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Abstract

In this paper we provide further results on the properties of the IV estimator in the presence of weak instruments.\We
begin by formalizing the notion of weak identi cation within the local-to-zero asymptotic framework of Staiger and Stock
(1997), and deriving explicit analytical formulae for the asymptotic bias and mean square error (MSE) of the IV estimator.
These results generalize earlier “ndings by Staiger and Stock (1997), who give an approximate measure for the asymptotic
bias of the two-stage least squares (2SLS) estimator relative to that of the OLS estimator. We also show that in the special
case where all available instruments are used and where the underlying simultaneous equations model has an orthonormal
canonical structure, the bias and MSE formulae which we obtain are identical to the exact bias and MSE of the 2SLS estimator
obtained by Richardson and Wu (1971) under Gaussian error assumptions. This result gives a partial con rmation to the
Staiger-Stock assertion, based on intuitive arguments, that the limiting distribution of the 2SLS estimator derived under the
more general assumptions of the Staiger-Stock local-to-zero asymptotic framework coincides with the exact distribution of the
same estimator derived under the more restrictive assumptions of a ~xed instrument/Gaussian model. Because our analytical
formulae for bias and MSE are complex functionals of con®uent hypergeometric functions, we also derive approximations for
these formulae which are based on an expansion that allows the number of instruments to grow to in nity while keeping the
population analogue of the ~rst stage F-statistic ~xed. In addition, we provide a series of regression results that show this
expansion to give excellent approximations for the bias and MSE functions in general. These approximations allow us to make
several interesting additional observations. For example, when the approximation method is applied to the bias, the lead term
of the expansion, when appropriately standardized by the asymptotic bias of the OLS estimator, is exactly the relative bias
measure given in Staiger and Stock (1997) in the case where there is only one endogenous regressor. In addition, the lead term
of the MSE expansion is the square of the lead term of the bias expansion, implying that the variance component of the MSE
is of a lower order relative to the bias component in a scenario where the number of instruments used is taken to be large while
the population analogue of the ~rst stage F-statistic is kept constant. One feature of our approach which ties our ~ndings to
the earlier IV literature is that our results apply not only to the weak instrument case asymptotically, but also to the " nite
sample case with ~xed (possibly good) instruments and Gaussian errors, since our formulae correspond to the exact bias and
MSE functionals when a ~xed instrument/Gaussian model is assumed.
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1 Introduction

There has been much recent interest in instrumental variables regression with instruments that
are only weakly correlated with the endogenous explanatory variables. Important theoretical con-
tributions to this expanding literature include such papers as Nelson and Startz (1990a), Dufour
(1996), Staiger and Stock (1997), and Zivot and Wang (1998). Much of this literature focuses
on the impact that using weak instruments has on interval estimation and hypothesis testing. In
contrast, fewer results have been obtained characterizing the properties of point estimators under
weak identi cation. This is despite the fact that empirical researchers who " rst noted the problem
of weak instruments were clearly very interested in the consequences for point estimation, as can be
seen from the papers by Nelson and Startz (1990b), Bound, Jaeger, and Baker (1995), and Angrist
and Krueger (1995). For example, Bound, Jaeger, and Baker (1995) point out that while it has
been widely recognized that the use of weak instruments leads instrumetal variable (IV) estimators
with higher standard errors. They also point out that weak instruments can also lead to larger bias
relative to least squares - an observation which in large part has accounted for the renewed interest
in the problem.

The purpose of this paper is to provide further results on the properties of the IV estimator in the
presence of weak instruments. We begin our analysis with a standard single-equation simultaneous
equation setup, where the set of available instruments may be arbitrarily large. In order to keep
notation manageable, we allow the single structural equation of interest to have an arbitrary number
of exogenous explanatory variables but only one endogenous explanatory variablel. In addition, we
adopt the local-to-zero asymptotic framework of Staiger and Stock (1997) to formalize the notion
of weak identi cation. One interesting feature of the Staiger and Stock setup is that they show
(via a series of simulations) that their framework yields a very good approximation for the nite
sample distribution of the IV estimator when the quality of the available instruments is poor.
In contrast to Staiger and Stock (1997), who give an approximate measure for the asymptotic
bias of the two-stage least squares (2SLS) estimator relative to that of the OLS estimator, we
derive explicit analytical formulae for the asymptotic bias and mean square error (MSE) of a more

general IV estimator. These formulae can be used to characterize 2SLS estimator bias and MSE

I Although we only study the case with one endogenous explanatory variable, many of the qualitative conclusions

reached in this paper can be generalized in a straightforward manner to more general settings.



when all available instruments are used. We also show that in the special case where all available
instruments are used and where the underlying simultaneous equations model has an orthonormal
canonical structure (to be de ned below), the bias and MSE formulae which we obtain are identical
to the exact bias and MSE of the 2SLS estimator obtained by Richardson and Wu (1971) under
Gaussian error assumptions. This result gives a partial con rmation to the Staiger-Stock assertion,
based on intuitive arguments, that the limiting distribution of the 2SLS estimator derived under
the more general assumptions of the Staiger-Stock local-to-zero asymptotic framework coincides
with the exact distribution of the same estimator derived under the more restrictive assumptions
of a xed instrument/Gaussian model.

Because the analytical formulae for bias and MSE are complex functionals of con®uent hy-
pergeometric functions, we also derive approximations for these formulae which are based on an
expansion that allows the number of instruments to grow to in nity while keeping the population
analogue of the rst stage F-statistic xed. To the best of our knowledge, the expansion which we
use is new to the 1V literature. In addition, we provide a series of regression results that show this
expansion to give excellent approximations for the bias and MSE functions in general. Moreover,
the approximations allow us to make several interesting additional observations. First, when the
approximation method is applied to the bias, the lead term of the expansion, when appropriately
standardized by the asymptotic bias of the OLS estimator, is exactly the relative bias measure given
in Staiger and Stock (1997) in the case where there is only one endogenous regressor. Second, the
lead term of the MSE expansion is the square of the lead term of the bias expansion, implying that
the variance component of the MSE is of a lower order relative to the bias component in a scenario
where the number of instruments used is taken to be large while the population analogue of the
“rst stage F-statistic is kept constant. Third, our approximations show that even when all available
instruments are weak in the sense of Staiger and Stock (1997), increasing the number of instruments
used will still reduce the MSE by reducing the variance of estimation, although the magnitude of
this reduction becomes small as the number of instruments used becomes large. We note, nally,
that our results not only apply to the weak instrument case asymptotically but they also apply
to the nite sample case with ~xed, and possibly good, instruments and Gaussian errors, since
our formulae correspond to the exact bias and MSE functionals when a ~ xed instrument/Gaussian
model is assumed.

This rest of the paper is organized as follows. Section 2 contains preliminaries, including the



model, assmuptions, and notation to be used. Section 3 presents formulae for the asymptotic bias
and MSE of the IV estimator under weak identi cation, and discusses properties and implications
of the formulae. Section 4 develops bias and MSE approximations. Section 5 summarizes various
numerical calculations and regression ndings based on our exact and approximate bias and MSE
formulae. Conclusions and summarizing remarks are given in Section 6. All proofs and technical

details are contained in the Appendix.

2 Setup

Consider the simultaneous equations model (SEM):

yi = y2 +X°+uy; )

Yy = Z§+XO+v; 2)

where y1 and y, are T £ 1 vectors of observations on the two endogenous variables, X isan T £ kg
matrix of observations of the k; exogenous variables included in the structural equation (1), Z is an
T £ k, matrix of observations of the k, exogenous variables excluded from the structural equation
(1), and u and v are each T £ 1 vector of random disturbances. Let u; and v¢ devote the t-th
component of the random vectors u and v, respectively. We assume wy = (ug; v¢)' to be white noise
so that E(wy) = 0; E(wewl) = 0 for all t & s, and E(wew)) = 8, where we can partition the 2 £ 2

matrix & conformably with (ug; v¢)" as

H 3/4uu 3/4vu ﬂ

§= ®

Yvu Yy

Following Staiger and Stock (1997), we formalize the case of weak instruments by modeling
to be a parameter sequence that is local to zero, i.e.
Assumption 1: § = 11 = CpT, where C is a xed ky £ 1 vector.
Also, following Staiger and Stock (1997), we assume that the data generating processes of the
exogenous variables Z = (X;Z) and of the disturbances (u;V) in equation (1) and (2) above are
such that the following moment covergence results hold.
Assumption 2: The following limits hold jointly: (i) (Wu=T:Vu=T;VvWv=T) ¥ (huu; Yau; %ow);
(i) ZZ/T ¥ Q; and (iii) (T i¥°2X"u; T 1122200; T i122X0; T 112220) =) (Axu; Azu; Axv-Azy);



where Q = E(Zfot) with Z; the t-th row of the matrix Z; and where A = (A} ;AL ;AL AL ) is
distributed N (0; (8 — Q)):
In this paper, we consider IV estimation of the parameter  in equation 1 above, where the IV

estimator may not make use of all available instruments. De ne the IV estimator as

By = 5P i Px)y2) F1Y3(PH i Px)y1); 4)

where H = [Z1; X] is an T £ (ko1 + k1) matrix of instruments and Z; is an T £ kp; submatrix
of Z formed by column selection. To introduce som notations, we nd it convenient to parti-
tion Z as Z = [Z;;Z>], where Z; is an T £ ky, matrix of observations of the excluded exogenous
variables not used as instruments in estimation. Note that when Z; = Z and H = [Z; X], i.e.,
when all available instruments are used, the IV estimator de ned in 4 above is equivalent to the
2SLS estimator. Moreover, to further ~x notations, we partition §1; T i%Zou; Ti%ZOV; Azu;
and Az, conformably with Z = [Z1;Z2] by writing 37 = [301; 1%]' = [C%=pf; Cg=pﬂ°;
Ti2Z0u=[Tiz(Z}u); TI3Zu); T2z = [Ti3(Ziv); T12ZW)T, and Azy = (AL, ;AL T
and Az, = [AOZlV;AOZZ\,]“; where from assumption 2 part (iii) above, we have, of course, that
(T3 TiZ2(Z3u) Tiz2ZV)5T2(Z0v)") D (AL, i AL, AL i AL ) In addition, we par-
tition Q conformably with Z = (X; Z1;Z») as

(@) 1
Qxx Qxz, Qxz,
Q=@ Qzx Qzz; Qzz, A: %)

Q22X szzl QZzzz
Finally, we de ne

. |
-= o (6)
T12 T2
K . 1 . 1 T
_ Qz1z; i Qz,xQuxQxz1 Qz1z, 1 Qz;xQx % QAxz, )
Q2,21 i QzoxQkxQxz: Q27> 1 Qzx Q¥ Axz,
and
—a1 = (—11; —12): 8

To ensure that the asymptotic bias and MSE of the IV estimator are well-behaved, we make

the further assumption



Assumption 3: sup E[jWrj?*"] < 1; for some " > 0; where Wr = Djy.+ j 5 and where Dyy.1
denotes the IV esti:nator of  for a sample of size T and ¢ is the true value of .

Note that assumption 3 is su=cient for the uniform integrability of (bW;T i 0)? (see Billingsley
(1968), pp.32). Under assumption 3, lim EMv.r i o) = E(W) and Jim EOwr i 0)? =

E(W?2), where W is the limiting random variable of the sequence fWyg whose explicit form is

given in Lemma Al in the Appendix. Hence, under assumption 3, the asymptotic bias and MSE
correspond with bias and MSE as implied by the limiting distribution of JD.\/;T. Note also that for
the special case where (ug; vy)' » i:i:d:N(0; 8); ko _ 4 implies assumption 3 since it is well-known
that IV estimator of — under Gaussian assumptions has nite sample moments which exist up to
and including the degree of apparent overidenti cation, as given by the order condition (see, for
example, Sawa (1969)). Throughout this paper, we shall assume k, _ 4 so as to ensure that our

results will apply in the Gaussian case.

3 Analytical Results

We begin with two theorems which give explicit analytical formulae for the asymptotic bias and
MSE of the IV estimator under weak identi cation. The theorems also characterize some of the

properties of the bias and MSE functions.

Theorem 3.1 (Bias) Given the SEM as described by equations (1) and (2) under Assumptions 1,

2, and 3; the following results hold for ky; _ 4:

a
© itz ke k21 a0
By, (% ker) = WPk et T Py R LR ©)

where bb.v ("2 ko) =T"-m1 E(bW;T i o) is the asymptotic bias function of the IV estimator which

- il o5l
we write as a function of 191 = %i1C'-L —i1—1C and kp1; % = %% %’ , i(¢) denotes the
gamma function, and 1F1(¢;¢; ¢) denotes the con®uent hypergeometric function.

(b) For ko1 “xed, as ' ¥ 7 ;

bp,,, (H*ika1) ¥ 0: (10)

(c) For "1 "xed, as ko ¥ 1;



by, (F'%;k21) ¥ HauVavy (11)

(d) The absolute value of the asymptotic bias function, i.e., jbb.v ("1 k21)j; is a monotonically
decreasing function of 19 for ko; ~xed.

(e) The absolute value of the bias function, i.e., jb’ﬂ.v (2"1: k»1)j; is a monotonically increasing
function of ky; for 11 “xed.

Theorem 3.2 (MSE): Given the SEM as described by equations (1) and (2) under Assumptions
1, 2, and 3; the following results hold for k»1 _ 4

@
101
mblv(lol;k21) = 3/“Uus/"'\/ivll/22eiT£ |
iu 1 F U@ - 1@&
1/22k21i‘1?[112|,2,2."
uk21 i3 p.k21 kpp P17
+ Fh =i == (12)
ko1 i 2 2 27 2
2 .

2
where My, ("1 kp1) :Tli'm1 E b.\/;T i o Is the asymptotic mean squared error function of the

IV estimator and where 191; % i (©); and 1F1(¢;¢;¢) are as de ned in Theorem 3.1 above.
(b) For ko1 “xed, as ' ¥ 7 ;

My, (' ker) ¥ 0: (13)

(c) For 11 "xed, as ko ¥ 1;

My, , (X1 ka1) ¥ Sgudaly (14)

(d) The asymptotic mean squared error function My, (1"1; k,1) is a monotonically decreasing func-
tion of 1’1 for ko, ~ xed.

Remark 3.3:

(i) Note that the asymptotic bias and MSE formulae, given by expressions (9) and (12), are

functionals of con°uent hypergeometric functions (see Lebedev (1972) for more detailed discussions



of con®uent hypergeometric functions). It is well known that con®uent hypergeometric functions

have in nite series representations (see, for example, Slater (1960), pp.2) so that

X (a) Xj
Fi(a by x)= 3= 1
P& 00 im0 O 1! (13)
where the notation (a); denotes the Pochhammer'’s symbol, i.e.,
_ i(@+j)=i(a) forintegerj _ 1 .
@;= """ : (16)

forj =0
It follows that the bias expression (9) and the MSE expression (12) can both be written in in nite

series form, i.e.

2 Z ,j3
. ak X (ka1 = 1) 171
by, (*'11ka1) = 3/45523/4\/'\/1_21/29'72 ( 2k21| -)J i ; (17)
j=0 (T)J 1

101

0. _ ily2ai
My (T tka) = 3éuu%\,'\,l/z el 2z £
3 -
102 J

1 20
1M Xy o
W2 Kop j 2 j=o (k_gl)j j!

3 <.
102 J

M ial X j2), 7 Z

=+ - R — -

(18)

The main merits of the in nite series representations given in expressions (17) and (18) lie in the
fact that they provide explicit formulae for the asymptotic bias and MSE of the 1V estimator under
weak indenti cation. We have, in fact, made extensive uses of these representations in deriving some
of the properties of the asymptotic bias and MSE, as reported in Theorems 3.1 and 3.2 above. (For
details, see the proof of these theorems as presented in the Appendix of this paper.) These in nite
series representations are, however, quite complicated and dizcult to analyze. Hence, in order to
give more tractable representations, we shall report in the next section some approximations which
yield much simpler expressions for the asymptotic bias and MSE.

(i) From part (b) of Theorem 3.2, we see that the MSE function for b.\/;T goes to zero as /1 &
1. Note that the case where 1’2 ¥ 1 corresponds roughly with the case where the available

instruments are not weak but fully relevant. In this case, then, Theorem 3.2 part (b) shows JD.\/;T



to converge in a mean squared sense to the true value : It follows, of course, that in this case
b.\/;T is a (weakly) consistent estimator of , as one would expect from a conventional asymptotic
analysis with a fully identi ed model. Hence, our result can be interpreted as having the textbook
case of good instruments as a limiting special case.

(iii) Observe that under a condition similar to Assumption 3 above, it can be shown that

2 .
T"!ml E3 bOLS;T i o = Y=Yy, (19)

2 -
Tli!ml E boLS;T i o = %UUS/“VIvll/ZZ — 3/43\/:%3\/; 0

where Do g1 is the OLS estimator. To see this, let W2 = Py 5.1 j To and assume that

sup E[jWSj? < 1 (21)
T.5

It is well-known that under Gaussian error assumptions, condition (21) is sati ed since in this case
the nite sample distribution of the OLS estimator has moments which exist up to the order T j 2
(see Sawa, 1969, for a more detailed discussion of the existence of moments of the OLS estimator.)
Now, to proceed with the derivation of expressions (19) and (20), we note that Staiger and Stock

(1997) has shown that under Assumption 2 above,

bOLS;T i o i Youv=Y%yy as T ¥ 1. (22)

Thus, it follows directly from Theorem 5.4 of Billingsley (1968) that
2 .

Iiml E bOLS;T i 0 =YY

and

3
m
&
Q
(9]
g
|
o
I

lim E(W:?
Tl (W)
= E (3/4uv:3/4vv)2

= Yy Yah

Moreover, comparing expressions (19) and (20) with the bias result obtained in part (c) of

Theorem 3.1 and the MSE result obtained in part (c) of Theorem 3.2, respectively, we see that for



“xed 1"1, the asymptotic bias and the asymptotic MSE (AMSE henceforth) of the IV estimator
converge to those of the OLS estimator as ky; ¥ 1.

(iv) Write the asymptotic bias function of By as

1.1
by, (1 ka1) = Hdu¥an? #F (12 ka): (23)
where
f(2'1;k )—ei% = “@ - 1-@-211
yKR21) — 171 2 1 ’ 2 ’ 2

From the proof of part (d) of Theorem 3.1, we see that

0<f(1"ky) <1

1.1
for 191 2 (0; 1) and for positive integer ky; such that the bias function exists. Since YluYanith =

Yayu=%yy IS Simply the asymptotic bias of the OLS estimator, we see that the bias of the IV estimator

as given by (9) has the same sign as the OLS bias. Moreover, note that

11
jbblv(lol; ko1)i = Jdu¥an? B ("1 ko)

1.1
< [Hduan? i

Hence, even with weak instruments, the asymptotic bias of the IV estimator in absolute magnitude
is less than that of the OLS estimator for 1’1 & 0 and “nite ko1, and the former only tends to the
OLS bias as ko1 ¥ . In addition, only when 1%1 = 0 is the asymptotic bias of the two estimators
exactly equal for “nite kp1. Our result, thus, formalizes the intuitive discussion in Bound, Jaeger,
and Baker (1995) and Angrist and Krueger (1995) that, with weak instruments, the IV estimator
is biased in the direction of the OLS estimator, with the magnitude of the bias approaching that
of the OLS estimator as the R? between the instruments and the endogenous explanatory variable
approaches zero, i.e., as 101 ¥ 0,

(v) Note that the AMSE function of JD.\, is a much more complicated function of 1'% and k»; than
the bias function. While the asymptotic bias of JO.\/ is less than that of bOLs for all positive real
number 11 and for all values of ky; for which the bias exists and while the former only tends to
the latter as ko; ¥ 2 for a given 11, the AMSE of By, with weak instruments may, depending
on the size of the concentration parameter 1’1 and the number of instruments used ka1, be either

greater or less than the AMSE of bOLs. To see this, consider the example where 1’1 = 0; and note



that, in this case, expression (12) becomes .

12 ko1 i 2 !

My (Y1 = 0;ka1) = Yudly 2 1+ (24)

which is greater than the AMSE of the OLS estimator for %? < 1 and for values of ko, for which the
AMSE of the IV estimator exists. On the other hand, we have already shown that, as 101 9 7;
the AMSE of the IV estimator approaches zero for any given k»1, so that as 1’1 grows the AMSE
of the IV estimator will eventually become smaller than that of the OLS estimator.

(vi) It would be of interest to compare our results with those obtained in the extensive literature
on the nite sample properties of 1V estimators. See Richardson (1968), Sawa (1969), Richardson
and Wu (1971), Holly and Phillips (1979), and Phillips (1980, 1983, 1989) as some of the papers
which exemplify this literature. To proceed with such a comparison, we note " rst that the SEM

given by expressions (1) and (2) can alternatively be written in the reduced form

yi = Zii+Xijz2+7; (25)
yo = Z3 +XO+v; (26)
where j1 =13 ;i2=0© +°,and” =u+v . In the nite sample literature on IV estimators, a

Gaussian assumption is often made on the disturbances of this reduced form model; that is, it is
often assumed that
po,oT
Y7 iidiN(0; G); (27)
Vit
where "¢ and v¢ denote the t-th coordinate of the T £ 1 random vectors ~ and v, respectively, and

where

8] |
g= Ju %1z . (28)
012 022

Now, suppose we consider the case where all available instruments are used, i.e., the case where

the IV estimator given by expression (4) is simply the 2SLS estimator. Then, it follows that

1l = yilcl-c
= %ICAQzz i QzxQikQxz)C: (29)

10



In addition, note that in terms of the elements of the reduced form error covariance matrix G, the
elements of the structural error covariance matrix 8, given by expression (3) earlier, can be written

as

You = Ou1 i 2012 +02 % (30)
Vv = 012 i 922 ; (31)
Yooy = O22: (32)

Substituting expressions (30), (31), and (32) into the bias formula (9) and the MSE formula (12),

we see, after some simple manipulations, that these formulae can be rewritten as

- IJ' 0 ﬂ
H 204 o KU B
bblv (101; k1) = igzzgflzglzeiT 1F1 % i 1;%;7 ; (33)
011022 i 0f ! K —2, 2 Mk21 ko1 a1
my,, (M ika) = 12 — 1+ el z Fp =il —
Y G2 o ka1 i 2 F 22
H _o _ala 101
* ::i:g TR i (34)
where
=_ U2 i0w (35)

(110 0)7
Comparing expressions (33) and (34) with equations (3.1) and (4.1) of Richardson and Wu (1971),
we see that in this case the formulae for the bias and MSE, which hold asymptotically when
the instruments are weak in the sense of Staiger and Stock (1997), are virtually identical to the
exact bias and MSE derived under the assumption of a xed instrument/Gaussian model - the only
minor di®erence being that the (population) concentration parameter 1’1 enters into the asymptotic
formulae given in expressions (33) and (34) above whereas the sample analogue of the concentration
parameter appears in the exact formulae reported in Richardson and Wu (1971). Hence, our bias
and MSE results partially con rm the Staiger-Stock conjecture that the limiting distribution of
the 2SLS estimator obtain under the local-to-zero asymptotic framework is the same as the exact

distribution of this estimator under the assumption of a xed instrument/Gaussian model.

11



4  Approximation Results

The bias and MSE functions given in Theorems 3.1 and 3.2, respectively, of the last section are
functionals of con®uent hypergeometric functions and, thus, have in nite series representations
which are very complicated as discussed in Remark 3.3(i) of the last section. In this section, we
give approximations for the bias and MSE based on an expansion which holds as we allow k1, the

202

number of instruments used, to grow to in nity while keeping or’ the population analogue of the
~rst stage F-statistic, xed. These approximations yield simpler expressions for the bias and MSE
than the in nite series representations given by (17) and (18) above. We shall give a motivation for
the type of expansions used here in Remark 4.2(i) below; in addition, response surface regression
results, which we will present in the next section, shows our approximations to work well even when
ko1 is relatively small. First, however, we summarize our approximation results in the following
theorem:

Theorem 4.1 (Approximations): Let ;% = %j and reparameterize the bias function (9) and

the MSE function (12) in terms of ;2 and ko; so that

2 P kot 42K
le:)IV (62’k21) = 3/AL:Iil:-lz%'\/iVl:21/zei : lFl % i 1’ %’ : 221 , (36)
2 152, Lok
rr]J0|v (C ;k21) = 3/4uu3/4\/|\/1/2 el 12_[ £ q
<M M
1 1 = @ - 1-@- ka1
%Elkz“%l;z"z’zﬂ
ko i37 o Tk o ke ke 37)
knj2 -+ 2 '9272 '
Then, as kp; ¥ 1 with ¢2 “xed, the following results hold
@
M il
bb|v ((.’2;k21) = %3323/4\;\/1:21/2 1+42
o Ho T, [P
=__ i2\.
or Twg2  1+g2 Ol (38)
(b)
K 1 hIP;
Mo, (5ka) = i 75—

12



1 H 1 Ll
Hhath (L § ) — ——
kop 1462
1 ]'ﬂ M il

+Y, S/ill/ziu 1+3 >
T o 1+¢2 # 1+2
Hoy 1. M 1 T3
- i2y.
+2 1+.2 i 6 1+ ,2 + O(kd?): (39)

Remark 4.2:

(i) Note that the results of Theorem 4.1 can be viewed as having been obtained from a sequential
limit procedure, whereby we rst let the sample size T to approach in nity to obtain the asymptotic
bias and MSE under weak identi” cation and then let kp; approach in™ nity with ¢ = g held xed
to obtain the approximate formulae (38) and (39). We conjecture that our sequential limit procedure
corresponds to a case where a joint limit is taken with respect to T and ky; but where ko1 grows
at a slower rate relative to T so that ko1=T ¥ 0as T, ky; ¥ 1. In this sense, our approach di®ers
from that of Bekker (1994) and Hahn (1997), who (in our notation) look essentially at the case
where ky; and T grow at the same rate, i.e., the case where ko ¥ 1, T ¥ 14;and ky;=T ¥ ®, with
® being a positive constant. It would certainly be of interest to consider an asymptotic framework
which combines the approach of Bekker (1995) with the local-to-zero approach of Staiger and Stock
(1997), but we feel that this work is best left to future research.

It should be emphasized that our sequential limit approach is designed to mimic a typical
empirical situation where the sample size is very large, where the number of instruments is large
but of a smaller order of magnitude relative to the sample size, and where the value of the rst-
stage F-statistic is relatively small. A leading example of such an empirical situation is provided by
the well-known study reported in Bound, Jaeger, and Baker (1995), which replicates an important
study by Angrist and Krueger (1991) on estimating the returns to schooling using quarter of birth
as instruments. In that study, the sample size is 329; 509, the number of instruments is 180, and the
value of the st stage F-statistic is 2:428. We expect our approach to give good approximations
for the bias and MSE of the IV estimator in such situations.

(i) Set

v i

B, k) = WP
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#
-Zulﬂuczﬂz

Yoo T+¢2 142

(40)

so that the notation Bblv (¢ %;k21) denotes our approximation for the asymptotic bias of the IV

estimator under weak identi cation. Moreover, recall from Remark 3.3(iii) that the asymptotic

bias of the OLS estimator is given by beLS = %ﬁﬁz%\,‘\,lzzi/. It follows that, by taking the ratio of

the two, we obtain the relative bias measure
By, (k) P T oM TR T2

= i -
+ ;2 + ;2 + ;2
by, < 1+ koy 1+¢ 1+

(41)

Note that the lead term of expression (41) is given by (1+ ¢2)il = (1+ %j)il. When all available
instruments are used so that IV = 2SLS, (1 + g)il =1+ %)il is simply the relative bias
measure given in Staiger and Stock (1997), in the case where there is only a single endogenous
explanatory variable. See section 3B and, in particular, section 6A of that paper. Hence, our result
can be interpreted as giving a theoretical justi cation for the relative bias measure of Staiger and
Stock (1997) for the case of only one endogenous regressor. Note that Staiger and Stock (1997)
claims that this measure of relative bias arises from an approximation which holds for large k;

202

and/or large —. Our analysis, however, shows that an implicit assumption of holding %j “xed,

rather than making g large, as ko1 ¥ 7 is needed in order to extract such an approximation .
Moreover, numerical calculations from Staiger and Stock (1997) show that the lead term (1+ g) il
gives a very good approximation for the relative bias of 2SLS to that of OLS, except in the cases

with relatively small ky;. Hence, in the approximation (41), we include an extra correction term
‘2 Hoy Tu .2 il

kog 1+¢2 1442 (42)

to help give a better approximation when ko1 is small. We will report the results of a numerical

evaluation of our approximation in the next section.

(iii) Now, set
M T2
iy ((Zko) = Yl
bIV ¢ 1 R21 - 4uu 4\/V 2 +(_’2
M 11
+¥, 3/il(1 i 1/22)i L
e key 1+
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M T- M l
e L 1+3
WG T 2 # 1+¢2
M 1 12 H 1 T
2 otege PO (43)

so that the notation mb.v (¢ 2: ko1) here denotes our approximation for the AMSE of the IV estimator
under weak identi” cation. Note that the lead term of iy, (62 k1) is given by Y ¥l M2 (1+¢2) 2,
which is simply the square of the lead term of the bias approximation BJDIV (6%:ko1): It follows that
the variance component of the AMSE is of a lower order relative to the bias component in this
expansion, so that the variance can be thought of as being negligible relative to the bias when the
number of instruments is large relative to the value of 2, the population analogue of the ~rst stage
F-statistic.

(iv) Given the bias approximation (40) and the MSE approximation (43), we can, in fact, construct
an approximation for the asymptotic variance of the IV estimator under weak identi cation as

follows:

Vi, (¢%ka1) = mp (%kar) i (B, (6% k1))
K 2
+ ;2
¢ u q
+, 3/i1(1;1/22)i 1
uu 74y k21 1ﬂ+"’2
oy o T
y, yily2 — =
By 1. M T3
+2 — )
1+;2 !
V1

i Yoy Yah 15

- 3/4u u 3/4Vivl ]/22

1
1+:2 My 142

s

s M 1
+_—

kop 1+2

. 1
- 3/4UU3/4VIV1(1 i ]/22)k_21

_ 1

y, ily2 — -
Hoy . M 1 T3

- - i2

10 oz 12 gy ot
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= Wy, (% kar) + O(KJP): (say): (44)

The following theorem shows that both our MSE approximation m’f’.v (6% k21) and our variance
approximation ‘U’blv (¢ %;ko1) are always non-negative, as one would expect variance and MSE to
be.

Theorem 4.3: Given (2 2 [0; 1);

(a) iy, (2% kz1) . 0 and

(0) ¥y, (% ka1) . O;

where m’“.v (6% k21) and ‘@blv (6% ko1) are de ned by expressions (43) and (44), respectively.

(v) In part (e) of Theorem 3.1, we show that, for a ~xed value of the concentration parameter
102 the absolute magnitude of the bias Bt’.v ((;2; ko1) increases as the number of instruments used,
i.e., ko1, increases. That result applies to the special case where the additional instruments are
completely uncorrelated with the endogenous explanatory variable so that their inclusion leads to
no increase in the value of 1’1, In general, however, the use of additional instruments only which
are only weakly correlated with the endogenous regressor will nevertheless lead to some increase
in the value of the concentration parameter 1'1: Hence, it would be of interest to study how the
asymptotic bias and MSE functions vary with increases in the number of instruments used for the
case where the inclusion of additional instruments increases the value of 1’1 but not by enough
to increase the value of the ~rst stage F-statistic, or its population analogue ¢?. Below we give a
theorem which characterizes the derivatives with respect to ky; of the asymptotic bias function and
of our approximation of the AMSE function when ¢2.is held ~xed.

Theorem 4.4: Let bb.v (¢2;k21) be as de ned in expression (9) and let mbw (¢%; ko1) be as de ned

in expression (43). Then, it follows that:

€Y
3 <.
- - '2 J
Oibn, (Zke)i 2 K °
—@k —_ J/ZJ /4uu /4\/V e 2 o KZJ_ - KZJ_ -
> 0 (45)
and (b)
oy, (2 ko) . B T
__ v T ey il a2y =
@kZl I/‘luu/"v.v (1 1 % )kgl 1+('.2
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1 8] 1 M- K 1 qa
=y oy ily2 -
I/“uu/4vv/2k21 1+.2 1+3 1+ ;2
81 2 K '”3#
+2 ! ib !
< 0 (46)

From Theorem 4.4, we see that given a ~xed value of ¢? the absolute value of bb.v (6% ko) is a
monotonically increasing function of the number of instruments used kz; while mb.v (0% ko1) is a
monotonically decreasing function of ky1. This result suggests that there is a tradeo® between the
bias and the variance of the IV estimator as ky; increases. It should be emphasized that several
papers from the literature on the nite sample properties of the IV estimator under Gaussian
assumptions (notably, Phillips (1980, 1983)) have already noted this tradeo® between the bias and
variance, although as Buse (1992) pointed out the analysis of that literature focused exclusively
on the case where the additional instruments are completely uncorrelated with the endogenous
explanatory variable, i.e., the case where the concentration parameter 1'% is held ~xed as ky; varied.
Our result, on the other hand, shows that a tradeo® between the bias and MSE continues to hold
even when the additional instruments are somewhat correlated with the endogenous regressor, as
long as the correlation is not su=cient to increase the value of 2, the population analogue of the
- rst stage F-statistic.

(vi) Note that given the near equivalence of the formulae for the asymptotic bias and MSE when
instruments are weak in the sense of Staiger and Stock (1997) and the formulae for the exact
bias and MSE under a xed instrument/Gaussian model, as discussed in Remark 1(vi) of the last
section, our results in this paper apply not only to the weak instrument case asymptotically but
also to the exact nite sample case under Gaussian error assumptions. In particular, we note that
the exact bias and MSE of the IV estimator under the assumption of a xed instrument/Gaussian
model can also be expanded in the manner given by expressions (38) and (39) of Theorem 4.1. It
follows that the variance component of the exact MSE is also a term of a lower order in kp; relative
to the bias component, so that when the number of instruments used is large, one can think of the
variance as being negligible relative to the bias. Moreover, we note that for a ~xed value of ¢?2,
the exact bias function increases while the exact MSE decreases with an increase in the number

of instruments used, although this apparent tradeo® becomes less signi cant when as k1 becomes

17



large.

5 Numerical Calculations

In this section, we summarize the results of a number of regressions used to examine the accuracy
of our approximations of the 1V bias and MSE functions. We tackle the issue of the usefulness of
our approximations in three distinct manners. In our " rst set of numerical computations, we run
regressions where the dependent variable is the IV bias (or MSE) calculated using the analytical
formulae from above for certain values of ky1, ', and %; and the regresors are the functions of these
three parameters which are used in the approximations discussed in the previous section. Note that
based on the canonical model, the asymptotic OLS bias and % are related, as %,y = 1; Y%y = (1+{?);
and % = i{:p%u_u; where { is the asymptotic OLS bias. Thus, { = i¥%uc¥%dd % The grid of
parameters for which values of the 1V bias and MSE are calculated is: ky; = £3;5;7;9;11;:::;101g,
101 = £0;2:4:6:8; ::;;100g, and { = 30:05; j0:1; 0:15; §0:2; §0:25;:::; §1:0g: Thus, a total of
51000 unique observations are generated. Regression results are summarized in Tables 1 (bias) and
2 (MSE). Based on these ndings, a number of clear conclusions emerge. First, our approximations
based on holding "1=k,; ~xed and letting ko; ¥ 1 are very accurate for bias (see ~rst 2 columns of
entries in Table 1), relative bias (4th and 5th columns in Table 1), MSE (" rst 2 columns in Table 2)
and relative MSE (4th and 5th columns in Table 1). Adjusted R? values for these regressions range
from 0.9859 to 1.000. Second, note that each pair of regressions contains one set of regressors from
the approximation which includes rst and second order terms in the expansion, and one which
includes only the rst order term. While the t of the regressions always improves when the second
order terms are included as additional regressors, the improvement is small. For example, in column
1 of Table 1 note that our approximation yields an R’ value of 0.9998 when second order terms are
included, and an R’ value of 0.9996 when only the rst order term (and an intercept) is included.
Thus, while the second order terms are generally useful, they add little to the approximations.
Finally, note that the regression R’ values from the 3rd and 6th regression reported in each table
are based on an alternative approximation in which (1'% is “xed and kp; ¥ 1.). In particular ...
(to be lled in with approximation formulae!!!!!). Clearly, this approximation method is inferior
based on our regression results, as evidenced by the substantially lower R’ values associated with

this type of approximation.
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In order to shed further light on the usefulness of our prefered approximation as well as the
other approximation discussed above, we carried out a second set of computations. In particu-
lar, we compare the actual bias and MSE values used in the above regressions with approximate
values calculated directly from the approximations given above (i.e. rather than estimating the
coezcients associated with each regressor as was done in our rst set of computations, we used
the actual coe=cients which are given in the formulae for the approximations). A summary of our
“ndings based on these calculations is given in Figures 1 and 2, where actual bias (MSE) values are
represented by solid lines, and the di®erence between the actual and approximate values for the two
approximation methods are represented by small dash (1"1=k»; ~xed and ky; ¥ 1 approximation)
and large dash (3'* “xed and ky; ¥ 1): to be completed ...

Finally, in a third set of computations, we examined the impact that changing 1'1=k,; has on
relative bias (MSE) when k»; is ~xed (Figure 3), and the impact of changing k»; when 1%1=k»; is

~xed (Figure 4). to be completed ....

6 Summary and Conclusions

We have formalized the notion of weak identi cation within the local-to-zero asymptotic framework
of Staiger and Stock (1997), and derived explicit analytical formulae for the asymptotic bias and
mean square error (MSE) of the IV estimator. In addition, we derive approximations for these
formulae which are shown via a series of numerical computations to be very accurate. These results
generalize earlier ndings by Staiger and Stock (1997), and allow us to link systematically the
earlier literature on IV estimation. For example, we show that our results apply not only to the
weak instrument case asymptotically, but also to the nite sample case with xed (possibly good)
instruments and Gaussian errors, since our formulae correspond to the exact bias and MSE func-
tionals when a  xed instrument/Gaussian model is assumed. We also show that in the special case
where all available instruments are used and where the underlying simultaneous equations model
has an orthonormal canonical structure, the bias and MSE formulae which we obtain are identical
to the exact bias and MSE of the 2SLS estimator obtained by Richardson and Wu (1971) under
Gaussian error assumptions. This result gives a partial con rmation to the Staiger-Stock assertion,
based on intuitive arguments, that the limiting distribution of the 2SLS estimator derived under

the more general assumptions of the Staiger-Stock local-to-zero asymptotic framework coincides
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with the exact distribution of the same estimator derived under the more restrictive assumptions

of a  xed instrument/Gaussian model.
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Appendix

Lemma Al: Let b.\/;T be the IV estimator given by expression (4) and suppose that (1), (2) and

Assumptions 1 and 2 hold. Then,

" _ 1oi
vt i 0 =) Ydu¥an® Ve Vo,

where
vi = (,+ Zv;l)o(, + Zy1);
v, = (L + Zv;l)ozu;l;
and
N L L il X vy i3
Zu;l - 11 (Azlu 1 QleQxxAXu)/lluu ’
=1 a4~ =1
Zyqg = —1l]_2 (Azyv i QleQ;(leXv)%v.vz;
and where " q TR q 0
Zy >N 0 1 % _
v;1 , %1 ket

(47)

(48)
(49)

(50)
(51)

(52)

Proof: The proof follows from slight modi cation of the proof of Theorem 1, part (a) of Staiger

and Stock (1997) and is, thus, omitted.

Lemma A2: If x>0and a;c>0; thenasx ¥ 1
2 3
1F1(a; ¢ x) = 1O exyiteia) 4M Cidigi, O(jxj1P)>:
i(®) j=o 1!
Proof: See Lebedev (1972), pp. 268-271.

Lemma A3: Suppose X is bounded and suppose a;c ¥ 1 such that

im C1X _,
actl c '
Then, 2éié 3
S a)i(ixH L.
Fr@ex)=e<d  CEAIN, 55 o6ins.
i @il

(53)

(54)

Proof: The proof follows from Kummer's transform. See, for example, Slater (1960), pp.12, 65-66.
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Lemma A4: Let A2(2'1) denote a non-central chi-square random variable with noncentrality
parameter 1'1 and v degrees of freedom. Also let r denote a positive integer such that v > 2r:
Then,

h. i 202 _ Il
E IA\2,(101)¢” = 2|re|121>1(( I)J 1/+2J)
j=o AU (v+21)
102 10 M i r 102
= 2ifei= (J Y IZ(M') 1F1(%v in %V;T): (55)
2

Proof: See Ullah (1974), pp. 145-148.
Lemma A5: If the (J £ 1) vector w is distributed normally with mean vector y and covariance
matrix 13 and suppose A(¢) is a Borel measurable function. Then,
E £A(W0W)W° =uE EA iAﬁ +2(pop)¢n : (56)

Proof: See Judge and Bock (1978), Theorem 1 of Appendix B.2, pp.321-322.
Lemma AG6: If the (J £ 1) random vector w is distributed normally with mean vector p and
covariance matrix 13 and suppose A(t) is a Borel measurable function. Then,

£ Ay’ = E A AL, 1+ E A AL, 000 7)

Proof: See Judge and Bock (1978), Theorem 3 of Appendix B.2, pp. 323.
Lemma A7: Let ;22 [0;1); then,as ky; ¥ 14

@
9 Lo Ya
uk21 ko1 ¢2Ka1 _ (Ko
il — i L s ® i
~ By 11 Hi'ﬂll 1 1
T2 Nk 142 4
M M 1 T
£ 24 142 +2 1+ 2
My T 1 12 By il
+ — 8+ 12
Ko1 1+2 1+¢2
S 1 1, S 113
i32 I+ +12 5 +OKEd); (58)
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(b)

Y Y
uk21 K21 é,zkzlﬂ ’ ¢ %ka1 ’
iFh —i2—=il i
zﬂ 2 | 2 q
M e T
T+ N ke 12

1
£4i6 15 T
Ho T T2 M il
+ ! ! 12+ 20
K21 1+¢2 #} ¢?
K 1 1 K s -
i44 14,2 + 12 1+,2 + O(k&): (59)

Proof: We shall prove only part (a) as the proof for part (b) follows in a similar manner. To show
(a), we make use of a well-known integral representation of the con®uent hypergeometric function
(see Lebedev (1972) pp. 266) to write

| Y Ya
lMlkzl . kot 6%k %k
il =i L= i
L2.' 722
S P %
= 2 % oxp 1) thkeidgg
i K1 o0 2
Hy -2'ITzl
= ZlT' exp Tkorh1 (Hg dt; (60)
0
where
2 1 2
hi(t)==(tjl)+=logtj —logt: (61)
2 2 ko1

Given the integral representation (60), we can obtain the expansion given by the right-hand side
of expression (58) by applying a Laplace approximation to this integral representation. We note
that the maximum of the integrand of (60) in the interval [0; 1] occurs at the boundary point t = 1,
and as ky; ¥ 1 the mass of the integral becomes increasingly concentrated in some neighborhood
of t = 1. Hence, we can obtain an accurate approximation for this integral by approximating
the integrand with its Taylor expansion in some shrinking neighborhood of t = 1 and by showing
that integration over the domain outside of this shrinking neighborhood becomes negligible as kj;

becomes large. To proceed, we " rst split up this integral as follows:

ukzliZﬂzl H 'Zﬂzl

exp Fkothy (Hgdt = kaii2 o expTkaihy (g dt
2 0 2 1j1=" ko1
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@ exp Fkorhy (H)g dt
0
= I1+1, (say); (62)
We shall handle I, “rst. Note that
IJ' . ﬂz 1i1:pk_21
% exp Fkohy (H)g dt
0
I‘J'k21 i 21-[ Ya ng%u 1 ﬂ(k21i2)=2
- exp i lip—
2 2 Kot T
H n p_ 07 p— (ko1 12)=2
= O kaexp j¢° k=2 1j1= (63)

Now, turning our attention to I, we rst make the change of variable v =1t j 1 and rewrite I; as

u M7z,

ko1 i 2

2 i1="kar

exp Fko1h2(v)g dv (64)

where
;2

ha(v) = —v + = L Iog(l +V) i i Iog(l +V): (65)
With this change of variable, we note that the maximum of the integrand in expression (64) in the
interval [ j 1=pk_21; 0] now occurs at the boundary point v = 0. To apply the Laplace approximation

to expression (64), note that, by the Taylor theorem, we have, for ilzpk_gl - v - 0; that

_ > 0) _Z .7
W) i - hz_—l(o)v': - Y )
i=1 ! 7! u2[._pl_._pl_l]
_ ¢z _ Z
- izul H .pz_ﬂﬁl uppiﬂ:
7! 2'" i Tka il
= "(ka1) (say); (66)
-7
where "(kz21) = O(ky;?). It follows that
© DOy - - Dy, (67)
so that
Mg 27140 ¢ Axno0, P
> . EXp ka 222V g (k) v
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M i21%0
- 212' exp Fkorha(v)g dv
il= ko1 ~
Mo 12120 € Pxnog $2
- exp ko1 2_7|v'+"(k21) dv; (68)
2 ipi_z M
where the derivatives of h,(v) evaluated at v = 0 have the explicit forms:
oo LT
1+ 2
O = = iP= (69)
21
and
hD 0y = (: 1)iil(j & 12" DY
O =G0 ) -5 — fori=2:6: (70)
2 " ka

Let I3 denotes the upper bound integral in expression (68). To evaluate I3, we rewrite it as

D | AN a
I3 = % ) exp©k21h°2(0)v
C ALy
XnP© i
exp Koy V! exp Fko1"(Ko1)g dv: (71)

i!
i=2

Expanding the latter two exponentials in the integrand above in power series and integrating term-

by-term, we obtain, after some tedious but straightforward calculations, the approximation

b LT T T p, Ty 1,

I _ Kot i 5 1 1 1
3 = 2 ko1 1+¢',2 ko1 1+C'.2
bl

+0(kj3): (72)



By a similar argument, it can be shown that the lower bound integral in expression (68) can also

be approximated by the right-hand side of expression (72). It follows that

M 52170
2 2' o exp Fkaiha(v)gdv
THRSEE | i SVR. PR TR |
-t ot L,
T 142 kot 142 Tt 142
1,7 n, MM 15 - M il
+o 1T 4 L 1 8+12 —1
1+2 koo 142 1+¢2
v T Hoy m,*
- i3\
i%2 17t o O (73)

Finally, the result given in part (a) follows immediately from expressions (63) and (73). 2

Proof of Theorem 3.1: To show part (a), we note that by Lemma Al
_ 141
Wr =By i 7o D dutan? viTva T wa (say). (74)

Moreover, given Assumption 3, we have by Theorem 5.4 of Billingsley (1968) that
h i

lim E(WT) = lim E Dy j
Jim (W+) Tl!f_nl T i o

i -1
= E %u¥nivi've

= E(W): (75)

It follows that to derive the asymptotic bias of By, we need merely to give an explicit form for

5

1.1
E %Gu¥nAVvitvy
To proceed, note that, given (52), we can write

Zya = Zyah+ Zygva, (76)

where Zyiv1 » N(0; (1 § %%)lx,,) represents the projection error and is, thus, independent of Z,:

Next, we rewrite the limiting random variable W as

O
W = 3745113/4\/\/2 Vll V2
1 .1if .
= Ydu¥n *+ Zv;l)o(l +Zy:1) it *+ Zv;l)ozu;l

1 .1f a.
= %hu¥n? (F+Zya) (P +Zya) T+ Z01) (Zva + Zurwa); (77)
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so that making use of the law of iterated expectations, we have

M 1 .1f o ﬂ’
EW) = Ez. Ez.jz. Ydu¥an? (X + Zya) (2 + Zy1) i (* + Zy1) (Zuath + Zuzv)
— 3 % 3 i% h£ 0 nil 0 ! .
- /4uu /4vv EZV (1 + Zv;l) (1 + Zv;l) (1 + Zv;l) Zv;ll/2 ) (78)

where Ez,.,(¢) and Ez_ iz, (¢) denote, respectively, the expectation taken with respect to the
marginal density of Z,.1 and the expectation taken with respect to the conditional density of Z1
given Zy1:

Now, to evaluate the right-hand side of (78), we note that

h i

2 303 £ 1 02 %14 0> .1

BGu¥an® Bz, (Y +Zy1) (P +Zy1) (P Zya) Zuat )

1 -1 Q. 1

= 3Al&u%\/lvz EZV;l (1 + Zv;l)o(l + Zv;l) it (1 + Zv;l)o(l + Zv;1 i 1)1/2
hE o. i

(A +Z,) (@ +2Zy1) T (79)

1 .1 1 .1
— 2 121 - 32 12
= YGu¥an Y § YaGu¥any Ez\,;l

Note further that
(1 + ZV;l) » N (1; |k21)

5o that (T + Zy;1)'(* + Zy;1) » A (*"): It follows from Lemma A5 that

" #
gLl 1o5i 1
Tadu¥an? Yo i Yadu¥an o TE AZ—(:LO:L) (80)
ko1+2
Finally, applying Lemma A4 to (80), we obtain
hb i
lim E T 0 = EW
Tl!ml IV;T 1 0 (W)
151
= 3éﬁu%vlvz e 3 . 3
ava j
TR S S (G0 )
1j —— et ™ - .
2 i=o j! i(%l+J+1)
1.1
= %@%\,‘S i £‘IT ’ -
102 a0 (S ka1 ka1 10
1j — eiz—27 Fp = 2=+1,— ; (8
2 ik +1) 22 T2 7
Now, applying the recurrence relation
z1F@+1°+1z) = ° F(@+1,°2)
i 1F1(®;°;2)] (82)
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and noting that 1F; (®;®;z) = e, we obtain the desired result.
To show part (b), note that % > 0; % > 0; and % + 1 > 0: Hence, direct application of

Lemma A2 yields

" #
H 0 ﬂ k K 0 T[
T U | =) ko kan , . %
Atk 1 - el i(%+1)1':l 22 b
" #
i3 u101ﬂ 2l i %) i(%_'_l) ala “1011-[]1' 0q:31 ¢
= 3,2 3 21 = _ 15 o _ [ R A}
= G 1 g 5 e’ 2 i(%"'l) (@) €2 5 1+030*')
1 ;1 £ i sl ¢a
- %GU%VVZ% 1 i 1+O(Jl 1]' )
= O(¥'3ji); (83)
which proves (b).
To show part (c), note that
s -
102
Gk *1lizka) - LT
lim 1 =lim —— =0: (84)
koy ¥ 1 (3kor +1) ke®1 Koy +2
Hence, direct application of Lemma A3 gives
" #
1. i My T o (k) Iszl K21 a2 T
3,2 3 21 = _ 15 - = [
Bdu¥an® 2 1 5 € zi(%+1)lFl 212"'1- 5
RENVE | #
1 .1 101 EUER ﬂ) a0 j R
= Wadwh 1§ — efZ —p2oe 1+ 0(kaj'Y)
2 i(%+1)
2 3
Lol Mo T 1. .. ¢
= %&u%\/lvz%41 i — = 1+O(jk21j'1) S
>
151 £j N
= Y%au¥n% 1+ 0(koj')
1.1
which proves (c)
To show (d), note that from expression (81) above that
2 < 3
102 J
b, (Fiker) = it 4 1 SNTE S S IC 0)
b K1) = w4l —— e'"z - -
v e 2 T
2 X 3101,j+1 3
1.1 _ala W 1
= 3/4&”3/4\/'\/21/291 ie'z 2-| K - g (86)
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Let 2

202

f(2'1ky) = Ql iel =

and note further that
f(101 —

and from the proof of part (b), we know that

lim (1% ky) =

1019 ]

Moreover, note that, under the assumption that
2

3 R
101 J+1

OF (2% ko) 2

0;ka1) =1

101 J+1

2
]!

X 1

87
5 +D) 0

j=0

(88)

(89)

ko1 . 4

102 J

2

1 X3+

1,
g = @

1202 !

202

(%ﬂ)i it (eej)

101 ]

g 2
=1 @
2 3 .
101 !

G )ei

il)!(%+iil)

&

(!5 +1)

g LT

()e'2

3

X ]

i=0

201 J

2 (521

g +i

i D3+ )

+jil)

i
-
=% 3

X

i+

102 J

2

(k21 +J -

D(*g +J)

1

i -
N N

%0
201
0. XK J =

2

INC )

1

()ei2

X

il
j=0 ¥
102 J

2
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where term-by-term di®erentiation is justi ed by the absolute convergence of the in nite series in
(81). It follows from (88), (89), and (90) that

0 - f(1"1;ky) - 1 (91)

and is a monotonically decreasing function of (1'1) for (2'1) 2 [0; 1): Moreover, from (86), we
have that
1 .1
ibp, , (1'% ka1)j = hithdudans £ (1125 ka1) (92)

so that jby, (1"1; k»1)j depends on 11 only through the factor (2%1;ky1): Hence, it follows also
that jbs, (1"1; k»1)j is a monotonically decreasing function of ' for 11 2 [0; 1):
To show (e), note that due to the absolute convergence of the in nite series in (81), we can

di®erentiate term-by-term to obtain

=eiz 3

@ka1 j=o ! kL

1071 202 X 5 -l
@f( lk21) i 2 2 ’2 > O (93)
+
Hence, f(1"1;k,1) is a monotonically increasing function of ko;. It then follows from (92) that
jb’o.v (1"1; k,1)j is a monotonically increasing function of ko1: 2
Proof of Theorem 3.2: To show part (a), note that by Theorem 5.4 of Billingsley (1968) and

Lemma Al above, we have that

hb i ,
T|I!mlE VT I 0 = T|I!m1 E(WT)

= E(W?)

= E[hudiivivavil: (94)

Hence, as with the proof of part (a) of Theorem 3.1, the derivation of the AMSE only entails the
derivation of an explicit form for E [%yu¥ahitvi tvavil]:

To proceed, note by expressions (52) and (75) that we can write

W2 = Yyu¥l v1 Wavit

il
= 3/4uu3/4\/ 1 (1 + Z 1) (1 + Zv ) ! (1 + Zv;l)o(zv;ll/2 + Zul:vl)(zv;ll/2 + Zul:vl)0

(+ Zya) O+ 20) O+ Z) (%)
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so that making use of the law of iterated expectations, we have

E(W?) = Y% hil £
" i 0 %i1 0 0
EZv;1 EZu;ljZ\,;l (1 + Zv;l) (1 + Z\,/;l) (1 + Zv;l) (Zv;ll/2 + Zul:vl)(zv;ll/2 + Zul:vl)
£ o, !

*+2Zyy) (+ Zv;l)o(:L +Zy:1) '

= %uu%vig £
B 1 01 %l o 0 1 = 142 ¢
Ez,., (+Zv1))(*F+Zv1) " (F+2Zva) ZvaZygh+ (10 )k,
£ o
*+Zv1) (* ":;ZV;l)O(l +Zy1) ! !
B £ o

= 3/4uu3/4v'v11/22EZ\/;l (*+ ZV;,l)O(1 +Zy;1) it *+ Zv;l)ozv;lz?/;l(1 +Zy;1)

£ Q.

(1 + Zv;l)o(l + Zv;l) :;1
) £ o
+3/4uu3/4v'v1(1 i 1/22)EZV;1 *+ Zv;l)o(l +Zy1) il
3t a.

= YulaWEZ,, (+Z, 1)0(1 +Zy1) @ +2Z, 1)0(1 +Zy1i 1)

E+Zvri 1) (1+Zvl) (1+Zv1) *+2Z 1)

Hhuutly (L i )z, (1 +Zy1)'(* + 2y, ) .

n
= Y% 1i 2Bz, (1 + 2y (3 +Zyr) @ Z)
£ .
+Ez,, (t+ Zy1)'(* + ,ZV;l) i V(A +Zy1)(* + Zy)'2
£ 0 oLy
(1 + Zv;l) (1 + Zv;l) '
M. 142 ll 3£ o} Y

1 .
1;22 EZV;l (1 + Zvil)o(l + Zv:l) it ; (96)

where Ez,.,(¢) and Ez, ., jz,.,(¢) are expectation operators as de ned in the proof of part (a) of
Theorem 3.1.

Now, to evaluate the expression to the right of the last equality sign above, we note that since
(T +Zy;1) » N(,i i) and (2 + Zy1)' (2 + Zy1) » AZ (2"1); we can apply Lemma A5 and A6 to
(96) above to obtain

C A |
. 1
EW?) = %% 1j2E e 1
2 A P A 1, 3
1 1
0 0
1 4E Ai(lol) |k21 + E W 11 5 1
k21+2A ') k21+4
My ] 17 o7
%2 Aﬁ21(101)
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Finally, applying Lemma A4 to expression (97) above, we obtain
hb iy ,
lim E T0 = EW
Tl! 1 Iv;T1 0 (W9)
= aé,u%vivll/zz £
2 b
1i(1°1)ei%x 2 i(F+1)
=

202
LIS S 1. 20)

= 1y 1) ke g T8

2
2142 i (k2

By successive application of the recurrence relation

z,F(@®+1,°+1z) = ° 1IF1(®+1;°,2)

i 1F1(®;°;2)] (99)

noting that ;F; (®;®; z) = e#, we obtain the desired result.
To show (b), note that % >0;%1 §1>0,% >0,%1 +1>0; and ¥ +2 > 0; for ko1 _ 4;
and, hence, we can apply Lemma A2 to each of the con®uent hypergeometric functions ;F1(¢;¢;¢)

which appear in (98) to obtain
101
My, (F3ko1) = Huuh W + Gudah et 7 £
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101112 202 101ﬂ 24 ¢
1 i 09;51
;) 5 €7 -  '1+0(jih

Mo, T2 Cals Mo, Tiz ¢
R R
Ky : 1/22'"2&% Eﬂ 1|1+00101ji1)¢

22 2 “

H 0, T2 a0 M0, T il ¢
A S e R

— y, il 3y, 3, 01y2 JE’- i 909551 ¢o
= Y M+ Y A2 i1 1+ Oy

= O(jr'1jidy; (100)

which proves (b).
To show (c), note that each of the 1F1(¢;¢;¢) functions appearing in expression (98) satis es the

conditions of Lemma A3 so we may apply this Lemma to obtain

Mo, (31ka1) = Stk + i £

Moy T ala 1 101' i1
> "1+ Ok )’

4 eiTS -3

Mo, T2 201 1 101'
+ o el 3 2 — 1+O(Jk21]'1)

My el

1'1/2

2 4 OGkorj i)
2 1

3

Ca0a 1 ala . C
i (MMetT 2 r—e 1+ 0(kajh) O
K21

= ¥l % + O(ikaej ')
Yuu¥ah 12 asky ¥ A; (101)

which proves (c).
To show part (d), it suzces to show that
0
@ ZSLS (1 B k21)

@(101)

for all ~xed integer k1 _ 4: To proceed, write (98) as

101
mblv (101; k21) = %UU/ 1/2 %uu%vivll/zze i 2 £
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PP LG e R (G ))
3 -
V1

102 J
1i Rk 1
2200 &g
102 j+1
2 1
i (k—§1+j) (102)

i2
j=0

Now, noting that term-by-term di®erentiation of (102) is allowed due to the absolute convergence

of the series involved, we have

@my (X' kp1)

@(101)

=y yily2ai 5

/4uu/4vvl/2 e £

8 3 j
- 101

St K G+ 7 1

=" 2

i &S+ +ii D

-

- j=0

w

L
102 j+1
T 3 1 i
[ | a - - -
2 L, B D+
2

- 3101'j+1
X (+2) 7 1
i (L +j+1)(% +j)
310:|_'j"'2 3
) z 1
PN TN CET ECT)

+
=0

2 0 ,J'il
+9”151/22ﬂ>"<1' - 1
22 N S )
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3101 j+1 >
R S g
Vi b & DT
T

1
= 3 Yguded 12t 7 ZFA+B+C+ Dg; (say), (103)

where A, B, C, and D are the expressions inside the square brackets. Focusing on A and letting

i =]j +1, we have that

-

2
A= =
2 j=o A B+ +ii
3 - 3
102 |
X 1
i DR+ D3 +i0 2
2 2 0 ’J
_ MillgX @D (+ii2)
2 o 1Y B+ i+
3 . ’i 3
X7 5+ )
! i! Kot by + 5 1) +i 52
i=1 ’ (2 ')(2 |I)(2 |l)
2 3 ’j
203
_ Hlgx 7 (3 +ii2)
2 i B (DT DR+
3 - 3
- 102 J
X2 1 Z
Y 1 G D& i DE D)
2 3 7. 3
2 ko1 i =2
+i s
= l 2 2I ko kgl L )kZl g: (104)
2 o VBN FIIDE+IID
Following similar calculations, we see that
2
- 102
_ X 7 (ko1 i 2) .
B = i! ko1 ko1 ka1 (105)
j=o ¥V B FDEE i DR 2)'
3
101 J
“151/22'"5( A 1
C =i 142 il ko1 Sy (ko : ; (106)
2% : 3GRHDER+IGD

=0
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3 =
102 J

X = (i1

- : 107
CE TR gy aen

D =
j=0

Combining (104) - (107), we see that

0my (ko) b ) a0a
Sy T 5w T £
8 1'[2 N 0 ,J'
SHilex 7 (% iji2

LG o NG N EIC g I )

N[ =

N =

= .
3 =
1202 J

X3 = (ka1 i 2)

IEENG s )G R R RGN R

+
j=0
101 j

3
My pwelTx 1

i . :
IR N C e

Jil)

VO +

102 J

X 7 R

i 1 &+ NEFiinT

= Z oy yily2ai—
2 /4uu/4vv/2 e £

i?

101 J

8 3
2H T 22 M +ji2

I &g +ii2

> 2
- j=0
3 <.

101 J

X = (ka1 § 2)ij

N G NG N )
3 .

+
i=0
102 J
HaeTx F 1
B TR CT ) I R
3

101 J

Xz (¢ i D¢ +ii?
I (NI D(E+i 12T

i?2
j=0
u, T N
§ 3/4uu3/4vi\/11/22ei 2 £
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102 J
L111T:9( z % iji2
P LG St G 2 NG SR I )
=1
102 J
X =z (ko1 i i
oo 1Y DM TN+ 2)

3 R
102 J
”1i%2ﬂ5K - 1
242 =0 I+l

= v J
310:|_ J
LXK = (7%- 1)j
Vi 18 & D&+ iD& i)
j=0 2 TV
102 J
1 X = (%lal)(%lm) =
1 1 N - N
G D I (%lﬂ)(%lﬂ D& +ji2)7
T
= ! 3y, 311240
= > Yiuual, e = £
( 5
i(kai 3)
% i
101 J
Mlx (kat i Bkor +j +10)
R N C RGN

101 ]
”1i%2ﬂ5K -
2,0 FenE DT

(108)

Note that (1 j %%)=2%* > 0 for %, & 0 and for integer ko1 _ 4 and for all positive integer j,
(K3, i 173k21 + j +10) > 0 so all three terms inside the curly brackets of expression (108) are

negative. Hence, we deduce that
Omy, (2" k1)

@(101)

<0; (109)
which proves part (d). 2

Proof of Theorem 4.1: To show part (a), note that direct application of part (a) of Lemma A7
to the bias expression (36) yield

, 2. — 123 §1=2y
bblv (6 ’k21) /“ui,}zﬁ‘vv 1/2

1+¢2

ﬂ_Hl'lTlilﬂ- M il

£ -t
K1 1+2
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' 1
+ 2 — + 12
1+¢2 kay 142 ° 1+¢2
H T H 7,7
) i3
i32 172 12 T3 2 + O(k);
Y 1 T
= %3323/4\;\/1:21/2 1 + (12
W, T Tl [P
— + O(kd2); 110
o 137 1ap (k3D); (110)
which completes our proof of part (a).
To show part (b), we rst rewrite expression (37) as
My (% ko) = Yty 7 . .
-iu 1 = u@-l-@-ézkﬂ ei%Zl
ul/zz k211_f£ 11 q 2 Iu’ 2 9 p
; ki3 Tkai2 @_2_@_1,62@1 oi k2
sznzﬂu 2 “Hz"z"%T
_ Ko i 3 ko1 i 4 = @ - @ é2k21 i62'2<21 i . (111)
where we have made use of the identity
Ci®i)F@®®2) = Cil)iR®°il2)
i®1F(®+1;°2) (112)

in rewriting expression (37). (See Lebedev (1972), pp. 262, for more details on this and identities
involving con®uent hypergeometric functions.) Applying the results of Lemma A7 to the con®uent

hypergeometric functions in expression (111) above, we obtain

..11A ) LV i ”1'"“1'”
My, (G5 ka1) = W 5 .




> A ! Y
12”iﬂ2”1ﬂ5+1ik% u@_ﬂzul'ﬂ
kot  1+¢2 lig 2° 142
g i‘ﬂu . T 6uiﬂu 1 ﬂz_zui'ﬂu 1 T
"ok 142 ke 1+:2 "7 ka 142
M 2 K T2 o TH 3
1 1 1 1
+12 — +20 — i
21 142 ko1 1+2 A .
ul'ﬂzu 1 T4 ul'ﬂzu 1 s 15 3 °
44 — 12 — i 1 Ka
k21 1("'62 ka1 1+2 li g
£“k21_ T 1 '|T_ Hl'ﬂli 1 1T+4L11'|TL1 1 11,
2 ! 1+42 " koo 1442 kop  1+4¢2
Moy T 1 s M 1 Py 1 I}
i2 — +8 — +
a1 1442 ka1 1+2
H, oM s H, oM T4
12 1 i 32 L 1
ka 1+42 ! 4 k21 1+¢2
Ho Tou 1 5)
+12 — + i3
12 or 1+ ,2 okt (113)
After some tedious and straightforward calculations, it is possible to show that
"H 1, Ho T il
; 1 171 1
L 2. — 3 3 1112 - - -
My, (675 K21) Yauuagy 1+.2 Z ko 1442
R I R R
R - +2 —
kot  1+¢2 4 kar 142
91 1 MTH 114
- — + i2
16 ko1 1+¢2 Olkzr)
=YY M . 1 e u_l i %Zﬂuiﬂu_l b
= Twu’sy 72 T+42 152 Koy 1+ 2
vl 1 T 1 TA 91 1T Vi 1 1,
+ — 1+3 —
koy  1+¢? 1+42 1+¢2
i6 757 TOK (114)
which proves part (b). 2
Proof of Theorem 4.3: To prove (a), write
K 1 hIP;
my (0% Ko1) = YauudalMP
b, (&7 Ka1) “uu¥ipy .2
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3 il
¥l (L i 1/22)
k 21 1."+c
H il

- 1 1
3y, Yy dly2 =
ey o T
+2 1+ .2 i6 1+ ,2 (115)
Note that to show mb.v (6% K1) . 0, it su=ces to show that
T T oo T
for ¢2 2 [0; 1). To proceed, let
Ry il
X = T+ 22 (117)
and de ne
"(x) =1+ 3x+2x% j 6x% (118)

Note further that to show the inequality condition (116), it is suzcient to show that " (x) _ 0 for
x 2 [0;1]: Observe “rst that "(0) =1 _ 0 and "(1) = 0, so that "(:) is non-negative at the end
points of the interval. Next, we need to analyze how "(x) behaves in the open interval (0;1). To

do so, we take the derivative of * with respect to x to obtain

"i(x) =3 +4x j 18x%: (119)
i _ ¢
Note that *’(x) is a continuous function which is 0 at x = 1=9 "1+ p58=2 Y, :534, positive for

£ i, P t¢ . i, i, P— ¢ @ :
x2 0;1=9 1+ 58=2 , and negative for x 2 1=9 1+ 58=2 ;1 . It follows that *(X) is mono-

: . . £ i, P 0 : : i, P— ¢
tonically increasing for x 2 0;1=9 1+ 58=2 reaching a local maximumatx =1=9 1+ 58=2 .

- _ ¢ n
Moreover, " (x) is monotonically decreasing for x 2 '1=9"1 + Io58=2 ;1 reaching a value of 0 at
x = 1. Part (a), thus, follows immediately.

To prove (b), write

K 1 q
Vo (3ko1) = %uu%it(L -1/22)—
1v _|_
. . T wo,oT
3 3 ily2
+/4uu/ s Kot 1+(,2 1+7 1+(',2
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o, T ulﬂs#

i6 T+;2 i?2 T+;2 : (120)

Note that to show ‘@blv (6% Ko1) . 0, it su=ces to show that

I U IR CE TR
1+71_|_—(;2 i61+—62 i21_|_—(;2 .0 (121)
for 2 2 [0; 1). Again, to proceed, let
Ry il
X= 137 (122)
and de ne
u(x) = 1+ 7x j 6x% j 2x3; (123)

so that to show the inequality condition (121), it is su=%cient to show that p(x) _ 0 for x 2 [0; 1]:
Observe st that u(0) =1 _ 0 and p(1) = 0, so that u(:) is non-negative at the end points of the
interval. Next, we need to analyze how p(x) behaves in the open interval (0; 1),. To do so, we take

the derivative of p with respect to x to obtain

W(x) =7 j 12x j 6x%: (124)

Note that u’(x) is a continuous function which is 0 at x = I07_8=6 i 1Y :472, positive for x 2

0; I07_8=6 i 1, and negative for x 2 ilo7_8=6 il " It follows that p(x) is monotonically increasing
forx 2 £0; I07_8=6 i 1¢ reaching a local maximum at x = Io7_8=6 i 1. Moreover, u(x) is monotonically
decreasing for x 2 ip7_8=6 il; 10 reaching a value of 0 at x = 1. Hence, part (b) is also proved. 2
Proof of Theorem 4.4: To show part (a), we note that we can rewrite the bias expression (36)

in the alternative form

2 3'2k21’j+1 3
. 2. = 3%3i%12 i iészlX 2 1
bblv(c 1ko1) = Wfu¥anh4l j et 2 j (k21 + )
j=0 ' 2
1.1
= %du¥nHF (% Ka1) (say): (125)

Taking the partial derivative of f(;2;kz1) in (125) above with respect to k»1, we obtain
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2

@f((’,z; kzl) _ _ ¢%kog 2 .
@ko1 2

3

it &

e i
_ p‘(-’Zﬂ)"((j +1) &212<21 1 1
1 = - T

where term-by-term di®erentiation above is justi ed by the absolute convergence of the series

(126)

involved. Now, take i = j + 1, we see that

2 3 -
- -Zk
Bfak) _ gl KPS (i)
Bhn 2 L D+
2 i
- .2
iu_zﬂXJ i (g +jil)
o A (DR ID
.2 ]
iuz'ﬂ)—.( - (g +iid
jo, I RADEETID
L
, j+1
+H11T>1( 1‘252] 1
2 j=0 j! (%J‘“LJ)2
2 3 -
1'[ ) 2K J
= eiézlz( : l—l_z X L_ZZl (k1)
A TG o )& Y
3 3
2 j+1
Hlﬂ)—( 42ko1 1
5 | k - 2%
A TN )
2 % 3
22 Sk ok o-
= ei_I;Zl ?' ” - k.l . g>0 (127)
j=o 4 BF+DEE+IID

Since T(;?; ko1) is nonnegative, as shown in the proof of part (d) of Theorem 3.1, it follows that

- - i o1
Ty, (675 ka1)” = jhitGudn? F (6% kar) (128)
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and, thus, ‘bblv (¢%; ko)™ is a monotonically increasing function of koq for ¢2 ~xed. Part (a) is, thus,
proved.

Finally, we note that part (b) is true if

1+3 1+.2 +2 T+.2 ib 172 .0 (129)

but the inequality condition (129) was already shown to be true in the proof of part(a) of Theorem

4.3. Hence, part (b) follows immediately. 2
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Table 1: Regression Results Based on Bias Approximations®

Dependent Variable j j > 1V Bias 1V Bias=OLSBias
Regressor TN A
intercept 0.003 -0.056 1.2E-7 0.002 -0.022 0.599
(66.42) (-112.2) (-1.2E-5) (211.9) (-246.8)  (640.3)
101=k,, -0.047
(-195.1)
(P2 0.599
(342.3)
(R % 2% (F02=kz1) -0.047
(-195.1)
(EP9E 2y (1 + 1012k ) 11 1.000 1.006
(76860)  (6885)
(i a2V (L + P2mkpn) i lzkyy  -2.244
(-2347)
(G I T2 (L + P02=ky1) i22ky; 4561
(1300)
(29I T2y (1 + 1022k, ) 132k -2.320
(-841.3)
(1+ 101=ky,)il 0.997 1.028
(53651)  (6427)
(1 +202=fyq) il=kyy -2.237
(-2455)
(1 +202=kpq) §2=kyy 4.850
(1587)
(1 +202=kyq) i3=ky -2.471
(-1104)
Rz 1.0000  0.9989 0.7165 1.0000  0.9988 0.4274

1 Notes: All regressions are run using bias ~gures (as dependent variable) generated according to the analytical formulae given

above, and/or using least squares bias (which is equal to (%ﬁf,z%w

jl=2

)%). All parameters are de” ned above. In addition to least

squares regression parameter estimates (non-bracketed entries in the table), t-statistics are reported (bracketed entries).
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Table 2: Regression Results Based on MSE Approximations?

Dependent Variable j j > IVMSE IVMSE=0OLSMSE
Regressor Tftrnnnnnnnnned nnnnnnnnnnnnnd
intercept -0.128 0.029 -0.299 -0.007 _ 0.004 0.396
(-65.86)  (16.33)  (-3.628)  (-24.32) (19.71)  (345.8)
(292 ym)? 0.396
(238.9)
(G I 2)4)2 (P022kz1) -0.038
(-104.7)
((hie I 2)h) 12=ka1 0.298
(17.98)
01k, -0.038
(-126.1)
1=ko1 8.059
(7.543)
(1 + 101=ky,) 02 1.002 1.001
(1472)  (1889)
(203 2021 + 1=Ky, )2 0.998 0.999
(10350)  (10952)
(l -+ 101=|(21) i 1=k21 6.098
(54.89)
((hia I 2)h) 2 (1 + 202=Kp1) T 1=kyy -0.016
(-81.68)
(1 + 102=Kp) il=kyy 2.341
(47.20)
(1 + P01=kpq)i2=kyq -4.464
(-13.79)
aa+ 101=k21) i3k, 6.536
(10.02)
aa+ 101=k21) P4k -3.119
(-8.224)
((hi ¥ "2 y8)? (1 + 203=kpp ) i 1=kyy 1.217
(132.8)
(it W22 (L + W02k ) i22kp; -6.126
(-97.87)
((hi %2 8)? (1 + 102=kpp ) i 3=kyy 10.51
(83.79)
(FE2UIT2y)2 (1 + 101=kyy ) i 4=kyy -5.622
(-77.19)
Rz 0.9998  0.9996  0.5494 0.9893  0.9859  0.2392

1 Notes: See notes to Table 1. All regressions are run using mse ~gures (as dependent variable) generated according to the

analytical formulae given above, and/or using least squares mse (which is equal to (3/4uu3/4\,i\,1)1/22).
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