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Abstract

To generate persistence we augment the standard real business cycle (RBC)
model with a “learning by doing” (LBD) mechanism, where current labor sup-
ply affects workers’ future labor productivity. Our econometric analysis shows
that the LBD model fits aggregate data much better than the standard RBC
model. We calculate posterior odds for the structural models and formally
show that the LBD model more closely mimics the autocorrelation and impulse
response patterns that we found in a bivariate VAR analysis.
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1 Introduction

A well known shortcoming of the standard real business (RBC) model is its lack of an
internal propagation mechanism. Aggregate output essentially traces out the move-
ments of the exogenous technology process. This deficiency has been pointed out,
among others, by Cogley and Nason (1995) and Rotemberg and Woodford (1996).
While output growth is positively autocorrelated in the data, the model cannot gen-
erate any persistence in output growth from a random walk productivity process. It
is also well known that GDP has an important trend-reverting component which is
characterized by a hump-shaped response to a transitory shock, e.g., Blanchard and
Quah (1989) and Cochrane (1994). However, the standard RBC model invariably
generates a monotonic response of output in response to transitory shocks. In this
paper, we introduce a fairly simple skill accumulation mechanism, which we will call
“learning by doing”, to overcome both deficiencies.

The standard model assumes that the worker’s ability stays unchanged over
time, despite the fluctuation of employment status and hours over the business cy-
cle. However, extensive studies in labor economics have found important wage losses
for displaced workers and a significant job-tenure effect in wage profiles. According
to Ruhm (1991), based on the Panel Study of Income Dynamics (PSID), workers
with displacement experience significant wage loss in the subsequent years of em-
ployment. At the same time displaced workers experience higher separation rates in
subsequent jobs for years following displacement. On the other hand, wages of newly
employed workers exhibit rapidly increasing profiles over time. These findings for
individual workers fit into the broader picture of the behavior of aggregate economy.
The business cycle associated with strongly procyclical hiring of new workers and
countercyclical layoff of workers, indicates a systematic change in labor productivity
of the work force.

We incorporate workers’ on the job learning into a standard RBC model to
account for the dependence of labor productivity on past work experience. This
learning by doing (LBD) generates an internal propagation mechanism. The shifts in
labor productivity outlive the exogenous technology shock. We refer to the modified
RBC model as LBD model.

An econometric analysis is conducted to assess the empirical adequacy of the
LBD specification and to quantify the improvements relative to the standard RBC
model. A Bayesian approach lets us incorporate prior information on the parameters
of the structural models. The priors are centered around values that are commonly
used to calibrate RBC models, but they do not impose these values dogmatically.
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To obtain a prior for the parameters of the learning by doing mechanism, we con-
struct estimates from micro panel data. The Bayes estimation can be interpreted as
follows: find values such that RBC and LBD model fit the data in a likelihood sense,
without deviating too far from parameter values that are economically plausible and
consistent with information from micro data sets.

The model comparison is based on the framework proposed by Schorfheide
(1999). Instead of simply assessing the posterior odds of the LBD versus the RBC
model, a vector autoregression (VAR) is used as a benchmark. We formally com-
pare predictions of population moments and impulse response functions from the
structural models to posterior estimates from the VAR. Both, the log-linearized
structural models as well as the VAR provide linear moving average representa-
tions for aggregate data. The VAR representation, however, is less restrictive and
therefore suitable to serve as a benchmark.

We find that the LBD model dominates the standard RBC model in many re-
spects. First, introducing learning by doing significantly improves the statistical
fit of the model. Approximate Bayes factors consistently favor the LBD specifica-
tion, regardless of the prior distribution that we use. Second, the model with LBD
successfully reproduces positive correlation in output growth even when exogenous
technology follows random walk. Third, the impulse response function from the LBD
clearly exhibits a hump-shaped response to a serially correlated transitory shocks as
the current increase in hours leads to a subsequent increase in labor productivity.

A number of alternative explanations have been explored by other researchers.
Cogley and Nason (1995) show that a straightforward modification of the basic
model to allow for adjustment costs in capital fails to generate the required propaga-
tion of shocks. Hall (1999), Den Haan, Ramey and Watson (1997) and Pries (1999)
examine the role of labor market frictions and job losses in generating persistent
movements in unemployment and business cycle fluctuations. Perli and Sakellaris
(1998) focus on intersectoral allocation of resources between market production and
human capital accumulation.

Our work is closely related to Cooper and Johri (1998), who introduce the notion
of learning by doing in the form of “organizational capital”. Its level depends on
past production. We introduce learning by doing through direct effects of past work
experience on current labor productivity. Our approach has two advantages over
the notion of organizational capital. First, we can measure the effects of learning
by doing directly from panel data on wages and employment. Second, our modeling
strategy avoids the issues of distinguishing between internal and external learning
by doing, and determining which component of national income to match up with
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the contribution of LBD. The benefits to learning are incorporated in workers wages
and thus will be included in the labor share of national income.

The paper is organized as follows. In Section 2 we augment the standard RBC
model to allow for skill accumulation. Based on the panel data from the PSID,
Section 3 discusses the evidence on the role of learning by doing. The econometric
comparison of the RBC and the LBD model is conducted in Section 4. Section 5
summarizes our findings and discusses some avenues for future research.

2 A Stochastic Growth Model with Learning by Doing

The model economy is a variation of the standard stochastic growth model. Our
main departure from the standard model is a learning by doing mechanism for labor.
Workers’ skill level varies over the business cycle along with their recent employment
history.

There are several alternative ways of modelling the effects of skill accumulation
in the production possibilities frontier. Cooper and Johri (1998) motivate learning
by doing by introducing organizational capital as an additional input in production
function, with the level of this organization capital depending on past production
rates.

Introducing learning through labor productivity as we do has two important
advantages. First, the model parameters can be directly infered from the ample
panel data evidence on wages and work experience of individuals. Second, learning
by doing usually creates an issue on whether it is internal or external or which
component of national income is matched up with the contribution of learning by
doing . Our modelling strategy avoids these issues since the benefit to learning are
directly incorporated in workers wages and thus will be included in the labor share
of national income.

2.1 Households

The representative household maximizes the expected discounted lifetime utility
defined over consumption Ct and leisure 1 − Ht where Ht denotes hours spent at
work:

U = Et

[ ∞∑
τ=t

βτ−t[logCτ +Bτ log(1−Hτ )

]
(1)

where Et denotes the expectation operator, conditional on information available
at date t and β is the discount factor. Bt represents a stochastic preference shift.
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The model economy is pertubated by two types of shocks: permanent shocks and
transitory shocks. As it is common in the RBC literature, permanent shocks shift
the production function. Transitory shocks are introduced through shifts in the
marginal rate of substitution between goods and leisure which has been emphasized
by Baxter and King (1991) and Hall (1997) as an important factor in explaining
aggregate labor market fluctuations.1

Several studies in labor economics have documented the role of past labor supply
on current wage determination. Two key findings are the existence of a job-tenure
effect in wage profiles (Topel, 1991) and the significance of wage losses suffered by
displaced workers, e.g., Ruhm (1991) and Jacobson, LaLonde and Sullivan (1993).

While most findings in this literature are based on binary employment status,
we will introduce a continuous variable Xt that reflects past employment experi-
ence (which we identify with the skill level) in the representative agent economy.
The basic findings above suggest the following parsimonious representation for the
accumulation of skill, Xt:

ln(Xt/X) = φ ln(Xt−1/X) + µ log(Ht−1/H), 0 < φ < 1, µ > 0. (2)

where variables without time subscript denote the stationary values.

In the present context equation (2) has a very simple interpretation. First
it implies that an increase in the amount of hours worked in the current period
contributes to an improvement in labor skills next period, with an elasticity of
µ. Second, skill accumulation is persistent but not permanent. If hours worked
fall below steady-state, skills decay over time at rate φ. Conveniently this model
reduces to the standard stochastic growth model if µ = 0, Xt = X = 1/(1−φ). The
skill level Xt is interpreted as the effective unit of hours that the worker supplies.
So the worker with skill Xt earns wage rate of Wt(Xt) = W ∗t Xt where W ∗t denotes
the market wage rate for efficiency unit of labor.

The household owns the capital stock Kt and rents it to firms at rental rate Rt.
The budget constraint faced by the household is

Ct + It = Wt(Xt)Ht +RtKt. (3)

where It denotes capital goods expenditures. The accumulation of capital is de-
scribed by the law of motion:

Kt+1 = Kt + (1− δ)Kt (4)
1Having a preference shock is not critical for our purpose. To make the model consistent with

the subsequent bivariate VAR analysis we only need a pair of shocks: a permanent shock and a
transitory shock other than a technology shock.
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where δ is the depreciation rate of the capital stock.

2.2 Firms

Firms produce final goods according to a constant returns Cobb-Douglas technology
in capital, Kt, and labor, Nt,

Yt = K1−α
t (NtZt)α. (5)

Exogenous technological progress is denoted by Zt. The labor input Nt consists of
two components: an endogenous component that reflects job skill due to learning
by doing, Xt, and hours worked, Ht. The effective number of hours is given by

Nt = XtHt (6)

Profit maximization implies that firms solve the following problem

max
Nt,Kt

(ZtNt)αK1−α
t −W ∗t Nt −RtKt (7)

The optimality conditions for this problem are

W ∗t = αZαt Nt
α−1K1−α

t (8)

Rt = (1− α)(NtZt)αK−αt (9)

3 Evidence on Skill Accumulation

The properties of the LBD model crucially depend on the parameterization of the
skill accumulation process (2). First, we estimate the learning parameters φ and µ

directly from the PSID for the period 1971-1992. Second, we compare our estimates
to empirical evidence from a number of related microeconomic studies. The findings
will be used to justify prior distributions of the LBD parameters for the time series
analysis in Section 4.

3.1 Panel Data Estimation

Our model implies that the observed hourly log wage can be described as2:

wit = w∗t + ξit (10)
2Unless otherwise noted, lower case letters are used to represent logs of upper case variables

introduced earlier.
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where ξit is individual specific term that affects the wage rate. The process ξit
consists of the following components

ξit = xit + αi + βt+ ψ(L)εit (11)

where L denotes the temporal lag operator, and ψ(L) is the polynomial
∑∞

j=0 ψjL
j .

The process xit is the micro level analogue to the aggregate skill lnXt. The
idiosyncratic skill process evolves according to3

xit = φxi,t−1 + µhi,t−1 (12)

Here, hi,t−1 denotes the average number of hours worked by individual i in period
t − 1. Since the number of hours that an individual can spend at the workplace is
bounded, the skill level xit is also bounded if φ < 1. The skill of an individual who
constantly works h hours converges to the maximum skill level µh/(1− φ).

Individual specific components are represented by the fixed effect αi, capturing
intrisic ability, and the process ψ(L)εit, reflecting time varying idiosyncratic shocks
such as the quality of match. These shocks reconcile the wage predicted by overall
ability and occupational skill with the observed wage. For instance, an individual
might receive an unusual low wage due to a poor match of qualification and job
requirements. Alternatively, the wage could be unusually high because the employer
overestimates his or her ability. At time t individuals i and their employers only
know past and present εit’s.

The unobserved skill xt can be eliminated by quasi-differencing of the wage
equation. This leads to the dynamic panel data model

wit = φwi,t−1 +µhi,t−1 + (1−φ)β+ (1−φL)w∗t + (1−φ)αi + (1−φL)ψ(L)εi,t (13)

The fixed effect αi(1− φ) can be removed by differencing (13) to get

∆wit = φ∆wi,t−1 + µ∆hi,t−1 + (1− φL)(1− L)w∗t + ui,t (14)

where
ui,t = (1− φL)(1− L)ψ(L)εi,t (15)

The goal is to estimate φ and µ. We assume that the idiosyncratic disturbances εit
are independent of aggregate process w∗t . Since the market price of efficiency units

3Clearly this process only captures the role of employment skills (rather than job specific skills)
on wages. To model the evolution of job specific skills it is necessary to assess how many of the
previously acquired skills are transferable to the next job. This modeling exercise is beyond the
scope of the present study.
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of labor is unobserved, we introduce time dummies to capture w∗t in the regression
below.

∆wit = φ∆wi,t−1 + µ∆hi,t−1 +
T∑
j=1

δj{t = j}+ ui,t (16)

where {t = j} is the indicator function that is one if t = j and zero otherwise.

Based on the interpretation of the idiosyncratic εit shocks given above, we will
assume that their effects vanish after one period, i.e., one year. Thus, ψ(L) =
1 +ψ1L. The following orthogonality conditions are exploited to construct a GMM
estimator for the skill accumulation parameters φ and µ

IEt−1[uitwi,t−h] = 0, IEt−1[uithi,t−h] = 0 for h = 4, 5 (17)

If the time varying idiosyncratic skill process is a moving average of higher order,
then our estimation procedure will generally be inconsistent. The direction of the
estimation bias depends on the relative magnitude of φ the ψj ’s. Nevertheless, we
think that our estimation procedure provides a suitable measurement of the order
of magnitude of φ and µ.

The estimation results are summarized in Table 1. Since the estimates are
obtained from annual panel data but our model is stated in terms of quarterly
variables, we convert the numbers. Due to the non-linear conversion discussed in
the Appendix, the standard errors for the quarterly estimates are smaller than for
the annual estimates. Depending on the choice of the particular sample and the set
of instruments, the quarterly point estimates range from 0.778 to 0.900 for φ, and
0.072 to 0.110 for µ.

3.2 Other Literature

A number of other studies confirms our findings about the existence of a fairly strong
link between past work experience and current wages. Using a subset of PSID data
Topel (1991) finds evidence of a clear tenure effect that leads to a wage growth of
about 7% after one year of tenure leveling off to around 2.5% after 10 years of work.
These numbers are even higher when total market experience is added to job-specific
tenure.

The effects of job separations on wages are also well documented in the literature,
although quantitative estimates are quite sensitive to the definition of separation
being used. While focusing on very strict definitions of job separations usually leads
to fairly high and persistent wage losses following a separation, broader definitions
yield fairly negligible and much less persistent effects on wages.
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Specification Annual Estimates Quarterly Estimates

φ̃ µ̃ φ µ

All (I) 0.488 (0.162) 0.126 (0.109) 0.836 (0.069) 0.088 (0.154)

All (II) 0.515 (0.127) 0.133 (0.107) 0.847 (0.052) 0.087 (0.145)

All (III) 0.581 (0.116) 0.125 (0.112) 0.873 (0.044) 0.072 (0.142)

Men (I) 0.367 (0.169) 0.116 (0.172) 0.778 (0.090) 0.105 (0.251)

Men (II) 0.477 (0.143) 0.143 (0.179) 0.831 (0.062) 0.102 (0.240)

Men (III) 0.568 (0.131) 0.126 (0.190) 0.868 (0.050) 0.074 (0.237)

Women (I) 0.655 (0.343) 0.208 (0.169) 0.900 (0.118) 0.102 (0.269)

Women (II) 0.496 (0.238) 0.161 (0.144) 0.839 (0.101) 0.110 (0.220)

Women (III) 0.525 (0.216) 0.164 (0.148) 0.851 (0.088) 0.106 (0.214)

Table 1: Estimation Results for Learning by Doing Parameters. Standard errors are
in parentheses. The conversion to quarterly estimates is explained in the appendix.
Standard errors for quarterly observations are constructed via δ-method. Instru-
ments (I): wi,t−4, wi,t−5, li,t−4, and li,t−5; Instruments (II): Instruments (I) and age;
Instruments (III): Instruments (II) and years of schooling.
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Thus, Jacobson, LaLonde and Sullivan (1993) focus on a sample of displaced
workers only to find that wage losses are between 15% and 20% in the first year
and a full recovery takes at least some 3 years, while Ruhm (1991), also looking
at displacements, finds that workers wages may actually never recover completely
from the initial, similar, wage losses. In the context of our model this would suggest
annual values for µ and φ around 0.15 and 1, respectively. On the other extreme,
Topel and Ward (1992) actually document that for young workers wages actually
rise somewhat following job changes, suggesting that µ and φ should both be close
to 0.

We account for these differences by imposing different priors on the distribution
of the learning parameters in the analysis below. In particular we will consider two
prior distributions based on our panel estimates and one prior distribution that is
centered at φ = 0.5. The latter can be regarded as a midpoint “estimate” based on
the studies discussed in this subsection.

4 Econometric Model Evaluation

In this section we evaluate the empirical adequacy of the LBD model and compare it
to the RBC model. Three specifications of the LBD model are considered that differ
with respect to the prior distribution for the persistence parameter φ of the skill
process. Based on the log-linearized structural models we derive a joint probability
distribution for macroeconomic aggregates. Since the models contain two exogenous
processes, Zt and Bt, marginal distributions for 2×1 vectors of macroeconomic vari-
ables are non-singular. To keep our analysis comparable to that of earlier bivariate
studies we fit the models to aggregate output growth and hours data.

4.1 Methodology

The models are evaluated based on their ability to reproduce regular features of ag-
gregate output and employment data. For several reasons, we will adopt a Bayesian
approach. First, it is straightforward to incorporate additional information into the
parameter estimation. This information stems from two sources: calibration exer-
cises as they are typically conducted for the parametrization of RBC models, and
the learning by doing parameter estimates discussed in Section 3. Second, Bayesian
procedures are ideal for model comparisons and the assessment of their relative sta-
tistical fit, while frequentist procedures are suitable to assess the absolute adequacy
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of one particular model at a time. A detailed argument along these lines can be
found in Box (1980).

The parsimoneous and stylized nature of the model economies is a potential
source for misspecification. For this reason, we do not limit our analysis to the
calculation of posterior probabilities for the RBC and LBD model. Instead we
employ the econometric framework proposed in Schorfheide (1999). To account
for the potential misspecification of the structural models, we consider a vector
autoregression as a reference model. Both the structural models as well as the VAR
provide a linear moving average representation for aggregate output growth and
hours. The VAR, however, is much less restrictive. Moreover, it is a popular tool in
empirical macroeconomics.

The VAR is helpful for the model evaluation in two respects. First, the posterior
odds of the structural models versus the VAR provide a measure of the overall
statistical fit of the RBC and LBD model within the class of linear models. If the
structural models due to their parsimony dominate the VAR then posterior odds are
useful for comparing RBC and LBD model. On the other hand, if the statistical fit of
the structural models is poor, then the VAR can be used as a benchmark to obtain
posterior estimates of population moments and impulse response functions. The
model evaluation proceeds by comparing the predictions of the structural models
and the posterior VAR estimates with respect to population characteristics that a
researcher is interested in. The structural model that best matches the posterior
estimates wins the comparison. A formal description of the procedure is provided
in the next subsection.

4.2 The Model Evaluation Procedure

The structural models are denoted by Mi, i = 1, . . . , k. The reference model is
denoted by M∗. θ(i), i = ∗, 1, . . . , k is the parameter vector for model i. Let πi,0
and πi,T be prior and posterior model probabilities, respectively. The m×1 vector ϕ
contains population characteristics, such as truncated autocorrelation and impulse
response functions. The posterior of ϕ conditional on a modelMi is denoted by the
density p(ϕ|data,Mi). The econometric evaluation consists of the following steps.

1. Compute posterior distributions for the model parameters θ(i) and calculate
posterior model probabilities

πi,T =
πi,0p(data|Mi)∑

i=∗,1,...,k πi,0p(data|Mi)
(18)
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where p(data|Mi) is the marginal data density4.

2. The overall posterior distribution of the population characteristics ϕ is given
by

p(ϕ|data) =
∑

i=∗,1,...,k
πi,T p(ϕ|data,Mi) (19)

If the posterior probability of the reference model is substantially larger than the
posterior probabilities of the structural models, that is, π∗,T � πi,T , i = 1, . . . , k,
then

p(ϕ|data) ≈ p(ϕ|data,M∗) (20)

3. Loss functions L(ϕ, ϕ̂i,b) are introduced to penalize the deviation of actual
model predictions ϕ̂i,b (based on structural Bayes estimates) from population char-
acteristics ϕ. For each structural model Mi, we will examine the expected loss
associated with ϕ̂i,b under the posterior distribution of ϕ conditional on the VAR:

R(ϕ̂i,b|data,M∗) =
∫
L(ϕ, ϕ̂i,b)p(ϕ|data,M∗) (21)

This posterior prediction risk R(ϕ̂i,b|data,M∗) provides an absolute measure of fit.
The differential across structural models provides a relative measure of fit that
allows model comparisons. Since ϕ̂i is a function of the model parameters θ(i) one
can obtain loss function parameter estimates θ̂(i)

l by minimizing R(ϕ̂[θ(i)]|data,M∗)
with respect to θ(i). These estimates provide a lower bound for the posterior risk
attainable through a particular structural model.

We consider two loss functions to evaluate the deviations of actual model pre-
dictions from population characteristics. The quadratic loss function

Lq(ϕ, ϕ̂) = (ϕ− ϕ̂)′W (ϕ− ϕ̂) (22)

with m×m weighting matrix W penalizes the distance between model predictions
and posterior mean predictions of the reference model. Since the ranking of predic-
tions ϕ̂ depends only on the weighted distance between ϕ̂ and the posterior mean of
ϕ, an informal comparison of the two quantities can be interpreted as an evaluation
under a quadratic loss function.

The second loss functions penalizes predictions that fall far into the tails of the
overall posterior distribution p(ϕ|data) of the population characteristics. Let ϕ̄ be
the posterior mean and Vϕ the posterior covariance matrix. Define

Lχ2(ϕ, ϕ̂) = I
{

(ϕ− ϕ̄)′V −1
ϕ (ϕ− ϕ̄) < (ϕ̂− ϕ̄)′V −1

ϕ (ϕ̂− ϕ̄)
}

(23)

4The marginal data density is defined as p(data|Mi) =
R
p(data|θ(i),Mi)p(θ(i)|Mi)dθ(i), where

p(data|θ(i),Mi) is the likelihood function for model i and p(θ(i)|Mi) is the prior distribution of θ(i)
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The expected Lχ2 loss is similar to a p-value if the posterior density is well ap-
proximated by a unimodal Gaussian density. However, its interpretation is different
from traditional p-values. Most importantly, the expected Lχ2 loss can be used to
formally rank misspecified models based on how far their predictions lie in the tails
of the overall posterior distribution of population characteristics.

4.3 Results

All structural models as well as the VAR are fitted to quarterly U.S. data from
1954:III to 1997:IV. Priors are specified conditional on the first 22 observations.
The estimation period is then 1960:I to 1997:IV. Data definitions are provided in
the Appendix. The RBC and LBD model are log-linearized and solved by standard
methods. Conditional on parameter values θ(i) the likelihood function can be eval-
uated with the Kalman filter. The likelihood is combined with an informative prior
distribution described below. A numerical optimization routine is used to compute
posterior modes. A fourth order vector autoregression serves as reference modelM∗.
A version of the Minnesota prior (Doan, Litterman, and Sims, 1984) is used for the
VAR coefficients. Draws from the posterior distribution of the VAR parameters
are obtained by Gibbs sampling. For each of these draws we calculate the desired
population moments and impulse response functions. This leads to draws from the
posterior distribution of population characteristics p(ϕ|data,M∗). These draws can
be used to determine posterior expected losses of model predictions. Details are
provided in the Appendix.

4.3.1 Prior Distributions for the Structural Parameters

A common approach in the calibration literature is to evaluate models based on
parameter values that are regarded as economically plausible. Such values are ob-
tained by matching steady state characteristics of the models to first moments of
time series data, from micro econometric studies with cross sectional data, or by
pure introspection. This feature of the calibration approach can be interpreted as a
prior distribution that concentrates on a single point of the parameter space. Fol-
lowing the literature on Bayesian analysis of the models we relax the “tightness” of
the prior and consider non-degenerate distributions. This prior is later combined
with the likelihood function to obtain a posterior distribution. Intuitively the Bayes
estimation can be interpreted as searching for parameter values such that the mod-
els fit the data, in a likelihood sense, without deviating too far from economically
sensible values.
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Name Range Density Mean Std.Error

α [0,1] Beta 0.660 (0.020)
β [0,1] fixed 0.990 N/A
γ IR Gaussian 0.005 (0.002)
δ [0,1] fixed 0.025 N/A
Lm [0,1] Beta 0.330 (0.020)
ρ [0,1] Beta 0.900 (0.100)
ψ IR Gaussian 0.000 (1000)
σε IR+ InvGamma ∞ (∞)
ση IR+ InvGamma ∞ (∞)

Learning-by-Doing Parameters: Prior 1

µ IR+ Gamma 0.090 (0.150)
φ [0,1] Beta 0.840 (0.060)

Learning-by-Doing Parameters: Prior 2

µ IR+ Gamma 0.090 (0.150)
φ [0,1] Beta 0.840 (0.010)

Learning-by-Doing Parameters: Prior 3

µ IR+ Gamma 0.090 (0.150)
φ [0,1] Beta 0.500 (0.060)

Table 2: Prior Distribution for the Parameters of the DSGE Models. The parameters
µ and φ appear only in the LBD model.
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The marginal prior densities that are used in the empirical analysis are summa-
rized in Table 2. The shapes of these densities are chosen to match the domain of
the structural parameters.

Naturally the skill accumulation parameters µ and φ are the focus of our analysis.
To accommodate the different empirical estimates discussed earlier we will choose
three different priors for them. Prior 1 is based on the panel data estimates presented
in Section 3. The prior mean of φ is 0.84 which is approximately an average of
the point estimates that we obtained for the “All” and “Men” samples. The prior
standard error is 0.06 which somewhat understates the actual parameter uncertainty
based on the Panel estimates. The prior mean for µ is 0.09 with a large standard
error of 0.15. In the second prior we reduce the standard error of φ to 0.01, which
pulls the posterior more strongly toward 0.84. The third prior for φ centered around
0.5.

The remaining prior means are calibrated to match the values that are com-
monly used in the RBC literature. We fixed the discount factor β = 0.99 and the
depreciation rate δ = 0.025 a priori. The priors for the labor share α and the steady
state hours at work L are centered at 0.66 and 0.33, respectively. Since total hours
are normalized to one in the structural models, we introduce a parameter ψ that
corresponds to the log steady state value of actual hours worked. We use a diffuse
prior for ψ, with mean zero and a large variance. The a priori expected value of ρ,
the autoregressive coefficient for the preference process Bt is 0.9.

4.3.2 Posterior Distributions and Model Probabilities

Posterior mode estimates of the structural model parameters are summarized in
Table 3. The RBC model is labeled M1 and the LBD model with Prior j = 1, 2, 3
is denoted by M2(j). Most interesting for our analysis are the estimates of the
learning parameters φ and µ. Under Prior 1 the posterior mode is equal to 0.99
which implies that the skill process is highly persistent.5 The posterior density
appears to be dominated by the contribution of the likelihood function. Under
priors 2 and 3, however, the posterior mode of φ is very close to the respective prior
means. The prior is very informative relative to the likelihood and the data does
not lead to a substantial revision of the parameter values.

5Chang and Kwark (1999) report that aggregate hours exhibits extreme persistence in the data—
one cannot reject the existence of a unit root. This finding is incompatible with the standard
model driven by persistent productivity shocks because hour is little affected by permanent shifts
in technology as income effect and substitution effect offset each other. It seems that the learning
by doing parameter reflects this persistence in hours series in the data.
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The likelihood values and marginal data densities, summarized in Table 4, shed
more light on the interpretation of the parameter estimates. Most important in the
table are the marginal data densities for the structural models and the reference
autoregression. The marginal densities p(YT |Y0,Mi) can be interpreted as maxi-
mum likelihood values, penalized for the dimensionality of the various models and
adjusted for the effect of the prior distribution (see Appendix for details). While
the reference model clearly outperforms the structural models and has essentially
posterior probability one, it is nevertheless informative to look at the likelihood fit
of the structural models.

There is a significant discrepancy between the value of the likelihood functions
at their respective maxima and at the posterior modes, indicating the important role
our priors on the structural parameters. The posterior mode is often quite similar to
the prior mean. Unfortunately the parameter values that maximize the likelihood
function are in many instances quite different from the priors. For instance, the
likelihood estimates of the labor share parameter α are all greater than 0.9, a value
that is economically implausible. Forcing the parameters to be in a “plausible”
region of the parameter space however, has a cost in terms of likelihood fit.

Among the four structural specifications, the learning model with Prior 1 attains
the best fit. The RMSE statistics suggest that all four specifications fit the output
growth series about equally well. However, there are substantial differences with
respect to the hours series. Intuitively the introduction of skill accumulation allows
for a much smoother and highly persistent behavior in hours worked, particularly
when the coefficient φ is high.

Regardless of the prior we consistently find that introducing learning signifi-
cantly improves the fit over the standard the RBC model. Converted onto a poste-
rior odds scale the marginal data density values imply that the odds of M1 versus
M2(2) or M1 versus M2(3) are of order 1 to 4000 or worse6.

Table about here

Table 3: Posterior Distribution of Model Parameters.

Table about here

Table 4: Marginal Data Densities.

6There is little discrimination between the specifications M2(2) and M2(3).
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4.3.3 Persistence: Evidence from Autocorrelations

The learning feature was added to the real business cycle model in order to generate
more persistence in aggregate output. Many univariate studies of output dynamics,
e.g. Cochrane (1988), find that output growth is positively autocorrelated over
short horizons and only weakly autocorrelated over longer horizons. This finding is
confirmed in our bivariate analysis. Figure 1 shows marginal posterior densities for
autocorrelations of order one to four. Both corr(∆yt,∆yt−1), and corr(∆yt,∆yt−2)
are clearly positive. The horizontal bars in the figure mark the posterior mode
predictions of the various models. As pointed out by Cogley and Nason (1995),
the standardard RBC model predicts the autocorrelations of output growth to be
essentially zero. The learning mechanism, on the other hand, is able to generate
positive autocorrelations. An informal inspection of the plots indicates that Prior 3
provides the best match a posteriori. However, the autocorrelations calculated from
the VAR seem to decay faster than the ones obtained from the LBD models.

In Table 5 we report posterior expected Lχ2 losses. A value close to one indicates
that the model prediction lies far in the tails of the posterior density. A value of
zero means that the model prediction coincides with the posterior mean under the
reference model M∗. The expected losses are calculated jointly for lags 1 to 4 and
lags 1 to 8. While the improvements under Priors 1 and 2 are moderate, specification
M2(3) fits substantially better than the standard RBC model and is able to capture
the persistence of output growth. We also report Lχ2 losses for the autocorrelation
of hours, for which the improvements through the learning mechanism are smaller.
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Figure 1: Marginal Posterior Densities for Autocorrelations of Output Growth. Ker-

nel Density Estimates Based on Draws from Posterior Distribution. Horizontal Bars

Refer to DSGE Model Predictions (Posterior Mode): 1 is RBC, 2(i) is LBD with

Prior i.
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Moment Lags M1 M2(1) M2(2) M2(3)

corr(∆yt,∆yt−h) 1 - 4 0.9862 0.9790 0.9564 0.6170
1 - 8 0.9186 0.9112 0.8774 0.5144

corr(Lt, Lt−h) 1 - 4 0.9984 0.9982 0.9922 0.9680
1 - 8 0.9866 0.9844 0.9600 0.8966

Table 5: Joint Lχ Prediction Losses for corr(∆yt,∆yt−h) and corr(Lt, Lt−h).

4.3.4 Impulse Response Dynamics

The dynamic behavior of time series models with an autoregressive structure can be
summarized by impulse response functions (IRF). The four structural model specifi-
cations are driven by a random walk technology process and a stationary preference
process. The innovations to the technology process have a permanent effect on
output, whereas the innovations of the preference process have a transitory effect.
Blanchard and Quah’s (1989) method is used to identify responses to transitory
and permanent shocks in the vector autoregression. We then assess the discrepancy
between the model IRFs and VAR impulse response functions.

Before it is possible to compare IRFs we have to discuss their normalization.
Since we have variance estimates for the structural shocks of the models and the VAR
innovations it is possible to compare responses to one standard deviation shocks.
This approach can be viewed as probabilistic normalization. The computation of
posterior odds showed that the probabilistic structure of the models is rejected
against the reference model. Therefore, we will choose a normalization that allows
us to compare responses to shocks that lead to the same long-run or short-run effect.
The models’ technology shocks are normalized such that the long-run response of
output equals the long-run posterior mean response to a one-standard deviation
shock in the VAR. The preference shocks are normalized such that they lead to the
same initial response of output as the transitory VAR innovation. Figures 2 to 5
depict posterior mode responses for the model specifications as well as 75 percent
highest posterior density bands based on the vector autoregression.

One of the well known time-series properties of output in a VAR analysis is
its hump-shaped, trend-reverting response to a transitory shock. This has been
documented, for instance, by Blanchard and Quah (1989) and Cochrane (1994).
Cogley and Nason (1995) comment that “(...) while GNP first rises and then falls in
response to a transitory shock, the (RBC) model generates monotonic decay. Thus,
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the model does not generates an important trend-reverting component in output.”

We examine the impulse response of the economy to a decrease in Bt, that is,
an increase in the marginal rate of substitution between goods and leisure. The
two right panels of Figure 2 depict the responses of the standard RBC model. The
impulse responses show a typical business-cycle-like expansion: output, and hours
increase. However, there is no trend-reverting output dynamics as indicated by the
posterior distribution of the IRFs. The output response is monotonically decreasing
after the initial increase. Figures 3 to 5 show the responses of the model economies
with learning by doing. Output exhibits a clear hump-shaped response. However,
the nature of the response is very sensitive to the parametrization of the skill accu-
mulation equation. For large φ (Priors 1 and 2), the decay of output is too slow.
For φ = 0.4937 and µ = 0.2585 it is much faster and the model impulse response
function resembles the posterior predictions from the VAR more closely. Moreover,
the hours response also exhibits a slight hump.
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Figure 2: Impulse Response Functions: Posterior Distribution and Normalized Pre-

diction of RBC Model.
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Figure 3: Impulse Response Functions: Posterior Distribution and Normalized Pre-

diction of LBD Model with Prior 1.
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Figure 4: Impulse Response Functions: Posterior Distribution and Normalized Pre-

diction of LBD Model with Prior 2.
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Figure 5: Impulse Response Functions: Posterior Distribution and Normalized Pre-

diction of LBD Model with Prior 3.
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4.3.5 Loss Function Estimation

In this section we ask the following question: is there a reasonable parametrization
of the learning-by-doing model that produces impulse response functions of a similar
shape as the posterior mean responses obtained from the VAR? Define the vector
of population characteristics ϕ = [ϕ(1), ϕ(2)]′ where ϕ(1) corresponds to the four
impulse response functions for periods 1 to 40, and ϕ(2) to the structural parameters
of the learning-by-doing model. We will use the modified quadratic loss function

L(ϕ, ϕ̂) = (ϕ(1) − ϕ̂(1))′κW (ϕ(1) − ϕ̂(1))− ln p(ϕ(2)|M2) (24)

to obtain parameter estimates for the LBD model. We chose the weight matrix W
to be the identity matrix and κ = 100. The second term penalizes strong deviations
from an a priori plausible parametrization of the structural model. If κ is large
than the loss is dominated by the accuracy of the impulse response predictions. If
κ = 0, the loss is minimized by the prior mode parameters.

Table 6 summarizes the results. At first glance, the parameter estimates look
reasonable. The persistence of the skill accumulation process is somewhat higher
than under the preferred specification M2(3). The in-sample fit of the LBD model
conditional on the loss function estimates is slightly worse than the fit of the other
specifications. The log-likelihood decreases by about 20 points, relative to M2(3).
The Lχ2 losses are also slightly higher than forM2(3). Figure 6 depicts the attained
fit for the impulse responses. Both output responses exhibit hump shaped behavior.
The response of output to the transitory shock decays much more rapidly than under
M2(3) and closely resembles the posterior mean response.
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Figure 6: Impulse Response Functions: Posterior Distribution and Normalized Pre-

diction of LBD Model with Loss Function Estimates.
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Parameters Model Features

α 0.7261 Likelihood 1014.40
β 0.9900 In-sample RMSE ∆yt 0.00949
γ 0.0048 In-sample RMSE Lt 0.00855
δ 0.0250
Lm 0.3177 σ(∆yt) 0.0120
ρ 0.8759 σ(Lt)/σ(∆yt) 1.8637
µ 0.1475 corr(∆yt, Lt) 0.3157
φ 0.6097 Lχ2-loss: corr(∆yt,∆yt−h), Lags 1-4 0.8938
ψ 3.1554 Lχ2-loss: corr(∆yt,∆yt−h), Lags 1-8 0.7370
σa 0.0107 Lχ2-loss: corr(Lt, Lt−h), Lags 1-4 1.0000
σb 0.0091 Lχ2-loss: corr(Lt, Lt−h), Lags 1-8 0.9966

Table 6: IRF Loss Function Estimates for the LBD Model. The estimates for ψ, σa,
and σb are obtained by maximizing the likelihood function conditional on the loss
function estimates of the other parameters.



27

5 Conclusion

Despite its popularity and wide application, standard real business cycle models lack
a persistent internal propagation mechanism. Aggregate output fluctuations simply
trace out the movements of the exogenously given productivity process. To generate
persistence, we augment the RBC model with a learning by doing mechanism, where
current labor supply affects workers’ future labor productivity. This is consistent
with microeconomic evidence.

Based on the PSID data set we construct micro-level estimates for the parame-
ters of the LBD mechanism. These estimates together with empirical evidence from
related studies are combined with time series data on GDP growth and employment
to perform a Bayesian analysis of the representative agent model. This analysis
shows that the LBD model fits aggregate data much better than the standard RBC
model. Posterior odds favor the learning by doing specification. Moreover, we for-
mally showed that the LBD model more closely mimics the autocorrelation and
impulse response patterns that we found in a bivariate VAR analysis. We view the
learning by doing mechanism as a feature that can easily be build into more com-
plicated dynamic stochastic general equilibrium models to improve their empirical
performance. We incorporated the LBD feature into a home production model and
were able to achieve improvements similar to the ones reported in this paper.
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A Data Sets

A.1 Micro Level Data

The PSID sample period is 1971-1992. The sample consists of heads of households
and wives. Wage data for wives are available only since 1979. Wages are annual
hourly earnings (annual labor incomes divided by annual hours). Nominal wages
are deflated by the Consumer Price Index. The base year is 1983. Workers who
worked less than 100 hours per year or whose hourly wage rate was below $1 (in
1983 dollars) are viewed as non-employed even though their employment status is
reported as employed in the survey. We also use workers who were employed in
non-agricultural sectors and not self-employed. Since we use wages and hours of
four and five periods in the past as instruments, workers have to be employed at
least at time t, t− 1, t− 2, t− 4 and t− 5 to make one observation. This gives us
24004 observations. Descriptive statistics for the sample used in the estimation are
reported in Table 7.

A.2 Aggregate Data

The following time series are extracted from DRI: gross domestic product (GDPQ),
employed civilian labor force (LHEM), civilian noninstitutional population, 20 years
and older (PM20 and PF20). We defined POP = PF20+PM20. From the BLS we
obtained the series: average weekly hours, private non-agricultural establishments
(EEU00500005). Prior to 1963 the BLS series in annual. We used these annual av-
erages as monthly observations without further modification. Our monthly measure
of hours worked is

BLShoursc = EEU00500005 ∗ LHEM / POP

We convert to quarterly frequency by simple averaging. Per capita output is

GDPQc = GDPQ / POP

Output growth is defined as lnGDPQc(t)− lnGDPQc(t− 1).

B Estimation and Computation

B.1 Conversion of Estimates from Annual to Quarterly

Let xt denote the skill level at quarterly frequency:

xt = φxt−1 + µht (25)
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Variable Mean Std.D. No. of Obs.

Real Wage (in $1983 dollars) 12.39 7.27 24004
Annual Hours of Work 2113.70 508.50 24004
Age 41.10 10.14 24004
Years of Schooling 13.27 2.49 23865
Gender (male=1) 0.67 0.47 24004

Table 7: Descriptive Statistics for PSID Sub-Sample.

Suppose that ht = h, where h is the steady state level of weekly hours at work.
Then

xt − µh/(1− φ) = φt[x0 − µh/(1− φ)] (26)

Denote annual average hourly earnings by

x̃t = (x4t + x4(t−1) + x4(t−2) + x4(t−3))/4 (27)

For fixed ht = h we obtain

x̃2 = (x8 + x7 + x6 + x5)/4

=
µh

1− φ
+

1
4
φ4[φ4 + φ3 + φ2 + φ]

(
x0 −

µh

1− φ

)
= φ4x̃1 +

1
4

1− φ4

1− φ
µ4h (28)

where 4h are the annualized hours worked. This implies the following relationship
between coefficients for quarterly data and coefficients for annual data

φ = φ̃1/4, µ = 4
1− φ
1− φ4 µ̃ (29)

Point estimates and standard errors for quarterly frequency are computed via lin-
earization of Equation (29) around ˆ̃

φ and ˆ̃µ.

B.2 Vector Autoregression

A fourth order vector autoregression serves as reference model:

yt = C0 + Ctrt+
4∑

h=1

Chyt−h + ut ut ∼ N (0,Σ) (30)

where yt denotes a vector of GDP growth and hours worked. The structural models
imply that both series are stationary. However, we include a deterministic time
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trend since the empirical measure of hours worked does exhibit some trending be-
havior. Define the 1×k vector xt = [1, t, y′t−1, . . . , y

′
t−4] and the matrix of regression

coefficients C = [C0|Ctr| . . . |C4]′. Let X denote the T × k matrix with rows xt and
Y a T × 2 matrix with rows y′t. Moreover, let c = vec(C), where vec denotes the
operator that vectorizes the columns of a matrix.

B.2.1 Prior

The Minnesota prior expresses the belief that the vector time series is well described
as a collection of independent random walks. Consider Equation i of the VAR model

yit = Ci,0 + Ci,trt+ Ci,1yt−1 + · · ·+ Ci,4yt−4 + ut, i = 1, 2 (31)

Since y1t is differenced output and the theory implies that hours are stationary we
chose the prior mean to be zero for all coefficients. The prior variance for Ci0 and
CiT is large 106, that is, the prior of these coefficient is flat. The variance of Cijl,
l = 1, . . . , p is given by

var(Cijl) =

{
(ζ/l)2 if i = j

(ζσ̂i/lσ̂j)2 if i 6= j
(32)

where ζ is a hyperparameter. σ̂i and σ̂j are the OLS estimates of the error variance
in equations i, j based on a short training sample. All prior covariances among
different parameters are zero. The general structure of the prior for C is

vec(C) ∼ N
(
vec(C̄), Vc(ζ)

)
(33)

To complete the specification we use an uninformative prior p(Σ) ∝ |Σ|−3/2 for the
covariance matrix Σ. The prior for the hyperparameter ζ is uniform on the grid
ζ ∈ Z = {ζ(1), ζ(2), . . . , ζ(J)}. We chose ζ1 = 0.0001, ζJ = 10, J = 20, and ln ζj
equally spaced in the interval [ln ζ1, ln ζJ ].

B.2.2 Gibbs Sampling

The Gibbs sampler is used to obtain draws (C(s),Σ(s), ζ(s)), s = 1, . . . , nsim from
the posterior distribution p(C,Σ, ζ|Y,M∗). of the VAR parameters. Define

Ĉ = (X ′X)−1X ′Y (34)

Σ̂ = (Y −XĈ)′(Y −XĈ)/T (35)

The following conditional posterior distributions are used for the Gibbs sampling
algorithm.
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1. The conditional probability IP [{ζ = ζ(j)|Y,C,Σ}] is given by

IP [{ζ = ζ(j)|Y,C,Σ}]

=
|Vc(ζ(j))|−1/2 exp

{
−1

2(c− c̄)′V −1
c (ζ(j))(c− c̄)

}∑J
j=1 |Vc(ζ(j))|−1/2 exp

{
−1

2(c− c̄)′V −1
c (ζ(j))(c− c̄)

}
2. The conditional density p(C|Y,Σ, ζ) has the shape of a multivariate normal

density with mean c̃(ζ) and covariance matrix Ṽc(ζ).

c̃(ζ) ≡ [V −1
c (ζ) + (Σ−1 ⊗X ′X)]−1[V −1

c (ζ)c̄+ (Σ−1 ⊗X ′X)ĉ]

Ṽ −1
c (ζ) ≡ V −1

c (ζ) + (Σ−1 ⊗X ′X)

3. The conditional density p(Σ|Y,C, ζ) is of the Inverted Wishart type with T

degrees of freedom and parameter H where

H = T Σ̂ + (C − Ĉ)′X ′X(C − Ĉ)

For each draw (C(s),Σ(s)) we calculate the desired population moments and
impulse response functions. This leads to draws from the posterior distribution of
population characteristics p(ϕ|data).

B.2.3 Marginal Data Density

We compute marginal data densities conditional on a training sample of 18 obser-
vations. The conditional data density is proper and can be used to obtain posterior
model probabilities. The marginal data density can be expressed as

p(YT |Y0,M∗) =
T∏
t=1

∫
p(yt|Yt−1, Y0, C,Σ, ζ,M∗)p(C,Σ, ζ|Yt−1,M∗)d(C,Σ, ζ) (36)

where Y0 denotes the training sample. For each t we approximate the integral
by Monte Carlo integration. The Gibbs sampler is used to generate draws from
p(C,Σ, ζ|Yt−1,M∗). At each step, we use 2000 burn-in draws that are discarded
and 20000 draws to approximate the integral.

B.3 Structural Models

Conditional on the actual data YT , Y0, a set of parameter values θi, the Kalman
Filter is used to evaluate the posterior density up to a constant

p(θi|YT , Y0,Mi) ∝ p(YT |Y0, θi,Mi)p(θi|Mi) (37)
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A numerical optimization routine is used to compute the mode θ̃i of the posterior
density. Let Σ̃i be

Σ̃i =
[
− ∂2

∂θi∂θ′i
ln p(YT |Y0, θi,Mi)p(θi|Mi)

]
θi=θ̃i

(38)

the Hessian of the log posterior density evaluated at the mode. The reported stan-
dard errors correspond to the square roots of the diagonal elements of Σ̃i. The
marginal data densities are calculated by Laplace approximation:

p̃(YT |Y0,Mi) = (2π)d/2|Σ̃i|1/2p(YT |Y0, θ̃i,Mi)p(θ̃i|Y0,Mi) (39)

which is based on a log-quadratic expansion around the posterior mode.


