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Abstract

We propose to use the Monte-Carlo (MC) test technique to ob-
tain valid p-values when testing for the presence of discontinuities in
jump-diffusion models. Indeed, the LR statistic used to test for dis-
continuities has typically a complex non-standard distribution, for at
least two reasons: the jump frequency parameter lies on the boundary
of its domain, and unidentified nuisance parameters intervene under
the null hypothesis. We show that, if no other (identified) nuisance
parameters are present (e.g. the geometric Brownian motion case),
the proposed p-value is finite sample exact. Otherwise, we derive
nuisance-parameter free bounds on the null distribution of the LR
and obtain exact bounds p-values. We illustrate our approach with
four classes of jump diffusion models (geometric Brownian motion and
logarithmic Ornstein-Uhlenbeck, with and without a GARCH(1,1) er-
ror structure), which we apply to weekly and monthly spot prices of
copper, nickel, gold, and crude oil. We find significant jumps in all
weekly time series, but only in a few monthly time series.
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1 Introduction

The problem of unidentified nuisance parameters is quite pervasive in econo-
metrics. Prominent examples include tests for structural change (Andrews
and Ploberger (1994)) and ARCIH-in-mean tests (Bera and Ra (1995)). As
is well known, when nuisance parameters are present only under the alter-
native hypothesis, the tests limiting null distributions are not generally chi-
square. Indeed, they can take a much more complex form, e.g. Andrews’
(1993) sup-x? distribution and Hansen’s (1996) x? processes. More impor-
tantly, as emphasized in Hansen (1996), in several situations, the relevant
limiting distributions are nuisance parameter dependent which precludes the
construction of specialized critical points tables.

One early approach to dealing with the problem is the asymptotic bounds
procedures proposed in Davies (1977, 1987). Hansen (1996) and Andrews
(1999) have recently proposed simulation-based procedures to approximate
asymptotic p-values, which is valid in settings more general than Davies’.
However, it is important to remember that all the latter procedures are only
asymptotically' valid. No finite sample exact procedures seem available for
such non-regular test problems.

In this paper, we provide exact simulation-based solutions to the prob-
lem of nuisance parameters which intervene only under the alternative. Al-
though the testing strategy we propose here is sufficiently general to suggest
extensions to a wide class of parametric models?, we focus on testing the
significance of jumps® in jump diffusion/ ARCH models.

There has been widespread interest in finance and economics for these
models since Merton (1976) proposed to model stock prices with Poisson
jumps superimposed on a geometric Brownian motion. This approach has
since been extended to include mean-reversion and conditional heteroscedas-
ticity, which is common in high frequency data (e.g. see Bollerslev, Chou,
and Kroner 1992 or Amin and Ng 1993). Examples of well know papers using
jump/diffusion models include Ball and Torous (1985), Jarrow and Rosen-
feld (1985), Ahn and Thompson (1988), Akgiray and Booth (1988), Jorion’s
(1988), Brorsen and Yang (1994) and Bates (1991, 1996a, b). Although rec-
ognized as a potential difficulty (see, for example, Brorsen and Yang (1994))
un-identification problems have not received the attention they deserve in
empirical applications on jump-tests. In fact, most of the references just

'In fact, Hansen (1996) operates in a local-to-zero asymptotic framework.

2For instance, see Bernard, Dufour, Khalaf and Genest (1999) for applications to
ARCH-in-mean testing,.

3For an operational definition of jump processes, see Merton (1990).



cited inappropriately use x? critical points.

Jump-tests have recently been the subject of renewed attention; see, for
example, Hilliard and Reis (1999) and Drost, Nijman and Werker (1998).
Hilliard and Reis (1999) approach the testing problem as follows. Sum-
of-squared errors based on the difference between observed and predicted
option prices are obtained using two alternative pricing formulas, impos-
ing and ignoring jumps. Then an F-type statistic is constructed. However,
the authors provide no formal proof of the test’s asymptotic validity, even
though they recognize the intervening identification difficulties. Drost ef. al.
derive a kurtosis-based test for jumps. They formulate a Quasi-Maximum-
likelihood (QMLE) estimate for the kurtosis after imposing normal-GARCH
errors, and then implement the delta-method - based on the usual QMLE-
based asymptotic standard-errors and covariance estimates - to assess the
estimate’s proximity-to-zero. The authors report favorable simulation evi-
dence but warn that their experiments may not be sufficient to establish the
test’s overall finite sample validity.

One solution to identification problems, which we adopt in this paper
(following Dufour 1997), is to use pivotal or boundedly pivotal test statistics,
i.e. statistics whose null distributions are either nuisance-parameters-free
or can be bounded by nuisance-parameter-free distributions. Here we con-
sider likelihood-ratio (LR) test statistics and show first that they satisfy the
boundedly pivotal property. To do this, we derive exact bounds on their
null distributions explicitly. The method of proof is analytical and is similar
to that used by Dufour (1989, 1997) in different yet related contexts. In
addition, to obtain exact tests in the presence of unidentified nuisance pa-
rameters, we apply the Monte Carlo (MC) test procedure (Dufour (1995))
which yields exact simulation-based p-values whenever the null distributions
of the underlying test statistics do not depend on unknown parameters. The
main fact exploited here is that the MC p-values simulated under the null will
not depend on the unidentified nuisance parameters; this follows immediately
from the implications of under-identification. In other words, in many cases
where unidentified nuisance parameters cause important complications, the
MC test procedure, which exploits the under-identification situation from a
finite sample perspective, easily yields valid p-values. As far as MC tests are
concerned, tractable null distributions are not a relevant issue.*

An important related difficulty is the case of restricted alternative hy-
potheses. As is well known (see for example Andrews (1996, 1999)), prob-

*For applications of MC tests in econometrics, see Dufour and Kiviet (1996, 1997),
Dufour and Khalaf (1997, 1999), Dufour, Farhat, Gardiol and Khalaf (1998).



lems similar to unidentification occur when the null hypothesis sets values on
the parameter space boundary. This question is also relevant in the no-jump
tests case considered here. It turns out however that the method we adopt
to deal with unidentified nuisance parameters does not have the problems of
standard asymptotic tests, in the presence of restricted alternatives.

Below, we will be more precise about the setup and test strategy adopted
but it is of interest to give a brief overview of the proposed test method.
Take, for example, a size-a right-tailed test. By drawing (conditionally on
the relevant nuisance parameters), N simulated samples conformable with
the null, we can come up with N replications of the test statistic. Then
a MC p-value (conditional on the nuisance parameters) can be computed
from the percentage of the simulated statistics which exceed the observed
test statistic. The test is significant at level « if the largest MC p-value (over
the relevant nuisance parameter space) does not exceed «. Naturally, for the
problem at hand, the only relevant nuisance parameters are those which are,
in the notation of Davies (1977, 1987), present under the null. If no other
nuisance parameters are involved, the method just described can be easily
applied to deal with the under-identification problem. In situations where
both identified and unidentified parameters intervene as nuisance parameters,
we propose exact MC bounds tests based on the bound we derived to justify
the use of the LR criteria; as will be demonstrated, the bounding statistics’
cut-off points are non-standard yet may be easily obtained by simulation. For
further discussion of MC bounds tests, see Dufour and Khalaf (1997, 1999).°

The MC test procedure is highly related to the parametric bootstrap (see
the discussion in Dufour (1995)). In connection, Diebold and Chen (1996)
have shown that improved p-values for structural change tests can be ob-
tained with the bootstrap. Yet Diebold and Chen’s work is also motivated
by asymptotic arguments. Finally, note that whereas the results in Hansen
(1996) are not directly applicable to the test problem considered here, our
procedure may be applied in Hansen’s framework, provided distributional as-
sumptions are imposed so that simulated samples conformable with the null
can be drawn. The procedures proposed in Andrews (1999) are - in princi-
ple - applicable here. These involve simulating the supremum of quadratic
forms based on: (i) a random term whose construction requires solving a re-
stricted minimization problem (over a convex cone), and (ii) first and second
order derivatives of the likelihood function. The main methods we propose
simply require simulated values of LR-based statistics under the (no-jump)

See also Wang and Zivot (1998) for further examples on bounds tests in near-
unidentified test problems.



null hypothesis. At any rate, Hansen and Andrews solutions basically serve
to approximate the limiting distributions’ tail probabilities. In contrast, we
obtain finite sample exact p-values.

These results are then applied to investigate the existence of discontinu-
ities in commodities spot prices using four basic models: a geometric Brow-
nian motion (GBM) and a logarithmic Ornstein-Uhlenbeck mean reverting
motion (MRM), with and without a GARCI(1,1) error structure. Ignoring
jumps by assuming only a continuous time model when jumps are indeed
present can have a number of well known, unpleasant consequences, such as
mispricing derivative instruments, adopting misleading hedging strategies, or
miscalculating the value of a portfolio.

This paper is organized as follows. The models and test strategies are
presented in Section 2. Section 3 presents our empirical applications and
discusses our results. Our conclusions are presented in Section 4.

2 Jump processes and Jump tests

This section presents the general framework we consider as well as the sta-
tistical inference procedures. We focus on mixtures distributions which can
be written as the sum of a continuous component and a jump component.
Merton (1976) proposed to formally model price discontinuities which rep-
resent, in the notation of Ball and Torous (1983), the arrival of ”abnormal”
information.

We impose the following basic assumptions on both DGPs.

Assumption A. Both continuous and jump processes are completely spec-
ified to allow the formulation of likelihood functions.

Assumption B. The continuous model is nested, imposing possibly bound-
ary constraints, within the mixed model.

Assumption C. The no-jump process is simulatable, i.e. it is possible to
obtain simulated samples drawing from the continuous process.

Assumption D. The model admits a restricted version which corresponds
to a location-scale model.

Assumption E. The mixture model is additively separable, in the sense that
the likelihood imposing no-jump constraints does not depend on the
parameters associated with the jump component.



Assumption A is fundamental because we adopt Maximum-likelihood-
based tests. The smooth and jump components may be derived from continuous-
time models, as long as likelihood functions are available. In fact, continuous-
time modeling, although desirable, is not necessary for most of the results we
obtain. Furthermore, the methods we propose will be also valid in a simu-
lated maximum likelihood framework, as long as the intervening parameters
are finite dimensional and identifiable (at least under the no-jump model).
Assumption B justifies the use of the likelihood ratio criterion.® Restrictions-
to-boundary are typical in the context of jump tests and will be formally
dealt with here. Assumption C is necessary because the method we propose
requires to draw samples from the relevant no-jump DGP. Assumption D re-
lates to our proposed bound and will become clear from our demonstrations
below. Finally, assumption E does not seem to be a limitation for mixture
models - which are typically written as the sum of a smooth and a jump
component- but its usefulness will be apparent below, so we require it here.
No further constraints will be imposed in this section. We take up a spe-
cific mixture model in section 3, allowing for conditional heteroskedasticity
in mean-reverting and random-walk contexts.

It is useful at this stage to contrast our framework with that of Drost et.
al. (1998). Whereas in our case both likelihood functions should be specified,
Drost et. al. (1998)’s test requires only a pseudo no-jump model; the jump
element needs not be formally modelled. In a way, this is an advantage
since the estimation of jump models may present added challenges. In the
LR framework we adopt here, promise of good power often rewards for the
difficulties associated with estimating both constrained and unconstrained
model. A simulation experiment is of course needed to formally compare
the merits of both tests. In this paper, we aim to illustrate the feasibility
of the LR procedure and show that all statistical complications which arise
in this context can be solved relatively easily. A power study to assess the
performance of the LR and LLM-type test will be the subject of further work.
Nevertheless, note that serious problems associated with the delta method
underlying Drost et. al. (1998)’s test have recently been pointed out; see
for example Dufour (1997). These problems are caused by identification
difficulties and are not restricted to small samples. Our LR test does not
suffer from such potential disadvantages. Indeed, we establish the test’s
validity, in finite samples, following the criteria proposed by Dufour (1997).

We proceed now to present our test procedure. To derive the bound on

5This assumption is not crucial in the sense that extensions to non-tested tests are
possible. However, such procedures will not be discussed in this paper.



the null distribution of the no-jump LR criterion in general contexts, we use
a key result by Dufour and Khalaf (1999) who show that it is straightforward
to obtain finite-sample exact p-values for the LR no-jump test statistic in the
jump-GBM model. We build on this result to construct a finite sample bound
for the general case, as in Dufour (1989). Let us start with the jump-GBM
model proposed by Merton (1976) which will serve as our benchmark model.

If a random variable P, follows a GBM with Poisson jumps, it can be
written:

The jump component, dg;, equals a lognormally distributed variable Y;
such that:

Y, X LN (9,8

with probability Adt, and 0 with probability (1 — Adt). If a jump occurs, Y;
is the ratio of P, just after the jump (P} = litn%>t P.) by P, just before the

jump (P :Tjgrr;<t P.). X\is the arrival rate of jumps.

In discrete time, this model can be written:

N
(2.2) Pt — Pe—1 :M‘I'U?Jt‘l'zlnyti

=1
where 4 = o« — %2, pe = In(P), 2 “ N(0,1), n¢ is the number of jumps
between ¢ and ¢ — 1, and Y}, is the size of the i jump which occurs between
tand t — 1.

The parameters of the above model may be estimated by numerical max-

imization of the likelihood functions. In this framework, to test the null

hypothesis
(2.3) Hy:A=0 (no jump) |,

the likelihood ratio (LR) statistics is:

(24> LRapm = 2[LJump/GBM - LGBM]7

where Lgpn and L jymp apu are respectively the maximum of the log-likelihood
function (MLF) under the null and the alternative hypothesis. As empha-
sized above, the standard regularity conditions ensuring that the LR statistic
is asymptotically x? distributed under the null hypothesis are not verified.
One reason is that there are two nuisance parameters ¢ and 6, which are
not identified under Hy (i.e., when we set A = 0, the likelihood function
no longer depends on these two parameters). Another reason is that the

7



value of A tested under Hy is on the boundary of the parameter space. As
a consequence, the asymptotic distribution of the LR statistic under Hy is
non-standard and quite complex. Its x? approximation is no longer valid.

Dufour and Khalaf (1999) argue that a parametric bootstrap test (a
Monte Carlo test, in the notation of Dufour (1995)), applied to LRgpm
will yield an exact p-value. Before we discuss the rationale underlying this
result, it is useful to describe the MC test method as it applies to the prob-
lem at hand. Our exposition will be very brief and details are relegated to
the Appendix. The procedure may be summarized as follows. Imposing Hy,
i.e. drawing from the GBM DGP, N simulated samples are generated which
yield N simulated test statistics. Then a MC p-value is obtained from the
rank of the observed value of the test statistic within the set

observed statistic, simulated statistics

In other words, a rank exceeding (1 —«)(N +1) is interpreted as evidence, at
level a, against Hy. Dufour (1995) shows that the MC procedure yields finite
sample exact p-values if the null distribution of the test statistic considered
is pivotal, i.e. nuisance-parameter-free. In nuisance-parameter-dependent
context, an exact MC test may be obtained based on the largest MC p-value
over the nuisance parameter space compatible with the null hypothesis.

Our point here is that the MC p-value (calculated as just described) will
not depend on @ and 6%. This follows immediately from the implications of
unidentification. Furthermore, the invariance to location and scale (u and
o in the GBM case) is straightforward to see. Consequently, the MC test
in this case will be finite sample exact. Clearly, the boundary restriction
does not intervene here, since the only elements of proof concern the pivotal
characteristic of the LR statistic. We summarize this result in the following
Theorem.

Theorem 2.1 Consider the jump-GBM model defined by (2.1). Then a
Monte Carlo p-value based on the LR statistic (2.4) and obtained as in (5.10)
s finite sample exact.

We have just seen that the MC test procedure conveniently solves the
un-identification problem in the jump-GBM benchmark model. Theorem 1
has further implications on the properties of the LR test in the general case.
Indeed, we will next use Theorem 1 to show that the LR no-jump test in
general mixed models which satisfy assumption A-E is boundedly pivotal.

Now, let Lagizeqd and Lgmootn, denote respectively the maximum of the
likelihood function associated with the general mixed and the no-jump model.
The associated likelihood ratio (LR) statistics is:

8



(2.5) LR = 2[Latized — Lsmootn)-

By construction, and using assumption D, it is easy to see that Lapipeq >
Lsmootnh = Lapay. In turn, this implies that

(2.6) [Lasized — Lsmootn] < [Lnsizea — Lapat] -
Now let
(2.7) LRg = 2 [Laivea — Lapu]

denote the LR statistic for testing the GBM null model against the mixed
model at hand. Then inequality (2.6) implies that LR < LRp. Furthermore,
as argued in the context of Theorem 1, the null distribution of the LR may
be simulated to obtain exact p-values. In fact, from assumptions D-E, it is
easy to see that no-unknown parameters intervene in the null distribution of
LRg." This provides the condition to apply the bounds-MC as described in
Dufour and Khalaf (1999). The procedure may be summarized as follows (see
also the Appendix). From the observed data, compute the test statistic LR.
Generate N simulated samples drawing from the GBM process and compute
the statistic LRg. Then a bounds MC p-value is obtained from the rank of
the observed value of the test statistic within the set

[ observed LR statistic, simulated bounding LRg statistics } .

Our results may be summarized as follows.

Theorem 2.2 Consider a mized smooth-jump model which satisfies assump-
tions A-E. Then the Monte Carlo bounds p-value based on the LR statistic
(2.5) and the bounding statistic (2.7), obtained as in (5.12), is finite sample
exact.

In the next section, we focus on specific cases, namely jump-GARCH
models.

3 Empirical examples

3.1 Model

To illustrate the feasibility of our proposed tests, we focus on two special

cases. Consider first the random Walk model with GARCH (1,1) errors
(3.8) P = Pr1t \/;tzt

ht+1 = ap+ ht<0412’t2 + 042)

"Location-scale invariance is also straightforward to see here.

9



d

where 2, ~ N(0,1). Nelson (1990) shows that the diffusion limit of (3.8) is

the stochastic volatility model

dp, = odWy,

do? = Bla—o?)dt +~*c?dW,,
where {W1,, t > 0} and {Wy,, ¢ > 0} are two independent standardized
Brownian motions, and ag > 0, oy > 0, and ay > 0 are linked to o > 0,
£ > 0,7 > 0and the frequency of observation of p,. His work was generalized
by Drost and Werker (1996) and Duan (1997). Clearly, setting oy = g = 0
yields a (driftless) GBM.

We also consider the autoregressive model with GARCH errors

(3.9) Pt = Qo+ ai1p1+ \/E%
hiyi = g+ ht<alz§ + ag).

Drost and Werker (Section 5, 1996) show that the diffusion limit of (3.9) is

the stochastic volatility model:

dp, = rK(p— p)dt + o dWy,

do? = Bla—o?)dt +~*oldW,,
where again {W; 4,1 > 0} and {Ws,,t > 0} are two independent standardized
Brownian motions. The discrete time coeflicients ag, |ai| < 1, ¢p > 0, ay > 0,
and ay > 0 are linked toxk >0, p > 0, « > 0, 3 > 0, v > 0 and the frequency
of observation of p; through fairly complex relationships. In both models, the
null hypothesis is (2.3). Observe that setting oy = @y = 0 in (3.8) and (3.9)
yields a homoskedastic random-walk and autoregressive process respectively.
For convenience, we have adopted below the standard notation in the no-
GARCH case: when o = ay = 0, o is denoted 2.

To obtain the mixed process, we add the Poisson jump process introduced

above to obtain the following mixed models:

g
Pe = Pea1t \/;tzt +> InYy
i—1

hiyi = ap+ ht(Oélzf + ag)

and

Nt
Pt = Qo+ aipe1+ \/E% + ZlnYn‘
i—1

hiyi = g+ ht(Oélzf + ag)

10



Y}: is the number of jumps which occur between ¢ and ¢+ 1, which follows the
same assumptions as in (2.1): the arrival of jumps follows a Poisson process
with arrival rate A and that the jump-size distribution is lognormal with
mean 6 and variance 62. The hypothesis of interest is A = 0.

The assumptions of Theorem 2 are clearly satisfied here. The possible
nuisance parameters are: 1) the parameters of the diffusion/GARCH process,
and i) the parameters of the jump process ¢ and ¢ (the value of A is set to
zero under the null). As argued in Section 2, unidentification under the null
implies that # and 6 are not relevant. Moreover, the test problem is location-
scale invariant, which leaves the GARCH (and the mean reversion when
relevant) parameters as effective nuisance parameters. For the jump/GBM
test we have seen that a MC p-value based on N random draws from a
normal distribution (with parameters the data-based GBM-MLE) achieves
size control. However, for the jump/GARCH (GBM or mean reverting) case,
if we generate N simulated samples drawing form the GARCH process (with
parameters the data-based GARCH-MLE), the procedure may not be reliable
in finite samples. In fact, the same conditions which cause the failure of
standard asymptotics given the restricted alternative problem may also affect
the performance of such bootstrap-type corrections. To obtain the bounds p-
value from Theorem 2, derive the bounding statistic which corresponds to the
LR no-jump/no-GARCH test statistic and apply the bounds MC procedure.

To conclude, note that an LR bounds tests for GARCH or mean-reversion
in the presence of jumps may also be obtained using similar arguments (e.g.

see Saphores et al. (1999)).

3.2 Applications

For our empirical application, we consider weekly and monthly observations
of spot prices for three commercial commodities, crude oil (West Texas In-
termediate or WTTI), copper and nickel, and one precious metal, gold. Daily
WTT spot prices, which were provided by Natural Resources Canada, cover
the period extending from 01/02/86 to 05/13/99. Daily prices of copper and
nickel, obtained from the London Metal Exchange, extend from 01/03/89 to
06/30/99. Daily closing prices of gold, from the New York Metals Fixchange,
go from 01/03/89 to 10/15/99. Weekly series were constructed from daily
data by taking the Wednesday price to avoid beginning or end of the week
effects. In the rare instances were the Wednesday price was missing, we used
the Tuesday price instead. Approximate monthly data were constructed by
taking every four weekly observation. The four weekly time series analyzed
are shown on Figures 1 to 4.
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Each of the four models presented above were fitted by maximum likeli-
hood using the procedure OPTMUM in GAUSS. Since the Poisson distribu-
tion allows for an infinite number of jumps in a f{inite time interval (albeit
with vanishingly small probability ), we had to truncate the infinite sum to es-
timate the parameters numerically. TLike Ball and Torous (1985), who derived
an upper bound for the truncation error, and Jorion (1988), we found that
10 terms gave satisfactory accuracy for the parameter values encountered.

Moreover, as remarked by Ball and Torous (1985), the likelihood functions
of jump-diffusion models usually have a local maximum at A = 0 (the no
jump case). To find the global maximum of each likelihood function in the
presence of several local maxima, we considered several starting points of
likely values for each iteration of the bootstrap as well as for the evaluation of
the maximum likelihood parameters of the observed data. Since convergence
problems are mainly due to the near-unidentified region in the neighborhood
of A = 0, numerical difficulties arise most with the simulated samples which
are drawn, as required, under the no-jump null. Our MC test algorithms are
available upon request.

Results are presented in Tables 1-2. We report estimates and standard
errors®, the LR test and the exact MC p-value for the GBM case and the
bootstrap and bounds MC p-values otherwise.

Tables 1 presents the weekly series based tests. In this case, we first ob-
serve that there is ample evidence of statistically significant jumps in each of
the time series investigated, for both the Geometric Brownian Motion and for
the Mean Reverting process, with and without GARCH effects. Indeed, both
the Monte-Carlo and Monte-Carlo bound p-values are 0.01 for 100 replica-
tions for each time series and each of the models considered. We also observe
that the jump frequency, given by A, is fairly stable between models. It is
highest for WTI, with a frequency of approximately 0.5 (which represents
one jump every other week, on average). For copper, we find A ~ 0.4 (one
jump every 2.5 weeks), while for nickel A is between 0.2 and 0.3, with a high
value of 0.6 for the MRM model. It is for gold that A is most stable with a
value of ~ 0.11 for all four models. We can notice, however, that the jump-
less GBM-GARCH and MRM-GARCH (a result consistent with the findings
of Schwartz (1997)) models estimated for this time series are non-stationary
since a1 + ag > 1.

8 Although we report asymptotic standard errors as is usual in this literature, we warn
against their use in a t-tests framework. As argued in section 2, asymptotic SE based
t-tests may be seriously flawed in the presence of identification problems such as the those
we are dealing with here. Following Dufour (1997), we rather use LR tests for hypotheses
of interest.
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Results for monthly series are presented in Table 2. This time, the sta-
tistical significance of jumps depends on the time series and on the model
considered. Hence, for copper jumps are not significant at the 5% level; for
nickel, there are statistically significant jumps only for the GBM; and for
WTI, there are no jumps in presence of GARCH effects. The exception is
gold, which exhibits jumps on average every 5.5 months (A a2 0.18). There
are, however, no GARCH effects with the jumpless GBM or MRM (both
and as are null), and only ARCIH(1) effects in the presence of jumps (as is
null). Similarly, there are only ARCH(1) effects for copper for both the GBM
and MRM models.

Before discussing some more the results, we note that the Monte-Carlo
bound p-value is, as expected, closer to the Monte-Carlo p-value the closest
the reduced model (either a GBM or a driftless GBM) is from the model
under Hy (MRM, GBM-GARCH, or MRM-GARCH). These two p-values
are thus closer for the GBM-GARCH model than for either the MRM or
MRM-GARCH models.

The observed discrepancy on jump frequency (value and statistical signif-
icance of A\) between the weekly and monthly data can easily be explained:
since there is more time between successive observations which anyway tend
to partly cancel each other’s effects (weekly observations do not all go up or
down between consecutive months), a diffusion is more likely to have pro-
duced the observed sample paths. In addition, since weekly and monthly data
cover the same period, we have four times less data information to estimate
the jump parameters.

If we contrast these results for the MRM processes with those of Schwartz
(1997) for futures prices, we observe that we obtain very small values for the
coeflicient of mean reversion, k. The value of this coefficient is smallest for
weekly data: between 0.006 and 0.012 for copper; ~ 0.016 for nickel; /2 0.008
for gold; and 0.04 for WTT (its highest value for weekly data). These values
are still far lower than those found by Schwartz for weekly futures: 0.37
for copper and 0.30 for oil for the MRM. The value of k is higher and less
influenced by the presence of GARCH effects for monthly data (/ 0.05 for
copper, =~ 0.06 for nickel, & 0.04 for gold, and = 0.14 for WTT), but still very
low. This can be explained by the much higher volatility of futures prices
compared to spot prices.
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4 Conclusions

When nuisance parameters are unidentified under the null, conventional
asymptotics fail even if the sample is large. Such problems frequently oc-
cur in jump/diffusion models. In this paper we propose an approach based
on (exact) boundedly pivotal statistics, which combines exact bounds and
MC test procedures based on the LR no-jump test statistic. On theoretical
grounds, we have established explicitly the criterion’s boundedly pivotal char-
acteristic. From the practical point of view, we have applied simulation-based
methods to the LR and bounding statistics to obtain size-correct p-values.
Although the problem we considered is highly non-regular, the solution we
propose is computationally attractive and it is finite sample exact. It can be
generalized to other non identification problems in the presence of nuisance
parameters.

We have illustrated our proposed tests on spot price series for crude oil,
copper, nickel, and gold. We have found statistically significant jumps for
all time series and all models considered for the weekly data, but only in
some cases for the monthly time series. This has implications for pricing
derivative instruments, adopting hedging strategies, or calculating the value
of a portfolio based on non renewable resources.

14



Table 1: Jump Price Tests For Weekly Data

Copper Nickel

GBM No Jumps Jumps No Jumps Jumps
1 -0.0015 (0.0014) -0.0008 (0.0017) | -0.0023 (0.0017) -0.0022 (0.0018)
o 0.0319 (0.0010)  0.0210 (0.0037) | 0.0390 (0.0012)  0.0288 (0.0027)
A 0.4095 (0.3210) 0.2306 (0.1452)
0 -0.0018 (0.0040) -0.0006 (0.0074)
) 0.0373 (0.0107) 0.0547 (0.0129)

MLE 1108.13 1133.48 998.96 1022.67
LR 50.69 (0.01) 47.42 (0.01)

MRM No Jumps Jumps No Jumps Jumps
I 7.5996 (0.1252)  7.5807 (0.1540) | 8.7343 (0.1073)  8.6478 (0.1741)
K 0.0126 (0.0065)  0.0104 (0.0060) | 0.0170 (0.0055) 0.0117 (0.0053)
o 0.0320 (0.0010)  0.0229 (0.0027) | 0.0389 (0.0012)  0.0295 (0.0025)
A 0.2663 (0.1785) 0.2088 (0.1279)
0 -0.0003 (0.0055) 0.0014 (0.0079)
6 0.0429 (0.0105) 0.0553 (0.0127)

MLE 1110.03 1134.64 1003.82 1024.91
LR 49.23 (0.01, 0.01) 42.19 (0.01, 0.01)

GARCH errors

GBM No Jumps Jumps No Jumps Jumps
1 -0.0016 (0.0012) -0.0016 (0.0016) | -0.0027 (0.0015) -0.0030 (0.0020)
Qg 0.0000 (0.0000)  0.0000 (0.0000) | 0.0001 (0.0000)  0.0000 (0.0000)
o1 0.0851 (0.0245)  0.1372 (0.0522) | 0.0691 (0.0258)  0.0693 (0.0308)
Q9 0.8803 (0.0390)  0.7276 (0.0995) | 0.8844 (0.0509)  0.8676 (0.0745)
A 0.4079 (0.3323) 0.6155 (0.3719)
0 0.0017 (0.0045) 0.0004 (0.0036)
6 0.0290 (0.0079) 0.0329 (0.0073)

MLE 1137.38 1151.05 1028.10 1040.81
LR 27.33 (0.01, 0.01) 25.40 (0.01, 0.01)

MRM No Jumps Jumps No Jumps Jumps
I 7.4991 (0.2983)  7.4284 (0.4308) | 8.6854 (0.1235)  8.5441 (0.2261)
K 0.0058 (0.0062)  0.0054 (0.0059) | 0.0150 (0.0061)  0.0114 (0.0058)
Qg 0.0002 (0.0001)  0.0001 (0.0000) | 0.0003 (0.0001)  0.0000 (0.0000)
o1 0.1187 (0.0386)  0.1097 (0.0425) | 0.1085 (0.0369)  0.0007 (0.0005)
Q9 0.6788 (0.0891)  0.7020 (0.0822) | 0.6544 (0.1079)  0.9714 (0.0092)
A 0.4294 (0.3480) 0.3076 (0.2417)
0 0.0012 (0.0043) 0.0051 (0.0061)
6 0.0293 (0.0080) 0.0453 (0.0133)

MLE 1136.61 1151.69 1019.75 1033.73
LR 30.17 (0.01, 0.01) 27.96 (0.01, 0.01)
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Table 1 (Continued.)

Gold WTI
GBM No Jumps Jumps No Jumps Jumps
1 -0.0004 (0.0008) -0.0011 (0.0006) | -0.0006 (0.0021) 0.0014 (0.0020)
o 0.0190 (0.0006)  0.0120 (0.0007) | 0.0546 (0.0015)  0.0311 (0.0030)
A 0.1115 (0.0429) 0.3982 (0.1295)
0 0.0059 (0.0060) -0.0048 (0.0057)
) 0.0401 (0.0079) 0.0709 (0.0099)
MLE 1429.69 1546.29 1036.14 1095.91
LR 233.20 (0.01) 119.54 (0.01)
MRM No Jumps Jumps No Jumps Jumps
1 5.8538 (0.0900)  5.6857 (0.2226) | 2.9086 (0.0488)  2.9834 (0.0453)
K 0.0094 (0.0059)  0.0049 (0.0041) | 0.0430 (0.0111)  0.0475 (0.0109)
o 0.0191 (0.0006)  0.0120 (0.0007) | 0.0552 (0.0015)  0.0277 (0.0042)
A 0.1120 (0.0426) 0.5391 (0.2002)
0 0.0055 (0.0060) -0.0063 (0.0045)
) 0.0399 (0.0077) 0.0632 (0.0098)
MLE 431.00 1 1546.89 1043.93 1104.23
LR 231.79 (0.01, 0.01) 120.60 (0.01, 0.01)
GARCH errors
GBM No Jumps Jumps No Jumps Jumps
1 -0.0028 (0.0006) -0.0011 (0.0006) | -0.0004 (0.0016) 0.0027 (0.0018)
Qg 0.0002 (0.0000)  0.0000 (0.0000) | 0.0001 (0.0000)  0.0000 (0.0001)
ay 0.9911 (0.1759)  0.0625 (0.0307) | 0.1562 (0.0282)  0.1666 (0.0325)
Q9 0.0349 (0.0538)  0.6475 (0.1553) | 0.8033 (0.0312)  0.7895 (0.0574)
A 0.1069 (0.0522) 0.4845 (0.7822)
0 0.0045 (0.0060) -0.0074 (0.0119)
) 0.0392 (0.0092) 0.0342 (0.0155)
MLE 1457.43 1545.98 1140.60 1155.46
LR 177.09 (0.01, 0.01) 29.73 (0.01, 0.01)
MRM No Jumps Jumps No Jumps Jumps
1 5.5481 (0.2201)  5.7205 (0.1738) | 2.9413 (0.0381)  3.0442 (0.0571)
K 0.0074 (0.0041)  0.0057 (0.0042) | 0.0420 (0.0116)  0.0460 (0.0117)
Qo 0.0002 (0.0000)  0.0001 (0.0000) | 0.0001 (0.0000)  0.0000 (0.0000)
ay 1.0008 (0.1770)  0.0617 (0.0310) | 0.1371 (0.0271)  0.1402 (0.0302)
Q9 0.0000 (- -) 0.0000 (- -) 0.8074 (0.0318)  0.8037 (0.0384)
A 0.1133 (0.0482) 0.5877 (0.3389)
0 0.0044 (0.0058) ) -0.0084 (0.0046
6 0.0385 (0.0082) 0.0316 (0.0066)
MLE 1460.16 1548.85 1155.39 1170.10
LR 177.38 (0.01, 0.01) 29.42 (0.01, 0.01)

Standard errors are in parenthesis. We report (ﬁMc) for LR-GBM and (ﬁbootstrapa ﬁboundi) otherwise.
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Table 2. Jump tests, Monthly Data

Copper Nickel
GBM No Jumps Jumps No Jumps Jumps
1 -0.0069 (0.0059) -0.0022 (0.0104) | -0.0099 (0.0073) -0.0143 (0.0093)
o 0.0684 (0.0042)  0.0422 (0.0267) | 0.0852 (0.0052)  0.0537 (0.0086)
A 0.9006 (1.8212) 0.5750 (0.3650)
0 -0.0052 (0.0137) 0.0078 (0.0168)
6 0.0568 (0.0379) 0.0883 (0.0256)
MLE 171.74 174.16 141.96 145.27
LR 4.84 (0.08) 6.62 (0.04)
MRM No Jumps Jumps No Jumps Jumps
I 7.5894 (0.1408)  7.5286 (0.1730) | 8.7354 (0.1123)  8.6082 (0.1658)
K 0.0506 (0.0289)  0.0457 (0.0278) | 0.0717 (0.0243)  0.0681 (0.0260)
o 0.0694 (0.0043)  0.0657 (0.0043) | 0.0854 (0.0053)  0.0686 (0.0109)
A 0.0093 (0.0114) 0.2800 (0.2972)
0 0.2194 (0.0893) 0.0280 (0.0371)
6 0.0000 (0.1270) 0.0887 (0.0347)
MLE 173.34 174.72 146.48 147.77
LR 2.76 (0.09, .31) 2.59 (0.09, 0.33)
GARCH errors
GBM No Jumps Jumps No Jumps Jumps
1 -0.0065 (0.0058) -0.0057 (0.0072) | -0.0129 (0.0059) -0.0180 (0.0130)
Qg 0.0042 (0.0007)  0.0021 (0.0009) | 0.0006 (0.0003)  0.0005 (0.0004)
o1 0.1168 (0.1214)  0.1814 (0.1432) | 0.2494 (0.1035)  0.2372 (0.1012)
Q9 0.0000 (- -) 0.0000 (- -) 0.6890 (0.0923)  0.6867 (0.0972)
A 0.3140 (0.4037) 0.0859 (0.2182)
0 -0.0017 (0.0221) 0.0731 (0.0668)
6 0.0768 (0.0364) 0.0000 (0.0636)
MLE 171.21 174.14 152.37 152.49
LR 5.85 (0.08, 0.15) 0.24 (0.81, 0.88)
MRM No Jumps Jumps No Jumps Jumps
I 7.5835 (0.1547)  7.5545 (0.2854) | 8.6602 (0.1488)  7.3236 (1.3505)
K 0.0467 (0.0298)  0.0334 (0.0276) | 0.0539 (0.0276)  0.0328 (0.0264)
Qg 0.0044 (0.0007)  0.0021 (0.0013) | 0.0006 (0.0003)  0.0001 (0.0002)
o1 0.0361 (0.1090)  0.1094 (0.1627) | 0.0563 (0.0838)  0.0267 (0.0236)
Q9 0.0000 (- -) 0.0000 (- -) 0.8233 (0.1234)  0.8673 (0.0614)
A 0.4313 (0.8639) 0.5864 (0.5320)
0 -0.0013 (0.0190) 0.0703 (0.0274)
6 0.0678 (0.0452) 0.0001 (0.0325)
MLE 173.39 175.62 153.35 155.68
LR 4.47 (0.11, 0.31) 4.64 (0.11, 0.26)
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Table 2 (Continued.)

Gold WTI
GBM No Jumps Jumps No Jumps Jumps
1 -0.0022 (0.0033) -0.0059 (0.0025) | -0.0022 (0.0077) -0.0017 (0.0066)
o 0.0393 (0.0023)  0.0231 (0.0025) | 0.1013 (0.0054)  0.0663 (0.0060)
A 0.1719 (0.0928) 0.1978 (0.0948)
0 0.0215 (0.0193) -0.0028 (0.0368)
) 0.0736 (0.0201) 0.1733 (0.0414)
MLE 254.58 279.50 151.56 168.10
LR 49.85 (0.01) 33.08 (0.01)
MRM No Jumps Jumps No Jumps Jumps
1 5.8394 (0.0962)  5.4366 (0.6979) | 2.9055 (0.0543)  2.9040 (0.0462)
K 0.0380 (0.0250)  0.0124 (0.0174) | 0.1469 (0.0429)  0.1456 (0.0426)
o 0.0397 (0.0024)  0.0235 (0.0025) | 0.1048 (0.0060)  0.0703 (0.0067)
A 0.1596 (0.0854) 0.1675 (0.0833)
0 0.0216 (0.0202) 0.0011 (0.0397)
6 0.0752 (0.0203) 0.1776 (0.0434)
MLE 255.77 279.60 158.10 174.85
LR 47.65 (0.01, 0.01) 33.50 (0.01, 0.01)
GARCH errors
GBM No Jumps Jumps No Jumps Jumps
1 -0.0022 (0.0033) -0.0055 (0.0024) | 0.0008 (0.0057) -0.0101 (0.0070)
Qg 0.0393 (0.0023)  0.0005 (0.0002) | 0.0008 (0.0004) 0.0005 (0.0003)
ay 0.0000 (- -) 0.0158 (0.0523) | 0.2039 (0.0636) 0.1969 (0.0680)
Qg 0.0000 (- -) 0.0000 (- -) 0.6916 (0.0745) 0.6727 (0.0824)
A 0.1915 (0.1154) 0.0902 (0.0605)
0 0.0194 (0.0182) 0.1313 (0.0365)
6 0.0710 (0.0208) 0.0000 (0.0453)
MLE 254.58 278.06 181.47 183.57
LR 46.95 (0.01, 0.01) 4.19 (0.14, 0.23)
MRM No Jumps Jumps No Jumps Jumps
1 5.8394 (0.0962)  5.2196 (1.4759) | 2.9391 (0.0435) 2.9213 (0.0458)
K 0.0380 (0.0250)  0.0082 (0.0172) | 0.1428 (0.0441) 0.1433 (0.0441)
Qg 0.0397 (0.0024)  0.0005 (0.0002) | 0.0009 (0.0004) 0.0006 (0.0003)
ay 0.0000 (- -) 0.0243 (0.0555) | 0.2392 (0.0752)  0.2334 (0.0821)
Qg 0.0000 (- -) 0.0000 (- -) 0.6516 (0.0814)  0.6584 (0.0790)
A 0.1891 (0.1178) 0.0311 (0.0317)
0 0.0191 (0.0181) 0.1487 (0.0598)
6 0.0709 (0.0212) 0.0000 (0.0667)
MLE 255.77 279.90 185.86 186.95
LR 48.26 (0.01, 0.01) 2.17 (0.32, 0.67)

Standard errors are in parenthesis. We report (ﬁMc) for LR-GBM and (ﬁbootstrapa ﬁboundi) otherwise.
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5 Appendix: Monte Carlo tests

The Monte Carlo (MC) test procedure [Dwass (1957), Barnard (1963)] is presented
in Dufour (1995) where the nuisance-parameter-dependent case is formerly treated.
Here we summarize the underlying methodology.

Consider a right tailed test problem based on a given test statistic which we
denote ST'AT and suppose the null distribution of S7'AT" depends on the unknown
parameter &. Let ST ATy refer to the value of the test statistic obtained from the
data. The following steps define a procedure to obtain a MC p-value conditional
on &, which we will denote Py (ST ATp|§) where N refers to the number of MC

replications.”

e Conditionally on &, draw N samples from the null DGP.

e From each simulated sample, compute the ST AT criterion; this yields N

realizations of the statistic, namely STAT;, j=1, ... , N.
e Given STATy and STAT;, =1, ... , N, obtain
N 1 XN
Gn(STATy) = 5 Z;I[O,oo] (STAT; — ST ATy),

. 1, if € A,
La(z) = {0, it A

In other words, NV G N (ST ATp) is the number of simulated criteria > ST ATy

and
Ry (STATY) = N — NGy (STAT)) + 1

gives the rank of ST ATy in the series ST Aly, STAT, ..., STATN .

e The MC p-value'® conditional on & corresponds to

NGN(STATy ) + 1

pn(STATH|E) = N1

Dufour (1995) proves that, if STAT is pivotal and o(N + 1) is an integer, the
test’s critical region would correspond to

(510) ﬁN<STATO) <a, O<a<l,

®Note that the latter p-value takes N explicitly into consideration, so that no central
limit arguments on N are needed to establish the method’s validity.

0The formula for pn(STATH|E) gives the empirical probability, conditional on &, to
observe a value as extreme or more extreme than ST ATy under the null. Consequently,
Pn(STATH|E) may be viewed as a randomized MC p-value.

19



where the notation is explicit about the non-dependence on nuisance parameters.'

Formally, it is shown that the latter critical region is exact, in the following sense:
P(Ho) []3]\[<STATO ) S Oé] = Q.

In the presence of nuisance parameters, Dufour (1995) shows that the test based
on the region

(5.11) sup [pn(STATH|E)] < «
§ € Mo
where My is the nuisance parameter space under Hy, is exact at level a.

If a consistent (constrained'?) estimate gnof £ is available, the corresponding
MC p-value py (ST ATy ]gn) may provide an asymptotic test. Indeed, Dufour (1995)
shows that given general regularity conditions, the test based on the latter p-value
has the correct size asymptotically (as T — 00), i.e., under Hy,

n—o0

lim { Ppy (STAT|E,) < o] = Plin (STATH|E) < al} =0,

Note that no asymptotics on the number N of MC replications is required to obtain
the latter result; this is the fundamental difference between the latter procedure
and the (closely related) parametric bootstrap method. Dufour and Khalaf (1998,
1999) call the test based on simulations using a consistent nuisance parameter
estimate a local MC (LMC) test.!3 Furthermore, they show they observe that LMC
non-rejections are exactly conclusive in the following sense. If py (S TATOEn) > q,
then the exact test defined in (5.11) is clearly not significant at level a.

Finally, in the context of boundedly pivotal statistics a conservative'® p-value
may be derived as follows. Suppose the bounding statistic is ST AT™ so that

STAT < STAT*, V¢ € M,

and STAT™ is pivotal under the null. Then, to obtain a bounds MC p-value,
proceed as in the pivotal case (drawing from the relevant null DGP), computing
ST AT™ rather than ST AT from the simulated samples.

e Given STATp and STAT}, j=1, ..., N, obtain

N 1 XN
GB(STATy ) = ~ > Tiooo) (STAT} — STATY).
=1

UFor instance, given 99 replications of a pivotal statistic, a MC test is significant at 5%
if the rank of ST AT} in the series ST ATy, STAT, ..., STATN is at least 96.

124, e. derived imposing the null.

3 The term local reflects the fact that the underlying MC p-value is based on a specific
choice for the nuisance parameter

14 A test is conservative if rejections are conclusive. For a formal definition, see Dufour

(1989).
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e The bounds MC p-value

NGB (STATy ) +1

5.12 pB(STATY) =
(5.12) PR(STAT) )
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