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Abstract

We empirically measure the effects increasing competition on equilibrium
bidding in procurement auctions. In common value auctions, the winner’s curse
counsels more conservative bidding as the number of competitors increases.
First, we estimate the structural parameters of an equilibrium bidding model
and test for the importance of common value components in bidders’ preferences.
Second, we use these estimates to measure the effects on increasing competition
on both individual bids as well as winning bids (ie. procurement costs).

We analyze bid data from construction procurement auctions run by the New
Jersey department of transportation in the years 1989-1997. Our results indicate
that the winner’s curse is particularly strong in a large subset of these auctions.
For the median bidder, the percentage markup increases from 50% with 2 bidders
to above 70% with 10 bidders. Furthermore, the median procurement cost is
increasing in the number of bidders as competition intensifies: for example,
the median costs rise about 30%, as the number of bidders increases from 3
to 6. These results emphasize a policy-relevant setting in which asymmetric
information can overturn the common economic wisdom that more competition
is always desirable.
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1 Introduction

How does an increase in competition affect equilibrium bidding in an auction? Accord-
ing to the Walrasian analogy of markets as auctions, an increase in the number of bidders
should encourage more aggressive bidding, so that in the limit, as the number of bidders be-
comes arbitrarily large, the imperfectly-competitive auction setting approaches the efficient

perfectly-competitive outcome.

While this is true for private value auctions, it may not be true in common value auctions in
which the competing bidders are differentially (but incompletely) informed about the value
of the object which they are trying to win. A distinctive feature of common-value auctions
is the winner’s curse, an adverse-selection problem which arises because the winner tends
to be the bidder with the most overly-optimistic information (or “signal”) concerning the
object’s value. Bidding naively based simply on one’s information would lead to negative
expected profits, so that in equilibrium, a rational bidder internalizes the winner’s curse by

bidding less aggressively.

In common value settings, then, an increase in the number of bidders has two counteracting
effects on equilibrium bidding behavior. First, the increased competition generally leads to
more aggressive bidding, as each bidder tries to maintain her chances of winning against
more rivals: we call this the competitive effect. Second, the winner’s curse becomes more
severe as the number of bidders increases, and rational bidders will bid less aggressively
in response: we call this the winner’s curse effect. If the winner’s curse effect is large
enough, the possibility arises that prices could actually rise as the number of market-makers
increases Recently, Bulow and Klemperer (1999), Krishna and Morgan (1997), and Bordley
and Harstad (1996) have pointed out this possibility; as these authors note, the winner’s
curse is a prominent example where asymmetric information can overturn the common

economic wisdom that more competition is always desirable.

In this paper, we investigate the empirical importance of these considerations using bid
data from construction procurement auctions run by the New Jersey department of trans-
portation in the years 1989-1997. We address two questions in turn. First, we test for the
importance of common value components in bidders’ preferences. This is important be-

cause winner’s curse considerations only arise in common value settings. Second, provided

!More precisely, in the procurement setting, even if any bidder’s signal z is an unbiased estimate of the
unknown (but common) project cost w (i.e., E(xz) = w), conditional on winning the signal is an downwardly-
biased (in the case of procurement auctions where the lowest bid wins) estimate of w (i.e., E(z|win) < w).
This implies that if a bidder were to naively bid her unbiased signal z, her expected profits would be negative.



we find some evidence of common values, we investigate how an increase in the number of

competitors affects equilibrium bidding.

Specifically, we quantify two comparative statics which have been the focus of theoretical
work. First, does an increase in the number of competitors leads a given bidder to bid more
or less aggressively, in equilibrium? Theoretical examples in Smiley (1979) and Matthews
(1984) have shown that the result often depends on the parametric assumptions made about
the information structure, and we measure the effects given the parameter estimates for our
model of equilibrium bidding. Second, and more important for policy purposes, does the
winning bid rise or fall as competition increases? Previous theoretical work (eg. Wilson
(1977), Milgrom (1979)) have specified limit laws for the winning bid, as the number of
bidders grows arbitrarily large. In contrast, we measure these effects for the (often modest)
range of bidders which we observe in real-world auctions. To our knowledge, we are the

first to address these issues empirically.

The procurement setting is particularly pertinent for the issues raised above. Although
exact figures are difficult to come by, McAfee and McMillan (1987) (pg. 3) state that “the
national, regional, and local governments in a typical modern market economy together
spend between one-quarter and one-third of national income on goods and services [...];
of this amount, perhaps one-half [...] is paid by governments to firms.” Many of these
payments are for contract work awarded via low-bid auctions identical to that considered
here, so that there appear to be important efficiency and revenue lessons to be learned from

the results.

Our results show that different types of contracts differ significantly in the degree that pri-
vate and/or common value components are important. Auctions for highway work contracts
are very close to a pure common value auction, while both common value and private value
components are important in auctions of bridge repair and road paving contracts. Further-
more, our results indicate that the winner’s curse is particularly strong in highway contract
auctions. Simulated bid functions show that for the median bidder, the percentage markup
increases from 50% with 2 bidders to above 70% with 10 bidders. Furthermore, winning bid
simulations indicate that the average procurement cost is strictly increasing in the number
of bidders as competition intensifies: for example, the average costs rise about 30%, as the
number of bidders increases from 3 to 6. For these auctions, the optimal number of partici-
pants (which would minimize expected procurement costs) would be 5. Clearly, then, there
are cases where the “law of demand” is violated: an increase in competition leads to higher

procurement costs.



In the next section we describe the model of equilibrium bidding which we employ in our
work. In section 3, we introduce our data on New Jersey department of transportation pro-
curement auctions, and discuss institutional features which affect our model specification,
which we introduce in section 3. In section 4 we discuss our estimator. Section 5 contains
the empirical results, and in section 6 we discuss the policy implications of our results.

Section 7 concludes.

2 Equilibrium bidding in low-price procurement auctions

In our empirical work, we employ a structural approach which allows us to recover bid-
ders’ equilibrium strategies. These are required for our investigation into how increasing
competition affects equilibrium bidding behavior.? We build on the previous literature
by considering a model where bidders’ valuations have both private and common value
components. Such a model seems especially warranted for procurement settings, where
uncertainty about future input prices could drive common values but differences in input

efficiency across firms could drive private values.?

Next, we briefly describe equilibrium bidding behavior in single-unit, low-price procurement
auctions. We delay discussion of the specification of contractors’ costs until later. (Since
much of this section is standard single-unit auction theory, readers who are familiar with

this literature may wish to skip to the next section.)

An auction has n risk-neutral contractors (indexed i = 1,... ,n), each of whom has a cost ¢;

associated with completing the project, and receives a private signal x; about ¢;. Contractor

*The seminal empirical auction papers in the structural vein are by Paarsch (1992) and Laffont, Ossard,
and Vuong (1995). Most recently, important progress has been made in the structural estimation of private
value auction models (cf.Bajari (1998), Guerre, Perrigne, and Vuong (1999), Li, Perrigne, and Vuong (1998),
Deltas and Chakraborty (1997)).

3In previous work (Hong and Shum (1997)), we have empirically implemented an equilibrium ascending
auction model also allowing for both private and common values. Previously, Bajari (1998) and Pesendorfer
and Jofre-Bonet (1999) have modeled procurement auctions in a private-values framework. Furthermore,
Hendricks, Pinkse, and Porter (1999) and Bajari (1999) have also considered common value models recently,
but they consider pure common value (i.e., “mineral rights”) models of competitive bidding. Our model has
both common and private values.

In a previous study of procurement auctions, Thiel (1988) concluded that observed bids do indeed reflect
winner’s curse considerations, but we take the analysis one step further by showing what this implies about
equilibrium bids and, more important, equilibrium procurement costs.

“The assumption of rational equilibrium bidding which characterizes our approach is potentially at odds
with findings in the experimental literature (cf. Kagel and Levin (1986)), which find that bidders only learn
to internalize the winner’s curse (i.e., bid “rationally”) through experience. In the procurement setting,
however, the bidders are by and large experienced firms, so we feel our assumption of rational bidding is
justified.



i observes only x; prior to the beginning of the auction, but not any of the costs, ¢;, for

Jj =1,...,n, or any of her rivals’ signals, x;, for j # 7.

The contractors’ costs and private signals are assumed to be distributed according to the
distribution function F(ci,... , ¢y, o1, ... ,x,;0) parameterized by the vector of parameters
0, which are the parameters of interest in the estimation process. As we describe in the next
section, we consider a specification which allows both common and private value components

in bidders’ cost functions.?

The low-price auction proceeds as follows: observing z;, contractor i chooses a bid b; to

maximize his expected payoff, given the other contractors’ equilibrium behavior:

bi = argmaxpCy; j2ile;|z1,... zn [(b —¢)1 (wj > 8]_% (b),5 # l) |$z']

where s;, (-),4 = 1,... ,n) denotes the equilibrium bidding strategy (or bid function) for

contractor ¢ in an n-bidder auction.

We assume that contractors are symmetric, in the sense that the joint distribution F' is
exchangeable with respect to the indexes 1,...,n.5 As is standard, we assume that the
random variables (ci,... ¢y, 21,... ,2,) are affiliated.” Given these assumptions, there is
a unique pure-strategy Bayesian Nash equilibrium in which each contractor bids according

to identical, monotonically increasing strategies (i.e., s; (-) = s (), Vj).®

The first order condition of this maximization problem is (cf. (Milgrom and Weber, 1982,

5In the pure private value paradigm, ¢; = ; V i (i.e. each bidder knows his true valuation for the object)
while in the pure common value paradigm ¢; = ¢, V i (i.e. the value of the object is the same to all bidders,
but none of the bidders knows the true value of the object; here the individual z;’s are noisy signals of the
true but unknown c).

5Milgrom and Weber (1982) provided the seminal analysis for the symmetric versions of most of the usual
auction forms. However, much of the recent theoretical work has focused on asymmetric cases (Maskin and
Riley (1996), Bulow, Huang, and Klemperer (1999), Lebrun (1999)). The extension to asymmetric bidders
will resemble the treatment in Campo, Perrigne, and Vuong (1998), and is the focus of ongoing research. In
the next section we discuss an explicit test of the symmetry assumption using our data.

cf. Milgrom and Weber (1982). Affiliation roughly implies that large values for some of the variables
make the other variables more likely to be large than small. Given two n-vectors #; and Z; which are i.4.d.
realizations from F', let T denote the componentwise maximum of Z1 and Z2, and x the component-wise
minimum. Affiliation means that the likelihood of (Z,x) is at least as high as that of (#1,Z2). In our
log-additive specification (described below), we actually make the stronger assumption that z1,...,z, are
mutually positive correlated.

8Symmetry and monotonicity imply that b; > b; < s, (2;) > s, (2;) < ; > x;. Analogously, the event
that bidder i wins can be simplified: 1 (z; > s; ) (bi),j # i) =1 (z; > s3" (bs),j # i) = 1 (minj; 75 > z3),
since ¢; = s, ' (b;) in equilibrium.
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a differential equation which defines the equilibrium bidding strategy s, (z;). In this equa-

sn(x;) = = vp (x4, i), (1)

tion, vy, (+,-) is the conditional expectation

vp(z,y) =& |¢le; =2, min z;=
n(@:) ihos gellmligi 0 0)
where the expectation is taken over the posterior distribution of ¢; given the joint event
(.TZ' = T, Milje[1 n);ji Tj = y), and f_; (-|-) denotes the conditional density of min;-; z; con-
ditional on z;. Integrating out this differential equation, the equilibrium bid function can
be analytically expressed as (Weber (1983)[pg. 174]):

sn(@i) = Ey_yjz [on(Y—is y—i)|y—i > i (2)

where y_; = maX;e[y p);jzi z;°, and the n subscript emphasizes that for a given z;, the

equilibrium bid s, (z;) varies for different 7.

2.1 Winner’s Curse vs. Competitive Effect

The competitive and winner’s curse effects alluded to earlier are distinguishable in equation

(1) above. From this equation we see that an equilibrium bid b; = s(x;) is governed by two
the §(@)(1-F_i(zi|zi))

fi(ilzs)

important components: (1) term and (2) the v, (x;, x;) term. Given
our affiliation assumptions, an increase in n will increase the second term vy, (z;, x;), holding
z; fixed (cf. (Milgrom, 1982, section 6)).1° This is the winner’s curse effect. On the other
hand, an increase in n will generally lower the first term, because the 1 — F_;(x;|z;) portion
of the numerator of the first term is essentially the probability of winning the low-bid
auction for a given signal x;, and this probability shrinks to zero as n increases. This is the

competitive effect.

* vn (o, @)dF, .. (c
9Note: Ey iz Vn(W—i,y—i)|ly—: > 5] = fm°° Un (o, )dF, | (aly—; > ) = f” ( JAEy_ija( ) Plug-
1- Fy—i\ﬁ(x)
foo f(s)

ging in the identity F(y) = exp (— v F(S)ds>, one obtains an expression analogous to that given in

(Milgrom and Weber, 1982, Theorem 14) (which is for the high-bid auction).

Weber’s expression is perhaps the most intuitive, especially in comparison with the equilibrium bid strategy
for the second-price auction, which can be expressed as £,_; [v(y—:,y—i)|y—: = x4].

'OThis is only true for common value models, but not for private vale models. In ongoing work (Haile,
Hong, and Shum (2000)), we are using this insight as the basis of a formal test for the presence of common
value components, based upon recent developments by Guerre, Perrigne, and Vuong (1999) and Hendricks,
Pinkse, and Porter (1999) in the nonparametric estimation of auction models.




In private value auctions, the winner’s curse effect is absent, so ceteris paribus we should
expect the markups to decrease as the number of participants increases, due solely to the
competitive effect. In auctions where bidders’ costs have both common and private value
components (as is the case in the model we employ), it is unclear which effect will dominate:
this is an empirical question, which can only be answered once one has estimates of the

structural parameters in bidders’ preferences.

Next, we describe the particular procurement setting which we study in this paper, and
discuss issues related to applying the model of equilibrium bidding described in this section

to this empirical setting.

3 New Jersey Department of Transportation Construction Services Pro-
curement Auctions

In order to examine empirically the questions we have raised, we collected a dataset of bids
submitted in procurement contract auctions conducted by the New Jersey department of
transportation (NJDOT) in the years 1989-1997. Over this period, the NJDOT conducted
1018 low-price sealed bid auctions of contracts to procure various services. For our empirical
work, we focus on auctions for the three types of jobs: highway work (worktype A in what
follows), bridge construction and maintenance (worktype B), and road paving (worktype C),
which together account for over half of the contracts auctioned during the sample period.

See table 1 for summary statistics for these auctions.

Clearly, the variation in the average winning bid across types of contracts indicate that
the jobs proscribed in these contracts are markedly different. For that reason, we estimate

separate parameters for each type of contarct in our empirical work.

Table 1: Breakdown of auctions by job type

Worktype #auctions Avg. Stdev., Total Total
winning bid winning bid bidders winners
(19898, mil)

2 Grading & Paving 150 0.97 1.11 109 33
3 Bridge construc./repair 194 1.48 1.82 171 74
4  General highway 423 4.97 9.61 274 121

Summary statistics Table 2 presents statistics on the observed bids, broken down according

to the number of bidders in the auction. Most auctions have between 3-7 bidders. Impor-



tantly, there is a generally increasing (but by no means monotonically so) trend between
number of bidders and both submitted and winning bids. For example, the average bid
in the worktype A auctions rises from about $1.8 million in 4-bidder auctions to over $10
million, in 10-bidder auctions. While this is consistent with the hypothesis that the winner’s
curse (which leads to more cautious — higher — bids) dominates the increased competition
effect (which leads to more aggressive — lower — bids), a more likely and non-strategic
explanation is that these auctions are characterized by selective participation and contract
heterogeneity, so that larger projects (which, from a purely cost perspective, command
larger bids) attract more bidders. This suggests that controlling for contract heterogeneity
is crucial to measuring the effects of the winner’s curse, and we discuss this issue further

below.

Before proceeding to discuss specification issues, two remarks about the equilibrium bidding

model we have just described are in order.

3.1 Contractor reimbursement schemes: is competitive bidding appropriate?

The contracts offered by the department of transportation are characterized by contractor
reimbursement guidelines which have both cost-plus (government assumption of all cost
overruns above the bid) and fized price (contractor assumption of all cost overruns above
the bid) features. Specifically, a contract specifies L tasks, and an associated L-vector
of quantities ¢, which must be performed by the contractor.!’ The contractor essentially
“bids” a L-vector of prices p at which it is willing to perform the required tasks.!?> Generally,
the government assumes all cost increases due to unexpected increases in job quantities ¢,
and prices out these cost increases at the prices bid by the contractors. This is the cost-
plus aspect of these procurement contracts. On the other hand, the contractor is bound to
supply its services at its submitted prices p; losses arising from unanticipated cost increases

are not borne by the government. This is the fized-price aspect of the contract.

This cost-plus aspect of these contracts raises several concerns. First, the perfect insurance
offered by a cost-plus contract could potentially lead to moral hazard problems since a
contractor has little incentive to keep costs low by either taking cost-saving measures or
working at optimal productivity levels. However, as McAfee and McMillan (1987) (see also
McAfee and McMillan (1986)) point out, such post-contractual opportunism will not affect

"This is a simplification, but given that we have data only on the total bids submitted, this example’s
purposes is solely illustrative.

12Note that the contractor is free to bid p above actual cost (or actual expected cost) in order to earn a
margin on the contract.



Table 2: Summary statistics on bids

Worktype Number F#auctions Average Std. dev. Median Average
of bidders bid (1989%; mils) bid (19898%; mils) | winning bid

A 2 12 5.894 14.954 1.482 5.601
A 3 31 1.692 2.000 1.042 1.520
A 4 46 1.843 1.919 1.124 1.605
A 5 51 3.380 5.223 1.204 3.015
A 6 58 4.513 8.310 1.369 3.982
A 7 46 4.435 9.751 1.406 3.526
A 8 40 6.365 12.567 3.000 5.229
A 9 39 8.658 15.438 4.016 6.640
A 10 22 10.612 12.828 4.745 9.256
A 11 20 15.087 30.432 2.951 11.471
A 12 17 11.704 10.935 7.739 10.263
A 13 12 10.652 14.879 3.767 8.984
A 14 8 10.523 12.264 4.229 9.350
A 15 8 9.274 10.338 4.885 8.274
A 16 3 2.506 1.053 2.477 1.544
A 17 4 9.999 5.029 9.830 8.583
B 2 12 1.265 0.651 1.171 1.167
B 3 7 1.577 1.244 1.368 1.432
B 4 24 1.672 0.495 1.193 1.386
B 5 12 1.049 0.730 0.999 0.819
B 6 23 1.566 1.265 1.175 1.286
B 7 23 1.278 1.120 0.968 1.001
B 8 16 2.644 3.496 1.064 2.241
B 9 19 1.755 1.439 1.266 1.349
B 10 14 1.480 1.245 1.065 1.141
B 11 7 1.149 0.811 1.010 0.888
B 12 10 1.932 1.899 1.019 1.398
B 13 13 2.261 2.457 1.063 1.869
B 14 5 1.784 1.496 0.728 1.462
B 15 3 8.472 6.032 6.953 6.873
B 16 5 2.658 2.816 1.254 1.952
B 17 6 3.056 3.825 1.352 2.415
C 2 9 0.737 0.418 0.679 0.664
C 3 21 0.629 0.308 0.650 0.546
C 4 23 1.086 0.624 0.968 0.910
C 5 34 1.566 2.266 1.068 1.347
C 6 27 0.826 0.674 0.543 0.705
C 7 19 1.469 1.011 1.320 1.273
C 8 8 0.961 0.608 0.963 0.789
C 9 4 2.424 0.939 2.045 2.059
C 10 5 1.087 0.518 0.951 0.955
C 11 4 1.164 0.801 1.056 0.844
C 12 1 1.231 0.098 1.221 1.105
C 14 1 0.152 0.057 0.138 0.094
C 15 1 0.453 0.049 0.448 0.374
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the bidding process per se; if the bidding is relatively competitive (an assumption which
is maintained through this analysis), any rents arising from such opportunism should be

competed away in equilibrium.

Second, and more troubling, contractors have no incentive to submit cost-based bids in an
auction for cost-plus contracts for which their eventual payoff is independent of their costs;
instead, each contractor has an incentive to bid as low as possible, in order to maximize
the probability of winning. This result is potentially problemmatic for our analysis, which
focuses on (the non-degenerate case of) equilibrium bids which as are functions of firms’

underlying costs.

However, we believe our assumption of competitive bidding to be justified considering cer-
tain institutional considerations and patterns in the data. First, repeated interactions may
render reputational effects important in this procurement setting. Many of the contractors
in these auctions bid on many contracts over time, and likely derive a large part of their
revenues from doing contract work for the state.!3 The NJDOT maintains a list of “pre-
qualified contractors” which all firms must be on in order to be eligible to bid; given that
the government observes ez-post compensation from all contracts, it is likely that firms who
are judged to have acted opportunistically will be struck off the list. The potential loss of
future bidding eligibility may counteract contractors’ incentives to submit bids which are
non-indicative of their costs. Secondly, contractors’ costs are monitored on a fairly regular
basis (every few weeks, from conversations with NJDOT officials). The original submitted
bid must already indicate clearly projected materials costs, labor costs, and labor hours

required. Deviations from these estimates must be rigorously justified. 14

Most convincingly, however, the raw data seems to support the competitive bidding hy-

pothesis. For a subset of the auctions we study, we were also able to obtain data on the

5

ez-post compensation. The regression equation of (log) compensation'® on (log) winning

13Tn our data, we observe 421 distinct bidders in our dataset, and each firm submits bids in an average of
around 15.86 auctions in our dataset. Successful bidders are even more active: in our sample, firms which
are awarded at least one contract bid in an average of 29.43 auctions.

“The standard text by Halpin and Woodhead (1998) contains examples of typical cost-plus contracts
(appendix E), as well as a description of cost control/monitoring techniques which are widely used in practice
(chapter 14).

15Note that we never observe a firm’s actual costs: the basis for firms’ compensation are the per-unit costs
submitted as part of the bid, which presumably already include a margin above actual costs.
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bids is:
0.0080 1.0158
(0.226) (0.0166)

R? =.928, N =291

log(compensation) = ( ) log(winning bid)

(3)

indicating no systematic overruns (insignificant constant) and a strong correlation between
compensation and the bid (as is consistent with competitive bidding). In fact, cost under-
runs — which are inconsistent with any post-contractual opportunism scenario — occurred
in 132/291 of these auctions. In any case, there is no evidence of systematic underbidding,

which would be reflected in systematic overruns.'®

3.2 Collusion and capacity constraints: is symmetry assumption appropriate?

Collusion is a chronic concern in procurement settings. Generally, collusion is one reason
which could lead to ex ante asymmetries among the contractors, which our symmetric model
rules out. Recently, Bajari (1998) and Pesendorfer and Jofre-Bonet (1999) have focused on
other sources of asymmetries across contractors due to, respectively, geographical location

and capacity constraints.!”

We exploit the panel nature of our dataset (the availability of observations of bids by
the same contractor submitted across different auctions) to explicitly test the symmetry
hypothesis. More precisely, under our assumption of ez-ante symmetry, each contractor %
in an n-bidder auction identically wins the auction with probability % Let T, ; denote the
number of n-bidder auctions in which contractor ¢ bids, in our dataset; if these auctions are

independent over time (which we also assume), the expected number of n-bidder auctions
Tn,i
e

that contractor 7 wins is Wn,i = If Wy, ; denotes the actual number of n-bidder auctions

won by contractor 4, then X, ; = (Wn,z’ — T’;’Ll) is approximately distributed normal with
. Tp,i(n—1)
zero mean and variance ™% —=.

For each type of contract, then, let X denote the Xp,i’s averaged across contractors ¢ and
across the number of bidders n. By a standard non-iid central limit theorem, the normalized

average

X

= % N(0,1)
Var (X)

Z

811 the context of the bidding example above, however, under-runs occur chiefly because a job has required
less time or materials than the contractor originally anticipated in submitting its bid.

"They have also both focused on independent private value model, which simplify the analysis of bidder
asymmetries greatly.
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under the null. Table (3) contains Z’s and the associated p-value, for each of the three
types of contracts we include in our analysis. Remarkably, in each case, we certainly would
not want to reject the null of symmetry. Furthermore, the same result holds even when we
restrict the sample to observations where Tj,; > 5 (since the normal approximation of a

binomial random variable is generally valid for a large number of trials).'®

Table 3: Test for symmetry

Worktype Fobs® Z=-—2—  p-value
Var(X)
Across all observations
2 363 -0.0000169 0.99999
3 793 -0.0000058 >0.99999
4 1190 -0.0000027 >0.99999

For observations where M,, ; > 5

2 42 -0.0002378 0.99810
3 53 0.0021586 0.99828
4 178 -0.0001771 0.99986

“Each observation is a pair (n,%) where the datum is X, ; = (Wnl — T’;”' )

Despite the convincing nature of these statistical results, we would like to raise an impor-
tant caveat. Our test has most power against alternatives which imply that the ez-ante
probability of winning differs across contractors: these include capacity constraints and

geographical asymmetries!?

, as well as asymmetric bid-rotation schemes where some cartel
members are allowed to win more often than others. We have tested and cannot reject
the hypothesis that, ex ante, the probability of winning any auction is identical across all

participants.?®

18 Although not reported here, the same results obtain when we further restrict T, ; > 10. In this case,
however, there are not many observations left.

19Note that our symmetric model allows fully for asymmetries may not exist at other junctures of the
bidding process. For example, our model (and these results) do not rule out the possibility that capacity
constrained contractors choose not to participate in particular auctions. What we test is that the bidders
who choose to participate in a particular auction are ez-ante symmetric. Our results imply that capacity
constraints and geographic differences may affect the decision to participate more than the amount to bid.

200n the other hand, this hypothesis is indistinguishable from a perfectly symmetric bid rotation collusion
scheme (similar to that considered by Porter and Zona (1993)) involving a full cartel where the non-winning
bidders submit “phantom bids” which have no probability of winning. In such a case, and assuming an
n-bidder cartel, each contractor wins % of the auctions; if there are T auctions, then, each bidder wins
a fraction % of them, which is observationally equivalent to an environment where each bidder faces an
identical probability of winning. However, the large number of bidders vying for each type of contract
during the sample period (cf. column 5 of table (1)) would appear to render full cartels very difficult.
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4 Specification and Estimation

4.1 Specification details: the Wilson log-additive model

Next, we describe the specific parameterization of contractors’ costs which we employ. We
follow Wilson (1998) in choosing a log-additive form for the cost function ¢;.2! In particular,
we focus on a symmetric version of Wilson’s log-additive model. Contractor ¢’s cost ¢; is

assumed to take the form
Ci = a; X W,

where a; is a bidder i’s private cost from undertaking the project (which could includes
differences in labor efficiency between firms), and w is an unknown cost component which
is common across all bidders (including, for example, uncertainty in future materials costs).

In other words, ¢; is the product of a common value (w) part and a private value (a;) part.2?

We assume that w and the a;’s are independently log-normally distributed: letting w = logw

denote the natural log of w, and a; = loga;, then

W = mtey ~ N(m, o2)

4; = a+eq ~ N(a, o2).

Each bidder is assumed to have a noisy signal of her cost of fulfilling the contract terms,

x;, which has the form
T; = C; X €5.

Here z; is a contractor i’s noisy estimate of the unknown cost ¢;. e; = exp{s;&;} in which
&; is an (unobserved) error term that has a normal distribution with mean 0 and variance
1. If we let & = log¢; and i; = log 7;, then conditional on &, %; = &; + €., ~ N(&;, 02).2

Ow, 04, and o, are parameters to be estimated. Since m and a always appear together as

a sum in this manner, we will not be able to estimate both parameters, but just their sum

21See also Wilson (1983), in which a similar specification was considered for a symmetric first-price auction.

22Given that ¢; represents firm #’s costs, there is a natural interpretation of the common component w as
an index of unknown future input prices, and a; as a “quantity index” of inputs (where the amount of each
input required depends on firms’ efficiency levels). Standard assumptions (cf. (Varian, 1992, ch. 9)) on the
production technology enable one to aggregate the inner product of vectors of inputs and input prices as the
product of a single price and quantity index.

22Note that bidder i observes only one signal z;, and is not assumed to be able to distinguish between its
two components a; and w X e;. Wilson (1998) allows for this by assuming a diffuse prior assumption on the
common value w (i.e., oy — 00).
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The relative magnitudes of the o’s are indicative as to the relative importance of common
and/or private value components in bidders’ preferences. As o, — 0, bidders’ uncertainty
about a common component to costs disappears, and the model resembles a pure (corre-
lated) private values model. As o, — 0, the importance of the idiosyncratic component
in bidders’ valuations falls, implying a pure common value model. As o, — 0, bidders’
uncertainty about the common component w disappears, making the model a correlated
private value model, but one in which bidders’ imperfectly observe their private value (since
oe > 0).%

4.2 Estimation approach: monotone quantile estimator

Equation 2 shows how assumptions on the joint distribution F(z1,v1,... , Ty, v,; 6) induces
a joint distribution for the equilibrium bids, which we observe. We include 6 explicitly
as an argument in s(z;,0) to emphasize this dependence. Given that the distribution
of sp(z;0) is likely to be quite asymmetric, even if we assume any individual xz to be
symmetrically distributed?®, we estimate the parameters via quantile restrictions, which
try to match the “shapes” of the distributions of the observed bids and the s, (z;6). As
is well-known, quantile estimators are more robust to outliers in the data than estimators

based on matching the centered moments.

Two insights drive our estimation procedure. First, the quantiles of a distribution F(x)
are invariant to monotonic transformations of the random variable z. Second, for our
symmetric first-price auction, the equilibrium bidding strategies sz, (z;6) are monotonic
transformations of the unobserved signals  ~ F(z;6), where F (---) denotes the marginal

distribution for a single signal.2

In particular, q%" (@), the 7x-th quantile of the equilibrium bid function for the i-th auction

is just saz; (27, ,0), the equilibrium bid function evaluated at z,, the 7,-th quantile of the

24m, the mean of the prior distribution of w, could potentially include a “cost-padding” component which
represents the bidders’ common opportunities to engage in cost-inflation activities while undertaking the
project. In this way, we accommodate moral hazard issues which are otherwise absent from our analysis.
We feel that this is adequate since, as McAfee and McMillan (1987) note, equal cost-padding (or “shirking”)
opportunities across bidders will simply shift up bidders’ costs by an equal amount, and not affect equilibrium
bidding,.

%5In short, this is a private value model where bidders don’t observe their private value model; it can be
turned into a standard PV model where we redefine the private value as Ec;|z;.

26Recall that log  is normally distributed.

*"For our log-normal model, z,, = exp (¢®~" (&) + ), where ®(-) is the standard normal CDF, and p
and o are, respectively, the mean and variance of log z,, .
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marginal distribution Fyy, (z;6).28

Our estimator § minimizes the quantile objective function:

T M; K

QUO)=D_>> ps (bz'j —q" (ka;a))

i=1 j=1 k=1

where the function p,, (:) is defined as
pr, (2) = (1, — 1(z < 0)) z.

There are two important features of this estimator. First, it relieves (dramatically) the
computational burden associated with simulating the moments of the equilibrium bid dis-
tribution. Second, this estimator has a formal appeal since the quantile restrictions follow
wholly (and solely) from the theoretical result that the bidding strategies are monotonic
transformations of the signals in equilibrium. Such an estimation approach is potentially
very useful in other incomplete information settings where the equilibrium strategies (or the
“policy functions”) are monotonic transformations of the unobserved types: for example,
nonlinear pricing (and, more generally, mechanism design) models appear very well-suited

to this approach.??

5 Estimation results

Table 4 presents estimates of the four parameters of the benchmark model. In the discussion
below, standard errors are enclosed in square brackets ([---]).

Recall that the model resembles a private value model as 0. — 0, and resembles a pure
common value model as g, — 0. The small estimated o, for all three types of contracts
(0.051 [0.219] for worktype A; 0.006 [2.593] for worktype B; and 0.023 [0.153] for worktype

28The same insight appears implicit in the War of Attrition example considered in Milgrom and We-
ber (1985). More recently, Athey (1998) derives general conditions under which monotonic pure strategy
equilibria will obtain in games of incomplete information.

Powell (1984) used the same intuition to derive a distribution-free least-absolute deviations (LAD) es-
timator for censored linear regression models: in his case, the monotonic censoring operation preserved
the quantiles between the distribution of the additive error term and the (censored) dependent variable.
(Manski, 1994, section 4.4) labels these “quantile independent monotone models”.

2°Tn these models, the policy function p(z) is often constrained to be monotonic in the type z in order
to be implementable (i.e., satisfy incentive compatibility). See (Fudenberg and Tirole, 1991. 257ff.). More
recently, Florens, Protopescu, and Richard (1997) have also developed a general estimation methodology
for games of incomplete information, which requires inverting the equilibrium mapping of types to actions
for each given set of parameter values. Our approach avoids this by exploiting the monotonicity of the
equilibrium strategies and the invariance of distribution quantiles to monotonic transformations.



C) suggests that all these auctions can be described as predominantly pure

auctions.30

Table 4: Parameter estimates: baseline specification
Standard errors in parentheses
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common value

Worktype: A B C
Parameter:

Ow 0.371 (0.163) 1.338 (0.386) 0.542 (0.016)
Oa 0.051 (0.219) 0.006 (2.593) 0.023 (0.153)
Oe 0.642 (0.244) 0.161 (0.059) 0.614 (0.004)
I -0.288 (0.332)  0.069 (2.024) -0.105 (0.014)
Simulation draws:

Ry 50 50 50

Ry® 100 100 100

R3¢ 50 50 50

“Number of simulation draws used in calculating quantiles of equilibrium bid s, (x; 6)
*Number of simulation draws used in calculating v, (z, z; 0)
‘Number of simulation draws used in calculating s, (x;0)

While striking, this finding is not wholly surprising, given the upward trend in both average
and median bids observed in the raw data (cf. table (2)). As discussed earlier, this upward
trend can be explained, abstracting away from all else, as indicative of the less aggressive
bidding caused by the winner’s curse, which only occurs in common value auctions. How-
ever, a more likely and non-strategic explanation is that these auctions are characterized
by selective participation and contract heterogeneity, so that larger projects (which, from a
purely cost perspective, command larger bids) attract more bidders. This suggests that con-
trolling for contract heterogeneity is crucial to measuring the effects of the winner’s curse,
and next we explore specifications which explicitly accommodate this possibility by allow-
ing the (parameters which characterize the) distribution of signals in auction ¢ to depend

explicitly on M;, the number of participants in auction .3!

30In general, given the parameter restrictions that o4, 0w, o are all > 0, it is not always straightforward to
test whether any of the ¢’s is equal to zero, the lower bound of the parameter space. However, nonstandard
tests need be employed only when testing joint hypotheses that two or more of the o’s are equal to zero (cf.
Andrews (1998), Wolak (1989)); a standard one-sided ¢-test is valid for univariate tests.

31'While this is admittedly reduced-form, it is sufficient for addressing the questions at hand. An explicitly
structural model of contractors’ participation decisions is beyond the scope of this paper, and would not aid
in measuring the effects of an increase in the number of competitors on equilibrium bidding.
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Table 5: Parameter estimates

Control for selective participation: parameterize u = po + 1 * n + fia * n?

Worktype: A

Parameter:

Ow 1.495 (0.406)  0.944 (0.054)  0.905 (0.077)
Oa 0.126 (0.197) 1.649 (0.247)  0.978 (0.032)
Oe 0.685 (0.205)  0.376 (0.640)  0.362 (0.211)
o -1.712 (0.924) -0.361 (0.388) -1.656 (0.510)
11 0.353 (0.308)  0.097 (0.148)  0.421 (0.177)
42 -0.018 (0.017) -0.004 (0.010) -0.026 (0.014)
Simulation draws:

R.° 50 50 50

Ry 100 100 100

R3¢ 50 50 50

“Number of simulation draws used in calculating quantiles of equilibrium bid s,(x; )
’Number of simulation draws used in calculating v, (z, z; 0)
‘Number of simulation draws used in calculating s, (x;0)

5.1 Robustness check: controlling for selective participation

First, we allow pu;, the mean of the log-costs ¢; in auction ¢, to have a quadratic trend in

M;, the number of participants in auction %:
pi = po + pa* <i +pg * M7 (4)

and estimate pg, 11, and po as parameters. The results from these specifications are given
in table 5.

Allowing the means to differ depending on the number of bidders does lead to changes in
the parameter estimates for the important o parameters. While we continue to reject the
importance of private values in the worktype A auctions (0.126 [0.197]), we can no longer do
so for the auctions of the other types of contracts. The point estimate for o, in the auctions
of worktype B and C contracts are much larger than before (1.649 [0.247] for worktype B,
and 0.978 [0.032] for worktype C). From these results, we conclude that auctions for highway
work contracts are very close to a pure common value auction, while both common value
and private value are important in auctions of bridge repair and paving contracts. These
findings support our a priori expectations, since the generally longer duration of highway
work contracts imply a greater impact of uncertainty concerning future input prices, which

we believe to be the main driver of common values.
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The positive estimates of p; for all three worktypes are consistent with the hypothesis that
auctions with more bidders feature larger contracts; correspondingly, the negative estimate
for the quadratic coefficient us for these worktypes indicates that this positive relationship

only holds at smaller values of M;.

5.2 Robustness check: Random effects for contract heterogeneity

While the preceding specification is still restrictive because all contracts of the same work-
type and with the same number of bidders are still assumed to be homogeneous, we next
explicitly allow each contract to be heterogeneous by employing random effects in the spec-

ification.

More precisely, we assume that u;, the median of the signal distribution for auction i, is
drawn from a normal distribution with mean +; and standard deviation o, and independent
across auctions. Furthermore, we parameterize v and o, as a function of the number of

bidders M; in auction i:

Yi =0 + 71 * M; +v2 % M}
0y = exp (s + 74 * Mi + 75 % M)

where (79 — 75) are parameters to be estimated. Note that this specification allows p; (the
median signal for auction ¢) to be a random (across auctions, and from the econometrician’s
point of view) function of the number of bidders M;. In the previous specification (equation
(4)), the median bid p; is a deterministic function of M; (and the same across all auctions
with the same M;).

Table (6) contains parameter estimates from this specification. Instead of reporting esti-
mates of v1,...,7s directly, we report the more easily interpretable estimates of vy, and
Oyprs for M =2,...,15.

Qualitatively, the above result that worktype A auctions can be described as almost pure
common value auctions, while both private and commonvalues are important for the other
types of contracts, remains with these results, although the magnitudes for the ¢’s are gen-
erally smaller across all three worktypes. Below, we will graphically consider the qualitative

differences in these magnitudes in terms of predicted bids.

As for the unobserved heterogeneity parameters, the estimates indicate that for the work-
type A contracts, the means of the heterogeneity distribution grow larger as the number

of bidders increases, supporting the selective participation hypothesis (i.e., that larger con-



Table 6: Parameter estimates

Robustness Check: Random effects
Worktype: C
Parameter:
Ow 1.061 (0.074)  0.265 (0.023)  0.149 (0.075)
Oa 0.295 (0.259)  0.405 (0.033)  0.549 (0.090)
Oe 0.760 (0.055)  0.473 (0.052)  0.259 (0.237)
Yo -1.533 (0.066) -0.059 (0.029) -1.114 (0.069)
3 -1.444 (0.075) -0.209 (0.032) -0.847 (0.070)
Y4 -1.360 (0.091) -0.329 (0.037) -0.624 (0.071)
s -1.282 (0.109)  -0.420 (0.042) -0.444 (0.074)
6 -1.210 (0.128)  -0.481 (0.047) -0.308 (0.076)
Y7 -1.144 (0.147) -0.513 (0.052) -0.216 (0.079)
s -1.084 (0.164) -0.516 (0.058) -0.167 (0.082)
Yo -1.030 (0.179) -0.489 (0.063) -0.162 (0.085)
Y10 -0.983 (0.193) -0.432 (0.069) -0.201 (0.088)
Y11 -0.941 (0.206) -0.346 (0.075) -0.283 (0.091)
Y12 -0.905 (0.216) -0.231 (0.082) -0.409 (0.094)
13 -0.875 (0.225) -0.086 (0.089) -0.578 (0.097)
Y14 -0.852 (0.233)  0.088 (0.097) -0.791 (0.101)
Y15 -0.834 (0.239)  0.291 (0.106) -1.048 (0.105)
Oryg 0.162 (0.017)  0.438 (0.014)  0.520 (0.020)
Ong 0.174 (0.014)  0.437 (0.010)  0.511 (0.013)
Ons 0.188 (0.011)  0.440 (0.006)  0.502 (0.008)
Onys 0.204 (0.008)  0.445 (0.005)  0.493 (0.005)
One 0.222 (0.006)  0.453 (0.005)  0.485 (0.005)
Onq 0.241 (0.005)  0.464 (0.006)  0.477 (0.006)
Ong 0.264 (0.005)  0.478 (0.007)  0.469 (0.007)
Orye 0.289 (0.006)  0.496 (0.007)  0.462 (0.007)
Oy10 0.318 (0.007)  0.518 (0.007)  0.455 (0.008)
O 0.351 (0.007)  0.544 (0.007)  0.448 (0.010)
Oryis 0.388 (0.008)  0.575 (0.007)  0.442 (0.014)
O3 0.431 (0.010)  0.612 (0.009)  0.436 (0.020)
Oia 0.479 (0.016)  0.655 (0.014)  0.430 (0.027)
Oy 0.535 (0.025)  0.706 (0.021)  0.425 (0.035)
#tcontracts 406 177 150
Simulation draws:
Ry 50 50 50
Ry® 100 100 100
R3¢ 50 50 50

“Number of simulation draws used in calculating quantiles of equilibrium bid s, (x; 6)
’Number of simulation draws used in calculating v, (z, z; 8)
‘Number of simulation draws used in calculating s, (x;0)
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tracts attract more contractors). However, the increasing values of 0,,, suggest that there

is a greater degree of heterogeneity in auctions attracting a larger number of bidders.

Table 7: Contract-specific covariates: Highway-work contracts

Variable N Mean Std Dev  Minimum Maximum
Total Auctions || 415

NYe 410 7588.57 737.28 6234.50 8967.49
PHIL?® 410 6005.94 521.88 5083.90 7311.37
TRAFFIC¢ 364 27996.41 21227.55 0 97235.00
GATEWAY¢ 364 0.56 0.50 0 1.00
SKYLANDS® 364 0.35 0.48 0 1.00
SHORE/ 364 0.24 0.43 0 1.00
DELAWAREY | 364 0.49 0.50 0 1.00
SOUTH" 364 0.26 0.44 0 1.00

“Construction Cost Index (CCI) for New York area, in 1913$. Source: ENR (1990-1997).
bConstruction Cost Index (CCI) for Philadelphia area, in 1913$. Source: ENR (1990-1997).
“Weekday traffic volume of road being repaired, in both directions. (Source: NJDOT)
‘GATEWAY=1 if road lies (partly) in Bergen, Hudson, Middlesex, Passaic, Union, Essex counties.
*SKYLANDS=1 if road lies (partly) in Hunterdon, Morris, Somerset, Sussex, Warren counties.
’SHORE=1 if road lies (partly) in Ocean or Monmouth counties.
IDELAWARE=1 if road lies (partly) in Camden, Gloucestor, Salem, Burlington, Mercer counties.
PSOUTH=1 if road lies (partly) in Atlantic, Cumberland, Cape May counties.

Using these covariates, we parameterize u; as:

1

pa x TRAFFIC + (5 pe pr ps po)

GATEWAY
SKYLANDS
SHORE
DELAWARE
SOUTH

While the results are qualitatively similar for worktype B, they are generally reversed for

worktype C. Encouragingly, these results correspond to the patterns observed in the raw

data, as given in columns 4 and 5 of table (2), suggesting that we are, indeed, adequately

controlling for contract heterogeneity.



21

5.3 Robustness check: Accounting for contract-specific heterogeneity

In our last robustness check, we control for observed heterogeneity across contracts by
parameterizing p;, the median of the signal distribution for auction 7, as a function not only
of M;, the number of bidders in auction 7, but also the covariates specific to auction 7. The
two most important dimensions of heterogeneity are size differences across contracts of a
given worktype, and changes in input costs across time which also exogenously affect bids
for a contract. Since our bid data do not allow us to determine the per-unit costs submitted
by the bidders, adequately controlling for size heterogeneity is particularly important.

Table 8: Parameter estimates: accounting for observed contract heterogeneity

Standard errors in parentheses.
Estimated for worktype 4 contracts only.

Parameter:
Ow 1.043 (0.410)
Oq 0.436 (1.087)
Oe 6.671 (7.099)
1o -1.680 (0.996)
1 0.234 (0.069)
12 -.0561 (0.006)
COST*® (us3) 3.624E-4 (1.554E-3)
TRAFFIC (u4) -1.639E-5 (5.137E-5)
GATEWAY (us) -0.0019 (0.0150)
SKYLANDS (usg) -0.0041 (0.0207)
SHORE (u7) -0.0055 (0.0176)
DELAWARE (us) -0.0051 (0.0159)
SOUTH (uy) -0.0098 (0.0166)
#contracts 356
Simulation draws:
R,? 100

L(INY + PHIL).

“For definitions of covariates, see table 7. COST = 3
*Number of simulation draws used in calculating v,

(

z,z;0)
We were only able to obtain contract-specific covariates for the worktype A contracts. This
is because many of these contracts specified roads upon which work was to be done. We

obtained contract-specific covariates which were characteristics of these roads, as extarcted
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from a database maintained by the NJDOT.3? Table 7 below summarizes the covariates.
They are: TRAFFIC, a measure of the weekday traffic volume (in both directions) of
the road being repaired; and geographic dummies (GATEWAY, SKYLANDS, SHORE,
DELAWARE, SOUTH) which describe the geographic location of the road. Furthermore,
we also obtained construction cost indices corresponding to the month in which a particular
contract was auctioned from the trade publication Engineering News-Record (NY is the
index for New York City, and PHIL is the index for Philadelphia; in our specification, we

use an average of the two).

Since we were only able to obtain covariates for the worktype A contracts, this specification
was only estimated on those auctions. The results are reported in table (8). While the
magnitudes and signs of the parameters common across all the specifications remain quite
stable to the incorporation of covariates, it is noteworthy that the p; (the coefficient on the
linear trend in the number of bidders) is now much smaller in magnitude (0.234 [0.0669])
This decreased importance of n in predicting the magnitude of the bids suggests that the
covariates are in fact controlling for some dimension of contract heterogeneity which lead to
selective participation on the part of the bidders. The estimates for the ¢’s are qualitatively
stable across all the specifications, except that the estimate of 0., which measures the
noisiness of bidders’ signals, has grown in magnitude (6.671 [7.099]). This implies that
contractors’ cost signals are very noisy, which tends to reinforce our finding of a strong

winner’s curse effect in these auctions (as we discuss below).

Strikingly, none of the covariates enter significantly in the specification, and for that reason
we do not draw any results from them except that their presence does appear to affect
the magnitudes of the other parameters. We conclude by noting that the main qualitative
result obtained in the earlier specification for the worktype A auctions — namely that they
are essentially pure common value auctions — appears robust to the inclusion of covariates.
In what follows, then, we focus on the results from tables (5) and (6), which were obtained

for all three types of contracts.

5.4 Model Fit

In a discussion in section C of the appendix, we note that variation in the number of bidders
is needed to identify the parameters of the model, given observations of the bids. By the
allowing the bid distribution to differ across the number of bidders, however, we rely on

the parametric restrictions of our log-normal model to identify the parameters rather than

32This database can be searched on-line at www.state.nj.us/transportation/count/search/searchi.htm.



variation in the data. Therefore, before proceeding, we check that our chosen parametric

specifcation indeed fits the observed data.

In figure (1), we plot the actual and predicted median bids, by worktype and across different
number of bidders. The predicted median bids were calculated from the estimation results
reported in tables (5) and (6).33 In general, the predicted and actual bids correspond
reasonably closely, with the table (6) results fitting noticeably better.

The “hump” from 8-10 bidders in the actual worktype A auctions are missed by both
specifications, but the predicted values are close at a smaller number of bidders. For the
worktype B contracts, the table (6) fit remarkably close for auctions with less than 10
bidders. For the worktype C contracts, the table (6) fit reasonably well, across the whole
range of cost signals.

In general, the fit of the model to the actual bids is reasonably close, and is valid for the
bid simulations which we undertake in the next section to address the effects of increasing

competition on equilibrium bidding.

6 Increasing competition and equilibrium bidding

Next, we turn our attention to what our results imply about the two comparative statics

in the number of bidders n which have occupied the past theoretical literature.

6.1 Increasing competition and individual bids

First, we examine how individual contractor bids would be potentially affected by increases
in the number of competitors, i.e., whether s, (x) is increasing or decreasing in n, fixing the
signal z. We are not aware of any general results for this comparative static. Previously,
(Smiley, 1979, chap. 3) and Matthews (1984) have shown that the sign can go either way,
depending on the parametric assumptions: Smiley (1979) gave examples of multiplicative
bid functions where s, (x) decreases in n (i.e., more aggressive bidding), whereas Matthews
(1984) focuses on the uniform distribution where s,(z) increases in n (i.e., less aggressive
bidding). Since our framework is more complicated than that considered by these authors,

we treat this as an open question which we address empirically.34

33For the table (6) results, we evaluate the bid functions at the mean random effect, i.e., assuming p; = ;.

34Both Smiley and Matthews consider only the pure common value (or “mineral rights”) model, whereas
our model has both common and private value components. Note that both authors also focus on hig-bid
auctions, where more aggressive bidding implies that s, (z) increases in n, and vice versa. The interpretations
are reversed for our low-bid procurement auctions.
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Figure 1: Predicted vs. actual bid functions: using table (5) and table (6) results

Legend: Actual median bid (from table (2); solid line)
Predicted median bid using table (5) results (dotted line)
Predicted median bid using table (6) results (dashed line)
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Legend: —e—e— 2 bidders — — — — — 4 bidders A- — -A-6 bidders --+--+- 8 bidders —-*—*—%* 10 bidders
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Equilibrium bid functions Next, we simulate the equilibrium bidding function s, (z;6) func-
tion via formula (2) for the results from table (6). The graphs are shown in figure 2. Clearly,
the shapes of the graphs vary noticeably over the three worktypes. In order to isolate the
pure effect of the winner’s curse, we zero out the coeflicients attached to the number of

bidders (i.e., v1,72,74,75) in these simulations.

Our results indicated that the worktype A auctions can be considered pure common value
auctions; for this reason, the equilibrium bid function for this case is increasing in the
number of bidders n; for instance, the equilibrium bid function evaluated at the -1.712,
the mean value of log(z), rises from about $0.5 million with two bidders to over $1 million
in ten-bidder auctions, a 200% percent increase; the magnitude of increase is greater at
larger values of log(z). This indicates that the winner’s curse effect strongly dominates the

competitive effect.

On the other hand, the graphs for worktypes B and C reflect the finding that privates values
are important in these auctions. At low values of z, the equilibrium bids are falling in n,
as we would expect in pure private value auctions. At large levels of z, however, some of
the bid functions cross, indicating that the winner’s curse seems to be more important in
this range of z. For example, at log(z)=-0.5, the worktype B equilibrium bid function for
n = 10 lies below that for n = 6 (indicating that the competitive effect dominates), but
at log(z) = 1.0 the bid function for n = 10 has crossed over the n = 6 bid function. This
makes sense upon examination of equation 1: for a given n, the probability of winning
is smaller as signals get larger, which implies that as n increases the competitive effect
will be relatively weaker upon bidders with larger signals. Intuitively, winning an auction
with a less optimistic signal (i.e., higher z) conveys worse news than winning with a more

optimistic signal (i.e., lower z).

Equilibrium markups These results are clearly illustrated in terms of “markups” of the
equilibrium bids in excess of expected costs which we may have expected naive partici-

pants to bid for these contracts. Using our parameter estimates, we calculate the markup
b(zi) — Elci|i]

D) . o . o
signal x;, is taken to be a “naive” estimate which bidder ¢ might have bid were he incognizant

, where E[c;|z;], the expected project cost to bidder 7 based just upon his

about the winner’s curse. The markups are plotted in figure 3.

For the worktype A auctions, which are essentially pure common value auctions, the simu-
lated markup is increasing in the n, across the entire range of z’s. The markups themselves

are quite large in magnitude: they increase from roughly 50% with 2 bidders to around
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70% with 10 bidders. This increase is reversed in part in the worktype B and C auctions.
In particularly, the worktype C auction markups are generally decreasing for all n, across

practically the entire range of signals.

The difference in the magnitudes of the markups between the worktype A and worktype
B/C auctions is in large part attributable to winner’s curse considerations. For the worktype
B and C auctions, there is an important private value element, so that the markups (at least
in the lower range of the signals, when winner’s curse considerations are not so important)
are symptomatic of “market power” which recedes as the number of bidders increases.
In the worktype A auctions, which have a negligible private value element, the markups
arises to counter the adverse selection associated with winning the auction, analogous to
the “unfair” premia that insurance companies must levy in order to break even due to the

adverse selection of sicker patients into the insurance market.

This point is illustrated in table (9), where equilibrium markups for the median bidder
were calculated at different values of o., which parameterizes the noisiness of contractors’
signals regarding their unknown costs, with a larger o, corresponding to greater uncertainty.
The markups were calculated after reducing o, by one-half (column 4) and then by 90%
(column 5). Note that the reduction in uncertainty reduces the equilibrium markups for the
worktype A auctions dramatically (for 6-bidder auctions, the markup falls from over 75%
to 54% when sigma, is cut in half, and down to just 28% when sigma, is at one-tenth of its
estimated value). This illustrates how a reduction in uncertainty reduces the winner’s curse,

and therefore the “premia” which bidders demand in order to participate in this market.

For worktype B and C auctions, however, a reduction in markups is not obviously apparent,
except when the number of bidders grows large. This emphasizes the point that when private
value components in costs are important, winner’s curse considerations are not so important
in auctions with few bidders, so that equilibrium markups in these cases are attributable
in large part to “market power”. When the number of bidders increases, however, winner’s
curse effects become more important, and a reduction in uncertainty brings about a fall in

equilibrium markups just as in the worktype A case.

In summary, the most remarkable implication of these simulation is that the winner’s curse
is indeed very strong in the worktype A auctions. Next, we explicitly explore what these

effects imply about government procurement costs.



Table 9: Equilibrium markups: the effect of reduction in uncertainty

Worktype # bidders | Markup: | Markup: | Markup:

Oe 0.5%c, 0.1%c,
A 2 0.497 0.397 0.292
A 3 0.562 0.418 0.261
A 4 0.675 0.481 0.274
A 5 0.711 0.507 0.277
A 6 0.759 0.541 0.288
A 7 0.783 0.543 0.267
A 8 0.785 0.545 0.260
A 9 0.814 0.560 0.257
A 10 0.820 0.567 0.256
A 11 0.852 0.597 0.272
A 12 0.852 0.599 0.268
A 13 0.867 0.613 0.268
A 14 0.875 0.623 0.269
A 15 0.887 0.633 0.271
B 2 0.268 0.304 0.317
B 3 0.230 0.245 0.243
B 4 0.244 0.243 0.229
B 5 0.259 0.244 0.220
B 6 0.284 0.256 0.223
B 7 0.291 0.245 0.201
B 8 0.302 0.244 0.191
B 9 0.322 0.252 0.191
B 10 0.345 0.264 0.195
B 11 0.365 0.277 0.204
B 12 0.383 0.286 0.207
B 13 0.392 0.286 0.201
B 14 0.399 0.286 0.197
B 15 0.413 0.293 0.198
C 2 0.356 0.375 0.382
C 3 0.245 0.257 0.261
C 4 0.208 0.215 0.218
C 5 0.187 0.191 0.192
C 6 0.181 0.182 0.182
C 7 0.161 0.157 0.155
C 8 0.151 0.144 0.141
C 9 0.152 0.143 0.138
C 10 0.161 0.149 0.144
C 11 0.165 0.151 0.145
C 12 0.171 0.156 0.149
C 13 0.166 0.148 0.140
C 14 0.166 0.145 0.136
C 15 0.171 0.148 0.138

29
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6.2 Increasing competition and project procurement costs

In procurement, common wisdom dictates that increasing the number of contractors would
lower project costs. This is true for private value models but, given the results above (for
worktype A at least), one questions whether this is a wise policy for reducing project costs
in common value auctions. Next, we present results from simulations of the winning bid in

auctions in which the number of competitors is varied. We do this for the results in table 6.

For the worktype A results, the average of the simulated winning bids is generally increasing
in n, indicating that procurement costs would rise if the government invites more compe-
tition. The median winning bid rises from about $0.35 million with two bidders to $0.55
million once 10 bidders are involved, but stabilizes in this range for n > 10. For n = 6,
the mode of the distribution of n for the actual worktype A auctions (cf. table (2)), these
results suggest that the government could reduce procurement costs by about 25% by re-
stricting participation to just four contractors. Given that the average contract outlay is
just under $5 million, this potential savings could be very large. Furthermore, these simu-
lations indicate that the “optimal” number of participants (which would minimize expected
procurement costs) would be 5, which is only one less than the mode of the empirical distri-
bution of n for the worktype A auctions, which lies at 6 (cf. table (2)). Our results suggest
that the government could lower expected procurement costs by about 25% by reducing n
from 6 to 5 which, considering the average contract outlay of about $5 million, constitute

substantial savings

Opposite results are obtained for the worktype B and C results. For the worktype B results,
which indicate a strong private value component, the average winning bids fall quickly in
n, from an average bid of $1.8 million with 2 bidders to about $1.3 million, with 10 bidders.
This drop also appears in the worktype C results, but is much less precipitous. For these
two types of contarcts, then, increasing competition would indeed lower procurement costs,

and it is optimal for the government to invite as many tenders as possible.

For the pure common value case, there have been some well-known results concerning the
limiting behavior of the winning bid. Wilson (1977) and Milgrom (1979) provided sufficient
conditions for strong and weak (respectively) convergence of the winning bid, conditional

on the unknown common value w, to w, as n grows large.>®

35Matthews (1984) provides an intuitive illustration of these limit arguments, for the specific case where
the distribution of the signal  conditional on the common value w is uniform in the interval [0, w]. More
recently, Pesendorfer and Swinkels (1997) have shown that these conditions specified by Wilson (1977) and
Milgrom (1979) can be weakened if one allows for multiple-unit auctions.



For worktype A results

bid$millions

31

T T
2 4 6 8 10 12 14 16
Number of bidders

wi nbi d.sas using feb00/quant_rfx.4.wi nbid
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Legend: Average winning bid in solid line
+2stdev and -2stdev in dashed lines
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The simulated winning bids for the (almost-) common value worktype A auctions (top
panel of figure 4) indicate that, for the range of n which we observe in the data, the average
winning bid is increasing at smaller values of n. This does not necessarily contradict the
theoretical limit results, however. First, Wilson’s condition that the lower bound of the
support of z|w be strictly decreasing in w is not satisfied for the log-normal model we
employ. Second, even if the less stringent conditions of Milgrom (basically that there exists
a signal = such that the likelihood ratio % shrinks to zero in the limit for v’ < w) are
satisfied for our assumed functional forms, the limit results do not preclude the winning bid

from diverging for small values of n.36

Note that these results do not imply that bidders’ expected profits from an auction are
rising in n, since expected profits depend not only on the magnitude of the winning bid
but also on the probability of winning the auction. While bidders may well expect that the
winning bid is rising in n due to the winner’s curse, they also realize that the probability

of winning falls in n, for any given signal z.

7 Conclusions

We empirically measure the effects of the winner’s curse on equilibrium bidding in procure-
ment auctions. In common value auctions, the winner’s curse is an adverse selection problem
which, in equilibrium, counsels more conservative bidding as the number of competitors in-
creases. Flrst, we estimate the structural parameters of an equilibrium bidding models and
test for the importance of common value components in bidders’ preferences. Second, we
use these estimates to simulate hypothetical equilibrium bidding strategies as we increase
the number of auction participants. We measure the effects on increasing competition on

both individual bids as well as winning bids (ie. procurement costs).

We analyze bid data from construction procurement auctions run by the New Jersey de-
partment of transportation in the years 1989-1997. Our results show that different types of
contracts differ significantly in the degree that private and/or common value components
are important, and these have contrasting implications on the effects of increasing com-
petition on equilibrium bids and expected government procurement outlays. Auctions for
highway work contracts are very close to a pure common value auction, while both common
value and private value are important in auctions of bridge repair contracts. Furthermore,

our results indicate that the winner’s curse is particularly strong in these highway contract

36In additional (unreported) simulations which were run for much values of n up to 150, a downward trend
in winning bids did eventually set in.
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auctions. Simulated bid functions show that for the median bidder, the percentage markup
increases from 50% with 2 bidders to above 70% with 10 bidders. Furthermore, winning bid
simulations indicate that the average procurement cost is strictly increasing in the number
of bidders as competition intensifies: for example, the median costs rise about 30%, as
the number of bidders is increases from 3 to 6. These results emphasize how asymmetric
information can overturn the common economic wisdom that more competition is always

desirable, and have potentially important policy implications.

Methodologically, we have estimated a model which allows bidders’ latent valuations for a
contract to have both common and private value components. To our knowledge, this is

the first empirical implementation of a model with such flexible bidder preferences.

The obvious policy implication here is that governments may wish to restrict entry, or favor
“negotiations” over auctions (cf. Bulow and Klemperer (1996)) when the winner’s curse
is particularly strong. But in practice, this may not be always feasible, since government
procurement agencies try to reduce the possibility of collusion among contractors by inviting
more tenders (i.e., increasing competition).?” Our findings, while not directly addressing
these issues, do contain a striking implication: in situations where the winner’s curse is
so severe as to lead to higher procurement costs as the number of bidders increases (as
in the worktype 4 results in table 4), municipal authorites may actually prefer to allow
collusion, since in a common value setting the informational pooling that arises from bidder
discussions may defuse the winner’s curse effects. This is one potential justification for
why the US government allowed joint bidding in the Outer Continential Shelf offshore
lease auctions from their inception in the 1950s until the mid-1970s (cf. Hendricks and
Porter (1992), Hendricks and Porter (1996)). The potential benefits of such restrictions on
competition have been noted previously in the theoretical literature by, among others, Bulow
and Klemperer (1999). In ongoing research we are exploring this possibility empirically,
extending the approach in Campo, Perrigne, and Vuong (1998)) to model bidding between

joint and non-joint bidders in a common-value environment.

3TFor example, a recent tender of auto-towing contracts in Toronto was scrapped due to low levels of par-
ticipation while municipal staff were “instructed [...] to come back with suggestions on how more companies
might be able to participate” (Toronto Star (1999)). In general, collusion and bid-rigging seem rampant in
procurement settings (see Pesendorfer (1998), Baldwin, Marshall, and Richard (1997), and Porter and Zona
(1993) for studies of several instances).
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A Details on estimation

For the Wilson log-normal specification, one can derive an analytic form for the conditional expectation
& (cilz1, ... ,zn). Before deriving this analytic form, we introduce some notation. In this model, the vector
(e1y..- yCn,®1,... ,&n) is joint-lognormally distributed. In logs, then, the vector (¢i,...,én,%1,...,%n)
is distributed as jointly normal with identical means p for all elements and variance-covariance matrix
3 = (T, B12), (Bha, £%))'.*® Furthermore, given the above log-normality assumptions, the conditional ex-
pectation functions for ¢; take the following form:

~ - _ 1 _ s _
Elci | z1,... ,2n] = exp (E(c, | Z1,... ,&n) + §Var(ci | Z1,... ,af:n)> , (5)
fori=1,... ,n.
Next, we denote the marginal variance-covariance matrix of (é1, #1,...,%n) by
0_2 o_*l
¥, = ° also let z’' = (z1,...,5)
o, X

where 02 = 02 + 02 is the variance of ¢;. Then, using the conditional mean and variance of joint normal

random variables (see, for example, Amemiya (1985), pg. 3):

E( | %) =p+oiS" (E—p) (6)
and

Var(é | 2) = ol —o2'S" ol (7)

Expressions (6) and (7) can be plugged into equation (5). Given parameter estimates, the conditional
expectation (5) can be explicitly evaluated for every vector of log-signals (&1,... ,&n).%

A.1 Asymptotic distribution for quantile estimator

Pakes and Pollard (1989) derive a general asymptotic theory for estimators obtained by maximizing sim-
ulated objective functions.?® At this point, we utilize expressions for the variance-covariance matrices of
the estimators which do not take account of the possible simulation bias due to using a finite number of
draws. The implicit assumption, then, is that the number of simulation draws used in the various stages of

38Explicit formulas for the elements in the matrix 33 can be derived from the information structure of the
model.
39 Consequently, the desired conditional expectations can be obtained by simulation, viz:

v(z,z) =& (ci|mZ = m,r]n#lacj = m) =
(8)

// € (cil|z1,... ,xn) dF (z3,... ,Tplz1 = 2,22 = T, 2% > T,k =3,... ,n;0)

N——
>z, Ye=3,...,n

where F' here denotes the conditional distribution of the signals zs,...,z,, conditional on z; = z2 = .
Given symmetry, there is no loss of generality in focusing on the pair of signals z; and z».
0See the survey by Stern (1997) for additional details on simulation methodologies and asymptotics.
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computation (which we denoted R1, Rz, and R3) increase faster than VT, the rate at which ] converges to
the true 6o.

In what follow, we assume that 6 is L-dimensional. Out quantile estimator minimizes the quantile objective
function, reproduced here as

S

XT: i

i=1

XK:P (bz'j —q" (9))

1k=1

<.
Il

where M; denotes the number of bidders in auction 4, q,lcw i (f) denotes the kth quantile of bids for an
M;-bidder auction, and p,, (-) is defined as

pr (@) =(n —1(x <0))z
At 059, the SQ estimator, the approximate first order condition must hold:

B (1 oz () )

1*1] 1k=

It can be shown (cf. (Gourieroux and Monfort, 1995, chap. 8.5.2)) that
VT (éSQ - 0) = —A7'Br + 0, (1)

where

M;

3345 (- o < ) 2

i=1 j=1k=1

%\H

and
T M; K
1 - M; [ M; (90) (00)
=T Z fr (qk (00)) 30 o0
i=1 j=1k=1
where f.,l.\:’ is the density of the distribution of the marginal distribution of the random variable sas; (x;6)

in a M; bidder auction at the 7,th quantile, where = denotes the signal.

We estimate the A7 matrix using a finite difference approximation for the density fif" as well as the gradient

M;
% 00) 1y this wa , the (d1,d2) element of the Lz L Ar matrix will be
39 y

A7 4Th2 E E E [ (bij <qr (éSQ +hT€d1)) -1 (bij <qr (éSQ — hTedl))] * o
=1 j=1k=1
[qZ (éSQ + hT€d2> —qr (éSQ - hTedz)]

where eq4 is a L-vector with 1 in the dth position and zeros otherwise, and At is the perturbation factor for
the finite-difference approximation.

Via a central-limit theorem (using independence over auctions i), the L-vector Br has an asymptotic dis-
tribution IV (0, V). A consistent estimator of V' is

'ﬂ |

Z (b:) s (b:)’ (10)
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where
K M; R aqllc\’fi 9@
s (4) =323 (e =1 (b < 4" (°9))) %
k=1j=1
M; (55Q
The gradient vector 6(1’“37(:) can likewise be evaluated using finite difference methods.

Based on equations 9 and 10, the asymptotic variance-covariance matrix for 659 can be approximated by

%A;IVTA;I.

B Simulation details

1. Simulating the required conditional expectation functions Given the analytic expressions for
the conditional expectations (5), the next step is to calculate the conditional expectations (8). Recall that
the vector of log-signals (Z1,...,%x») is jointly-normal with mean vector M™* = (p*,... ,p") and variance
covariance matrix X*. Let #34 denote the sub-vector of log-signals Zs,...,%,, and Z42 denote the vector

5533+ ~normal [ | * || ?§+ T34 42
T2 jZ Uitz T2

where the elements of the mean vector and variance-covariance matrix can be determined from the informa-

of log-signals #1,%2. Then

tion structure of the model.

Then, again using the multivariate normal conditional expectation formulas:

Eat |42 ~ normal (p + D3¢ 42" D75 (F42 — p) , B34 — Ty 42 S5 554 1) (11)

Thus, given a vector of log-signals (&1, Z2, ... ,Zn), we can take S draws of 34 according to the conditional
distribution (11) and simulate the integral in (8). In the results below, we utilized the GHK algorithm
for drawing from truncated multivariate distributions. Essentially, this algorithm “importance samples”
recursively from the truncated region, one dimension at a time, and allows for smooth (in ) simulation of
the required conditional expectation v, (z,x;6). While this simulated estimate of the conditional expectation
is biased for a finite number of draws, some Monte Carlo evidence (cf. Keane (1994), McFadden and Ruud
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(1995)) has demonstrated that this bias is small in practice.”” Let R denote the number of simulation

draws used in simulating v, (z, z; 6).

2. Simulating the equilibrium bids We also employ simulation to evaluate the equilibrium bid s, (z;6)
for a given signal x which, as formula 2 shows, can also be expressed as a conditional expectation, taken over
the distribution of the maximum element among a vector (x2,... ,%,) generated from F(za,...,Zn|z1;0).
Given the difficulty in expressing the distribution of this maximum In order to draw from the distribution
of the maximum element, we use a GHK simulator (cf. (Gourieroux and Monfort, 1996. 98-100)) to
draw vectors (23, ..., ;) from the truncated multivariate normal distribution F'(zs, ... ,Zs|21,2; > 21,j =

41'We used a version of the GHK code for multivariate normal distribution available from V. Hajivassiliou’s
website: www.lse.ac.uk/vassilis.
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2,...,m;0), wherer = 1,... , R3 indexes the simulation draws, and R3 denotes the total number of simulation
draws. Let y" denote maxj—1, .. n{253,...,2}. Then a simulator of the equilibrium bid is
11
. ~ - T, r
Sn(.’Di, 6) ~ Tac,- R3 ;’U(y Y ,0)w (12)

where w” is the GHK “importance sampling weight” corresponding to simulation draw r*?, and T, =
% >, w" is an estimate of the multivariate-normal truncation probability

Prob (z2 > z1,23 > ©1,... ,Zn > T1|T1 = 243 60).

C Identification

Variation in the data Our large auction dataset contains variation along four dimensions: bidders,
worktypes, and number of participants.

Bidders: Since we focus on a symmetric auction model, we make the assumption that bidders are homo-
geneous. Therefore we do not exploit the fact that we observe an identical bidder across many bidding
situations. Such variation will be important once we investigate the asymmetric case, which is the topic of
ongoing research.

Worktypes: In the current version, we assume that all contracts for a specific worktype are homogeneous,
and estimate different 8’s for each worktype. Therefore, we do not exploit observations on contracts related
to different worktypes to help identify common parameters. One reason we did so was to minimize the
computational burden involved in simulating the equilibrium bids. But in future extensions we plan to

include more contract-specific covariates (year and seasonal dummies to capture secular time effects).

Number of participants: While we assume that all contracts for a given worktype are homogeneous and that
all bidders contending for a given contracts are ex ante identical, there will still be heterogeneity in bidding
behavior across contracts of a given worktype due to variation in the number of participants. For a given
bidder, equilibrium bidding strategies in the first-price auction model described in the previous section will
differ depending on the number of rival bidders: therefore, the distributions of the equilibrium bids will
not be identical across auctions with different number of participants, even among all contracts of the same

worktype. This is an important source of variation which we use to identify the parameters.*?

Shape of s, (X; 9) function 1t is in general difficult in very nonlinear models such as this to be very
explicit about what types of variation in the data serve to identify particular parameters. Therefore we
tackle the identification issues by proceeding in the opposite direction: we simulate our model to investigate
how changes in the parameter values affect the s,(x; ) function, the moments and quantiles of which form

42¢f, (Gourieroux and Monfort, 1996, eq. 5.14). Note that each w”, r = 1,... , R3 is an unbiased estimate
of the multivariate-normal truncation probability Prob (z2 > z1,23 > z1,...,Tn > z1|T1 = x4;0).

43Qiven the sizeable variation in the number of bidders observed in the auction dataset, even for contracts
of a given worktype, the possibility arises that bidders may not be aware of the number of rivals when
they submit their bid. Hendricks, Pinkse, and Porter (1999) derive the equilibrium bidding strategies for a
symmetric affiliated value auction, and we plan to explore this extension. However, once we assume that
bidders are not aware of the number of participants, we will not be able to use this variation to identify the
parameters, and will probably need to make stronger assumptions along another dimension.
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the basis of our estimation strategy. This exercise will alert us to parameters which are badly identified as
those which spark no change in the (simulated) s, (z; ) function.**

Graphs of s, (x;0) for alternate values of the parameters § are given in figure 5. The benchmark values
for the parameters (p, 0w, 0q,0.) were (—1,1,1,1), and the graphs of s,(z;8) for these values, for 2,4,6,8
and 10 participants, is shown in the upper left-hand panel of figure 5. The axis scales on all the graphs
in figure 5 are held constant, for easy comparison. Note that the graphs are upward-sloping, as expected.
More significantly, note that, for any given z, s,(z;0) is higher for larger number of participants: this
demonstrates that for these parameters, the winner’s curse (which encourages more cautious bidding as n
increases) dominates the competitive effect (which encourages more aggressive bidding).

Next, we explore how changes in the parameter values, relative to the benchmark case, affect s, (x; ). First,
the lower right hand graph shows what happens to s,(x;6) in the pure private value case, as o, is set to 0.
In this case, the equilibrium bid functions are decreasing in n, for a given z: as expected, in private-value

auctions when the winner’s curse is absent, bidding becomes more agressive as n increases.

A similar pattern results if we let o, = 0, as shown in the top right-hand side graph. While this outcome
doesn’t correspond to any of the “standard” auction specifications (is it essentially a independent private
values model where bidders have imperfect information about their private values), it can be transformed
into a standard IPV model by redefining the private value %, as E[c;|z;]. Finally, in the pure common value
case (lower left hand side graph), in which o, is taken to zero, the s, (z;6) graphs resemble the benchmark
graphs, but differ in magnitude.

In short, these graphs have demonstrated that perturbations in the basic parameters in the model do lead
to changes in the shapes and/or magnitudes of the s,(z;8) graphs, which lead us to believe that, from a
computational point of view, the parameters are indeed identified and estimable.

“Moreover, from a computational point of view, the parameters of the model, even if well-identified,
are readily estimable only if changes in each parameter have some degree of independent effect on s, (z;0).
The results from this exercise also draw attention to potential computational difficulties we might face in
identifying the parameters.
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