¢ · x¤
n satis¯es the conditions of Theorem 2, only

if it is such that whenever x¤
l = x¤

S 8l 2 S = fi; ¢ ¢ ¢ ; jg with i · j and x¤
l 6= x¤

S 8l =2 S, we have

Pm
l=i

eQl(x
¤
S) · 0 for all i · m < j and

Pj
l=i

eQl(x
¤
S) = 0. (b) Such a vector x¤ exists.

Proof of Lemma 3: (a) Suppose that x¤ is a vector for which there exist at least one random-

ization rule such that the allocation q¤ = (q¤1; ¢ ¢ ¢ ; q¤n) as de¯ned in (9) satis¯es for all i, Q¤
i (vi) = 0

for vi 2 [x¤
i ; y

¤
i ]. Note that the ±(vijx¤

i ; ¸) increases up to x¤
i , then is constant between x¤

i and y¤i ,

and increases afterward. Thus, there is a positive probability of ties between i and j if and only if

x¤
i = x¤

j .

When x¤
j 6= x¤

i 8j 6= i, since the probability of ties between i of type x¤
i and any other participants

is zero, we must have eQi(x¤
i ) = Q¤

i (x
¤
i ) = 0. Now consider a subset of participants, S = fi; ¢ ¢ ¢ ; jg

with i < j, we have x¤
l = x¤

S 8l 2 S and x¤
l 6= x¤

S 8l =2 S. Participants in S will have a strict positive

probability of ties with and only with other members of S. In such a case, we have eQi(x
¤
S) · Q¤

i (x
¤
S) =

0 because i of type x¤
S always loses ties against participants of higher indexes in S in the solution

leading to eQi(x¤
S). Similarly, since all l 2 fi; ¢ ¢ ¢ ;mg (i · m · j) always loses ties against participants

of indexes higher than m in the solution leading to eQl(x
¤
S), and the total expected net trade for the

group of participants fi; ¢ ¢ ¢ ;mg of type x¤
S is independent of how ties are randomly broken between

them, we have
Pm

l=i
eQl(x

¤
S) · Pm

l=i Q¤
l (x

¤
S) = 0. Finally, for m = j, since the probability of ties

between any l 2 S and any h =2 S is zero, we must have
Pj

l=i
eQl(x

¤
S) =

Pj
l=i Q¤

l (x
¤
S) = 0.

(b) We show by construction the existence of a unique x¤ which satsi¯es the conditions of Lemma

11 F o rma lly , w e de ¯ne fo r a ll xi 2 [v; v]

eQi(xi) = k0Prf the re a re le ss tha n n0 o the r tra de rs w ho ha v e e ithe r v a lua tio n g re a te r tha n yi a nd

inde x lo w e r tha n i o r v a lua tio n g re a te r tha n xi a nd inde x hig he r tha n ig
+ rPrf the re a re e x a c tly n0 o the r tra de rs w ho ha v e e ithe r v a lua tio n g re a te r tha n yi a nd

inde x lo w e r tha n i o r v a lua tio n g re a te r tha n xi a nd inde x hig he r tha n ig
¡ ki

w he re yi is suc h tha t ®(yij¸) = ¯(xij¸) if xi · x a nd yi = v if xi > x. T he n fo r a ny x¤ w ith x¤
1 · ¢ ¢ ¢ · x¤

n, eQi(x
¤
i ) is

the e x pe c te d ne t tra de unde r a llo c a tio n ~q.
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3. We ¯rst ¯nd recursively the vector ~x = (~x1; ¢ ¢ ¢ ; ~xn) such that for all l,12

lX

i=1

eQi(min(~xi; ¢ ¢ ¢ ; ~xl)) = 0 or ~xl = ¹x if
lX

i=1

eQi(min(~xi; ¢ ¢ ¢ ; ~xl)) < 08~xl < ¹x (16)

First note that traders with index i · l and with types between ~xi = v and the corresponding yi,

will always have virtual valuations less than those of the other traders, they will collectively always

be a source of units and their expected net trade will be negative:
Pl

i=1
eQi(v) · 0.

Since eQ1(v) · 0, strict monotonicity and continuity of eQ1(¢) imply the existence of a unique

solution ~x1. Given this ~x1, we next ¯nd the unique ~x2 such that eQ1(min(~x1; ~x2)) + eQ2(~x2) = 0; or

~x2 = ¹x if it is negative for all ~x2 < ¹x. Again, eQ1(v) + eQ2(v) · 0, so there exists a unique solution

~x2. We then proceed recursively to ¯nd all ~xl, l · n¡ 1. Finally, given ~x1; ¢ ¢ ¢ ; ~xn¡1 we solve for ~xn.

Note that when ~xn = v, we have
Pn

i=1
eQi(min(~xi; ¢ ¢ ¢ ; ~xn)) =

Pn
i=1

eQi(v) · 0. Now suppose that

~xn = x and let l < n be the highest index such that ~xl < x. We have
Pn

i=1
eQi(min(~xi; ¢ ¢ ¢ ; ~xn)) =

Pl
i=1

eQi(min(~xi; ¢ ¢ ¢ ; ~xl)) +
Pn

i=l+1
eQi(¹x) =

Pn
i=1

eQi(¹x) ¸ 0: The last inequality follows because

traders with the highest indexes and with types between ¹x and ¹v, will always have virtual valuations

higher than those of the other traders, they will collectively always be a sink of units with positive

expected net trade. Hence, there exists a unique ~xn 2 [v; x] which solves the nth equation in (14).

Next we set x¤
i = min(~xi; ¢ ¢ ¢ ; ~xn). One can verify that by construction x¤

1 · ¢ ¢ ¢ · x¤
n · ~xn · x.

Now suppose that x¤
l = x¤

S 8i · l · j, x¤
l < x¤

S 8l · i ¡ 1, and x¤
l > x¤

S 8l ¸ j + 1. From this

assumption, x¤
l = min(~xl; ¢ ¢ ¢ ; ~xi¡1) for 1 · l · i ¡ 1 and x¤

l = min(~xl; ¢ ¢ ¢ ; ~xj) · min(~xl; ¢ ¢ ¢ ; ~xm)

for 1 · l · m · j. In particular, we have ~xi¡1 = x¤
i¡1 < ¹x and ~xj = x¤

j < ¹x, which imply that

Pi¡1
l=1

eQl(min(~xl; ¢ ¢ ¢ ; ~xi¡1)) = 0 and
Pj

l=1
eQl(min(~xl; ¢ ¢ ¢ ; ~xj)) = 0. Hence

mX

l=i

eQl(x
¤
l ) =

mX

l=1

eQl(x
¤
l ) ¡

i¡1X

l=1

eQl(x
¤
l )

·
mX

l=1

eQl(min(~xl; ¢ ¢ ¢ ; ~xm))¡
i¡1X

l=1

eQl(min(~xl; ¢ ¢ ¢ ; ~xi¡1))

· 0

where the last two inequalities hold with equalities when m = j. Q.E.D

12Ea c h eQi(~xi) is a s de ¯ne d in fo o tno te 1 1 . It is e a sy to v e rify tha t eQi(~xi) is c o ntino us a nd stric tly inc re a sing o n

[v; v] fo r a ll i · n¡ 1 , a nd eQn(~xn) is c o ntino us a nd stric tly inc re a sing o n [v; x] a nd c o nsta nt o n [x; v].
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To complete the proof of Theorem 2, it remains to prove that given the vector x¤ satisfying the

condition of Lemma 3, a randomization rule can be ¯nd. The formal proof of the following lemma

is given in the appendix.

Lemma 4. If a vector x¤ satisfy the conditions of Lemma 3, then there exists a randomization rule

such that q¤ as de¯ned in (9) satis¯es for all i, Q¤
i (vi) = 0 for vi 2 [x¤

i ; y
¤
i ].

Theorems 1 and 2 prove a complete characterization of the optimal allocation. In the terminology

of Wilson [22], the optimal allocation can be called as a generalized double auction in virtual valua-

tions that maximizes the expected gains from trade measured in the virtual valuations ±(vijx¤
i ; ¸) for

the traders. What is particular here is that the tie-breaking rule now a®ects the traders' expected net

trades, hence it becomes an important instrument in the design of the optimal trading mechanism

in order to make the types in the middle to have expected net trade zero.

In the following theorem, we provide two basic comparative results.

Theorem 3. The weighted sum W¸(q¤) of the expected gains from trade and the expected revenue

from the optimal allocation is (i) strictly increasing with k0 and (ii) non-decreasing as the initial

endowments become more symmetric.

Proof: (i) To show that W¸(q¤) is strictly increasing in k0, notice that the optimal allocation q¤

given some initial k0
0 is feasible with a higher k00

0 > k0
0. Furthermore, q¤ is not optimal since q¤ cannot

satisfy condition (A) of Theorem 1 with k00
0 . (In the allocation q¤, only k0

0 ¡ ki units are transfered

to trader i when his valuation is high, but optimally the net number of units bought by the trader

should be k00
0 ¡ ki.) There must exist a q̂ which generates higher value for W¸.

(ii) Let q¤ be the optimal allocation with initial endowments (k1; ¢ ¢ ¢ ; kn). Now suppose that we

reallocate the initial endowment so that ka
i = aki +(1¡a)kj, ka

j = (1¡a)ki +akj for some a 2 (0; 1),

and ka
l = kl for l 6= i; j. First, we de¯ne an allocation qa as follows. For any v, let w be the vector

with wi = vj, wj = vi, and wl = vl for l 6= i; j and

qa
i (v) = aq¤i (v) + (1 ¡ a)q¤j (w)

qa
j (v) = aq¤j (v) + (1 ¡ a)q¤i (w)

qa
l (v) = aq¤l (v) + (1 ¡ a)q¤l (w) 8l 6= i; j;

then qa is implementable. Indeed,
Pn

l=1 qa
l (v) = a

Pn
l=1 q¤l (v) + (1 ¡ a)

Pn
l=1 q¤l (w) = 0; ¡kl · q¤l ·

k0 ¡ kl for all l imply ¡ka
l · qa

l · k0 ¡ ka
l for all l; and ¯nally since all traders have a common
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distribution of valuations, we have Qa
i (vi) = aQ¤

i (vi)+(1¡a)Q¤
j (vi), Qa

j (vj) = aQ¤
j (vj)+(1¡a)Q¤

i (vj),

and Qa
l (vl) = Q¤

l (vl) for l 6= i; j. Hence Qa
l (vl) is also non-decreasing for all l and there must be an

incentive feasible mechanism implementing qa.

Second, we have for v¤l 2 V ¤(Q¤
l ) and va

l 2 V ¤(Qa
l ),

W¸(qa) ¡W¸(q¤)

=
nX

l=1

El[´(vljva
l ; ¸)Qa

l (vl)]¡
nX

l=1

El[´(vljv¤l ; ¸)Q¤
l (vl)]

= Ei[´(vijva
i ; ¸)Qa

i (vi)] + Ej[´(vjjva
j ; ¸)Qa

j (vj)] ¡Ei[´(vijv¤i ; ¸)Q¤
i (vi)] ¡Ej[´(vjjv¤j ; ¸)Q¤

j (vj)]

= Ei[´(vijva
i ; ¸)(aQ¤

i (vi) + (1 ¡ a)Q¤
j (vi))] + Ej[´(vjjva

j ; ¸)(aQ¤
j (vj) + (1¡ a)Q¤

i (vj))]

¡ Ei[´(vijv¤i ; ¸)Q¤
i (vi)] ¡Ej[´(vjjv¤j ; ¸)Q¤

j (vj)]

= Ei[(a´(vijva
i ; ¸) + (1 ¡ a)´(vijva

j ; ¸) ¡ ´(vijv¤i ; ¸))Q¤
i (vi)]

+ Ej[((1 ¡ a)´(vjjva
i ; ¸) + a´(vj jva

j ; ¸) ¡ ´(vjjv¤j ; ¸))Q¤
j (vj)]

¸ 0

The last inequality follows from the fact that for any given v̂, (´(vljv̂; ¸)¡ ´(vljv¤l ; ¸))Q¤
l (vl) ¸ 0 for

l = i; j. Therefore, W¸(qa) ¸ W¸(q¤).13 This completes our proof. Q.E.D

Intuitively, since the optimal allocation requires that all goods go to the traders whose virtual

valuations are highest, then when the traders have a higher level of demand, the goods will be assigned

to a smaller number of traders with the highest virtual valuations and W¸(q¤), which is the expected

gains from trade from the optimal allocation measured in virtual valuations, increases. On the other

hand, each trader may bid either higher or lower than his true valuation, depending on whether he

is more likely to sell or buy in the ultimate transaction; the cost of satisfying informational incentive

constraints depends on the trader's types partition (low types to be sellers, high types to be buyers,

and to be neither buyers nor sellers between them) and decreases as the partition becomes more

symmetric. This implies that when the initial endowments are more evenly distributed amongst

the traders, the expected information rents accruing to all traders can be reduced and there may

be more expected revenue from the trading mechanism yielding a higher W¸. This intuition also

13 T he ine q ua lity is stric t if the ra ng e s o v e r w hic h Q¤
i (vi) = 0 a nd the ra ng e s o v e r w hic h Q¤

j (vj) = 0 do no t c o inc ide .
So , if initia lly i a nd j ha v e di®e re nt bunc hing inte rv a ls, W¸(q¤) stric tly inc re a se s a s the initia l e ndo w me nts be c o me
mo re sy mme tric be tw e e n i a nd j; but if jkj ¡kij is sma ll so tha t the ir bunc hing ra ng e s a re the sa me , a mo re sy mme tric
distributio n o f the e ndo w me nts be tw e e n i a nd j do e s no t a lte r the ir c o mmo n bunc hing inte rv a l a nd no r W¸ be c a use
qa is the o ptima l a llo c a tio n w ith ka

i a nd ka
j .
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gives an explanation to the result of the next section that the expected gains from trade from the

ex ante e±cient allocation is non-decreasing as the initial endowments become more symmetric, as

well as the result of Cramton et al. [2] that there is a link between ex post e±cient mechanisms and

symmetry of endowments.

4 E x Ante E ±cient M echanisms

In this section, we show that the optimal allocation constructed in Theorems 1 and 2 can be useful

to characterize the most e±cient trading mechanism subject to the constraint that traders are not

subsidized. Cramton et al. [2] examine a special case of this trading problem in which traders have

the highest level of demand possible (the economy wide endowment). Despite incomplete information

about the valuation of the object, they show that ex post e±ciency can be achieved when the object

is initially jointly owned, with no player having too large a share. Lu [8] extends the work of

Cramton et al. by considering more standard preferences, and shows that the implementability of ex

post e±cient allocations is primarily determined by the degree of revelation of private information

required in achieving it. In the case of linear demand, for example, the achievement of ex post

e±ciency requires full revelation of private information, and it is impossible to have an incentive

feasible mechanism that is ex post e±cient except when all traders are ex ante symmetric. When the

traders have inelastic demands for a ¯xed number of units, partial revelation of private information

is su±cient to allocate the goods e±ciently and this allows for ex post e±ciency to be possible as in

Cramton et al. when the traders are su±ciently symmetric.

Since ex post e±ciency may not be achieved by any incentive feasible mechanism in asymmet-

ric economic environments, unless some outsider is willing to provide a subsidy to the traders for

participating in the trading mechanism, it is natural to seek a mechanism that maximizes expected

total gains from trade, subject to the incentive compatibility and individual rationality constraints,

as well as the market-maker's budget constraint. That is, we are looking for the ex ante e±cient
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mechanism that solves14

Ps

8
><
>:

max E[
Pn

i=1 viqi(v) ]
s.t. ¡ki · qi · k0 ¡ ki and

Pn
i=1 qi = 0

fq; tg is incentive feasible and
Pn

i=1 ti = 0.

The following result that is an adaptation of Theorem 1 of Myerson and Satterthwaite [15] and

Lemma 4 of Cramton et al. [2], allows to remove the payment function from problem Ps. The proof

is given in the Appendix.

Lemma 5. For any allocation q such that Qi(vi) is non-decreasing for all i 2 N , there exists a pay-

ment function t with
Pn

i=1 ti = 0 such that fq; tg is incentive feasible if and only if E[
Pn

i=1 ´(vijv¤i )qi(v)] ¸

0, where v¤i 2 V ¤(Qi).
15

From Lemmas 1 and 5, problem Ps can be rewritten as

Ps

8
><
>:

max E[
Pn

i=1 viqi(v) ]
s.t. ¡ki · qi · k0 ¡ ki and

Pn
i=1 qi = 0

Qi(vi) is non-decreasing and E[
Pn

i=1 ´(vijv¤i )qi(v)] ¸ 0; where v¤i 2 V ¤(Qi):

The following theorem proves that all solution to Ps is a solution to P¸ for some ¸.

Theorem 4. There exists a ¸ 2 [0; 1) such that one allocation q is a solution to Ps if and only if q

solves P¸.

Proof: If the ex post e±cient allocation qe satis¯es E[
Pn

i=1 ´(vijv¤i )qe
i (v)] ¸ 0 where v¤i 2 V ¤(Qe

i ),

then qe is the solution to Ps, but it also solves P¸ for ¸ = 0. Now assume that E[
Pn

i=1 ´(vijv¤i )qe
i (v)] <

0. Let q¤(vj¸) be the solution to P¸ for some given ¸ 2 [0; 1]. We argue that there exists a ¸ such

that q¤(vj¸) satis¯es:16

E

"
nX

i=1

´(vijx¤
i )qi(v)

#
= 0; where x¤

i = minV ¤(Qi): (17)

The existence of ¸ such that q¤(vj¸) satis¯es (15) follows from the fact that the expected revenue

14Se e , e .g ., H o lmstrÄo m a nd M y e rso n [4 ]. H e re w e fo c us just o n the e x a nte e ±c ie nt me c ha nism tha t pla c e s e q ua l
w e lfa re w e ig hts o n e v e ry tra de r a nd ma x imiz e s the sum o f a ll tra de rs' e x pe c te d g a ins fro m tra de . T his ma x imiz a tio n
is e q uiv a le nt to ma x imiz ing the sum o f the tra de rs' e x a nte e x pe c te d utilitie s be c a use e a c h tra de r's utility func tio n is
se pa ra ble in mo ne y a nd his v a lua tio n.

15 A s a c o ro lla ry o f Le mma 5 , the re e x ists a n inc e ntiv e fe a sible me c ha nism tha t c a n imple me nt the e x po st e ±c ie nt
a llo c a tio n qe a s de ¯ne d in (8 ) w hile sa tisfy ing budg e t c o nstra int if a nd o nly if

Pn

i=1
E[´(vijv¤

i )qe
i (v)] ¸ 0 , w he re

v¤
i 2 V ¤(Qe

i ). Lu [8 ] sho w s tha t g iv e n k0-unit de ma nd, the se t o f e ndo w me nts fo r w hic h e x po st e ±c ie nc y is po ssible
is a c o nv e x sy mme tric se t c e nte re d a ro und the mo st e v e nly distribute d e ndo w me nt (K

n ; ¢ ¢ ¢ ; K
n ).

16 A s o ne w o uld e x pe c t, the re is o nly o ne suc h ¸: T he pro o f o f this is o mmitte d.
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is continuous in ¸,17 negative when ¸ = 0, and positive when ¸ = 1. Now recall that q¤(vj¸)

maximizes W¸(¢) a weighted sum of expected gains from trade and the market-maker's revenue. So

any alternative implementable allocation q would either generate less (i.e. negative) revenue to the

market-maker and hence not satisfy the budget balance condition, or would generate less gains from

trade. q¤(vj¸) is indeed the solution to Ps. Q.E.D

From Theorem 4, maximizing expected gains from trade, subject to incentive feasibility and

budget constraints, is equivalent to maximizing a speci¯c weighted sum of expected gains from trade

and the market-maker's revenue. The ex ante e±cient allocation is also a generalized double auction

in ¸-virtual valuations for some ¸ such that the market-maker's expected revenue equals zero. Since

the solution q¤(vj1) to P1 always generates a positive revenue E [
Pn

i=1 ±(vijx¤
i )q

¤
i (vj1)] > 0; so the

revenue-maximizing allocation can never be ex ante e±cient. We can make a comparison between a

market-maker in this exchange economy and a monopoly seller. Here the ex ante e±cient allocation

is socially optimal, but it is not optimal for the market-maker who will sacri¯ce some e±ciency for

the purpose of rent extraction. It is exactly what a pro¯t-maximizing monopoly does in the usual

context.

Given k0-unit demand and initial endowments (k1; ¢ ¢ ¢ ; kn), let Ga be the expected total gains

from trade of ex ante e±cient allocations (the maximum gain from trade given the incentive feasibility

constraints and the balanced budget constraint).

Theorem 5. The expected total gains from trade from the ex ante e±cient allocation Ga is (i)

strictly increasing with k0 and (ii) non-decreasing as the initial endowments become more symmetric.

Proof: This proof is similar to the proof of Theorem 3 except that we must additionally check

the budget balance condition.

(i) To show that Ga is strictly increasing in k0, notice that the solution q¤ to Ps given some

initial k0
0 is implementable with a higher k00

0 > k0
0. Furthermore, q¤ is not optimal since q¤ cannot be

a solution to P¸ with k00
0 for any ¸. There must exist a q̂ which generates more gains from trade.

(ii) As in the proof of Theorem 3, let q¤ be the solution to Ps with initial endowments ki and kj ,

17 T o se e tha t E
£Pn

i=1
´(vijx¤

i (¸))Q¤
i (vj¸)

¤
w ith x¤

i (¸) = minV ¤(Q¤
i (¢j¸)) is c o ntinuo us, o bse rv e tha t fro m ®(yi; ¸) =

¯(xi; ¸), yi a s a func tio n o f xi a nd ¸ is c o ntinuo us, w hic h implie s tha t the func tio n eQi(xi;¸) is c o ntinuo us in xi a nd ¸.
T hus, the so lutio n ~x to (1 4 ) is c o ntinuo us in ¸, a nd so fo r x¤. F urthe r, the c o ntinuity o f x¤ in ¸ implie s tha t ±(vijx¤

i )
a nd Q¤

i (vij¸) a re c o ntinuo us in ¸. So E
£Pn

i=1
±(vijx¤

i (¸))Q¤
i (vij¸)

¤
must be c o ntinuo us in ¸.
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and reallocate the initial endowment and de¯ne the allocation qa. It is shown that qa is implementable

with the reallocated endowments and generates at least as much revenue as q¤; thus qa satis¯es the

budget constraint E [
Pn

l=1 ´(vljva
l )qa

l (v)] ¸ 0. Further, since Qa
i (vi) = aQ¤

i (vi) + (1 ¡ a)Q¤
j (vi),

Qa
j (vj) = aQ¤

j(vj) + (1 ¡ a)Q¤
i (vj), and Qa

l (vl) = Q¤
l (vl) for l 6= i; j, and all traders have a common

distribution of valuations, then

E

"
nX

l=1

vlQ
a
l (vl)

#
=

nX

l=1

El[vlQ
¤
l (vl)]:

Thus qa generates as much gains from trade as q¤, which implies that Ga is non-decreasing as the

initial endowments become more symmetric. Q.E.D

5 Conver gence to B id-ask M echanisms

We have characterized the optimal allocation in the context of an exchange economy when there

are few participants and everyone takes advantage of opportunities to a®ect the terms of trade. We

consider in this section, how the optimal allocation changes as the number of traders increases. More

precisely, our aim is to establish that, provided the number of traders is large enough, the optimal

trading mechanism converges toward a bid-ask mechanism.

Given an n-player trading problem N , let denote nl the number of traders each of whom has an

endowment of l units. Let ¿N be the ¿ -fold replication of N . That is, there are ¿n traders, with

¿nl traders owning l units of the traded good. The total number of units in ¿N is ¿K. In order to

evaluate the objective function W¸ when ¿ ! 1, we divide it by the number of replication. For all

¿ = 2; 3; ¢ ¢ ¢ ;1 and Q = (Q1; ¢ ¢ ¢ ;Q¿n), let18

fW¸(Q) =
1

¿
W¸(Q) =

1

¿
E

"
n¿X

i=1

´(vijv¤i ; ¸)Qi(vi)

#
; where v¤i 2 V ¤(Qi):

Note that if for all v, we have Qi(v) = Qj(v) whenever ki = kj; then we can simply write fW¸(Q) =

E [
P

i2N ´(vijv¤i ; ¸)Qi(vi)].

For some given ¸, let x̂ 2 [v; x] be de¯ned by (nk0¡K)(1¡F (ŷ)) = KF (x̂) with ®(ŷj¸) = ¯(x̂j¸),

18 F o r a ll Q = (Q1;Q2; ¢ ¢ ¢ ;Q¿n) w ith ¡ki · Qi · k0 ¡ ki fo r a ll i, lim¿ ! 1 fW¸(Q1; ¢ ¢ ¢ ;Q¿n) is w e ll-de ¯ne d, be c a use

f fW¸(Q1; ¢ ¢ ¢ ;Q¿n)g 1¿=1 is a C a uc hy se rie s a nd must c o nv e rg e to a ¯nite numbe r. Simila rly , lim¿ ! 1 1
¿
E

£P¿n

i=1
Qi(vi)

¤

e x ists.
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and let q̂ be the allocation de¯ned as

bqi(v) = bQi(vi) =

8
><
>:

k0 ¡ ki; if vi > ŷ;
0; if x̂ · vi · ŷ;
¡ki; if vi < x̂:

(18)

One can verify that E [
Pn

i=1 q̂i(v)] = E
hPn

i=1
bQi(vi)

i
= 0: That is, the allocation q̂ balances in

expected terms; however it does not for all values of v. The allocation q̂ corresponds to a simple

bid-ask mechanism where the market maker sets two prices x̂ and ŷ. A participant will sell all his

units if and only if he is willing to sell them at a price equal to x̂. Conversely, he will buy (k0 ¡ ki)

units if and only if he is willing to pay ŷ.

Theorem 6. As the number of replication of the economy increases, the optimal trading mechanism

converges to the bid-ask mechanism q̂. More precisely, let q¤¿ be the optimal allocation given some

¿ and ¸. Then for all i and almost all vi 2 [v; v], we have lim¿!1 Q¤¿
i (vi) = bQi(vi)

Proof: We ¯rst compare the values for the objective function with allocations q̂ and q¤¿ . We

have

fW¸( bQ) ¡ fW¸(Q¤¿ ) =
1

¿
E

"
n¿X

i=1

(±(vijx̂; ¸) ¡ ¹) bQi(vi) ¡ (±(vijx¤¿
i ; ¸)¡ ¹)Q¤¿

i (vi)

#

Note that adding the constant ¹ has no e®ect on this di®erential since E [
Pn¿

i=1 Q¤¿
i (vi)] = E

hPn¿
i=1

bQi(vi)
i

=

0: So if we let ¹ = ±(x̂jx̂; ¸); the above expression can be rewritten as

fW¸( bQ)¡ fW¸(Q¤¿ ) =
1

¿
E

"
n¿X

i=1

(±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸)) ( bQi(vi)¡ Q¤¿
i (vi))

#

+
1

¿
E

"
n¿X

i=1

(±(vijx̂; ¸) ¡ ±(vijx¤¿
i ; ¸))Q¤¿

i (vi)

#
(19)

This di®erential is positive because the expression in each expectation is positive. Indeed, when

vi < x̂, ±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸) · 0 and bQi(vi) ¡ Q¤¿
i (vi) = ¡ki ¡ Q¤¿

i (vi) · 0; when x̂ · vi · ŷ,

±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸) = 0; when vi > ŷ, ±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸) ¸ 0 and bQi(vi) ¡ Q¤¿
i (vi) = k0 ¡

ki ¡ Q¤¿
i (vi) ¸ 0. Hence (±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸))( bQ(vi) ¡ Q¤¿

i (vi)) ¸ 0: Similarly, (±(vijx̂; ¸) ¡

±(vijx¤
i ; ¸))Q¤¿

i (vi) ¸ 0. When Q¤¿
i (vi) > 0, ±(vijx¤¿

i ; ¸) = ®(vij¸) · ±(vijx̂; ¸) and when Q¤¿
i (vi) < 0,

±(vijx¤¿
i ; ¸) = ¯(vij¸) ¸ ±(vijx̂; ¸): The above implies that the simple bid-ask mechanism bQ dominates

all the incentive-feasible mechanisms.
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Now consider an alternative allocation ~q given by

~qi(vi; v¡i) =

8
>>>><
>>>>:

(k0 ¡ ki) min

µ
1;

P
i2Ns

kiP
i2Nb

(k0¡ki)

¶
; if vi > ŷ

0; if x̂ · vi · ŷ

¡ki min

µ
1;

P
i2Nb

(k0¡ki)P
i2Ns

ki

¶
; if vi < x̂:

(20)

where Nb = fi 2 ¿N jvi > ŷg and Ns = fi 2 ¿N jvi < x̂g. The allocation ~q resembles the allocation

q̂, however it is constructed to insure that resources balance ex post:
Pn¿

i=1 ~q(v) = 0 for all v. Since

q¤¿ maximizes W¸(¢) over all implementable and resource balancing allocations which include ~q, we

must have fW¸(q¤¿ ) ¸ fW¸(~q). Since V ¤( eQi) = V ¤( bQi) = [x̂; ŷ], it follows that

fW¸( bQ) ¡ fW¸( eQ) =
1

¿
E

"
n¿X

i=1

(±(vijx̂; ¸)¡ ±(x̂jx̂; ¸)) ( bQi(vi) ¡ eQi(vi))

#
¸ fW¸( bQ)¡ fW¸(Q¤¿ ): (21)

The main idea of the proof is to show that as the economy replicates, eQi(vi) converges to bQi(vi)

for all i and vi. Indeed, from the law of large numbers, the proportion of traders with an endowment

of l units and valuations greater than ŷ equals nl
n (1¡F (ŷ)) when the market size is su±ciently large.

Thus, the total demand for the good is

X

i2Nb

(k0 ¡ ki) = ¿n
k0X

l=0

(k0 ¡ l)
nl

n
(1 ¡ F (ŷ)) = ¿(k0n ¡K)(1 ¡ F (ŷ)):

In the same way, the proportion of traders with l units and valuations less than x̂ equals nl
n F (x̂),

and the total supply is
X

i2Ns

ki = ¿n
k0X

l=0

l
nl

n
F (x̂) = ¿KF (x̂)

Hence we obtain

lim
¿!1

P
i2Nb

(k0 ¡ ki)P
i2Ns

ki
=

(k0n ¡K)(1 ¡ F (ŷ))

KF (x̂)
= 1

with probability one, which implies that ~q as de¯ned in (20) converges to q̂ and ~Q converges to bQ

when the market size increases.

It follows that fW¸( bQ)¡ fW¸(Q¤¿ ) converge toward zero. Hence from (19), for all i and almost all

vi we must have that (±(vijx̂; ¸) ¡ ±(x̂jx̂; ¸))( bQ(vi) ¡ Q¤¿
i (vi)) and (±(vijx̂; ¸) ¡ ±(vijx¤¿

i ; ¸))Q¤¿
i (vi)

converge to 0 as ¿ increases. If ±(vijx̂; ¸) 6= ±(x̂jx̂; ¸), i.e. when vi < x̂ or vi > ŷ, from the ¯rst

convergence we must have Q¤¿
i (vi) ! bQ(vi). Now from the second convergence, either Q¤¿

i (vi) ! 0

or ±(vijx¤¿
i ; ¸) ! ±(hatxjx̂; ¸) for all vi 2 [x̂; ŷ] (for which bQ(vi) = 0), which implies that x¤¿

i ! x̂
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and y¤¿
i ! ŷ which in turn implies that Q¤¿

i (vi) ! 0. In both cases, we have established that

Q¤¿
i (vi) ! bQi(vi). Q.E.D

As the number of participants increases, the bid-ask price mechanism becomes more or less ex

post resource balancing. So a mechanism relatively close to it may be used by the market-maker

to maximize his objective function. Also as a corollary of Theorems 5 and 7, we can show that

ex ante e±ciency converges to ex post e±ciency as the market size increases (also see Gresik and

Satterthwaite [3]).

Theorem 8. The ex ante e±cient allocation coincides with the ex post e±cient allocation, and can

be implemented by setting a single price x̂ = ŷ = F¡1(1 ¡ p) at which traders can buy or sell units

as the market size increases.

Proof: Whenever ¸ > 0, we have that x̂ < ŷ. So the bid-ask price mechanism q̂ will generate

strict positive revenue to the market-maker. As the market size increase, the optimal allocation q¤¿

given ¸ will converge to q̂ and will also generate pro¯ts to the market-maker. So as the market size

increases, we can decrease ¸ towards zero and the solution to problem Ps converges to the ex post

e±cient allocation. Q.E.D
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Appendix

Proof of Lemma 1. If the trading mechanism fq; tg is incentive compatible, then for any two

valuations vi; v
¤
i 2 [v; v],

Ui(vi) = viQi(vi) ¡ Ti(vi) ¸ viQi(v
¤
i ) ¡ Ti(v

¤
i )

and

Ui(v
¤
i ) = v¤i Qi(v

¤
i ) ¡ Ti(v

¤
i ) ¸ v¤i Qi(vi) ¡ Ti(vi)

These two inequalities imply that

(vi ¡ v¤i )Qi(vi) ¸ Ui(vi) ¡ Ui(v
¤
i ) ¸ (vi ¡ v¤i )Qi(v

¤
i )

Thus, if vi > v¤i , we must have Qi(vi) ¸ Qi(v¤i ), so Qi(vi) is non-decreasing. Furthermore, the above

inequalities also imply that Ui(vi) is absolutely continuous, thus di®erentiable almost everywhere

with derivative dUi
dvi

(vi) = Qi(vi); or in the more convenient integral form

Ui(vi) = Ui(v
¤
i ) +

Z vi

v¤
i

Qi(u)du (22)

Now if v¤i 2 V ¤(Qi), then Qi(vi) ¸ 0 (· 0) for vi > v¤i (< v¤i ), which imply that Ui(vi) ¡ Ui(v¤i ) =
R vi
v¤i

Qi(u)du ¸ 0 for all vi; thus the expected net utility Ui(vi) is minimized at v¤i and fq; tg is

individually rational if and only if Ui(v
¤
i ) ¸ 0.

Suppose now that the mechanism fq; tg is such that Qi(vi) is non-decreasing and Ui(vi) satis¯es

(18) for some v¤i 2 V ¤(Qi) with Ui(v¤i ) ¸ 0, then for any vi, v̂i 2 [v; v],

Ui(vi)¡ Ui(v̂i) =
Z vi

v̂i

Qi(u) du ¸ (vi ¡ v̂i)Qi(v̂i)

where the inequality follows from the fact that Qi(u) is non-decreasing in u. This inequality can be

rewritten as

Ui(vi) ¸ Ui(v̂i) + (vi ¡ v̂i)Qi(v̂i) = viQi(v̂i) ¡ Ti(v̂i)

Thus, fq; tg is incentive compatible. In the above, we have already shown that if Ui(v¤i ) ¸ 0, an

incentive compatible mechanism is also individually rational. Q.E.D
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Proof of Lemma 2. For any function q(v) such that Qi(vi) is non-decreasing, if fq; tg is an

incentive feasible mechanism, from Lemma 1 the expected revenue of the mechanism equals

R = E

"
nX

i=1

ti(v)

#

= E

"
nX

i=1

(viQi(vi) ¡ Ui(vi))

#

= E

"
nX

i=1

(viQi(vi) ¡
Z vi

v¤i
Qi(u)du)

#
¡

nX

i=1

Ui(v
¤
i )

Integrating the ¯rst term on the right by parts, we obtain

R =
nX

i=1

E[´(vijv¤i )Qi(vi)] ¡
nX

i=1

Ui(v
¤
i )

Thus, the maximum expected revenue from any incentive feasible mechanism implementing q(v)

cannot be greater than

R(q) =
nX

i=1

E[´(vijv¤i )Qi(vi)]

To complete the proof, we must construct a payment function t(v) so that fq; tg is an incentive

feasible mechanism leading R(q). There are many such functions which could be used; we will

consider a function de¯ned as follows:

ti(v) = viqi(vi; v¡i) ¡
Z vi

v¤i
qi(u; v¡i)du

where v¤i 2 V ¤(Qi). Then Ui(v¤i ) = 0 and Ui(vi) =
R vi
v¤

i
Qi(u) du. From Lemma 1, the mechanism

fq; tg is incentive feasible and has an expected revenue equal to R(q). Thus, our proof of Lemma 2

is complete. Q.E.D

Proof of Lemma 4. Randomization rules matter only when a group of participants share the

same x¤. So let x¤
l = x¤

S 8l 2 S = fi; ¢ ¢ ¢ ; jg with i · j and x¤
l 6= x¤

S 8l =2 S. From Lemma 3, we

have
Pm

l=i
eQl(x¤

S) · 0 for all i · m < j and
Pj

l=i
eQl(x¤

S) = 0. Typically, participants in S with the

lowest indexes will, according to the allocation rule ~q, have negative expected net trade. Hence, we

need to increase the probability that the low index participants are awarded units in case of a tie to

garantee that the expected net trades are equal for all participants in S.

We implement some randomization rule, by randomly assigning a hierarchy rank to each par-

ticipant in the subset S. The tie breaking rule of ~q is then used and gives participants assigned
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to higher hierarchy rank (instead of those with higher index) the advantage in case of a tie. The

random assignment process is constructed in such a way that participants in subset S have the same

expected net trade, that is 0. Note that when participant with index m is given the rank l, his

expected net trade, denoted by eQl
m(x¤

S), is given by eQl(x
¤
S) + kl ¡ km.19 Thus for all m, we must

have:
P

l2S ®l
m( eQl(x

¤
l ) + kl) = km, where ®l

m is the probability that participant with index m is

assigned rank l in the hierarchy. To achieve this, one can construct a sequence of at most (j ¡ i¡ 1)

one-by-one random permutations from the initial index to a ¯nal hierarchy.

Let m be the lowest index in S with strictly negative net trade and l be the lowest index in S

with strict positive net trade. We must have m < l, because otherwise we would have Qh(x¤
S) = 0 for

i · h · l¡ 1 and thus
Pl

h=i
eQh(x¤

S) > 0. We assign some probability ®l
m that participant m is given

rank l and vice versa. Given this random permutation between m and l, the expected net trade for m

becomes (1¡®l
m) eQm(x¤

S)+®l
m

h
eQl(x

¤
S) + kl ¡ km

i
. Since eQl

m(x¤
S) = eQl(x

¤
S)+ kl ¡ km ¸ eQl(x

¤
S) > 0

and eQm(x¤
S) < 0, there exists a unique ®l

m such that the expected net trade of m becomes zero. So

we set ®l
m to the value for m's net expected trade to become zero. We next proceed with a new

pair of participans m and l, selected as before, given the new adjusted Q0
is: In each round, we bring

the expected net trade of at least one participant to zero, so after at most (j ¡ i ¡ 1) rounds, the

expected net trades of all participants in S will be zero. Q.E.D

Proof of Lemma 5. For any function q(v) such that Qi(vi) is non-decreasing, if there exists a

payment function t so that fq; tg is incentive feasible and
Pn

i=1 ti(v) = 0 for all v, then from Lemma

2, we must have E[
Pn

i=1 ´(vijv¤i )qi(v)] ¸ 0 where v¤i 2 V ¤(Qi).

Suppose now that q satis¯es the above inequality, we must construct the payment function t(v)

so that fq; tg is incentive feasible and
Pn

i=1 ti(v) = 0 for all v. Let

ci =
1

n
E

"
nX

i=1

´(vijv¤i )qi(v)

#
¡

Z v¤i

v
Qi(u) du ¡ 1

n¡ 1

X

j 6=i

Z v

v
[uf(u) + F (u)¡ 1]Qj(u) du

19Sinc e the tra de rs' v a lua tio ns a re inde pe nde ntly a nd ide ntic a lly distribute d, w e ha v e

eQl
m(x¤

S) + km = k0Prf the re a re le ss tha n n0 tra de rs o the r tha n m w ho ha v e e ithe r v a lua tio n g re a te r

tha n y¤
S a nd inde x lo w e r tha n l o r v a lua tio n g re a te r tha n x¤

S a nd inde x hig he r tha n l g
+ rPrf the re a re e x a c tly n0 tra de rs o the r tha n m w ho ha v e e ithe r v a lua tio n g re a te r

tha n y¤
S a nd inde x lo w e r tha n l o r v a lua tio n g re a te r tha n x¤

S a nd inde x hig he r tha n l g
= eQl(x

¤
S) + kl
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then a little algebra shows that
Pn

i=1 ci = 0. Hence let

ti(v) = viQi(vi)¡
Z vi

v
Qi(u) du ¡ 1

n¡ 1

X

j 6=i

"
vjQj(vj) ¡

Z vj

v
Qj(u) du

#
¡ ci;

we have
Pn

i=1 ti(v) = 0. To complete the proof, it su±ces to show that fq; tg is incentive feasible.

By integration by parts, we obtain

Ti(vi) = viQi(vi) ¡
Z vi

v
Qi(u) du ¡ 1

n ¡ 1

X

j 6=i

Z v

v
[F (u) + uf(u) ¡ 1]Qj(u) du ¡ ci

= viQi(vi) ¡
Z vi

v¤i
Qi(u) du ¡ 1

n
E

"
nX

i=1

´(vijv¤i )qi(v)

#

Hence

Ui(vi) = viQi(vi) ¡ Ti(vi) =
1

n
E

"
nX

i=1

´(vijv¤i )qi(v)

#
+

Z vi

v¤i
Qi(u) du

and in particular

Ui(v
¤
i ) =

1

n
E

"
nX

i=1

´(vijv¤i )qi(v)

#
¸ 0

so Lemma 1 guarantees that fq; tg is incentive feasible. Q.E.D
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