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Abstract

The paper compares models of insurance of real property when owners may convert
damaged property to another use instead of restoring it to the pre-damage use. First
it describes the optimum insurance. The main result is that the deductible and
the upper limit are connected by the equation: upper limit plus deductible equals
conversion point. An alternative to the full optimum is a policy having a variable
upper limit and a fixed deductible. It is interesting for theoretical reasons and
for descriptive reality. The comparative statics of the full optimum and the fixed-
deductible alternative are essentially the same. In the fixed-deductible model, the
response of the upper limit to changes in parameters is always in the same direction
but of lesser magnitude than in the full optimum.



1 Introduction

The topic here is insurance of real property, that is, of structures and other improve-
ments of land. The interesting questions are why does it have upper limits chosen
by the consumer? and what is the right way to model it? These are open questions
because much of the insurance literature focuses on insurance of wealth, while.the
defining feature of property insurance contracts is that they are written in terms of
damage. Damage is measured as the cost to restore the property to its undamaged
condition. In most cases it is different from loss of wealth. For instance, everyone
can envision situations in which the destroyed property is not very valuable — loss of
wealth is low — but the cost to reproduce it — the damage — is high. These situations
predominate because of opportunities to use the land for something different. When
a house is destroyed, the owner converts the site to an apartment, mall, or parking
lot, or perhaps just to a slightly different, more modern house, and the value of the
conversion limits the loss of wealth to something less than the cost of restoring the
original house.

The first step is to examine the optimum contract. When prices are fair, damage
is covered without coinsurance up to the level that triggers conversion. With loading,
the optimum contract has a deductible and an upper limit on coverage and the two
are connected by the relation: upper limit plus deductible equals conversion point.
The entire reduction in coverage caused by the loading has the form of a deductible.

The theoretical optimum is at odds with reality. In actual insurance contracts,
insurers and consumers focus solely on the upper limit of coverage. Deductibles are
usually very small and seem intended only to discourage trivial claims. Even when
deductibles are substantial, as in earthquake insurance where they may be as much as
15%, they are not coordinated with the upper limit on coverage using knowledge of the
conversion point. Observed practice leads to a model for insurance of real property in
which the deductible is not a choice variable. A fixed-deductible model has essentially
the same comparative statics as the fully optimum one. Thus on grounds of realism
it is better to study the fixed-deductible contract with the understanding that if one
did study the fully optimum one, the results would not be much different. Issues
involving background risk in contracts with a fixed deductible are addressed in a
companion paper.

2 Optimum insurance

It is observed above that conversion options impose an upper bound on loss of wealth.
Notation is needed to formalize this point. Look at the situation that exists when
an event has caused damage. The realization of the random variable for damage is ¢.



The property in undamaged condition has a value of v. When the owner of damaged
property restores it, he attains wealth v —¢t. On the other hand, there is some best
option for converting the property. The conversion chosen by the property owner is
the one that maximizes net value. Let the value of the land and improvements in
the highest valued use be v*, and let the cost of building the best improvements be
c. Among the conversion options, the greatest attainable net value is v* — ¢, which is
also the value of the land. The decision to restore or convert is the decision to select
the greater of v — t and v* — ¢. At the critical level of damage, ¢ = v — (v* — ¢), the
options are equally valuable. After some rewriting, the option to convert becomes
the option to possess max[v — ¢, v— g] or, equivalently, v — min[t, g]. Thus, v — ¢ is a
floor beneath which wealth cannot fall, no matter the extent of damage. The second
expression is convenient and equally intuitive. It says that the loss of wealth due to
damage is no more than q.

Let h(t) be the probability density function of damage and assume that h(?) is
never zero on [0, 7] but is always zero elsewhere. Denote the cumulative distribution
function of ¢ by H(t), and represent integration using h(t)dt by dH. Let X be the
loading factor. Define z(t) to be the premium for loss up to ¢, and let I(¢) denote
the indemnity associated with a loss of t. Then

() = /Otu + NI(H)dH (1)

Letting T be the largest possible damage, the whole premium is z(7"). In order to
compress notation, it will be denoted z.
An expression of I(t) is needed. From the above

2'(t) = (L+ AN)I(t)h(t) (2)
and consequently
x'(t
0= )(\))h(t)
With insurance as immediately above, wealth in damage-state ¢ is
'(t)
(1 4+ A)h(t)

This model of insurance demand is based on the premise of specialization. In-
surance firms are specialists that supply wealth contingent upon damage t, but the
demander is a generalist who pays the premium in certainty wealth. Thus the in-
demnity I(t) can be positive or zero, but never negative, leading to the constraint

Z'(t) = 0 (5)

(3)

(4)

v — xp —minlt, ¢ +



A corollary restraint is that the premium must be nonnegative. The constraint of
nonnegative indemnity arises not from traditions or legal constraints, but from eco-
nomic factors that underly them. For perspective notice that specialization does not
apply in all insurance markets. Members of assessible mutuals make contingent pay-
ments in addition to a fixed premium. Thus the constraint of nonnegative indemnity
is not applicable in their case, the notion of a premium paid for insurance is not well
defined, and they are outside the scope of this analysis!.

2.1 The problem:

The problem is to maximize, through choice of z(.), the function

T ‘ xl(t)
/o u(v — xp — minft, q] + m)dl—[ (6)
subject to the constraints
2(0) =0 (7)
and
z'(t) = 0 (8)

The endpoint T is fixed, but the premium z7 is free to be chosen optimally.

2.2 Conditions:

The derivations below all concern first order conditions — the first variation. These
conditions are sufficient for an optimum here because the objective function is concave
in z(t), 2/(t), and zy. To show the existence of a deductible it is enough to show
that the deductible satisfies first-order conditions.

In order to supply a parallel with notation used by Kamien and Schwartz (1991),
let the notation F' denote the integrand

'(t)

m)h(ﬂ- 9)

F(t,z,2',x7) = u(v — x7 — minlt, q] +

Four conditions determine the solution:

!See Marshall 1976 for a discussion of how assessible mutual are organized.



Deductible: The deductible is non negative. From the constraints of equa-
tions (7) and (8), the accumulation of premium satisfies, on the interval [0, d] ,

Z'(t) =x(t) = 0. (10)

Euler equation: On the interval (d,T], 2/(t) satisfies the Euler equation

d

EFw’(tvxaxlaxT) = Fw(taxvxlvxT) (11)

The right hand side is zero because the objective is independent of x. Therefore the
condition requires marginal utility of wealth to be constant which implies that
z'(t)
v —xp —minft,q + ————< =c 12
for an unknown constant ¢. This equation dictates the form of z/(¢). The unknown

constants at this point are d, ¢, xp, and the constant k; that is needed when z/(t) is
integrated. Two more conditions are needed.

Joining condition: The joining condition governs the way in which the uncon-
strained solution on (d, 7] must link up with the constrained solution on [0,d]. The
condition is covered in several sources. Still following Kamien and Schwartz (1991),

let R represent the constrained solution on [0,d] and let x represent the solution on
(d,T]. Then the condition is

F(d,R,R',xy) — F(d,z,2',xp) + 2’ Fu (t,x,2’, 27) = 0 (13)

The first two terms differ because the R'(t) associated with the constrained extremal
and the 2/(T") associated with the unconstrained extremal are different. The extremal
x is continuous at the joining point, but the derivatives are not. In the problem at
hand, the condition is




Terminal condition:

A free terminal value is a standard feature in the calculus of variations, but the
presence of the terminal value as an argument of the integrand is a more unusual
wrinkle. The reasoning behind the standard problem is that an increase of éxr in
the terminal value makes the slope of z(t) steeper and therefore raises the value of
the objective by

2'(T) 1
(1+ )\)h(T))(l +A)

w(v—ap—d+ X O (15)

Here, in addition, the increase changes the value of the integrand at every point and
that changes value by the amount

T a'(t)
{—/O u(v—xT—d—Fm)dH X O (16)

The condition of optimality is that any variation in x; should not raise the value,
and thus the condition is

, . «'(T) 1
u'(v — xp — min[T, q] + (1+ )\)h(T))(l + )
v | (1)
_/0 U (U — Ty — mln[t, q] + m)dl‘[ =0 (17)

The condition can be interpreted by recognizing that the second term is the ex-
pected value of marginal utility, briefly denoted Eu’, and the first term is FIA times
the marginal utility of wealth at the point 7', briefly denoted «/(T"). The terminal
condition is then rewritten as

()
Eu

=14 (18)

The demand price of wealth in the vicinity of the point 7' is the marginal rate of
substitution between state-T' wealth and certainty wealth %qg,T)h(T) and the supply
price is (14+A)A(T"). Thus the condition says that the supply price equals the demand
price at the point 7. From the result of the Euler condition in equation (12), «/(T’)
= u/(t) for all ¢ in the interval (d,T] and «/(t) < «/(T) for all ¢ in the interval [0, d].
Therefore below the deductible the demand price of contingent wealth is below the
supply price and above the deductible the demand price is equal to the supply price.

Diagrams using this idea have appeared in Gollier (1992) and Marshall (1992).



Comparison with other derivations: The solution here extends those of Ra-
viv (1979) and of Arrow (1973). In deriving the existence of a deductible, they
treated the premium as a fixed constant. Other arguments, explicit or implicit, were
used to narrow the range of admissible premiums to those leading to a deductible.
Their procedures are intuitive but roundabout. In derivations like those of Arrow and
Raviv and of Gollier (1996) the indemnity is associated with the x variable instead
of the 2’ variable, as it is here. That is important because in calculus of variations
the x variable is necessarily continuous while the z’ variable can have jumps. Some
interesting types of insurance demand are discontinuous (e.g. Marshall (1992) and
Garratt and Marshall, (1996), and see the section below). Continuity in the present
derivation is a result, not an assumption.

2.3 Derivations

Consider the joining condition in equation (14). Because utility is concave, the only
possible solution is

Z'(d) =0 (19)

where it is remembered that this 2/(t) belongs to the unconstrained part of the solu-
tion, that pertaining tot > d. This implies that the indemnity function is continuous
at the point d. Using 2/(d) = 0 and the Euler condition result at equation (12) eval-
uated at the point d, it follows that

c=v—xp—d (20)
The same Euler equation holds for all ¢ € (d, T, with the consequence that

()

From the initial conditions it is already known that z'(t) = z(¢) = 0 on the interval
[0,d]. Thus is proved:

Theorem 1 In the solution of the problem in equations (6,7, and 8) I (t) = 0 on the
interval [0,d] and elsewhere is

I(t) = minlt, q] — d.

An immediate corollary to the theorem is



Corollary 1 The upper limit on insurance in the problem in equations (6,7, and 8)
s b satisfying b+ d = q.

Fairly priced insurance leads to a deductible of zero, as shown in
Corollary 2 If A =0 in the problem in equations (6,7, and 8), d =0 and b = q.

Proof. Suppose for purposes of later contradiction that d > 0. From equation (17)
and the assumption that A = 0, derive the condition

: : (T [ : h(t)
u' (v — xp —min[T, q] + ﬂT)h(T)) = /0 u' (v — xp — mint, q])mdt (22)

From the theorem (and assuming ¢t < ¢), that reduces to

u(v—zpr—d)= /0 u'(v—xp — t)%dt (23)

This condition says that the expected marginal utility conditional on ¢ € [0, d] is the
same as the terminal marginal utility. On ¢ € [0, d],

u(v—xp—d) >u(v—xpr—1t) (24)

with strict inequality at every point except d. Thus the condition in equation (17)
cannot be satisfied. Since the existence of a solution is not in doubt, this contradicts
the premise that d > 0. W

The effects of variations in the utility function and in the parameters A, v, and g are
important in themselves and for comparison to the fixed-deductible model considered
farther below.

Corollary 3 If the utility function u in the problem in equations (6,7, and 8) is
replaced by a utility function 4 that possesses decreasing absolute risk aversion and is
for all t strictly more risk averse than u, the result is a decrease in d and an increase
m xop.

Proof. From equation (17) define the expression

I(d) = /(v — oy — d)(HLA 14 H() — /0 d(v—zp—t)dH  (25)



Let d* be the solution to I'(d) = 0. As usual, all results are invariant to affine
transformation of the utility function. Therefore without loss of generality assume
that (v — zp — d*) = @' (v — xp — d*). It follows that for all w > v — zp — d¥,
@' (w) < v/(w). Thus when the hat utility is substituted in equation (25), the result
is

- 1

Hﬁ)zﬁw—xT—ﬁxTIX—1+HMﬂ}iA W(—ar—t)dH>0  (26)

To show that a decrease in d is needed to restore optimality, it is necessary to show

that I"(d*) > 0. Differentiate and substitute using A(w) = _5,(,;1;)’ with the result
that
I'(d*) = A(v — zp — d¥) -
1 A —zp —t)
0 (v —xp — d*)(—— — 1+ H(d")) — ' (v — xp — t)dH
(0= 2y = ) (g = 1+ ) — [ =i )

(27)

Compare the quantity is square brackets to the quantity in equation (26), which is
already positive. The only difference is the factor under the integral, and that factor
is less than unity by DARA. It follows that IV(d*) > 0. M

When the optimum varies with the parameters A\, v, and ¢, price effects and
income effects are sometimes in contrary directions — a common situation. Some
clarity can be achieved by looking at the case of CARA, effectively neutralizing the
wealth effects. Thus the comparative statics are shown in two versions. Proofs are
in the Appendix.

Corollary 4 Assuming that the utility function obeys constant absolute risk aversion
in the problem in equations (6,7, and 8), the comparative statics are

dd dd __ dd
azxrr — arr azxr
d/\>0near)\—0 =0 dq>0

Under decreasing absolute risk aversion, the comparative statics are

dd dd dd
%>OT<O %>O g—<0

?>0r>0 ?<0 §>1 (29)
dar — dar dar

o >0 near A=0 7 <0 da >0



3 Further implications

Realistic modifications of the model lead to further implications. Two of them
are discussed in this section. Derivations are only sketched because the results are
transparent and because the implications — unlike the modifications — are not realistic.
For various reason these properties are rarely observed in contracts of insurance of
real property.

Discontinuous deductible Consider the cost function. It assumes that the
cost of making an indemnity () is a constant fraction AI(t). A step toward realism
is to consider that the cost has a fixed component and is of the form v + AI(t). The
fixed cost has the interesting implication that

Z'(t) = 0 if I(t)=0
— 4 M(t) if I(t) >0 (30)

Thus indemnity in its non-zero range is

z'(t) — v
I(t) = ——— 31
0= (31)
At the joining point, where t = d, the condition z’(d) = 0 no longer applies. Instead,
z'(d) > 0, meaning that the indemnity jumps from zero to some positive value. That
makes perfect sense because once the fixed cost is overcome, the indemnity should be

pushed to the point at which marginal cost is equal to marginal value.

Round shoulder The model has ¢ known with certainty. Suppose instead that
q is random with distribution G(q|t). Suppose that levels of ¢ are non contractible,
and suppose further that the distribution of ¢ is common knowledge to insurer and
client. These are realistic assumptions. Then the problem is as before except that
a new utility function must be used, namely

i — g+ 1(8): ) = / " w(o — r — minlt, g + 1(t))dC(qlt) (32)

40

This utility function is the same as u for t < g, but it displays progressively lower
marginal utility as ¢ increasingly exceeds ¢y and grows towards q;.



d(v—axp+I(t)t) = v(v—axp—t+1I1))ift<qo
< dw—zp—t+1I(t)ifg<t<aq

At equation (12) the derivation is changed. It is still true that the marginal utility
is constant, but the implication of constant consumption above the deductible is no
longer valid. With the new utility function, consumption is constant on [d, o], but
for t > qp it must decline in order to satisfy the Euler equation. This happens by a
reduction in the marginal indemnity — that is, by a coinsurance — starting at t = qq
and becoming progressively more marked until at ¢ = ¢; and beyond, the marginal
indemnity is zero. Instead of a sharply defined upper limit, the optimum contract
has a round shoulder.

Actual policies have neither of these properties, which is okay because optimality
for the consumer is not a perfect guide to real insurance. Indeed, other implications
of the model require a similar scrutiny. Specifically, more thought should be given to
the implication that the deductible is linked to the upper limit. Descriptive realism
suggests that the deductible is seldom important and in any event not linked to the
upper limit in the way required by theory. The following sections therefore derive a
model of insurance of real property that has a fixed deductible. It turns out that the
comparative statics of this type of insurance are not much different from those of the
fully optimum type.

4 Fixed deductible

Optimum insurance contracts are not always the best ones to study. In many practical
instances the deductibles are absent or very small. Moreover, the optimizing relation
between the upper bound the deductible is not enforced: when the client says he
wants to insure his house for $300K, the theory requires the selling agent to say “Okay.
I know your conversion value is $350K, so that means your deductible is $50K.” The
agent does not say any such thing because the conversion value is unknown to him and
he is, if anything, looking to the consumer’s choice of upper limit as an indicator of
it. The deductible is already set in the contract or is computed by arbitrary formula,
for instance, as a fraction of the upper limit. For that reason it is interesting also to
consider the demand for insurance when the deductible is not a variable. To facilitate
comparison, adopt a differential calculus framework. Consider contracts with upper
limits and a fixed deductible.

10



The insurance indemnity is therefore I(¢) = min[t — d,b] on (d,T] and zero else-
where. Wealth in damage state t > d is

v — xp — minlt, ¢] + min[t — d, b] (34)

The objective can be written
d
F(d,b; M\, v,q) = / u(v —xp —t)dH
0

dtb T
+/ u(v —xzp — d)dH + / u(v — xp — minft, q] + b)dH (35)
d d+b

The problem is to choose b to maximize expected utility subject to the constraint of
a loaded premium

zr = (1+ ) Udd+b(t —d)dH + b/dT dH} (36)

+b

When both d and b are chosen optimally, the solution is the same as in the previous
section. In present notation it satisfies

Fd(d,b;)\,’U,Q) =0
Fb(dub;)‘7U7Q) =0 (37)

Denote the solutions at the maximum by d(\, v, q) and b(\,v,q). The objective has

critical points other than the global maximum — for instance at d = 0, b = 0, when
A = 0 — but they are not a concern here. At the maximum, the matrix of second
partials must be negative semi-definite. In order to avoid non-generic complications,
this derivation assumes that is it negative definite?.

4.1 Comparison of the models

Increased risk aversion. The final topic is the effect of increased risk aversion.
Suppose that u and @ are utility functions and that @ is more risk averse: that is

~

for w € (0,00), A(w) > A(w). (38)

2Meyer and Ormiston study second-order conditions in the case that only the deductible is
variable. Their result is that the objective is quasi-concave. It cannot be extended to the present
situation because the objective here possesses a local minimum at zero under fair prices, and at
small positive values of b and d under positive loading.

11



Form a weighted sum for a € [0, 1]
u(a;w) = at(w) + (1 — a)u(w) (39)
It can be checked that the absolute risk aversion satisfies

fora € (0,1}, A(a,w)> A(w)
fora € (0,1), Au(a,w) >0 (40)

Corollary 5 Suppose that u(a,w) is the utility function in the problem in equations
(35 and 36) and b(a) is the solution. Then b'(0) > 0.

Proof. Let

Fy(a,b) :/;uw(a,w)dH—(HA) /didH/tTouw(a,w)dH (41)

so that
Fila,b(a)) = 0 (42)
defines the solution function b(a). Then

_ —F(0,6(0))

b(0) = F(0,6(0)) )

Because the b(0) is an optimum for the utility u, the objective function must be
concave and therefore the denominator is negative. Differentiate to find that the
numerator is

T T T
Fia(0,0(0)) = / twadH — (14 ) / dH / twad H (44)
d+b d+b =0
From equation (39)
U (a,w) = ' (w) — u'(w) (45)

Expand and substitute

Fa(0,5(0)) = /:b[a'—u']dﬂu—(1+A)/:bdﬂ)

—(1+>\)/dT dH [(a'(v_xT)_u'(v_xT))/

. 0 dH] (46)

12



Because von Neumann-Morgenstern utility is unique only up to affine transformation,
it can be assumed without loss of generality that

W' (v—zr) =u(v—ax7) (47)

The final term in equation (46) vanishes. All the arguments in the domain (d+ b, T
are for wealths less than v — zy.  The more risk averse utility function has higher
marginal utility in that range. The term 1— (14 X) | dﬁb dH is positive because, were
it negative, the reduction of one dollar on (d + b,T] would save more than a dollar
on the entire domain [0,7]. Therefore

Fyo(0,6(0)) >0 (48)

It follows that '(0) > 0. MW

Parameters:

In the problem studied here, the deductible is fixed at d = d(\, v, q), and at that
point the condition for optimum b is,

Fy(d,b; A\, v,q) =0 (49)

The solution at a maximum of this problem is denoted Z;()\, v,q;d). There are other
solutions to the first-order conditions, representing local minima with low levels of
the upper limit, but the focus here is solely on the maximum. The local behavior of
b at the maximum is given in the usual way by

- F,
i bA

= 50
= (50)

Through the assumption on the matrix of second partials, Fi, < 0. It is shown in the
appendix that the pure price effect of A on Fj is negative so that for CARA utility
and moderate degrees of DARA utility, F,, < 0. It is conceivable, as usual, that the
income effect of a high degree of DARA would overwhelm the price effect and change
the sign of Fj,, but that case is not considered here. Thus b, is negative.

The main finding is that l;()\,v, q;d) and b(\,v,q) have similar behavior in the
neighborhood of the point (), v, q; d). Start with coinsurance rate A\. The derivatives
of solutions to the fully optimized system are connected by the equation (among
others)

Froady + Fppby = —Fpy (51)

13



Dividing through by Fj, and substituting from equation (50) gives

- F,
by = by + dy\ =2 (52)
Fup
To this point the derivation uses no facts specific to the situation under study. The
salient fact from previous sections is that the optimum satisfies b + d = ¢, which
implies

by = —dj (53)
The consequence is that
- Fay
by = ba(1 — — 4
A= ba( be) (54)

From corollary 4, it is known that the unconstrained solution satisfies b, < 0, and from
equation (50) and the ensuing discussion the constrained solution is also negative.
Therefore, the multiplier connecting byand by in equation (54) must be positive.

The remaining task is to show that the multiplier is less than unity. The fact
that Fy < 0, when the utility function possesses constant absolute risk aversion
(CARA) or decreasing absolute risk aversion (DARA) is shown in the appendix.
Thus I%: is positive and, from the positivity of the multiplier, it is less than unity.
Thus the multiplier in equation (54) must be a positive number and less than unity.
Summarizing the results so far, the effect of increased loading is to reduce the upper
limit on insurance. In the case of fixed deductible, the reduction is less.

Turning to the effect of increased equity v, the derivation is the same as far as the
results

7 Fbv
b, = — %)
T (55)
and
- Fap
b, = b,(1 — — 56
(1-72) (56)

The specific information needed here is, as shown in the appendix, in the case of
DARA,

Fo <0 (57)

In case of CARA, the value is zero. That means I;v < 0 in DARA and I;v = 0 in
CARA. Because the term in parentheses in equations (54) and (56) is known to be

14



positive and less than unity, b, and b, are zero under CARA and negative under
DARA. Moreover, under DARA the response of the constrained b, is less than that
of the unconstrained b,.

Variation in the conversion point is slightly different because the condition that
d 4+ b = q translates to

dy+by=1 (58)

Consequently the ending formulas are

. F,
b — 4
q be (59)
7 de de
by= -2 4 b,(1— -2
q be + (I( be) (60)

From corollary 4, the sign of b, is positive. Then the sign of Z;q is also positive because
each of the additive components is. Under CARA, b, = 1 and consequently, from
the preceding equation l;q = 1. Under DARA, b, > 1 and b, > I;q > 1. Thus,
again, the response of the constrained upper limit is in the same direction, but of
lesser magnitude, than the response of the unconstrained upper limit.

5 Concluding remarks

The question of why insurance contracts have upper limits was once a puzzling one.
In some applications, an adverse selection argument applies, that is, insurers impose
upper limits to screen out bad risks. The argument doesn’t work for insurance of
real property because there typically it is the client who determines the upper limit.
Instead, the reason for upper limits is that loss of wealth is bounded and may be much
less than the cost to repair damage. Scrupulous consumers do not want insurance
for damage beyond the point at which loss of wealth ceases, and prudent insurers do
not want to supply it.

Why are contracts written for damage and not for loss of wealth? The reason is
that damage is measurable, tangible, and therefore contractible. Damage — the cost
to restore property to its pre-damage condition — is relatively easy to estimate, and
it can be assessed by methods that do not vary much from one instance to another.
In contrast, loss of wealth is a nebulous concept because of uncertainty about the
conversion point. Resolving the uncertainty is costly. A more puzzling question is
why insurance contracts are not written contingent on conversion. Why not make an
explicit link between indemnity and the realized conversion value instead of relying

15



on an upper limit? The reason must be that conversion values cannot be specified in
a way that makes the contracts enforceable. The conversion value is never known in
a way that could be enforced by an impartial court of law.

These points are illuminated by making a contrast. In the closely associated case
of automobile collision insurance, conversion values are in effect contractible. Since
the car does not occupy a piece of land, the associated land value is zero. More-
over, the value of the car is known from the so-called ”blue-book” values, which are
based upon numerous transactions in cars of every make, model, year, and condition.
Within the collision contract the client does not choose an upper limit. The upper
limit is understood by contract to be the future blue-book value, a random variable
whose realized value can be enforced by an future court. Further damage can occur
after the maximum loss of wealth is reached, as happens when a car worth $2000
in the blue book receives damage that would cost $4000 to repair. The automobile
collision contract covers this situation without difficulty. In contrast, there are no
blue book values for homes and vacant land, and insurance contracts for real property
are not contingent on conversion values.

A question raised in the introduction is what model of insurance of real property is
most appropriate for further research on the effects of background risks? Coinsurance
models are not attractive because there is little coinsurance in practical insurance of
real property and none in the optimum contract. The fully optimum contract itself
has unrealistic features such as discontinuous deductibles, round shoulders, and a
tight link between the upper limit and the deductible. That tight link does not exist
in practice because neither the insurer nor the client knows with any accuracy what
the conversion point will be at that later time, if any, when the insurer must pay
the indemnity. Compared to the fully optimum model, the fixed-deductible model is
more realistic in appearance and has essentially the same comparative statics. Study
of insurance of real property using the fixed-deductible model is undertaken in Garratt
and Marshall (1999A).

6 Appendix

Proof. [Proof of Corollary 4] Two equations link d, 7, and A, namely, from equation
(17) and other parts of the derivation

1
14+ A

The other condition is, from the definition of the terminal value x7, the premium,

(v — 2y — d)(——) — /0 o (v — 2y — minft, d)dH = 0 (61)

(1+\) / " inft, g] — d)AH — 2r = 0 (62)
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The problem has the form

Jl(dvxT;)‘a/UaQ) =0
JQ(d7xT;)‘7“7Q) =0 (63)

and comparative statics come from the system:

d\
dd _ 1 Jro  —Ji2 ) —Jis —Juu —Jis A do (64)
dxy JiJoo — Jiodor | —Ja Ju —Jog —Jo —Jos dg
To begin, then
1 T
Jll — _u/l(fv — ,IT — d) |:H—)\ — /(; dH:|
1 T
Jo = —u"(v—ap— d)m + /0 v’ (v — xp — minft, d))dH
T
Jo1 = —(1+)\)/ dH
d
JQQ = -1
The coefficient J;; = 0 if A = 0 because the optimum deductible there is zero.

Otherwise, the sign of .Ji; is positive for all A > 0, which is a consequence of the fact
that

1 T
—_—— dH >0 65
T+ /d (65)

Suppose for purposes of contradiction that the quantity is negative. Then it could
be rewritten as

1<(1+>\)/TdH (66)

With loading A, the right hand term is the saving in certainty dollars of a one dollar
reduction in insurance coverage on the interval [d,T]. Since the saving is more than
a certainty dollar, the consumer would choose to reduce coverage. Therefore this can
never happen in an optimum.

The sign of J;5 requires study. It turns out that in CARA, J;» = 0, and in
DARA, J15 > 0. See that by denoting absolute risk aversion by

B _un(w)




and using it to rewrite as

1

Jip = —u'(v—xT—d)A(v—xT—d)m

—I—/O A(v — zp — mint, d))u’ (v — zp — minft, d])dH (68)

Under CARA, the A’s are the same and the quantity is

1

Jio=Alv—xzp—d)- [u'(v—xT—d)H_—)\—

/0 "0y — minlt, d])dH] (69)

From the condition of equation (61) it follows that Ji» = 0. On the other hand,
under DARA the coefficient is

B , 1 T A(v — 2y —minft,d])
Jig=Av —zp—d)- {u (U_xT_d)l—f-—A_/o Ao —zr—d) u(vﬁT(ms)dH]

Compare the term in square brackets to the condition of equation (61). They differ
only in the presence of the factor under the integral sign, and that factor is never
greater than unity and sometimes is less. Thus Jp5 is a positive number and is more
positive as absolute risk aversion decreases more rapidly.

The other terms are

—u' (v —xr —d)

1

Ju = u”(v—xT—d)H—)\—

J15:0

T
/ u’ (v — xgp — minlt,d])dH
0

T
oy = / (minft,q] — d)dH (= P(d), the fair premium)
d
T
Jos = (1+>\)/ dH
q

Note that .Ji4 is the negative of Ji5 and consequently it is zero in CARA, negative in
DARA, and more negative as risk aversion decreases more rapidly. Other signs are
transparent.
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The determinant for the matrix of first partials, denoted A = Jy1Jos — JioJo1,
reduces to

2

A = u'(v—ar—d)(1+N) {ui/\)—/jh(t)dt] +

(1+X) /dT h(t)dt /Od u" (v —xp —t)h(t)dt (71)

Each additive term is non positive and therefore A is non positive. It is negative
except in the special case that A = 0 and CARA. In that case, A is zero because
the deductible is zero and the condition in equation (61) is vacuous. The other
condition — equation (62) — governs. Since the singular case is rather trivial, it is
noted infrequently below. All statements exclude the case in which both CARA and
A = 0 are present.

The effect of increased loading is

% = %(_JQQJIB + Ji2Jo3) (72)
The first additive term is negative, and under CARA the second term is zero. Since
A is negative, the pure price effect is, as expected positive. DARA makes the second
additive term in parentheses into a negative quantity, tending to offset the pure price
effect. If risk decreases too fast, the loss of wealth from increased loading stimulates
risk aversion so much that more insurance is demanded, not less. Although the sign
could become negative, the practical presumption is that increased loading raises the
deductible.

The effect of more loading on the premium is also ambiguous, and this time
assumptions about risk aversion are not clarifying

dﬁT 1
— = —(Ja 13 — Jun J: 73
)\ A( 21713 11J93) (73)
The first term in parentheses is positive. The second term is negative, but at A =0
the Ji; term vanishes as discussed above and so does the second additive term. Thus
at A = 0, the net sign is negative because A < 0. By continuity, the result holds in
some neighborhood of zero.

Changing equity value v has only wealth effects. In particular

dd  Ju

dv A (74)

because Jo, is zero. The term Ji4 is zero under CARA and therefore, absent a wealth
effect, the deductible is unchanged. Under DARA, the expression in parentheses is
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negative. Therefore the net effect is positive. Increased equity raises wealth, lowers
risk aversion, and hence raises the deductible, a pure wealth effect.
The effect of equity on premium is

dxr _ Jo1J14
dv A

From the notes on Jy4, the effect is null under CARA and negative under DARA, in
accord with the analysis of the deductible.
The effects of varying the conversion value are similar.

(75)

dd s
dg A

(76)

The effect is zero under CARA and negative under DARA. The interpretation is that
raising the conversion value raises the risk and reduces expected wealth. The DARA
consumer is poorer and therefore more risk averse, leading to decreased deductible.
Finally, the effect on the premium is unambiguous

dxp _ —J11J25
dq A

(77)

The effect is always positive. Intuitively, the increase in exposure always induces an
increased expenditure on premium. That completes the proof.

The results for the upper limit are found from through the equation b = g — d.
The mainly interesting ones are, for the case of DARA,

db

d_)\ < 0

@ < 0

dv

db

— 1

7 > (78)

Signs of some cross partials: The objective is
d d+b
F(d,b;)\,v,q):/ u(v—xT—t)dH+/ u(v —xp —d)dH
0 d

T
—I—/ uw(v — xr —minlt, q] + b)dH (79)
dtb
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where

vr = (14 ) [/frb(t — d)dH + b/dT dH] (80)

+b

T
F(dbA,v,q)—u(v—xT—q+b)/ dH — 1+)\/ dH/ ()dH  (81)
d+b d+b

Fy(d,b; \v,q) = —u' (v — 2y — d) /dm dH + (1+ ) /dd+b dH - Uod+bu'()dH+/T u’()dH]

d+b
(82)
Fu <0
From the previous equation,
d+b T
Fau(d,b; \v,q) = —u'(v—ap—d)h(d+0b)+ (1 + \)h(d+b) - {/ o' ()dH + / u’()dH]
0 d+b

d+b T
+(1 +>\)/ dH - | u"()dH
d d+b

+Udd+bu (v — 2 — d)dH — (1+A)/dd+de / dH] {(1+A)/dd+bc($ﬁ})

From equation (82) the first line is zero. The middle line is negative. Using A()

for absolute risk aversion, the last line is
d+b
[(1 + )\)/ dH] =0 (84)
d

Under DARA, A is a maximum at v — zr — d, and by comparison to equation (82),
the first expression in square brackets is positive. Thus the whole last line is negative
and Fjy < 0 under CARA and DARA.

A(v — xp — d)u' (v — xp — d) P AH
—(14+ ) [PaH - [T A )dH

Fyx < 0 except when DARA is too large From equation (81),
Fox(d,b; A\, v,q) =

—{u (U—xT—q-f-b)/d:)dH (14 A) /d+de/ dH]
[/dd%(t—d)dH%—b/dide] —/d+de-/0 u'()dH (85)
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The last term is negative, the price effect. Under CARA, the first term is square
brackets is

A {u’(v e —q+b) /d:, dH — (14 2) /d; dH - /OT/ u’()dH} (86)

because its is the same as the first order condition of equation (81). More generally,
the term is

T T T
[A(v—xT—q+b)u’(v—xT—q+b)/ dH—(l—I—)\)/ dH-/ A()u'()dH]
d+b d+b 0
(87)
Under DARA, A is a maximum at v —xp — ¢+ b= v — xp — d. Therefore the term

is positive, and it is more positive as the decrease in risk aversion is more rapid. In
extreme cases, the income effect might overcome the price effect. Otherwise, F,) < 0.

Fy, < 0 under DARA and = 0 under CARA From equation (81),
T T T
Fon(di b M\, v,g) = (v — 2y — g + b)/ dH — (1+ )\)/ dH - / JOAH  (88)
dtb dtb 0

Substituting for absolute risk aversion A,
Fo(d,b; N\, v,q) =

A(U—xT—q—}-b)u’(v—xT—q—f-b)deerdH]

(1) [ dH - [ AQudH )

Under DARA, A is a maximum at v — 27 —q+b = v — 27y —d. By comparison to the
first-order condition of equation (81), the expression in brackets is positive. Under
CARA it is zero. Thus the result.
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