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Abstract

This paper develops a rational expectations life-cycle model designed as a framework for the
cross-country analysis of (private) saving decisions. It is shown that a broad range of life-cycle
models that have been used in the literature to study aggregate time series on consumption and
saving fail to deliver plausible predictions for the purpose of analyzing saving decisions across
countries as they imply that the level of saving has a constant mean and that the long-run saving
rate may tend to zero. Introducing a utility specification that ties the long-run evolution of con-
sumers’ aspired consumption paths to that of aggregate labor income, an analytically tractable
life-cycle model is proposed that has plausible long-run properties, including the implication
that the net asset-labor income ratio, the saving rate, and the consumption-labor income ratio
have meaningful long-run distributions. The moments of the long-run saving rate are shown
to depend in a precise way on various characteristics of consumers’ preferences, the real rate
of interest, the growth rate and volatility of labor income, the government consumption-labor
income ratio, and the government debt-labor income ratio. Employing a data set on saving rates
and asset holdings across OECD economies and using techniques for the estimation of dynamic
heterogeneous panels, the paper will also adduce empirical evidence assessing the model’s ability

to explain differences in the saving patterns across these economies.
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1 Introduction

There are few economic issues that have more far reaching consequences than how households
provide for their futures through savings, savings that in turn help finance the investment projects
that firms intend to carry out, and that are critical for a country’s welfare in the long run. In this
paper, we develop a theoretical framework for the cross-country analysis of private saving decisions
and employ this framework for an empirical analysis of private saving in the OECD economies.
Our theoretical framework is a life-cycle model of consumption and saving. Since pioneered
by Modigliani and Brumberg (1954) and Ando and Modigliani (1963), the life-cycle approach has
been used widely to understand consumption and saving decisions both at the household and at
the aggregate level. In the last decade, empirical work based on life-cycle models has emphasized
two issues: One distinguished strand of literature has tested the implications of these models for
aggregate time series on consumption and saving within a single country, particularly the sensitivity
of consumption to anticipated and unanticipated changes in labor income.! A second distinguished
strand of literature has attempted to reconcile life-cycle theory with household data, including
lifetime consumption profiles, focusing in particular on the role of precautionary savings and of

liquidity constraints for households’ consumption decisions.?

More recently, a growing literature
has been concerned with identifying the key determinants/correlates of private saving decisions
across countries.®> While many studies in this literature motivate their regressions on the basis of
life-cycle theory, typically no tight link between life-cycle theory and econometric analysis has been
provided.

In this paper, we develop a rational expectations life-cycle model designed as a framework for
the cross-country analysis of (private) saving decisions. Such a model needs to have plausible
implications for the cross-country distribution of private saving decisions in the short and long run.
We show that a broad range of life-cycle models that have been used in the literature to study
aggregate time series on consumption and saving fail to deliver plausible predictions for the cross-
country analysis of saving decisions as they imply that the level of saving has a constant mean and
that the long-run saving rate may tend to zero. We then propose an analytically tractable life-cycle
model that has plausible long-run properties, including the implication that the net asset-labor
income ratio, the saving rate, and the consumption-labor income ratio have meaningful long-run
distributions. While our model is designed to adhere as closely as possible to the life-cycle models

that have been used in the literature to study aggregate consumption and saving data, three features

!See, for example, Deaton (1992) and Muellbauer and Lattimore (1995) for reviews of this literature.

2See, for example, Attanasio (2000), for a discussion of some of this literature.
3Contributions to this literature include Edwards (1996), Ogaki, Ostry, and Reinhart (1996), Hartman and Engel

(1998), Masson, Bayoumi, and Samiei (1998), and Haque, Pesaran, and Sharma (2000). See also the reviews in
Deaton (1999) and Agenor (2000).



of our model distinguish it from those previously considered in the literature: First, we argue that
the consumption paths that consumers aspire to achieve should reflect (anticipated) increases in
their standard of living. We thus propose a utility specification that ties the long-run evolution of
consumers’ aspired consumption paths to that of aggregate labor income, while also allowing for
shifts in taste around this path. Second, we show that for the life-cycle model to have plausible
long-run implications for the level and rate of saving, its forcing variables, particularly labor income,
need to be modelled as geometric rather than arithmetic processes.* Third, to capture important
aspects of the cross-country distribution of private saving decisions identified in previous studies,
we furthermore model the role of government consumption expenditures for private consumers,
incorporating the government solvency constraint into consumers’ decision rationale. We show, in
particular, that our model implies that the moments of the long-run saving rate (as well as the
net asset-labor income ratio and the consumption-labor income ratio) depend in a precise way
on various characteristics of consumers’ preferences, the real rate of interest, the growth rate and
volatility of labor income, the government consumption-labor income ratio, and the government
debt-labor income ratio. We furthermore discuss how prudence affects these long-run relations.
Employing a data set on private saving rates and asset holdings across OECD economies and using
techniques for the estimation of dynamic heterogeneous panels, empirical evidence will be adduced
in future versions of this paper to assess the model’s ability to explain differences in the private
saving patterns across these economies.

The remainder of this paper is organized as follows: Section 2 reviews the long-run properties of
various life-cycle models studied in the literature, both under quadratic and power (CRRA) utility,
and allowing (in the context of the former utility specification) for factors such as habit formation
and risk sensitivity. Section 3 proposes a life-cycle model whose long-run implications include that
the net asset-labor income ratio and the saving rate have meaningful long-run distributions. The
empirical validity of various implications of the life-cycle model introduced in Section 3 for the
cross-country variation in private saving rates in the OECD is analyzed in Section 4. Section 5

summarizes and concludes with some suggestions for future research.

4Geometric specifications of the forcing variables can, of course, in any case capture the exponential trend in the
level of many aggregate time series, as opposed to arithmetic specifications, and are thus per se preferable from an
empirical perspective. Some of the recent literature on reconciling life-cycle theory with household data has also been

working with geometric specifications of the labor income process. See, for example, Carroll (1997).



2 Long-Run Implications of Life-Cycle Models Studied in the Lit-
erature

2.1 Models With Quadratic Utility

We begin with the Hall (1978) life-cycle model. While it is overly simplistic (and we will consider
much richer models in what follows), it serves as a useful first benchmark for the long-run impli-
cations of a life-cycle model.> Consider a representative, infinitely-lived consumer having access to

perfect credit markets. Suppose that the real rate of interest on domestic assets, r, is given by
re=r>0, (2.1)

for all ¢, and that labor income received at the beginning of period ¢, ¥, is generated by the

arithmetic autoregressive process®

(1 - ¢yL) Yt = Uy =+ (1 - ¢y) 'Yyt =+ Eyt, |¢y‘ < 17 Yy > 07 Eyt itd N (07 0-3) ’
(2.3)

where
ty = (1 = ¢y) 0y + dyyy- (2.4)

Also suppose that the consumer’s preferences are given by
=~ i 1
55 (1) ot =
§=0

where ¢; denotes consumption expenditure at the beginning of period ¢, 8 = (1 + p)_1 (p<r)isa
constant discount factor, and b measures (the exogenous component to) the consumer’s aspiration,
in the Hall (1978) model assumed to be constant. The consumer maximizes (2.5) by choosing

{ct44 };io subject to the period-by-period budget constraints,

atrj = (L+7)atij—1 +Ysrj — Ceug) J=0,1,..., (2.6)

50ur focus in this paper is on life-cycle models abstracting from capital investment decisions. This is consistent
with the earlier work in this area (for example, Modigliani, 1970, 1991) attempting to relate observed cross-country

private saving patterns to life-cycle analysis. See also Deaton (1999).
5Note that the specification (2.3) ensures that if there is a unit root in labor income, ¢, = 1, then there is, as in

the case where |¢,| < 1, only a linear time trend (with coefficient equal to 7,) in the unconditional representation of

the labor income process:

t—1 t—1 t—1
y=¢yo+ > dutA—@)v> ¢ (t—3)+ > ¢eyi (2.2)
j=0 j=0 j=0



where a; denotes the wealth level at the beginning of period ¢, the transversality condition,
lim (1+7)77 B (as|%) = 0, (2.7)
j—oo
where 0; denotes the information set available to the consumer at the beginning of period ¢, and
E (-|€%) is the mathematical conditional expectations operator, and given an initial wealth level,
a¢—1.
The optimal decision rule for the life-cycle model (2.5), (2.6), (2.7), and (2.1) under the labor

income specification (2.3) can be readily shown to be given by”

ct = Aoap—1 + Asys + Mg + Ast, (2.8)
where
A=1+r—4, (2.9)
A3 = Py, (2.10)
Ay = ((S_Tl) b+ <%> Yytty + [(1 — ¢z£2(1 = T)] Yy vy, (2.11)
As = (1 _Tﬁby) 1/’y7ya (2'12)
with
14+r—90
L — 2.13
Yy 1+4+7r— gf)y’ ( )
and
1

To understand the implications of the decision rule (2.8) for the long-run behavior of consumption
and saving, we solve (2.8) for a;—1, substitute the resultant expression as well as its counterpart for
a¢ back into the period t budget constraint, and use the specification of the labor income process

(2.3) and the definitions of A4 and A5 given in (2.11) and (2.12), respectively, to obtain®

(1 — 6L) Ccy = ¢y€yt + (1 — (5) b. (215)

"We assume that ag is sufficiently large for ¢; to be positive.
8The representation (2.15) of the decision rule also reveals that unless § = 1, marginal utility will generally not

be positive for all ¢, as consumption may (and generally will for many points on the sample path) exceed the bliss
level b.



There are a number of noteworthy implications of the decision rule written in the form of (2.15)
for the long-run behavior of consumption and saving: Clearly, the consumption process has no
deterministic trend or drift, regardless of whether the labor income process has a constant mean,
a deterministic trend, or a drift. Furthermore, the consumption process displays a unit root if and
only if 6 = 1, that is, if the consumer’s discount rate is equal to the market real rate of interest.
Consequently, from the period-by-period budget constraints, if there is a deterministic trend or a
drift in labor income, then there is a deterministic trend or drift of the opposite sign in the wealth

level. As shown in Appendix B, disposable income, defined as
yl =y +rai1, (2.16)

under 6 < 1 follows a covariance stationary process with mean b —+,/r, and under 6 = 1is an I (1)

process with no drift. As also shown in Appendix B, the level of saving, defined as
St =Qi — Qi1 = yf — ¢, (2.17)

in either case follows a covariance stationary process with mean —v,/r, and the saving rate, sry,
defined as

St

5t (2.18)
yd

STy =

tends to zero as the mean of disposable income becomes large. These implications are crossly
at odds with the empirical regularities for the OECD countries (and beyond): Consumption per
capita data, whether considered in levels or logarithms display an upward trend/drift, as do the
data on (private) saving per capita. The (private) saving rate, while varying significantly across
countries, in no country shows a tendency to converge to zero. In the Hall (1978) life-cycle model,
regardless of whether § < 1 (so that the consumer is patient) or 6 = 1 (so that the consumer is “time
indifferent”), there is no motivation for the consumer to choose an upward sloping consumption
profile. Rather, the long-run mean of consumption is chosen to be the bliss (if § < 1) or the
initial level of consumption (if § = 1). The consumer anticipates any upward trend/drift in labor
income, and can borrow against it. Subject to the transversality condition, there is no upper
bound on the level of indebtedness, and the consumer is never liable for primary budget deficits.
One may thus conjecture that more plausible long-run implications would result if the Hall model
is modified such that consumers have a motivation to maintain an upward sloping consumption
profile and/or if they are eventually liable for primary budget deficits. We therefore consider
four modifications of the Hall model, some of which have been suggested in the literature to have
such effects: habit formation, prudence (precautionary saving), trended/drifting aspiration, and

finitely-lived overlapping generations.



Habit Formation

Suppose that the consumer’s preferences are given by
o0
i (1 2
> 8 —5 ) (@t = NTe1j-1)" (2.19)
§=0
where

Tt+j = Ctj — b, (2.20)

and n € [0,1) measures the degree of preference for habit formation. Also assume now that the
initial level of consumption, ¢;—1, is given. Notice that under this preference specification involving
habit formation, consumption levels must be continually increasing in order to offset the negative
effect that past consumption has on current-period utility, and the consumption path might be
expected to be upward trending even in the long run.

The optimal decision rule for the life-cycle model (2.19), (2.6), (2.7), and (2.1) under the labor

income specification (2.3) can be shown to be given by”

Ct = MCt—1 + A2a—1 + A3yt + A + Ast, (2.21)
where
o
Alzn(lw), (2.22)
No= (L7 — 6,0y, (2.23)
6—1 1 1-— 1
(oo Qo [

and A3 and A5 are defined by (2.10) and (2.12), respectively, but with 1, now given by

(I+r—=6)(1+r—n)
(I+r—¢y)(1+r)

Yy = (2.25)

rather than (2.13). Again solving the decision rule (2.21) for a;—1, substituting the resultant
expression as well as its counterpart for a; back into the period ¢ budget constraint, and using the
specification of the labor income process (2.3) and the definitions of Ay and A5 given in (2.24) and

(2.12), respectively, one obtains

(1= L) (1 — L) e = wyeye+ (1 - 8) (L — )b, (2.26)

9See Appendix A for a proof.



From (2.26), it is readily seen that the key long-run implications for consumption, wealth, and saving
are unaffected by the presence of habit formation: The consumption process still has a constant
mean, regardless of whether the labor income process has a constant mean, a deterministic trend, or
a drift. The consumption process has a unit root if and only if § = 1, that is, if the discount rate is
equal to the market real rate of interest. If there is a deterministic trend or a drift in labor income,
then there is a deterministic trend or drift of the opposite sign in the wealth level. Disposable
income under ¢ < 1 follows a covariance stationary process with mean b — v, /r, and under 6 =1
is an I (1) process with no drift. The level of saving in either case follows a covariance stationary
process with mean —v, /r. The saving rate therefore tends to zero as the mean of disposable income
becomes large. Habit formation per se thus does not help to overcome the problematic long-run

implications of the Hall model.

Prudence (Risk Sensitivity)

To introduce a precautionary saving motive into the above life-cycle model under habit formation,
we extend Willassen’s (1992) analysis of consumption under risk sensitivity to allow for habit

formation.'® Suppose that the consumer’s preferences are given by

(%) 1 —exp ejzzgﬁj <%) (@erj —noeei1)?| ¢, (2.27)

where § > 0 measures the degree of risk sensitivity, with x4 ; still being given by (2.20). Under
the preference specification (2.27), as under CARA and CRRA utility, the consumer will want
to provide for future labor income contingencies through precautionary saving, inducing (at least
temporarily) an upward sloping consumption profile.

To determine whether the consumption path is upward trending even in the long run, let us
analyze the optimal decision rule for the life-cycle model (2.27), (2.6), (2.7), and (2.1) under the

labor income specification (2.3). It can be shown to be given by!!
ct = A1Ct—1 + A2ai—1 + A3y: + A4 + Ast, (2.28)

where

5—0
M=n—=), 2.29
! n(l—i—r—&) ( )

|, aEn+r-981,, 1 (1—¢y) 1+7)

(2.30)

19Gee also Weil (1993) and Hansen, Tallarini, and Sargent (1999) for life-cycle models under risk sensitivity.
See Appendix A for a proof.



and A2, A3, and A5 given by (2.23), (2.10), and (2.12), respectively, with 1, now given by

I4+r—06)1+r—n)

wy:(1+r—¢y)(l+r—§)’ (231)
and
7_pa|l 1+r—m
6 = 607 (Hr_%)?] . (2.32)

Note that the propensities to consume out of past consumption and labor income are positive if
6 <6 <1+, or, equivalently, if 0 < (1+7— ¢,)>6/ [(A+r—n)o7] < 1+r. Precautionary
saving is reflected in the fact that the marginal propensities to consume out of past consumption,
labor income, and wealth are affected by the prudence motive. To see this, it is useful to rewrite

the decision rule (2.28) as

et =nce—1+ (1 —n)b— Ky, (2.33)
where
1 —-0)(1 —
r(1+r—0)
and
nr nr r
= |— g+ |1—|——)|b—rag-1 — | ——
o= () [ (=)o (=3
1 (1—¢y)(L+7) 1—¢
— )y — Y Yy — [ ———L— )t (2.35)
14+7— ¢y r(1+7—¢y) L+7— ¢y
If the parameter restriction kg € (0,nci—1 + (1 — 1) b) is satisfied, precautionary saving is assured
to be positive, and the larger the degree of risk sensitivity, 8, or the volatility of labor income, az,
the larger the amount of precautionary saving. (Note that as 6 and/or OZ increase, then so do @

and k; also note that ; depends neither on 6 nor on JS.)
Again solving the decision rule (2.28) for a;_1, substituting the resultant expression as well as its
counterpart for a; back into the period ¢t budget constraint, and using the labor income specification

(2.3) and the definitions of Ay and A5 given in (2.30) and (2.12), respectively, one obtains

(L—nL)(1—&L)c =Yyeye + (1 =€) (1 —m)0. (2.36)
where
(1t (8- 0)
5——1+r_5 . (2.37)



In the presence of risk sensitivity, the consumption process and the disposable labor income process
cannot have unit roots anymore, regardless of the properties of labor income. It is readily verified
from (2.37) that for £ = 1 we need

- (%)

However, since by assumption |¢,| < 1,0 < p <r, and § > 0, (2.38) can hold if and only if p = r

(1+T—q§y)2
r(l+r—mn)

] (p—r). (2.38)

and thus § = 0. The other long-run implications for consumption, wealth, and saving, however, are
unaffected by the presence of risk sensitivity: The consumption process still has a constant mean,
regardless of whether the labor income process has a constant mean, deterministic trend, or drift.
If there is a deterministic trend or a drift in labor income, then there is a deterministic trend or
drift of the opposite sign in the wealth level, and the level of saving follows a covariance stationary
process with mean —v,/r. The saving rate therefore tends to zero as the mean of disposable
income becomes large. Habit formation and risk sensitivity per se thus do not help to overcome

the problematic long-run implications of the Hall model.

Trended /Drifting Aspiration

Suppose now that the exogenous component of the consumer’s aspiration contains a deterministic
trend or a drift reflecting (anticipated) increases in the standard of living as well as a stochastic

component reflecting shifts in tastes:

LTtt+j = Ct+j — bt+j, (2.39)
where b; is generated by the arithmetic autoregressive process

(1 — ¢pL) bt = pp + (1 — &) Vot + €pes lg] <1, % >0, ey ~iid N (0,0%),
(2.40)

with
o = (1 — dp) 0b + Po7.- (2.41)

Since the consumer is now modelled as attempting to keep up with a trended/drifting (exoge-
nous) aspiration process, one might expect that this model renders an upward sloping consumption
profile. The optimal decision rule for the life-cycle model (2.27), (2.6), (2.7), and (2.1) under the
specification of the exogenous component of the consumer’s aspiration (2.40) and the labor income

specification (2.3) can be shown to be given by'?

Cct = Ac—1 + Aoar—1 + A3yr + Agbs + A\vbs—1 + ()\4 -+ )\8) + ()\5 + )\9) t, (2.42)

12See Appendix A for a proof.



where A1, A2, and Az are given by (2.29), (2.23), and (2.10), respectively (with v, still given by
(2.31)), A4 is given by

b= (5) |2 (2.43)
A5 is given by (2.12), and Ag, A7, As, and Ag are defined as follows:
As =1 — s, (2.44)
(20, o
Ag = — (%) Vopty — [(1 — (bbr)g(l i T)} Vb, (2.46)
and
Ag = — (1 _T(bb) Yy Vb (2.47)
with
= ((11—:_ :—_ be)) ((11—:-7;"_—%)) ’ (248)
and where @ is now defined as
9 =602 L_%] 02 (1+r _2”)2 (2.49)
(1+7—¢y) (I+r—¢p)" (1+7)

Note that the propensities to consume out of past consumption, labor income, and the current
exogenous component to aspiration are positive, and the propensity to consume out of the past
exogenous component to aspiration is negative, if § < § < 14+ and ¢, < 1.

Solving the decision rule (2.42) for a;—;, substituting the resultant expression as well as its
counterpart for a; back into the period ¢t budget constraint, using the labor income specification

(2.3) and noting that since |¢p| < 1, we can write b; as

by = op + Wt + (1 — $pL) " ep, (2.50)
one obtains
(L—¢pL) (L =nL) (L —&L) et =y (1 — ¢pL) ey (2.51)
no
= {a-mun-ra-w|i- sl be

10



+{r¢>b(1—wb) [1— (1+T)?7((51—¢b)] + (1 +7) (1= ) (1 —bp) —n(1+2r) <%>}%

+(1—¢s) {(1 — ¢p) Yo — 7 (1 —p) [1— (1+T)n(61_wb)]}7bt

né ] .
A+r) @y ™

The representation (2.51) of the decision rule reveals that the consumption process now contains a

+(Q =) [1—(1+7)L] [1

deterministic trend or drift. If § > 0 (so that there is risk sensitivity), consumption and disposable
income follow trend stationary processes, regardless of whether |¢,| < 1 or ¢, = 1, and regardless
of whether p < 7 or p = r. (This is also true if § = 0 and p < r). If § = 0 and p = r, then
consumption and disposable income follow I (1) processes with drift. Writing consumption and
disposable income as functions of a constant, a trend term, and current and lagged values of ey
and ey only, the coefficient on ¢ for both variables reduces to 5. As shown in Appendix B, the
level of saving in any case follows a covariance stationary process, now with mean (v, —~y) /7.
Under v, > 0, the saving rate therefore converges to zero as t — oco. Thus, a trended/drifting
(exogenous) aspiration process overcomes the problematic long-run implications of the Hall model
only partially. While rendering a trend/drift in the consumption process, it does not, per se deliver

plausible long-run predictions for the level and the rate of saving.

Finitely-Lived Overlapping Generations

Following Yaari (1965), Blanchard (1985), and Gali (1990), let us relax the assumption of an
infinitely-lived representative consumer and consider an economy of finitely-lived overlapping gen-
erations. Suppose that the probability of survival from period ¢ to period ¢ + 1 is fixed at 1 — p,
p € (0,1). There is no maximum lifetime. The size of each cohort at birth is normalized to p.

Denoting by ng: the size in period ¢ of the cohort born in period ¢ (t > g, ‘cohort ¢’), we thus have

ng =p(1-p)7, (2.52)

and the total population at time ¢ is given by

¢
ng = Z ngt = 1. (2.53)
g=—o0
(While there is survival uncertainty at the individual level, there is no uncertainty about the size of
each cohort and the size of the total population if each cohort is sufficiently large for a law of large
numbers to apply.) There is an annuity firm that pays to (receives from) each consumer holding
positive (negative) wealth in period t an annuity, in return for inheriting the consumers’ wealth

(paying off his/her debt) when he/she dies. Thus, this annuity firm holds all of the consumers’

11



gross assets and finances all of their gross borrowing. A zero profit condition for the annuity firm
implies that the real return on wealth is equal to

1+7r
Z = -
I-p

1. (2.54)

To introduce life-cycle savings, it is assumed that each consumer’s labor supply is declining geo-

metrically over his/her lifetime, at rate a:

- [L0=00)
p

] 1-a)™, q<t, (2.55)

where [ denotes the labor supply in period ¢ of a consumer born in period ¢, and « € [0,1). Note

that average per capita labor supply in period ¢ then is given by
t
lt = Z ’I’thlqt = 1. (256)
gq=—00

Labor income received at the beginning of period ¢ by a consumer belonging to cohort ¢ is given
by

1-(1—-a)(1-— _
e R (S (2.57)
with average per capita labor income
t
Yt = Z NqtYqt, (258)
g=—00

generated by (2.3). At the beginning of period t each consumer belonging to cohort g solves!'3

max . /1-p\ /1
E Z (1 4 P) (5) (C%H‘j - bq)2 ’th ) (2.59)

{cq+ }5'10 =0
subject to the period-by-period budget constraints,
agt+j = (14 2) Qg t+j—1 + Ygt+j — Cqt+i J=0,1,..., (2.60)
the transversality condition,

lim (1+2)7 E(agt14/Qqt) =0, (2.61)

j—o0

and given an initial wealth level agq;—1. Note that E (ug¢+j|Qq:) denotes the expected value of

Ug,t+; conditional on the consumer being alive at the beginning of period t + j (24 denotes the

13For simplicity of exposition, we again abstract from habit formation and risk sensitivity, and assume a constant

exogenous component to each consumer’s aspiration.

12



information set available at the beginning of period ¢ to a consumer belonging to cohort ¢). It is
also assumed that a4 4—1 = 0, that is, consumers in each cohort are born holding no assets.

While it is clear from our analysis above that the decision rules of each individual consumer have
the same long-run properties as those in the Hall model, it is natural to expect that average per
capita consumption will be trended/drifting: Each cohort has a higher expected present discounted
value of lifetime resources than the previously born cohort (due to the trend/drift in average per
capita labor income), and thus average per capita consumption will be growing over time. The
optimal period ¢ decision rule of each consumer belonging to cohort ¢ for the life-cycle model (2.59),
(2.60), (2.61), and (2.1) under the labor income specification (2.57) and (2.3) is given by

1+2-6) — 1y §—1
cgt = (1+2—0)agt—1+ <ﬁ) Z (1 + z) E (Yq,t+51qt) + <7> by
=0 (2.62)

Defining average per capita wealth at the beginning of period t as a; = ZZ:_OO Ngtaqt, from

(2.60) its evolution can be shown to be given by
ar = (1+7) a1+ y: — ct, (2.63)

where ¢; denotes average per capita consumption, ¢; = ZZ:_OO ngtcqt- Note that in the aggregate
the gross return on wealth is equal to 1 + r. Average per capita consumption from (2.62) may be

verified to be given by

ct = Aoap—1 + Asys + Mg + Ast, (2.64)
where
=1-p)(1+2z-9), (2.65)
A3 is given by (2.10),
e (2 b (120 g 4 [ 0= (2] (2.66)
4 > Pt a yHy (z+a)2 yVy> .
and
1-— 1-—
\s = [( L ‘ﬂ Yy (2.67)
with
1+2z-96
¢y:1+z—(1—a)¢y’ (268)
and

t

b: Z nqtbq- (269)

g=—00
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In Appendix B it is shown that if one writes the consumption decision rule in moving average
form, that is, as a function of a constant, a trend term, and current and lagged values of €, only,

one obtains

o\ — { po Vet + Ve Y gy Eyj + e (L) ey, if ¢y =1, (2.70)
te + Vet + P (L) 4t if |py| <1,
where @, (L) is an infinite-order lag polynomial, and
Ve = @eYy, (2.71)
with
= 1= )p+ar2+r)+p—(1-p)p] (2.72)

p+r+1—=pla]lp+r—(1-p)p

It follows that consumption is trended if p > 0, and displays a unit root if and only if there is a

unit root in labor income. This holds regardless of whether 6 < 1 or § = 1. If there is a unit root in
!/

labor income, then the trivariate VAR in ( ct, -1, Yt ) has two cointegrating vectors, given

by

0 _1/wc
1Jw, | and o |, (2.73)
1 1

with

_ (I-platp—(10-a)r]
Tt (-palprr—1-pal (2.74)

Thus, in the aggregate, consumption and labor income as well as wealth and labor income are
cointegrated.'* The cointegrating vectors (2.73) are also cotrending vectors. Regardless of whether
there is a unit root in labor income, the level of saving follows a covariance stationary process with
mean wgY,. As disposable income has a deterministic trend (if 6 < 1) or a drift (if 6 = 1) (the
trend/drift coefficient is given by (w,r + 1) 7y ), the saving rate converges to zero ast — oo. Thus, as
for the case of a trended/drifting (exogenous) aspiration process, while the Yaari (1965)/Blanchard
(1985)/ Gali (1990) overlapping generations model does render a trend/drift in the average per
capita consumption process, and in addition in the case of a drift also renders consumption and
labor income cointegrated, it fails to deliver plausible long-run predictions for the level and rate of

saving.

14This result has also been obtained by Gali (1990) using different reasoning than the VAR framework considered
in Appendix B.
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2.2 Models With Power Utility

We consider next what role the curvature of the utility function plays for the long-run properties of
the consumption and saving decisions, and consider the case of power utility. To keep the analysis

analytically tractable, we continue to assume that p < r, and, partially in light of the results in

Section 2.1, abstract from prudence.'®

Suppose then that the representative consumer’s preferences are given by
© (o1
> 5 (—” ) , (2.75)
; 1-0
7=0
where o > 0 represents the coefficient of relative risk aversion (or the reciprocal of the intertemporal

elasticity of substitution). The Euler equation for the life-cycle model (2.75), (2.6), and (2.1) is
given by

¢’ =6"'E (ch1%) - (2.76)
From Jensen’s inequality, it is observed that
cey1)
—_— Q
< Ct ) €

with d; > 0. In what follows, we presume that certainty equivalence holds in the consumer’s

E )] + dy =6, (2.77)
Ct

_ [E(Ctﬂﬂt

optimization problem, so that dy = 0 for all ¢.16
The optimal decision rule for the life-cycle model (2.75), (2.6), (2.7), and (2.1) under the labor

income specification (2.3) is given by

Ct = Aoai—1 + Asys + Mg + Ast, (278)
where
Ao=14r—617, (2.79)
A3 = Uy, (2.80)
1 1—¢y)(1+7r
Ay = <;> Pyhy + [( yr)z( )] Uy Yy, (2.81)

5We do not consider buffer-stock life-cycle models/life-cycle models under liquidity constraints where p > 7 by
assumption. See, for example, Deaton (1991), Gourinchas and Parker (1996), and Carroll (1997) for a discussion of

these models which cannot be solved analytically. On the latter point, see also Binder, Pesaran, and Samiei (2000).
161f d, was (approximately) equal to a constant, say d, then the Euler equation would become

E(cts1|) = (6—d) " c.

Note that the larger the risk adjustment d, the larger the expected growth rate of consumption.
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s =y (22 (2.82)

with

l4r =gl

e s (283)

For the marginal propensities to consume out of wealth and labor income to be positive, it is
necessary that §~1/7 < 1+r. Solving the decision rule (2.78) for a;_; and substituting the resultant
expression as well as its counterpart for a; back into the period ¢ budget constraint, and using the

definitions of Ay to A5 given in (2.79)-(2.83), respectively, one obtains
(1 - 5*1/0L) et = Uyeyr. (2.84)

Under p < r there is an explosive root in the autoregressive component of ¢, rendering the con-
sumption path unstable. In contrast to life-cycle models with quadratic utility, life-cycle models
under power utility have been widely studied under a geometric (rather than arithmetic) specifica-
tion of the labor income process, and we will see next that doing so allows to derive more plausible
long-run implications for the consumption process.

Suppose that labor income follows the geometric random walk process

1 .
logy: = vy — 505 +log ys—1 + ey, eyt ~ 1id N (O, 02) . (2.85)
Note that the specification (2.85) implies that the average logarithmic growth rate of labor income
is given by
1
E (Dlogy) =5 — 507 (2.86)
and that the average proportional growth rate of labor income is given by
Ay
E <E> =exp(vy) — 1 = py. (2.87)

The optimal decision rule for the life-cycle model (2.75), (2.6), (2.7), and (2.1) under the labor

income specification (2.85) is given by

ct = Aoai—1 + A3y, (2.88)
where
Ao=1+7r—61°, (2.89)
and
\g = Lyr—s7 (2.90)
T Hy
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/9 < 1 +4r. Solving the decision rule

Note that for ¢; positive, under p, < r it is necessary that 6~
(2.88) for a;—; and substituting the resultant expression as well as its counterpart for a; back into
the period ¢ budget constraint, and using the definitions of Ay and A3 given in (2.89) and (2.90),

respectively, one obtains
L+r—6Y°
<1 - 6‘1/"L> o= ———2 ) [ = (14 py) L) e (2.91)
T — Ly

Under p < r there is again an explosive root in the autoregressive component of ¢;. Note that in
addition to the (potentially) explosive root in the autoregressive component of ¢, there is now also
an explosive root in the lag polynomial in y; whenever p, > 0, that is, whenever there is an upward

drift in y;. For the consumption path to be stable, under p,, > 0 it must be the case that
14y =671, (2.92)
or
TR P+ ogy. (2.93)

Given the drift in the labor income process, ji,, the consumer’s rate of time preference, p, and his
risk aversion, o, the real rate of return has to adjust, rendering the consumption path stable. Along
this path consumption and labor income are cointegrated.

Note that the saving rate, sr¢, is given by

y — —1_ ct/yt
ygl 1+7°5t_1’

sry = (2.94)

where a; = a¢/ys+1. From the representation (2.88) of the decision rule, imposing the stability

restriction (2.92) it is readily verified that
Ct ~
" (r — py) az—1 + 1. (2.95)
t

Using (2.95) and the period ¢ budget constraint, it follows that

o2
a; = exp ?y — Ey 41 | Qe—1, (2.96)
or
B 152t N
ar = exp Ty - Zf—:yj aop. (2.97)
=2

STy = ——— (2.98)



The difference equations (2.98) and (2.96) jointly determine the saving path. The limiting behavior

of the saving rate and of the asset-disposable income ratio,

~g a1 Qg1
a/t - d == — 5
yt 1 + rat—1

(2.99)
is given in the following proposition.

Proposition 2.1 Suppose ag > 0. Then the saving rate sry converges in probability to pu,/r, and

the asset-disposable income ratio ai converges in probability to 1/r. The rate of convergence for

both is oy\/t — 1.

The proof of this and all other subsequent propositions is given in Appendix C. While the
property of the life-cycle model under power utility and geometric random walk labor income that
the long-run distribution of the saving rate is degenerate is disconcerting, this implication would be
readily avoided in a richer model allowing, say, for utility effects of government consumption expen-
diture. Such additional features are, however, difficult to treat analytically in a model with power
utility, and it is for this reason that in Section 3 we reconsider the quadratic utility specifications of
Section 2.1 and ask whether they also render plausible long-run implications for consumption and
saving once the critical role of the specification of the forcing variables as generated by geometric
rather than arithmetic processes suggested by the analysis of this section is recognized. Before
doing so, we consider the effects of allowing for finitely lived overlapping generations under the

power utility specification.

Finitely-Lived Overlapping Generations

To relax the assumption of an infinitely-lived representative consumer, we embed the life-cycle
model under power utility within the overlapping generations economy considered above.

In period t each consumer belonging to cohort ¢ solves

E E < >j l]t J ’Q (2 100)
0o 1 qt | » .
{Cq,t j}j,() 7=0 !

subject to the period-by-period budget constraints (2.60) and the transversality condition (2.61),

and given an initial wealth level a,; 1. It is again assumed that aq 41 = 0.

The optimal decision rule of each consumer born in period ¢ for the life-cycle model (2.100),
(2.60), (2.61), and (2.1) under the specification (2.85) for average per capita labor income is given
by

Cqt = <1+z—5 Y )aq,t_1+ ( 1+ 2 >§<1+z> E (Yq,t+1t) - 10
= 2.101
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Average per capita consumption from (2.101) can be shown to be given by

ct = AoQ—1 + A3Yt, (2.102)
where
Ao = (1—p) <1+z—6_1/">, (2.103)
and
142z—6Ye
Ag = . 2.104
e Y Ty (2109
The counterpart of the stability condition (2.92) is now
(1—a)(1+p) =061, (2.105)
the evolution of the wealth-labor income ratio a; is given by
_ a; _
ar=(1—p)(1—a)exp Ey —Eytt1 | Qr—1, (2.106)
and the saving rate obeys
1-— 1- 1 -1
Srt — ( p) ( Oé) ( + /’Ly) at—]_- (2107)

1+ Tat,1

The limiting behavior of the saving rate and the asset-disposable income ratio is given in the

following proposition.

Proposition 2.2 Suppose ag > 0. If p and o are sufficiently small such that

02
log [(1 —p) (1 —a)exp (%)] >0, (2.108)

then the saving rate sry converges in probability to [(1 —p) (1 — &) (14 py) — 1] /r, and the asset-

disposable income ratio aj converges in probability to 1/r. The rate of convergence for both is

oyVt —1.

Note that under (2.108) it will always be the case that (1 —p) (1 — a) (1 4 1) > 1, and so the
long-run saving rate is assured to be nonnegative. Even if (2.108) holds, the interpretation of the
long-run saving rate suffers from an unfortunate implication: An increase in a leads to a decrease
in the long-run saving rate, which is counterintuitive (as an increase in « implies that every cohort
needs to provide for a larger amount of life-cycle savings). If (2.108) is not satisfied, the asset-labor

income ratio and the saving rate both converge to zero.

19



3 Long-Run Implications of a Life-Cycle Model With Quadratic
Utility, Habit Formation, and Government Consumption (Un-

der Geometric Processes for the Forcing Variables)

In this section, we return to a quadratic specification of the current-period utility function, showing
that as for the case of power utility, plausible long-run implications for consumption and saving are
obtained if the forcing variables (including the exogenous component to the consumer’s aspiration)
are modelled as generated by geometric rather than arithmetic processes. In contrast to the case of
power utility, however, the quadratic utility model remains analytically tractable under additional
features such as habit formation and private valuation of government consumption expenditure,
and thus provides an ideal theoretical framework for the cross-country analysis of (private) saving
decisions.

As in Section 2, we suppose that the real rate of return on domestic assets, both those issued

by the private sector and those issued by the government, ry, is given by
re =1 >0, (3.1)

for all t. We furthermore suppose that labor income received at the beginning of period t, y, is

generated by the geometric random walk process!”
1 .
logy; = v — 50’5 +logyi—1 + €yt v>0, ey ~iidN (0, 05) , (3.2)

and define the average proportional growth rate of labor income, p, by
AN
u=FE (i) =exp(y) — 1. (3.3)
The consumer’s preferences are given by'®
Zﬁ D) (T4 — NTe4j-1)", 6 €0,1], (3:4)
§=0
where

xy = ¢t + g — by, (3.5)

'"This is the same process as (2.85) in Section 2.2, albeit for compactness we use slightly different notation.
8Under (3.4), the consumer does not consider the social value of government consumption expenditure, and our

set-up thus makes no statement about the combined private and social value of government consumption expendi-
ture. We do not need to specify the magnitude of the social value of government consumption expenditure as our
concern here is with private consumption and saving decisions only. It should also be noted that we do not model
government investment expenditure. Our model set-up is consistent with the real rate of return being influenced by

such investment expenditure.
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with ¢; denoting private consumption expenditure at the beginning of period ¢, g; government
consumption expenditure at the beginning of period ¢, and b; measuring the exogenous component

of the consumer’s aspiration, generated by

b 1
log <—t> =y — 505 + Ebt; ept ~ 1id N (Oa 02) ; (3.6)
Yt

as before, 8= (14 p)~* (p < r) is a constant discount factor, and n € [0,1) measures the degree
of preference for habit formation. The specification of b; reflects an aspired standard of living that
is increasing over time.!” Under a; sufficiently large the consumer’s aspired standard of living
(with probability one) will always exceed his labor income, and the taste shocks {ep} lead to
temporary shifts in the gap between the aspired standard of living and labor income. Note that

the specification (3.6) implies that the mean exogenous aspiration rate is given by

E (g) — exp (ap). (3.7)

The consumer maximizes (3.4) by choosing {cH_j};iO subject to the period-by-period private

budget constraints,

atrj = (L+7) a1+ Yt+j — Ters — Cets J=01,..., (3-8)

where a; denotes the private wealth level at the beginning of period ¢, and 7 the amount of labor
income taxed at the beginning of period ¢, and subject to the transversality condition (2.7),

lim (14 7)77 E (an4|Q%) = 0.

j—oo

The consumer also recognizes that the government operates under the solvency constraint

Z(1+T> Tt+j=(1+7“)dt—1+j2:;(—1+r) Gt+i) j:(],l,__.’ (39)

§=0
where d; denotes the government debt level (bonds issued to the consumer) at the beginning of
period ¢t. The consumer’s maximization is also subject to given initial wealth/debt levels, a;—; and
d¢—1, initial levels of private and government consumption, ¢;—1 and g¢_1, respectively, and given
processes generating g; and 7.
Suppose that the government sets its consumption expenditure rate as

1
log <—> =g — 503 + Egt, ggt ~ 11d N (0,0’;) . (3.10)

Note that the specification (3.10) implies that the mean government expenditure rate is given by

E <§> = exp () - (3.11)

9The implications of assuming that the exogenous component of the consumer’s aspiration was constant rather

than trended are discussed below.
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Since the government operates under the solvency constraint (3.9), the tax rate 7¢/y; must be
responsive to the current (and/or lagged) value(s) of the government debt-labor income ratio,

di—1/yt. We therefore specify the following tax rule:

_ di_
gfy T ki — Ky (;—1> tert, K1,k >0, ey ~iid N (0,02). (3.12)
t t

Note that under (3.12) the government primary budget deficit, g — 7¢, is “error correcting” in the
government debt-labor income ratio.
The long-run behavior of the government debt-labor income ratio under the tax rule (3.12) is

given in the following proposition.

Proposition 3.1 If

(1+7— Ra)exp (%02)

I+p

<1, (3.13)

then the government debt-labor income ratio, di/yi+1, is an ergodic process in that it globally con-
verges to a steady-state probability distribution function that does not depend on the initial state,

do/y1. Furthermore, if the stronger condition

(1+7— Ko)exp (05)
I+p

<1 (3.14)

holds, then the mean of the steady-state distribution of the government debt-labor income ratio,

limy oo E (dt/yt+1), exists and is given by

d exp (02
E (—) = p (%) K1. (3.15)
Yy 1+p— (147r—ry)exp (02)
Finally, if the yet stronger condition
141 — ko)?exp (302
( 2) b (39,) _, (3.16)

(1+p)°

holds, then the variance of the steady-state distribution of the government debt-labor income ratio,

4

K2, (3.17)

limy 0o V (dt/yt+1), exists and is given by

0 -

1+M+(1+T—/€2)exp(ag)
L+ p— (1+7 — ko) exp (02)

oxp (307 It

(14 p)? —exp (302) (147 — ky)? i
exp (o) 2

1+p—(1+7r—kp)exp (02)

See Appendix C for a proof of Proposition 3.1. Clearly, (3.16) implies (3.14), which in turn

implies (3.13). As is discussed in the proof given in Appendix C, our assumption that e,; and
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er¢ are normally distributed is much stronger than is needed for (a qualitatively similar result as)
Proposition 3.1 to be valid. Ergodicity of the government debt-labor income ratio could be proved
even if the moments of €,; and e, did not exist, as long as they are finite with probability one.?? This
also distinguishes our proof of ergodicity from proofs available in the stochastic processes literature,
for example, Rao, Rao, and Walker (1983), Pham (1986), and Meyn and Tweedie (1993), that
establish geometric ergodicity for random coefficient autoregressive models (of which the process
generating the government debt-labor income ratio is a special case) under existence of moment
conditions. The existence of the mean and the variance of the steady-state distribution of the
government debt-labor income ratio requires the existence of the first two moments of £+ and the

existence of E [exp (qey)], for ¢ = —1, —2, but again not the normality assumption.

In Appendix A it is shown that upon ruling out explosive private consumption decisions the
optimal decision rule for the life-cycle model for the life-cycle model (3.4), (3.8), (2.7), (3.9), and
(3.1) is given by

A (1Y
. = A1+ A2 (at—l_dt—1)+<1 : > Z(—> E (ye451€%)

= 1+r
) ad 1\
FE
()

|
_ggt_(1_9)< A2 ) i(l 1 )jE(gt+ijt) + M0g_1, (3.18)

+0 -
(77 ) bt+j - nbt+j71 -0 1bt+j+1’Qt

14+r = +7r
where
no
= Nl
)\1 1+T7 (3 9)
and
)\2:(1—#7‘—77)(1—#7’—6)' (3.20)

1+7
Under the labor income specification (3.2), the specification of the exogenous component of the
consumer’s aspiration (3.6), and the government consumption expenditure specification (3.10) the

decision rule (3.18) can be rewritten as

et = Aice—1 + A2 (as—1 — di—1) + A3ys + Aaby + Asbe—1 + A6ge + A7ge—1, (3:21)
where
Ao = ( Ao ) [1 B (14 w)exp () B (1—=0) (1 + p)exp (o) ’ (3.22)
r— i 1+7r 1+7r

*Note that the variance of ey, o2, appears in (3.13) only because we have defined the drift of {logy:} in (3.2) to

2

be equal to v — %oy.
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(147)(n+6)—nd

My =
' (+r)

, (3.23)

A5 = —Aq, (3.24)

)\6:—6’—(1—0)(1>fr), (3.25)

and
A7 = 0. (3.26)

Note that under the period-by-period private budget constraint (3.8), private saving in period
t is defined as

St =Tra—1+ Y — T — Ct. (3.27)

We define the private saving rate in period ¢ as

St
0 (3.28)
Defining the saving rate as a fraction relative to labor income rather than to disposable income
greatly simplifies the algebraic analysis of the long-run properties of the saving rate. The long-run
properties of the consumer’s saving and consumption decisions are given in the following proposi-

tion.

Proposition 3.2 If

12
nexp (30y) <1, (3.29)
1+pu
dexp (%05)

<1, 3.30
1+ (8:30)

and (3.13) holds, then the net asset-labor income ratio, (a; — di) /Y1, the private saving rate,
st/yt, and the consumption-labor income ratio, ci/y:, are ergodic processes in that they globally
converge to steady-state probability distribution functions that do not depend on the initial states,
(a—1 —d_1) /yo, (a0 —do) /y1, so/yo, and co/yo, respectively. Furthermore, under the stronger
conditions

1 exp (02)

<1, 3.31
T h (3:31)
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b exp (UZ)

1, 3.32
T (3.32)

as well as (3.13), the mean of the steady-state distribution of the met asset-labor income ratio,

lims o0 E [(ar — di) /ye+1], exists and is given by

E<a;d)=w[—1+E(§)+(1—9)E<§)], (3.33)
ﬂ=[(l—"?ifa>(l—6ﬁifa>]4

U_n6+(1+r)(1+,u—n—6) néexp(ag)
a (L4+7)(r—p) (L+7)(1+p)

Also, the mean of the steady-state distribution of the private saving rate, limy_.oo F (s¢/yt), then

where

exp (o)

> .34
1+ v > 0, (3.34)

and

(3.35)

exists and is given by?!

E (5) _— [—1+E (g) +(1-0)E (g)] + (;;Té) - 1) E (g) , (3.36)

and the mean of the steady-state distribution of the consumption-labor income ratio, limy_, E (ct/yt),

then exists and is given by

E<5> =1+7(r—p) [1+E<§>] +[7r(1“u)(19)1}E<2>. (3.37)

Y Y

See Appendix C for a proof of Proposition 3.2. Clearly, (3.31) and (3.32) imply (3.29) and
(3.30).

Remark 3.1 In the special case where n =0, m becomes

(tea=s (el
7T_<1+u—5exp(a§)>< T— ) (3:38)

Remark 3.2 Under the yet stronger conditions

3 2
nexp (3oy) (3.30)
I+p
dexp (305)

<1, 3.40
T (3.40)

2INote that (3.36) suggests that in a cross-country regression of private saving on its determinants one should
include government debt, not the government primary budget deficit/surplus as an explanatory variable. This stands

in contrast to the variable choice in Masson, Bayoumi, and Samiei (1998), for example.
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as well as (3.13), the variance of the steady-state distribution of the net asset-labor income ratio,

limy o0 V [(ar — di) /y+1], exists and is given by

where
e nefri (Zy)’ (3.42)
= _ w | (3.43)

exp (205) (5 — ﬁ)Q [1 + 76 exp (05)]
15 exp (202)| [1 - 7 exp (202)] [1 T exp (202)]

X1 = { (3.44)

2exp (502/2) (5 —7)° (7+79)
1= exp (207)] [1 — 7P exp (20)] [1 ~ 7 exp (203)]

X2 = ; (3.45)
|

{ 2exp (302) (8 —7)° [8"+ 75 + 72 %5 exp (202) = 75 71+ 5) exp (02/2) }
X3 =

[1—72exp (202)] [1 -5 exp (202)

1

{ = mexp (02/2)] [L b exp (02/2)] [L =R exp (207)] } : (3.46)
E () = lim B (), (3.47)
E () = lim B (G6-1) . (3.48)

and
E(s3) = Jim E (ssi-2) (3.49)

with

TV & A N A N L A gt o (91

G=1—X3—X\1 ( ” ) A (yt> A5 ( ” ) (1 + )\6) (?ﬁ) + ()\1 )\7) ( ” ) .(3 50)
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See Appendix C for a proof of Remark 3.2. Clearly, (3.42) and (3.43) imply (3.31) and (3.32). As
is discussed in the proof given in Appendix C, our assumption that ey¢, €y, £4¢, and €4 are normally
distributed is much stronger than is needed for (qualitatively similar results as) Proposition 3.1 and
Remark 3.2 to be valid. See also the comments made in this respect following Proposition 3.1.

Proposition 3.2 shows that an infinitely lived representative consumer based life-cycle economy
can render plausible long-run implications for private consumption and saving decisions. Consump-
tion and labor income as well as saving and labor income are “cointegrated” in the sense that their
ratios tend to steady-state probability distribution functions, the moments of which depend in a
precise way on the exogenous aspiration rate, and the government expenditure-labor income and
government debt-labor income ratios. These results stand in contrast to the perception in the liter-
ature that a standard life-cycle economy, at least in the absence of (occasionally binding) liquidity
constraints or a buffer-stock saving motive, cannot render meaningful long-run relations between
consumption and labor income (see, for example, Gali, 1990, and Deaton, 1992, for a summary of
this view). What is critical for the existence of meaningful long-run relations between consumption
and labor income and saving and labor income are both a trended/drifting exogenous aspiration
component (which seems plausible, reflecting aspired increases in the standard of living in line with
the trend/drift in labor income), and a geometric specification of the forcing variables, in particular
labor income and the exogenous component to aspiration. While a geometric specification in any
case would seem a better representation of the observed data on average per capita labor income (in
the OECD economies and beyond), it appears that the critical role of a geometric specification of
the forcing variables for the long-run properties in life-cycle economies has not yet been recognized
in the literature.??

We had already seen in Section 2 that introducing a trended/drifting exogenous aspiration
component into the Hall model by itself does not yield plausible implications for the long-run
private saving decisions. Let us conclude our discussion of Proposition 3.2 by considering the
role of the specification (3.6) of the exogenous component of the consumer’s aspiration. If it was
assumed that by = b, then F (b/y) = 0, and it is readily seen from Proposition 3.2 that the mean

of the steady-state distribution of the net asset-labor income ratio would be given by

E<a;d> :w[—1+(1—6)E<§>], (3.51)

with 7 still defined by (3.34). Furthermore, the mean of the steady-state distribution of the private

saving rate would be given by

E<8—yr> _— [—1+(1—0)E<§>} + <£T’%)—1>E<g>, (3.52)

22Gee, for example, Hansen and Sargent (1999), who provide an extensive discussion of the solution and estimation

of linear-quadratic economies, including life-cycle economies, in which the forcing variables are modelled as arithmetic

processes.
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and the mean of the steady-state distribution of the consumption-labor income ratio would be given
by

E<§)zl—w(r—u)+[ﬂ(r—u)(1—9)— }E(%) (3.53)

Clearly, then, under F (¢g/y) = E (d/y) = 0, the mean of the steady-state distribution of the (net)
asset-labor income ratio and the mean of the steady-state distribution of the private saving rate are
both negative. The consumer continuously borrows and accumulates debt (without violating the
transversality condition). In the presence of government consumption expenditure and government
debt, the means of the steady-state distributions of the net asset-labor income ratio and the private
saving rate may be positive. However, even in the latter case, under plausible parameterizations it
is very likely that the mean of the steady-state distribution of the consumption-labor income ratio
is negative. We therefore model b; as upward trending; again, doing so anyway seems realistic in an
economy where there is (real) labor income growth. The specification (3.6) ensures that the growth

rate of labor income plays an immediate role in determining the growth rate of consumption.

Finitely-Lived Overlapping Generations

Next, we reconsider the Yaari (1965), Blanchard (1985), and Gali (1990) economy of finitely-
lived overlapping generations. In doing so, our particular interest is on the robustness of the
Ricardian equivalence feature of (3.21) to allowing for finitely-lived overlapping generations. The
set-up of the overlapping generations economy is similar to the overlapping generations settings we
had discussed in Section 2, with average per capita labor income y;, generated by the geometric
random walk process (3.2). The period ¢ preferences of each consumer belonging to cohort ¢ are

given by

 /1-p\' /[ 1
Z (1 +‘p> (‘5) (Tq,i4j — MTg+j-1)7 (3.54)

Jj=0

where
Tqt = Cqt -+ egqt — bqta (355)

with g4 government consumption expenditure at the beginning of period t accruing to a consumer
belonging to cohort ¢, and by measuring the exogenous component of this consumer’s aspiration

at the beginning of period ¢, generated by

b 1
log (—) = log (y—t> =ap — 50% + €Bt, et ~ 1id N (0, a%) , q < t.
t
(3.56)
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The specification of by again reflects an aspired standard of living that is increasing over time.?3

Each consumer belonging to cohort ¢ in period ¢ maximizes (3.54) by choosing {Cq,tJrj};io

subject to the period-by-period private budget constraints

agt+j = (1 +2) @gtrj—1 + Ygt+j — Tat+j — Cqt+is J=0,1,..., (3.57)

where a4 denotes the private wealth level at the beginning of period ¢ of a consumer belonging to
cohort ¢, and 74 the amount of labor income taxes levied upon this consumer at the beginning of
period ¢t. The maximization is also subject to the transversality condition
lim (1+2) 77 E (ags|Qqt) = 0. (3.58)
]—)OO
It is again assumed that a4 41 = 0, that is, consumers in each cohort are born holding no assets.

Consumers also recognize that the government operates under the solvency constraint (3.9),

Z<1+T> Tt+j:(1+r)dt1+]z_;(l+r> Gt+j, 7=0,1,...,

j=0

where d; denotes the average per capita government debt level (bonds issued to the consumers) at

the beginning of period t, 7 denotes the average per capita government tax revenue,

t
Tt = Z NgtTqt, (3.59)

g=—00

and g; denotes the average per capita government consumption expenditure,

¢
gt = Z NgtJqt- (3.60)

qg=—00

The consumers’ maximization is also subject to a given initial private wealth level, a4;—1 and a
given initial government debt level, d;—1, initial levels of private and government consumption,
cqt—1 and gq -1, respectively, and given processes generating gg: and 74.

Suppose as before that the government sets its consumption expenditure rate as

1

and that it obeys the following tax rule:

- d_
HTT ol — ke (t_1> ‘e, K120, K€ (0,1, en~iid N (0,02).
Yt

(3.62)

23In (3.56), the exogenous aspiration component of a consumer belonging to cohort q is specified as a ratio relative
to average per capita current-period labor income, rather than the consumer’s own current-period labor income.
Thus, an individual consumer’s aspired standard of living does not fluctuate with variations in his/her labor supply,
and all members of all cohorts have the same aspired standard of living in period ¢. A consumer’s lifetime aspired

standard of living, however, depends, through the productivity growth in y:, on when the consumer was born.
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To complete the model, we also need to specify relations between the average per capita government
consumption expenditure (its average per capita taxation) and government consumption expendi-
ture accruing to (taxes levied upon) a consumer belonging to cohort q, ¢ = —o0, ... ,t — 1,t. We

adopt the following specification:

9qt = Gt; gt (3.63)

so that government consumption expenditure in any given period in per capita terms accrues equally

to all cohorts, and
Tat = lqtTt, q=t, (3.64)

so that the consumers’ tax dues vary proportionately with their labor income levels. (Note that
under (3.63) and (3.64) government fiscal policy in any given period generally has redistributive
effects across cohorts.)

As is shown in Appendix A, the optimal period ¢ decision rule of each consumer belonging to

cohort ¢ for this life-cycle model is given by

e J
Cgt = VYiCqi—1+ Yaagi-1+ V3 Z ( ) E (Ygt+j — Tat+i T 09¢,t+5(Q0t)
=0

1+2
T Z <1 n Z) E (24,645 Qqt) + ¥sgqt + V6gq,0-1, (3.65)
=0
where
gt = (L+187") bgt — g1 — 6 bgee1, (3.66)
b= (3.67)
B0 +r) :

0

= 11 = (3.68)
(A4 z-n)1+2-90)

Yo = T2 : (3.69)

0
,(71}4 = 1 + Z’ (371)



V5 = —0, (3.72)

and

Y6 = 0. (3.73)

Average per capita consumption from (3.65) may be verified to be given by (under Q4 = Q)

J
1+z> E(yt+j—7't+j\9t)

ct = 11)1(1—]9)6751+¢2(1—p)at1+¢3z<1_a

Jj=0

a0 (155) Bloinn + D> (155) B ol + vasi-+ vo 1 - afaias

where
ze=(1+n6"") by — b1 — 6 b1 (3.75)

In contrast to the case of an economy made up of a representative, infinitely-lived consumer,
the expected present discounted value of taxes cannot be directly eliminated from (3.74) using the
government solvency constraint, (3.9), as the government and the consumer discount future taxes at
different rates, implying that 741 ; in the average per capita decision rule (3.74) is discounted at rate
(1—-a)/(1+ z), and in the government solvency constraint (3.9) is discounted at rate 1/ (1 + r).
In Appendix A, it is shown how the expected present discounted value of taxes (discounted at rate
(1 — )/ (1+ 2)) may be eliminated from (3.74) as a function of forcing and predetermined variables
only, using the government period-by-period budget constraint underlying (3.9) and the government
tax rule (3.12). Under the average per capita labor income specification (3.2), the specification of the
exogenous component of the average per capita aspiration (3.6), and the government consumption

expenditure specification (3.10), the average per capita decision rule (3.74) can then be rewritten

as
ct = AMc—1 + Aoap—1 + A3di—1 + Myt + Asysere + Aeb + Arbi—1 + Aggr + Aogi—1,
(3.76)
where
_md-p
M= (3.77)
1 — 1 — 1—
o Ltz re—81-p) -
1+2
_ )‘2 K9
o (1—p> [1+Z—(1—a)(1+r—/¢2) ) (3.79)

31



v o= et e e et
[ A2 H (1+u)exp(ag)_(1+u)(1—a)exp(ag)]
(I-p)(1+=2) zZ— l+2z—(1+p)(1—-a)

[ A2+ p)exp (ap)

[(1—17)(1—#2) (z—u)] ’ (3.80)
_ A9 l+z—(1+7r)(1—-a)
)\5_[(1—29)(1+Z)] |:1+Z—(1—Oz)(l+r—;{2)]’ (3.81)
_ (A+2)(n+8)—nd
A= (1+ 2)? (3.82)
A= 1A_1p’ (3.83)
As = 60— (1-6) {m] 7 1)
and

Ag = O). (3.85)

Note that under p = 0 (infinite lifetime) and a = 0 (no life-cycle savings), the decision rule reduces
to the one for the representative, infinitely-lived consumer economy, (3.21).2% Ergodicity of the
average per capita net asset-labor income ratio, (a; — dy) /y:+1, the average per capita private saving
rate, s¢/y:, and the average per capita consumption-labor income ratio, ¢;/y:, can be established in
conceptually the same way as for the representative, infinitely-lived consumer economy. In contrast
to (3.21), Ricardian equivalence in general does not hold, however. This is easily seen from the
coefficients on a;—1 and dy;_1, which in general do not sum to zero. As Ao > A3, a fraction of
government bonds is net wealth to the consumers. The size of this fraction is inversely related
to ke, which is plausible, since a lower value of ko ceteris paribus corresponds to a higher mean

government debt-labor income ratio.

Prudence

Finally in this section, we consider how consumers’ prudence might be incorporated into a
life-cycle model with habit formation and government consumption under geometric processes for

the forcing variables. We will now also relax the assumption of a constant real rate of return on

2*Note that under p = 0 there are also no overlapping generations, as all cohorts of new-born consumers have size

zero, and there is only one “initial cohort”. Furthermore, under p = 0 clearly only o = 0 is meaningful to consider.
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domestic assets, and instead suppose that the real return follows a stochastic process. The Euler
equation of a life-cycle model with habit formation and government consumption as specified above,
but a general utility function u (-) allowing for prudence (exhibiting strictly convex marginal utility)

and a stochastic process for the real return is given by

n [t + 09t — 1 (ct—1 + 0gi—1)] = BF {(1 +7req1) n [ct41 + 0ge+1 — (et + Og¢)] \Qt} )

(3.86)
which may be rewritten as
u et +0g:—n(ce1 +0g01)] = B[+ E (rena| Q)] {UI [E (ct+1[$2%) + OF (ge+1[$2¢)
—n (et + 0gt)] + pst} + covy. (3.87)
where
covy = BCov {rtﬂ,u/ [ct+1 + 0911 — 1 (et + Ogy)] |Qt} ) (3.88)

Using Jensen’s inequality, under strictly convex marginal utility it can be shown that ps; > 0.
If r, and y; are independent or positively correlated, cov; under some additional conditions can
be shown to be strictly negative, whereas cov; may be strictly positive if r; and y; are positively
correlated. As is discussed, for example, in Binder, Pesaran, and Samiei (2000), life-cycle models
with Euler equation given by (3.86) and strictly convex marginal utility can in general not be
solved analytically. An analytically tractable and empirically powerful approach to the analysis of
such life-cycle models is to approximate ps; and covy as smooth functions of potentially relevant
determinants: ps; reflects the consumers’ desire to provide for future contingencies such as cuts in
labor income, reductions in government consumption expenditure, or unusually low asset returns
through precautionary saving. Determinants of the likelihood of such contingencies arising in time
series could include the probability of a recession occurring or the probability of a change in govern-
ment occurring, and in a cross section could include the volatility of transitory output fluctuations
or the amount of unemployment insurance benefits granted. couvy, if strictly negative, reflects the
consumers’ desire to limit the exposure to losses of funds saved for consumption smoothing and
precautionary purposes due to unusually low asset returns (and thus acts counter the precautionary
saving effect). A relevant determinant in time series would seem the probability of a (significant)
drop in asset returns and in cross section would seem the volatility of (transitory) rate of return
fluctuations. Once functional forms have been specified, the Euler equation (3.87) can be log-
linearized and then analytically analyzed regarding its long-run properties. While subject to the
Lucas critique, such decision rules capturing the effects of a broad range of uncertainties would

seem well suited for cross-country analysis of private saving rates.

33



4 Empirical Evidence for OECD Economies

[To Be Added.]

5 Conclusion

[To Be Added.]
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Appendix A: Derivation of Decision Rules

Quadratic Utility, Habit Formation, Risk Sensitivity, Arithmetic Processes for the Exogenous

Component to the Consumer’s Aspiration and for Labor Income, and Infinite Lifetime

It will be useful to split {y:} and {b;} into their deterministic and stochastic components. Accordingly, let

Yt = 2yt + Ut, by = 2t +Zt7 (A1)
where
=1 t—1 ‘
Pyt = Z%“y (1= dy) Zd’ytfjil (J+1)| + o, (A.2)
=0 =0
-1 t—1 '
2ot = Z%Mb + (1= &) Z(ﬁzﬁ*l (G+1)| + ¢lbo, (A.3)
j=0 j=0
t .
U= _ o ey;, (A4)
j=1
and
~ t .
b= ¢ e (A.5)
j=1

Suppose first that 7 = 0. For this case, it follows from Whittle’s (1990) risk-sensitive certainty equivalence
principle that maximization of the exponential-of-quadratic objective function (2.27) (under n = 0) subject
to the linear period-by-period budget constraints (2.6) and subject to the linear autoregressive processes

with Gaussian innovations (2.3) and (2.40) is equivalent to extremizing the Lagrangian

T—t ph (1 7 2
S0 B" (3) (cten — 2b,04n — begn

- ZZ;S BNt lasen — (L4 7) Qo1 — Zy,t4h — Ytrh + Cotn)

‘Ct = hm T— —1 - 2 (AG)
T=o0 — Y hoy B (2002) " (Gt+n — Gyle+n—1)
— —1 [~ ~ 2
- Z}j;:lt gt (2607) (bt+h - ¢bbt+h—1>
with respect to all decisions not yet made at the beginning of period ¢ (that is, ¢, ¢tt1, ..} aty Gty .- .)
and all variables not observed at the beginning of period ¢ (that is, A¢, A1, -+ Get1s Ytr2, - - E,H_l, Et+2,

...).%% Let Qt+n|¢ denote the planned value at the beginning of period t of the variable ¢ for period ¢ + h (if
q is an endogenous variable), or, if ¢ is an exogenous variable, the (risk-adjusted) anticipated value at the

beginning of period ¢ for period ¢ + h. Then the optimality conditions are given by

Ct+h|t — 2bt+h _Et+h|t = )\t+h\ta h=0,1,...,T —t, (A-7)

25See Whittle (1990), Chapters 6 and 7, for further details.
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)\t—‘rh‘t =ﬁ(1+7’) )\t-l—h-‘rllta h=0,1, ,T_t— 1, (AS)

Apynje — (L4+7) Qg1 — 2y,t4n — Yenjt + Copnje = 0, h=0,1,...,T —t, (A.9)
1Y - _ Ay .
ﬁ)\t+h\t “\ 902 (yt+h|t - ¢yyt+h—1|t) +0 ) (yt+h+1\t - ¢yyt+h|t) =0, (A.lO)
oy o
h=1,2,..., T —t—1,
1 - ~
BAT|e — <9—2) (Ut — dyYr-11t) =0, (A.11)
9y
—BAe |t — 1 (Zt Bt — Oobern 1t)+5 o (gt Bt — duby ht)ZO (A.12)
+h| 90’2 —+h| +h—1| 90_2 +h+1] +h| )
h=1,2,... , T—t—1,and
1 - ~
By - (6)75) (brie = dvbraye) =0, (A13)

where we are interested in the case where T — co. Note that the optimality condition (A.7) equates the
shadow price Ay, ; to the marginal utility obtained from the period ¢+h consumption of the additional funds
obtained ceteris paribus through an infinitesimal relaxation of the period t+h budget constraint (conditional
on information available at the beginning of period t). The optimality condition (A.8) equates the marginal
utility of period t 4+ h consumption to the marginal utility of period t + h + 1 consumption discounted back
to period t + h (again conditional on information available at the beginning of period t). It may be verified

that these two optimality conditions in the case where § = 0 but n > 0 can be reduced to

Ctyn|t — NCt+h—1|t — Rbt+h — bt+h|t +N2bt+h—1+ ngt+h—1\t = )\t+h|t7 h=0,1,...,T —t,
(A.14)

and (A.8), respectively.?® Observing the risk-sensitive certainty equivalence principle, the optimality condi-

tions for extremizing the Lagrangian

Zz;é gh (%) (Ct+h = NCtth—1 — 2b,t+h _gt-i-h + N2 t+h—1 + ngt+h—l>2
£, = lim - Z;{;é ﬁh)\wji} [?t+h —(1+ r)_(iwh,l — 2y t+h — Ut+h + Cen]
T=oo — w7 (2000) T (G — Oylirn-1)’ (A.15)
— S B (2905)71 (Zt+h - ¢bgt+h—1)2

with respect to ct, cea1, -- -5 Gty Qra1y -5 Aty M1y - -5 Yea1, Yti2, - .-, and EH, gt+2, ..., are then given
by (A.14), (A.8)-(A.11), the counterpart of the difference equation (A.12) under n > 0,

1+7r— 1 ~ ~ 0] ~ =~

268ee the derivation of the decision rule under quadratic utility, habit formation, government consumption, geo-
metric processes for the exogenous component to the consumer’s aspiration and for labor income, and finite lifetime,
particularly (A.35)-(A.45), for a more detailed argument. As the derivation would be conceptually similar to (A.35)-

(A.45), we omit it here to keep the presentation as compact as possible.
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and (A.13). Conjecture that
Aesne = 6"k, h=0,1,...,T —t, (A.17)

with k; undetermined. To determine k;, we shall solve the difference equations (A.10) subject to the boundary
conditions 7, = 7; and (A.11), and (A.16) subject to the boundary conditions gt|t = by and (A.13), and
then combine the solutions of these difference equation with (A.14), (A.8), and (A.9). Note from (A.14) that

once k; is determined, the optimal decision rule is given by:2”
Ct = 1NCt—1 + bt - nbt—l + (Stkt. (AIS)

It may be verified that the solution of the difference equation (A.10) subject to the boundary conditions
Uyt = Yr and (A.11) is given by:

B _ he ﬁ@ag
Yeerle = Pyl t 1—(1+r)_1¢y1
_ " T (862)" ~t
{6“;1[11(%//? ]—[ 1‘@?;3 (aere) “wy)“*’”}kt. (A.19)
Y

Note that as T — o0, (A.20) becomes

Ythlt = ¢Z§t +

Boo; vrn | L= (0y/6)"
1—(1+T)_1¢y1 {6+ 1—¢y/6 ]}kt (4.20)

Similarly, as T — oo, the solution of the difference equation (A.16) subject to the boundary conditions
Et‘t =b; and (A.13) is given by

gt-irh|t = ¢th - {M] {5t+h M] } k. (A.21)

(1+7) = 1—¢u/6
It is worth noting that the anticipated future values of y and b are risk adjusted, and that the anticipated

values at t only equal the conditional expectations at ¢ if & = 0. These risk adjustments drive the difference
between the decision rule under (2.27) and the decision rule in the case where the objective function is
additively separable with quadratic felicity functions. Returning to the solution under 6 > 0, define ¢; |, =
Cithlt — NCtrn—1j¢- Then it is readily verified that

Z (L+7) " Copnpe = (u) lz (L+r)~" Ct+h|t] —MCt-1- (A.22)

1+7r P

Substituting (A.22) into the lifetime budget constraint

(]. + 7’) ag—1 + Z (]. + ’I“)i}I (Zt+h + ng_h‘t — Ct+h|t) = 0, (A23)
h=0

the latter becomes

(1+ T) at—1 +

Z L +7)7" (zen + gt+h|t)]

h=0

_ (%) { [i (L4 1) " S

h=0

+ nee—1 } . (A.24)

2"Note that the optimal plans Citslts § = 1,2,..., are then also readily determined from (A.14).
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Substituting (A.20) (to eliminate g;;)¢), (A.14) (to eliminate ¢;4p)), (A.21) (to eliminate gt+h‘t), and (A.17)

(to eliminate A;yp)¢) into (A.24), and noting that z,4n + @)% = E (Yeqn|), with

h—1 h—1
E (yr4n|) = oy + (Z %Ny) + (1= 9y) W !Z It 4+ 1)] ;

Jj=0 Jj=0

for h > 1, and that therefore

Q) 1+
Z E (yt+n L _< r )(yt+7909+191yt),

heo 1+7‘ 1+T_¢y
where
1 (1-9¢y)A+7)
ﬁOy—(;>/~5y+|: yr2 Y )
and
ﬁly_ (1_¢y)7y’

and that Zb,t+h + ¢£L’l;t =F (bt+h|Qt)7 with

h—1

E (ben|%) = opbe + (Z«bbub) (1) {Zqﬁh el t+j+1>],

7=0

for h > 1, and that therefore

Z (bitnl t):< " )(bt+1905+191bt)a

= 4+ L7 —d

where

1 1-— 14+

o= (1) [0 B0

r r

and
1—
ﬁlb = ( fb) /va

one obtains after some algebra that

ke =

r(1+7r—90)

(1+r6)(1+7’n)] )

where

B r 1 (1—9¢,)(1+7)
gt = rat—1+<7l+r¢y>yt+<7l+r¢y>ﬂy+ [—r(l—o—y?”qby) :|'7y

1— ¢y nr r
+<71+T_¢y)7y <71+T—7’]>Ct_1<71+7”—¢b>bt
nr 1 A—¢)(d+7)
(=)o (s ) i
1— ¢
<1+r—¢>)%t'

A5

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



Substituting (A.33) and (A.34) back into (A.18), and collecting the terms in ¢;_; and b;, one obtains (2.42).
Note that (2.8) is a special case of (2.42) withn =0,0 =0, ¢, = 1, up = 07 = 0, and by = b, that (2.21) is a
special case of (2.42) with 0 =0, ¢ = 1, up = 07 =0, and by = b, and that (2.28) is a special case of (2.42)
with ¢p =1, up =07 =0, and by = b. B

Quadratic Utility, Habit Formation, Government Consumption, Geometric Processes for the
Exogenous Component to the Consumer’s Aspiration and for Labor Income, and Finite Life-

time

The period ¢t Euler equation for each consumer belonging to cohort ¢ can be written as

Zgt = BIL+7 411 = D) E (24,0411Q0) + 80 (1 = p) (1+7) E (24,042/Q1) = 0, (A.35)
where
Zqt = Cqt — NCq,t—1 — eq, (A.36)
Cqt = Cqt + 094, (A.37)
and
byt = bgt — Nbg.t—1. (A.38)

Note that (A.35) is a fourth-order difference equation under rational expectations in ¢4. Ruling out explosive
solutions, (A.35) can be reduced to a second-order rational expectations equation in cqt.28 To see this, define

the expectations revision process

Eét = E (2q,t+1|Qqt) — E (2q,t+1Qq,e-1) , (A.39)

and use it in (A.35) to obtain

Bn(1—p) (L+r) 22 — BIL+7+n0(1—p)] zges1 + 2qt = &gt (A.40)

where &, is a martingale difference process defined by

&gt = B*n(1—p)(1+r) 52,t+2 +8n(1—p)(1+7) Eé,t-&-l —Bl+r+n(-p)] 52,t+1-
(A.41)

The roots of the characteristic equation associated with (A.40) are given by 1/[6n (1 — p)], and 1/[8 (1 +7)].
By assumption the former root falls outside the unit circle, and can be readily shown to result in explosive

individual-specific consumption decisions. Writing the left-hand side of (A.40) as

{BPnQ—p)(L+r)F=Bl+r+n(l—p)]+F "} zgu41, (A.42)

28See also Binder and Pesaran (2000), who discuss such a reduction in order in the context of an infinite-horizon
life-cycle model under social interactions, but with no government consumption and a constant exogenous component

to the consumer’s aspiration.
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where F' denotes the forward operator, and factorizing the resultant operator so that2’
B+7) = F'[1—=n(1—p)BF] 24011 =0, (A.43)

it follows that for the individual-specific optimal consumption decisions to be non-explosive, we must have:

T A0 (A4

Under (A.44), we therefore need to solve
gt = B(L+7) E (2¢,641(t) , (A.45)

subject to the private budget constraint (3.57) and the government solvency constraint (3.9). Using (A.36)

to substitute for z4 in terms of ¢, and eq, we have

~ n ~ 6(1 + T) ~ E (xqt|th)
= |0 At || FE Qi) + ———————, A.46
o [1+B(1+T)77} e [1+ﬁ(1+r)n Coartla) + 050y (440
where
xqt = th - ﬁ (1 + ’I“)gq7t+1. (A47)
Consider now the quasi-difference transformation3®
Mgt = eq - ulgq,t—la (A48)
where w; is any root of the quadratic equation (associated with (A.46))
B(l+r) 2 Ui
[14—6(14—7")77 W 1+8(0+7r)n ( )
that falls inside the unit circle. Applying this transformation to (A.46), one obtains
E(m t+1|Q t) = U2 | Mgyt — xqt (A50)
B I+ (- wm) )]
with us defined as
1 1 —
uy = LEBAAD (= w) (A.51)

BA+r)
Leading (A.50) j periods forward, j = 1,2, ..., taking conditional expectations with respect to {24, and sub-
stituting recursively to obtain E(mg1+|$:) as a function of mye, gty E (Tqe411¢)s - -+ B (Tge4i-1]Qqt),

one obtains

. 1 izt
E Q) = Wmgr — "B Qqt) - A.52
(Maass10) = s |y ) S i (A52)

2Related factorizations have been used, for example, by Muellbauer (1988) and Deaton (1992).
30See, for example, Binder and Pesaran (1997) for a detailed discussion of the use of this quasi-difference transfor-

mation for the solution of linear rational expectations models.
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From the expected lifetime budget constraint of a consumer belonging to cohort g,

oo 1 7 B
> (155) B st = Eltralnn). (A5
= +z
where
lrge = (1+2) Gg,t—1 + jZO (1——&-2> (yq,t+j — Tqt+j T 99q,t+j) ) (A.54)
it follows that
> 1 J 1+z—u -
jgo <1 T Z) E (mq’t+j|ﬂqt) = <17—§—2) E (l/rqt‘th) - Ulcq’t_l. (A55)
Substituting (A.52) into (A.55), one obtains
~ uiu \ ~ (I+z—u)(1+2z—ug)
Cqt = <1 T Z) Cq,t—1 + |: (1 + 2)2 E (l’l"qt|th)
w Vg (1Y g Q A
12 > T2 (q,t+71t¢) - (A.56)

j=0
It is now easily established that (A.56) is invariant to the choice of u; in (A.49); namely, the same expression
results on the right-hand side of (A.56) irrespective of whether uy = 7 (implying us = 6) or u; = § (implying
us =) is used for u; in (A.56). Thus (A.56) can be rewritten as

o (1n_fz> Grot + [(1 +2 (1771(21); - 6)} E (Irqt|Qqe) + (%) g <1 —1k Z)j b (xq’HjQq(tj)&iW)

which may be further rewritten as (3.65). Aggregating (3.65) across all cohorts, one obtains (3.74). The

expected present discounted value of taxes,

> /1—a)’
Z<1—+Z> E (724100 ,

=0

may be eliminated from (3.74) as a function of forcing and predetermined variables only using the government

period-by-period budget constraint,
de = (L+7)de—1 + gt — 7, (A.58)

and the government tax rule (3.12). Solving (A.58) forward for d;;; and then substituting into (3.12)

evaluated at ¢ + j, after some algebra one obtains the following recursive relation for 7, ;:
! k—1 j
Tt+j = Jt4j — K1le+j — K2 Z (L+7)" (Tegjmk — Geaj—i) + k2 (L +7) dim1 — €14 5Y145,
k=1 (A.59)

which may be further rewritten as
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= (1—a)’ = 7 (1+2)k
JZ<1+2) (72 1202) ;( ) (9141€2q¢) + {14—2’(104)(124-74/12) di
I4+z—(1+7r (11—« < (1—a)’
a {1 +z—(1-a)(14+7r— HQ)] j;O (ﬁ) El(k1 +eneei) erslSae] (A.60)

Substituting (A.60) back into (3.74), and using the average per capita labor income specification (3.2), the
specification of the exogenous component of the average per capita aspiration (3.6), and the government
consumption expenditure specification (3.10), the decision rule (3.76) for average per capita consumption is
now readily obtained. The decision rule (3.21) for the infinitely lived representative consumer economy is a

special case of (3.76) for p=0and o =0. &
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Appendix B: VAR Representations of Decision Rules and Their Long-Run Properties

Quadratic Utility, Habit Formation, Risk Sensitivity, Constant Exogenous Component to the
Consumer’s Aspiration, Arithmetic Process for Labor Income, and Infinitely Lived Represen-

tative Consumer

As in Section 2, we begin by considering the scenario where b; = b, that is, a constant exogenous component
!

to the aspiration process. Let x; = < ct, ai—1, Yt ) , and write (2.28), (2.6) (for j = —1), and (2.3) as a

VAR(1) in x:

Dox; =Dix¢—1 +apg + ait + vy, (A.61)
where
—Xy =3
D=0 1 o |, (A.62)
0 0 1
A1 0 0
Di=| -1 1+ 1 |, (A.63)
0 0 ¢,
Ay As 0
ag = 0 1, a;= 0 , and vi=| 0 |. (A.64)
Hy (1- ¢y) Yy Eyt

The VAR (A.61) can be rewritten as

(Dg — D1L) (x¢ — po — t) = vy, (A.65)
or
(Is — ®L) (x¢ — p — yt) = uy, (A.66)
where & = Dy ' Dy,
wygyt
U= Do_lvt = 0 y (A67)
Eyt

and g and ~ are defined through (Dg — D1)~ = a; and (Dg — D1) pu = ag — D1~.%!

3n what follows we distinguish four cases: 8 >0, p <, |¢y| <1 (Case1),6 >0, p <r, ¢, =1 (Case 2), § > 0,
p=r,|py| <1(Case3d),and 8 >0, p=r, ¢, =1 (Case 4). When 6 > 0, none of the long-run properties of interest
depend on whether p < r or p = r, and the case where p = r can always be obtained simply by imposing p = r on all
expressions in Case 1 and in Case 2. Also, when p < r, none of the long-run properties of interest depend on whether
0 > 0 or # = 0, and the case where § = 0 can always be obtained simply by imposing # = 0 on all expressions in Case
1 and in Case 2. Finally, none of the long-run properties of interest depend on whether n > 0 or n = 0, and the case

where n = 0 can always be obtained simply by imposing n = 0 on all expressions in Cases 1 to 4.
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Case 1: >0,p<r,|py <1

The eigenvalues of ® are given by 7, (1 + r) (6 — @) / (1 +r— 5), and ¢,,. This establishes that the transver-
sality condition (2.7) is satisfied for the decision rule (2.28).32 The infinite moving average representation of
(A.66) is given by

x¢ = p+t+C" (L) uy, (A.68)
where
b
=1 (rb—ry—roy) /r | (A.69)
Oy
0
Y=L w/r | (A.70)
Yy

and C* (L) = Y32, C;L", with C; = I3, and C} = @®" for h > 1. Thus ¢ is covariance stationary,
the negative deterministic trend in ra;_; offsetting the positive deterministic trend in y; (a;—1 and y; are

cotrending with coefficient vector ( r, 1 ) , rendering disposable income covariance stationary). Defining

the vector k,
K= ( 1,1 ) : (A.71)
note that saving is given by

Sy =k xp = —y /T + Kk C* (L) uy. (A.72)

Case 2: 0>0,p<r,¢y=1

The eigenvalues of ® are given by n, (1+7r) (6 —5) / (1 +r— 5), and 1. This again establishes that the
transversality condition (2.7) is satisfied for the decision rule (2.28). The infinite moving average represen-

tation of (A.66) is given by

t
X =p+yt+CY u,+C* (D), (A.73)
h=1
where
b
p=| (rb—)/r* |, (A.74)
0

#Under 0 < § < 6 < 1+ r it is readily verified that (1+7) (6§ —6) / (1 +r — 6) falls inside the unit circle.

All



v=| —y/r |, (A.75)
Ty
00 0
c=|o0o0 -1/ | (A.76)
00 1

and C* (L) = Y ;2 C; L", with Cj; = I3 — C, and Cj = ®" — C for h > 1. Thus ¢ is again covariance

’

stationary, and a;_1 and y; are cointegrated and cotrending (with coefficient vector ( r, 1 ) ), rendering
disposable income covariance stationary.

To formally derive the cointegrating vector and corresponding adjustment matrix, consider the bivariate

VAR in z; = ( ai_1, Yt )

Z = Mlzt_l + MQZt_g + bo + Wy, (A77)
where
1 A=A 1-—=2X
M1:< TrtATA 3 ) , (A.78)
0 1
—(1 A=A
M2=< ( 'f(‘)’f‘) 1 01>, (A79)

-A
by = ‘), and W= 0 . (A.80)
’Yy gyt

The matrix (Io—M; — My) is of rank one, and can be decomposed as I,—M; — My = a,B,, with (imposing

the exact-identifying restriction that 55 = 1)

az((1—77>[1—5+7“(1;§—5)]/(1+’”—5))7 (A.81)
and
1
() o
As for saving, note that
KX =9 = —y /T + K C* (L) uy. (A.83)
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Case 3: 0=0,p=r, |¢,| <1

The eigenvalues of ® are given by 7, 1, and ¢,. This establishes that the transversality condition (2.7) is

satisfied for the decision rule (2.28). The infinite moving average representation of (A.66) is given by
t
Xy :u+7t+CZuh+C* (L) uy, (A.84)
h=1

where

p=1 —(roy+v)/r* |, (A.85)
Oy

0
Y= 7’Yy/7' ) (A86)
Yy

—r/(L=n) r+r2/(1=n) r(Q+r—n)/[(1-n)0+r—g¢,)
C=| -1/(1=n) 14+r/(1=n) QA+r—n)/[(1-n)0+r—0,)] |, (A.87)
0 0 0

and C* (L) = Y_;2, C;L", with Cj; =I3 — C, and Cj, = ®" — C for h > 1. Thus ¢; and a;_1 are both I (1),
¢t has no drift, a;—1 has a negative drift, and ¢; and a;_; are cointegrated, though not cotrended.

To formally derive the cointegrating vector and corresponding adjustment matrix, consider the bivariate

VAR in z; = ( Ct, Q_1 )
Moz; = M1z;_1 + bg + b1t + wy, (A.88)

where

M0:< L = ) (A.89)

M1:< Avo 0 ) (A.90)

bo= [ M), b= ™) and we| ) (A.91)
0 0 Yt—1

The matrix (Mg — M) is of rank one, and can be decomposed as My — M; = oz,B/, with (imposing the
exact-identifying restriction that §; = 1)

_ 1—-n/(1+7) (A.92)
0 , .
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and
5:(}). (A.93)

KX, =S = —7,/r+K C* (L) u,. (A.94)

As for saving, note that

Case4: 0=0,p=1,¢,=1

The eigenvalues of ® are given by 7, 1, and 1. This again establishes that the transversality condition (2.7)

is satisfied for the decision rule (2.28). The infinite moving average representation of (A.66) is given by

t
Xi=p+yt+C> uy,+C* (L), (A.95)
h=1

where

p=| —(y+roy)/r* |, (A.96)

Y= _'Yy/r ) (A~97)

rf(L=m) e () 1/ ()
c=| —y/a-m 1+r/0-n Ya-n |, (A.98)
0 0 1

and C* (L) = Y72, C;L", with C§ = I — C, and C; = ®" — C for h > 1. Thus ¢, a;—1, and y;
are all I (1), ¢; has no drift, a;—; has a negative drift, and y; has a positive drift. There is now one
cointegrating relationship, between c; and y¢: The matrix (Dy—D;) is of rank one, and can be decomposed

as Dg—D; = aﬂ/, with (imposing the exact-identifying restriction that 5, = 1)

1—n/(1+7r)
a= 1 , (A.99)
0
and
1
g=| —r |. (A.100)
-1



As for saving, note that

KX =S =—v,/r +8cr (L) uy.

(A.101)

Quadratic Utility, Habit Formation, Risk Sensitivity, Arithmetic Processes for the Exogenous

Component to the Consumer’s Aspiration and for Labor Income, and Infinitely Lived Repre-

sentative Consumer

Consider next the scenario where b, is generated by the stochastic process (2.40). Let

/
X¢ = ( Ct, -1, Y, b ) )
and write (2.42), (2.6) (for j = —1), (2.3), and (2.40) as a VAR(1) in x4:

Doxy = D1x;1 +ag + ait + vy,

where
1 =X —=)A3 —Xg
0 1 0 0
DO: )
0 0 1 0
0 0 0
A1 0 0 A
-1 1 1 0
D= +r ’
0 0 ¢y 0
0 0 0 o
Aa 4+ Ag As 4+ Ag
0 0
ag = , a;= , and V=
Hy (1—9y)
b (1 — &) mw

The VAR (A.102) can be rewritten as
(Do = D1L) (%t — p = yt) = vi,
or
(I —@L) (3¢ — p— 1) = uy,
where ® = D;'Dy,
LpEbt + VyEyt
0

—_D-iyv, —
U= DO V¢ = s
Eyt
Yy

Ent
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(A.105)

(A.106)

(A.107)
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where
(1+7)(6+n—10)—on—(1+7r—10) ¢
(14+7r—0)(1+7—¢p)

and p and ~ are again defined through (Dg — D)~ = a; and (D — D) 0 = ag — D1~.

W = : (A.109)

Case 1: §>0,p<r,|py <1

The eigenvalues of ® are given by 7, (147) (6 _§) /(1+r —?), ¢y, and ¢p. This establishes that the
transversality condition (2.7) is satisfied for the decision rule (2.42). The infinite moving average represen-
tation of (A.107) is given by

Xt =p+vt+C* (L) uy, (A.110)
where

Ob
_ _ 2
= o =w+rle=e)l/r | (A.111)
Oy

O

"o
Ty
Yo
and C* (L) = Y2, C; L", with C§ = 14, and Cj, = ®" for h > 1. Thus ¢, is trend stationary, as is a;_.

Defining the vector k,

k=(-1 7 1, 0), (A.113)
note that saving is given by

Si=rx=(p—"y)/r+K&C (L)u,. (A.114)

Case 2: 0>0,p<r,0y,=1

The eigenvalues of ® are given by 1, (1+71) (6 —6) / (1+7 —0), 1, and ¢. This again establishes that the
transversality condition (2.7) is satisfied for the decision rule (2.42). The infinite moving average represen-
tation of (A.107) is given by

t

X =p+yt+CY uy+C* (D), (A.115)
h=1

where

Ov

. 2
p=| o)/t (A116)

0
O
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Vb
(o =) /7

v = : (A.117)
Yy
Yo
00 0 0
00 —1/r 0
C= /T , (A.118)
00 1 0
00 0 0

and C* (L) = Y32, C; L', with C;; =1, — C, and Cj, = ®" —C for h > 1. Thus ¢, is again trend stationary,
and a;—1 is I (1) with drift.

To derive the cointegrating relations and corresponding adjustment matrix, consider the bivariate VAR

in z; = ( ai—1, Yt )

7y = M12i_1 + Mszi_o + by + byt + wy, (Allg)
where
1 M—X 1-—2X
M= TN 5, (A.120)
0 1
—(1 A=A
M,= ( ( ;T) ! 01 ) , (A.121)

by = < A —Ag + Ag ) by = ( —Xg ) and  wy— ( —Agbi—1 — A7bi_o >
) O ) .
T Eut (A.122)

The matrix (Io—Mj — M) is of rank one, and can be decomposed as Io—M; — My = aﬁl, with (imposing
the exact-identifying restriction that 55 = 1)

az((1—77)[1—6—&—7“(1—(5)—?—5)]/(1—5—7‘—0)>’ (123
and
B= ( ! ) : (A.124)
1/r
As for saving, note that
KX =S =(w—")/r+KC (L)u. (A.125)
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Case 3: 0=0,p=r, |¢,| <1

The eigenvalues of @ are given by 7, 1, ¢,, and ¢,. This establishes that the transversality condition (2.7)

is satisfied for the decision rule (2.42). The infinite moving average representation of (A.107) is given by

X =p+yt+CY u,+C* (D), (A.126)
h=1
where
b
p=| e wrrle—e)l/r | (A127)
Oy
Ob
20
5= (o =) /7 : (A.128)
Yy
Yo
—r/(L=n) r+r?/(L=n) r(I+r—n)/my, 70— )/
c- | VA=m) 14r/0-n) (Hrgn)/wy (77—<b0b)/wb 7 (A.129)
0 0
with
wy=1=n)1+7r—0¢y), (A.130)
and
wy=(1-n)(1+7r— ), (A.131)

and C* (L) = ;2 C;L", with C = I, — C, and Cj, = ®" — C for h > 1. Thus ¢; and a;_; are both I (1)
with drift.

To derive the cointegrating vector and corresponding adjustment matrix, consider the bivariate VAR in

Zy = ( Ct, Q¢—1 )

Moz, = Mz + b() + bt + Wy, (A132)
where

1 —X
My= , A.133
: ( o ) (A.13)

A 0
M= , (A.134)
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b — A1+ As b — A5 + Ag and wo— A3yt + Aebr + A7bi—1
0 — ) 1 — ) t— .
0 0 vt (A.135)

The matrix (Mg — M) is of rank one, and can be decomposed as My — M; = aﬁ/, with (imposing the
exact-identifying restriction that §; = 1)

1-— 1
o= ( n/(1+7) ) (A.136)
0
and
1
8= < ) . (A.137)
—r
As for saving, note that
Kxe =8 = (1% —) /r+KC"(L)u,. (A.138)

Case 4: 0=0,p=1r,0,=1

The eigenvalues of ® are given by 7, 1, 1, and ¢,. This again establishes that the transversality condition
(2.7) is satisfied for the decision rule (2.42). The infinite moving average representation of (A.107) is given
by

t
X¢=p+yt+CY uy+C* (L)uy, (A.139)
h=1

where

O
(=W +rop) /r?

— : A.140
7 0 ( )

Ob

Mo
v = (’Vb*’}/y) /T‘ 7 (A.141)
Yy

)

—r/(L=n) r+r?/(L=n) 1+r/(L=n) 7(n—db)/m
co | "Y(@-m) 1+r/éln) 1/(1—=mn) (ndg;)/wb ’ (A.142)

0 0

and C* (L) = 3,2, C; L", with Cj =1, — C, and C} = ®" — C for h > 1. Thus ¢, a;—1, and y; are all
1(1) with drift.
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To derive the cointegrating relations and corresponding adjustment matrix, consider the trivariate VAR

m z; = ( Ct, Qt—1, Yt )

Moz, = Miz¢—1 + bo + b1t + wy, (A.143)
where

1 =X —)3

M=| 0 1 o |, (A.144)
0 0 1

A 0 0
My=| -1 147 1 |, (A.145)

0 0 1

A+ A Agbe + A7by_
b0:< 4+ 8>’ b1:<09), and Wt:< 60t + 7t1>.
Ty Sut (A.146)

The matrix (Mg — M) is of rank one, and can be decomposed as My — M; = aﬂ/, with (imposing the
exact-identifying restriction that §; = 1)

1—n/(1+7r)
a= 1 , (A.147)
0
and
1
B=| —r |. (A.148)
-1
As for saving, note that
Kxe =S =(w—")/r+8C(L)u. (A.149)

Quadratic Utility, Constant Exogenous Component to the Consumer’s Aspiration, and Finitely

Lived Overlapping Generations

Consider next the case where there are overlapping generations of finitely lived consumers. Let x; =
/!
( Ct, Qi—1, Yt ) , and write (2.64), (2.63) (lagged one period), and (2.3) as a VAR(1) in x4:

Doxt = D1Xt_1 + ag +alt+Vt, (A150)
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where

1 =X =3
Do=| 0 1 0 , (A.151)
0 0 1
A1 0 0
Di=| -1 1+r 1 [, (A.152)
0 0 &
A4 As 0
ag = 0 , a = 0 , and Vi= 0 . (A.153)
Hy (1= ¢y) Eyt
The VAR (A.150) can be rewritten as
(Do —D1L) (x¢ — o — t) = vy, (A.154)
or
(Is — L) (x4 — pp — yt) = uy, (A.155)
where ® = D;'Dy,
TWyEyt
w=D; v, = 0 , (A.156)
Eyt

r+n+p-—(1-pp
A+ [(1+r)—(1-p (A -a)d,]

and p and v are defined through (Dg — D;)~ = a; and (Do — D) pp = ag — Dy~.%3

(A.157)

Wy:

Case 1: p<r,|oy| <1

The eigenvalues of @ are given by 0, (1 —p) (14 p) /(1 +7), and ¢,. The infinite moving average represen-
tation of (A.155) is given by

x¢ = p+t+C* (L) uy, (A.158)
where
WYy
Y= WAy ) (A159)
Yy

33In what follows we distinguish two cases: p < r, |¢y| < 1 (Case 1), and p < r, ¢, = 1 (Case 2). When p > 0,
none of the long-run properties of interest depend on whether p < r or p = r, and the case where p = r can always

be obtained simply by imposing p = r on all expressions in Case 1 and Case 2.

A21



_[A-a)p+a][r(2+r)+p—(1—-p)p
T T+ —palprr—-0-pg (4.160)

(1-platp-—(1-a)r]
p+r+1-p)allp+r—(1-p)p]’

(A.161)

WA =

C* (L) =72, C;L", with Cj = I3, and Cj;, = ®" for h > 1, and the explicit expression for p is available
upon request. Thus ¢;, A;_1, and y; are all stationary. Defining the vector k,

’

K= ( 1, 1 ) , (A.162)
note that saving is given by

Si=Kx; = —way, + K C* (L) u,. (A.163)

Case 2: p<r,¢,=1

The eigenvalues of ® are given by 0, 1 — p, and 1. The infinite moving average representation of (A.155) is

given by
t
X¢ :u+7t+CZuh+C* (L) uy, (A.164)
h=1
where
e
C=]10 0 wa |, (A.165)
1

7 is given by (A.159), C* (L) = > 52, C;L", with Cj = I, and C; = ®" for h > 1, and the explicit

expression for p is available upon request. Thus ¢; and A;_q are both I (1) with drift; ¢; and y; are

cointegrated and cotrended, as are A; and y; (though disposable income is I (1) with drift (cwar + 1) ).
The matrix (Dg —Dy) is of rank two, and can be decomposed as Dy — Dy = aﬁ/, with (imposing the

exact-identifying restrictions that 011 = (22 = 0 and (31 = (33 = 1)

0 —1/w,
B=| “1/wa 0 . (A.166)
1 1

(The exact expression for a is available upon request.) As for saving, note that

Kx =8 =—way + K C (L), (A.167)
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Appendix C: Proofs of Propositions

Proposition 2.1:

To show that @ converges in probability to 1/r, from (2.99) note that

1 1

~d

= - Al

at r 7"(1“‘7’6,5_1) ( 68)

Therefore, defining ¢,; = Z;zg Eyjs

D]
\
=
vV
3
N———
Il

>
1+ rat 1) 77}
-

[_ﬂﬂog(l—n;;?)/(% t—l)] (A.169)

(where ® denotes the Normal cumulative distribution function), and

al b % (A.170)

for any arbitrarily small n € (0,1/r). Since the saving rate obeys

HyQt—1

T AT
ot 1+rai— ( )
it is readily seen that
By My A1T2
e r(l4+rai_1) (A-172)
Using (2.99), (A.172) may be rewritten as
Hy 1 ~d A
_ My _ i 173
5T =7, Hy (r at—1) 5 ( )

and

. 1 _
plimy o0 (87¢) — % = —lby [; — plimy 0 (afl)] .

Observing that a¢ 21 /7, it readily follows that sry 2, ty /7. Furthermore, sr; converges at the same rate
as af, which from (A.169) is equal to o/t — 1. B
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Proposition 2.2:

Under (2.106) it is readily shown that

o

o |<dqm

a- i) - @{—ayw——uog [(1 —p( —a)exp(

)

+1og<1”’)/(ay t—l)}, (A.174)

r2noag

and thus

: (A.175)

for any arbitrarily small € (0,1/r). Given that the asset-disposable income ratio converges in probability
to 1/r, the proof that
sre = [(L=p) (1 —a) (L+p,) = 1] /r

is conceptually the same as the second part of the proof of Proposition 2.1, and thus need not be repeated.
|

Proposition 3.1:34

Upon substituting the tax rule (3.12) into the period-by-period government budget constraint
de=(1+7r)di—1+ gt — T, (A.176)

dividing on both sides of the resultant equation by ;. 1, and rearranging terms, (A.176) becomes®>

1 1
wy = exp <—7 + 505 — 5y7t+1) (1+7— ko) w1 +exp (—ﬂy + 502 — €y7t+1> K1
1,
+exp | —v+ 5% — Eyt+1 | Ert, (A.178)

where wy = di/yi+1. To derive the asymptotic properties of {w;}, iterate on (A.178) forward from ¢ = 1,

with the initial condition wy. Then wy, is given by

h h—1 J
1 .
wy = Aexp [ =) ey a1 | wo +exp <’Y+ §0§> > N exp ( > 5y,h+1—k> (erh—j + K1),
j=1 J=0 k=0 (A.179)
with

1
A =exp (—’y + 50’5) (I+7r—Ka). (A.180)

34We are grateful to Séren Johansen for suggesting to us the use of the law of the iterated logarithm in the proof

of Propositions 3.1 and 3.2.
35Note that under the labor income specification (3.2) we have

1
L exp <7’y + 50‘5 — é‘y’t+1) . (A.177)
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We first establish that with probability one {w;} asymptotically does not depend on its initial condition, wy.
By the law of the iterated logarithm, we have that with probability one

h
’Zj:l 5y7j+1’
<1 (A.181)

sup <1
h—oo 0y+/2h1og [log (h)]

and thus, also with probability one,

h

ZEy,jJrl < m/hlog[log (h)], (A.182)

j=1

for some finite m > 0. Considering the coefficient on wg, A" exp (f Z?:l 5y,j+1), this coeflicient must then

go to zero with probability one as h — oo:

h
hlingo M exp _X;Ey’j+1 < hllrglo M exp (m\/hlog [log (h)])
i=
. m_ [log[log (h)]
= 1 1 1 . Al
Jimexp lh og A < + Tog . (A.183)

Noting that under (3.13) A € (0,1), it is readily seen that

hlogA — —oco as h — oo, (A.184)
and that
w —0 as h— oo. (A.185)
It follows that with probability one
h
Jim Mexp [ — ;smﬂ =0. (A.186)

Note that the condition that e, is normally distributed is much stronger than is needed for (A.186) to hold.
See, for example, Petrov (1995) for a discussion of the law of the iterated logarithm if not only the normality
assumption is dropped but if it is also not supposed that any moments of €,; exist.

To establish that {w;} converges globally to a well-defined steady-state probability distribution function,

it now remains to show that
o J
Z M exp ( Z eyk> (A.187)
=0 k=0

and

oo J
Z N exp ( Zeyk> Erj (A.188)
j=0 k=0

exist, noting that if the infinite sums in (A.187) and (A.188) exist, then so does
1 h—1 - J
hling €xp (’Y + §U§> Z)\j €xXp ( Z€y,h+1—k> (5T,h—j + /{1) > (A-189)
=0 k=0
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the second component of wy, in (A.179) as h — co. Consider first the infinite sum in (A.187). From (A.182)
it follows that with probability one for some finite m > 0

i)\j exp (— Zgyk) < i)\j exp (m\/(j + 1) log [log (5 + 1)])

k=0 7=0

_ o0 ' j+1 m log[log(j+1)]
_jgoexp <]log)\{1+< ; ) <log)\> T }) (A.190)

Observing (A.185), it is clear that

ji+1 m log [log (j + 1)] .
1 1 S A.191
+< F )(logk) ] — as  j — 00, (A.191)

and thus Y32 ) M exp (— Zi:o eyk) exists with probability one. Consider next the infinite sum in (A.188).

From the triangle inequality

0o J 00 J
Z)\j exp (— Zeyk) erj| < Z IA|” exp (— Zsyk> |lers]
=0 k=0 =0 k=0
) ] J
< (sup |57—j|> Z I\l exp < Zsyk> : (A.192)
J k=0

=0

As e, is finite-valued with probability one, from (A.190) and (A.191) it is clear that

0o J

Z)\J exp (— Zeyk) Erh

j=0 k=0
exists with probability one. Again clearly neither the condition that e,; is normally distributed nor the
condition that er4 is normally distributed are needed for this argument to apply. As for ey, it is not
necessary that e;; have moments, it only needs to be finite-valued with probability one.

We turn next to the (first two) moments of the steady state probability distribution function of the

government debt-labor income ratio. From the above it follows that as ¢ tends to infinity,

: 1 !
wy = hlirrgo exp < v+ 05) Z N exp (— kzos%hﬂ_k) (Erh—j + K1) - (A.193)
Thus, under (3.14)
lim E = Lo Mexp | (121 o,
Jim (we)) = exp|—y+ 5% Z exp K1

o (5 )
exp (7) = (1 +7 — k2) exp (02) t

Squaring both sides of (A.193) and then taking unconditional expectations, one obtains

(A.194)

h—1 j
lim E (wt) = exp (—27 + 05) E lim M exp <— Zeyvh+1_k> (erh—j + K1)

t—o0o h— oo

7=0

k=0

J
hm Z N exp ( Zgy’hJ’»l k) Erh—j + K1) . (A.195)
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Upon some algebra, (A.195) under (3.16) can be simplified to

fm £ (u?) = exp (303 ] { . [exp () + (147 = m)exp <a§>1 } |
too exp (27) —exp (302) (147 — ko) exp () = (L+7 — r2) exp (02)

(A.196)
Thus, under (3.16) the variance of the steady-state distribution of wy is given by (3.17). Finally, note that
the mean and variance of the steady-state distribution of w; can in general be computed using the moment
generating function of e, E[exp (qeyt)], for ¢ = —1,—2, and the first two moments of e-,. Thus, the
normality assumptions regarding e,; and €, are not necessary conditions for the mean and variance of the

steady-state distribution of w; to exist. B

Proposition 3.2:

Subtracting the period-by-period budget constraint for the government, (A.176), from that of the consumer,
(3.8), and substituting the decision rule (3.21) into the resulting expression one obtains the second-order

difference equation

a; —(N+0)ar—1 +ndar—2 = (1 —=X3)yr — MYs—1 — Aaby — Asbi—1
—(1+X6) gt + (M — A7) ge—1, (A.197)

where a; = a; — d;. Dividing on both sides of (A.197) by y:+1, one obtains

~ 1 ~ ~
wy — (n+ 6) exp (—’7 + —05 - Sy,t+1) Wy—1 + nbexp (—27 + 05 — Eyt — 5y,t+1) Wy—o = Uy,

2
(A.198)
where Wy = (ar — di) /Y¢+1, and
L 4 L, L,
¥ = exp|—v+ §O'y —eyt+1 ] |1 =3 —Ajexp | =7+ §O'y —eyt | —Aaexp | op — §0b + ept

1 1 1
— 5 exp (—7 + 503 — &‘yt) exp (ab — 502 + sb’t_1> — (14 Xg) exp (ag - 503 —+ 59t>

1 1
+ (A1 — A7) exp <fy + 503 - eyt) exp <ag - 503 + €g7t_1>} . (A.199)

’

Defining z; = ( Wy, Wi_1 > , (A.198) may be rewritten in first-order form as

Zy = (tht—l + Ft, (AZOO)
where
o, — (T+6) exp (—ey141) —TOexp (—eyt — €y 141) (A.201)
1 0 ’

— L,
n=mnexp|—y+ 5% ) (A.202)

— 1 9
O0=0dexp|—7+ 5% ) (A.203)



and

U
T, = ( . ) . (A.204)

Defining

a = ( P (Ey.e1) B ) , (A.205)

W—1
o= [ TTO T (A.206)
1 0

and

~ ¥

T, = ( exp (€y(,)t+1) t ) : (A.207)

it is easily verified that (A.200) may be rewritten as
q: = exp (—eyt) Oq,_q + T, (A.208)

To derive the asymptotic properties of {q;} (and hence also {w;}), iterate on (A.208) forward from ¢t = 1,
with the initial condition qp. Then qy is given by

h h—1 j
qn=0"exp | — Zsyj qo + Z ©’ exp ( Zey,h_l'_l_k) In—j. (A.209)
j=1 =0 k=1

We first establish that with probability one {q:} (and hence also {w;}) asymptotically does not depend

on its initial condition, qg (W), by showing that the coefficient matrix on qqg in (A.209),

h
O exp | — Z €yj | » (A.210)
j=1

with probability one converges to the zero matrix. Diagonalizing © as

0=P ( z g > P!, (A.211)

with

(&7
P_<1 1), (A.212)

the coefficient matrix on qg in (A.209) can be written as

_ h
" exp (_ Zj:l 5yj> 0

P -
0 5" exp (7 Z?:l 5yj>

Pl (A.213)

A28



Define the coefficient A\ such that
A =max {7,6} . (A.214)

Note that under (3.29) and (3.30) A < 1. Applying the law of the iterated logarithm to exp (7 Z?:l 5yj)
(see (A.181) to (A.186)), it is clear that with probability one

h
Jim A" exp —leyj =0. (A.215)
J:

Consider now the second term on the right-hand side of (A.209),

h—1
>z, (A.216)
=0
where
Z; = @J €XpP (— ZEy’h_H_k) Fh_j. (A217)
k=1

To establish that {q:} (and hence also {w;}) converges globally to a well defined steady-state probability

distribution function, it remains to show that
lim sz (A.218)
exists. Using (A.211) and (A.212), ©7 can be written as
P ( zj SOJ ) Pl = (%) ( SJ: A _ﬁﬂ ) . (A.219)
n o = o1 — M6

From (A.199) and (A.207) it is easily seen that the first row of fh_j is given by

1
exp <—’Y + §U§> (01 + 02,h—j + 03,h—j + 0a,h—j + 05,h—j + 06,h—j5) (A.220)
where

01 =1-As, (A.221)

L o
02.h—j = —A1exp | =7+ 50y ~Eyh—j |, (A.222)

L 5
03,h—j = —Agexp | ap — 5% + €b,h—j | 5 (A.223)

1,5 1 5

Oa,h—j = —Asexp [ —y + 50y ~ €y ) €XP (O = 50} +Eph—j-1 |, (A.224)
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1
05.h—; = — (14 Xg) exp (ag — 502 + 8g7h_j) , (A.225)

and

1 1
06,h—; = (A1 — A7) exp <—7 + 505 — sy,hj) exp (ag — 503 + 5g’hj1> . (A.226)

Also note that the second row of fh_j is equal to zero. Noting this and using (A.219) and (A.220), z; is

therefore equal to

1 5j+1 B ﬁj_‘—l j
(m) ¥ _ o exp | — Z5y,h+1—k (01 + 02,h—j + 03,h—j + Oah—j + 05,h—j + 06,h—j) -
K k=1 (A.227)

Using the definition of A given in (A.214) and recalling that under (3.29) and (3.30) A < 1, then limy,_, Z?;& z;
exists if
h—1 j
lim » Mlexp <— Z 5y,h+1—k> Ol h—j (A.228)
0 k=1

h—oo 4
J

exists for [ = 1,2,...,6. Since sup; |a,»—;| is finite with probability one, from (A.192) it is clear that the
limit in (A.228) exists for [ = 1,2,...,6. Yet again, for the reasons discussed in the proof of Proposition
3.1, normality of e¢, i, and €4 is not required for this argument. We have thus established the ergodicity
of {w;} under the conditions (3.29) and (3.30).

Substituting for 7, — g; in
Yt — Tt — Ct = Q¢ — dt - (1 + 7') (at_l - dt—l) - (Tt — gt) s (A229)

from the tax rule (3.12), and substituting the resultant expression into (3.27), it is readily seen that if the net
asset-labor income ratio follows an ergodic process, then so does the private saving rate. Furthermore, solving
(3.27) for ¢; and substituting for 7 in the resultant expression from the tax rule (3.12), it is also readily
seen that if the net asset-labor income ratio follows an ergodic process, then so does the consumption-labor
income ratio.

We finally turn to the first moment of the steady-state probability distribution function of the net asset-
labor income ratio, the private saving rate, and the consumption-labor income ratio. From the above it
follows that as t tends to infinity,

h—1

J
q = hILH;lO Z ©7 exp <— Zé—y’h+1k> I'n_j, (A.230)
=0 k=1

and thus

h—1 /2] —; J
~ . o =7
W1 = hlgr;oz ( 3 Z ) exp (— Zgy’h+1k> exp (eyh+1—5) Un—j. (A.231)

j=0 B k=1

where 9 is given by (A.199). Thus, under (3.31), (3.32), and (3.13)

lim E(@) - S (3;—?) exp K%) 02} E @)

=0

_ E (9)
= [1 — nexp (—fy + 05)] [1 — Sexp (_,7 n 05)] ) (A.232)
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with
E@) = exp(—y+o0;) {1 — X3 —Mexp(—y+0,) = [M+Xsexp(—y+0))] E <§>
—[1+X— (A= A)exp (—y+0,)] E (%) } : (A.233)

Upon some algebra, (A.232) may be further simplified to (3.33). To establish that = > 0, note that

U>n6+(1+r)(1+u—77—6) né _ s (A.234)

= Axne-m G+ 0i+n

It may be readily verified that

0w+ s (A+p—n)(A+pu—25)
U= T =) N TE (4.285)

Under r—p >0, u>0,n€[0,1), and 6 € (0,1], it is clearly true that © > 0. If ¥ > 0, it then readily follows
from (3.31) and (3.32) that m > 0. To derive the mean of the steady state distribution of the private saving

rate and the mean of the steady state distribution of the consumption-labor income ratio, note (A.229).
Substituting for 7, — g, in (A.229) from the tax rule (3.12), and substituting the resultant expression into
(3.27), the mean of the steady state distribution of the private saving rate (3.36) is readily derived. Solving
(3.27) for ¢; and substituting for 7 in the resultant expression from the tax rule (3.12), the mean of the
steady state distribution of the consumption-labor income ratio (3.37) is also readily obtained. Note that
the means of the steady-state distributions of the net asset-labor income ratio, the private saving rate, and
the consumption-labor income ratio can in general be computed using the moment generating functions of
Eyt, Ebt, Egts B lexp (qer)], for I = y,b, g, and ¢ = —1, 1. Thus, the normality assumptions regarding ey, €pt,

and €4 are not necessary conditions for the means of these steady-state distributions to exist. l

Remark 3.2:

Squaring both sides of (A.193) and then taking unconditional expectations, one obtains

1 2 h—1 J _
Qq; = <ﬂ) ) & exp (‘Zsyahﬂ—k) L
j=0 k=1

h—1 J
hlLII;o 2; ©7 exp (— kzlﬁy’h+1k> Tnj| , (A.236)
j: =

and thus

N Rt = . j
wr o, = (#) lim Z (6] —ﬁj) exp | — Z€y7h+1_k exp (ey.h+1—5) Un—j
S — 7 h—oo =0 =1
el j
hh—{{olo ((‘5] — ﬁj> exp <— Zsy’h""l_k) exp (Ey,h+1_j) ﬁh_j . (A.237)
j k=1

Taking unconditional expectations of (A.237), under (3.39) and (3.40) upon some algebra one obtains (3.41).

Note that the variance of the steady-state distribution of w; can in general be computed using the moment
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generating functions of ey, eut, €g¢, E [exp (gei)], for I = y,b,9, and ¢ = —2, —1,1,2. Thus, the normality
assumptions regarding ey, €y, and €4 are not necessary conditions for the variance of the steady-state

distribution of w; to exist. W
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