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Abstract

The evidence indicates that small and young �rms respond di�erently to shocks in the
�nancial markets than larger, older �rms. Moreover, gross job ows indicate that the
di�erences are mostly in the activation and liquidation decisions. In this dissertation we
examine the impact of shocks that a�ect the economy via the interest rates and explore the
transmission on the cross-section of active �rms.

In the model, due to the limited commitment of entrepreneurs, credit constraints arise
endogenously. The solution of the optimal in�nite horizon contract between banks and
�rms turns out to be very simple. Initially �rms accumulate net worth as fast as possible
and their size and survival probabilities grow over time. We provide a decentralization in
which entrepreneurs trade in one-period securities, rationalizing solvency and borrowing
constraints and making it natural to link the collateral of the entrepreneur with the size
and age of the �rm. The results are consistent with observed entry and exit behavior. The
larger the collateral of �rms, the less sensitive to interest rates is the exit probability, i.e.
small, younger �rms are more sensitive to interest rates than that of larger, more mature
�rms. With respect to entry, with higher interest rates, less �rms are created, and a higher
productivity is needed for activation, purifying the pool of entrants and increasing future
survival. However, given their characteristics, �rms created during recessions face tighter
credit constraints and have lower survival probabilities.

The model is qualitatively consistent with the evidence. Real interest rates comove neg-
atively with aggregate output, gross creation, net growth, of jobs and �rms, and positively
with ows of job and �rm destruction. With the frictions in the creation of �rms, the model
also compatible with the volatility of destruction ows being much larger than that of cre-
ation ows. The response in the mass of active �rms provides a propagation mechanism.
Output dynamics is asymmetric as recessions are shorter than expansions. Additionally,
the destruction series are highly concentrated in short periods of times.
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This paper develops an equilibrium model in which interest rate shocks lead to uctuations
in the creation and destruction of �rms. It examines economies in which limited commitment
restricts the operations of �rms by endogenously imposing limits on their credit. The potential
default of entrepreneurs constraints the optimal dynamic contract between banks and �rms.
Alternatively, limited commitment imposes limits to the debt and credit in decentralized secu-
rities markets. The economies are populated by �rms in many di�erent stages of their life cycle
and with many di�erent sizes. The model provides an explicit link between age, size and the
credit constraints of the �rms as well as the e�ect of shocks on their entry, exit and growth.
The aggregate response of the economy to interest rates uctuations is determined by its e�ect
on the cross section of active �rms.

New and old �rms respond to interest rate shocks di�erently and according to their own
history. Over their life cycle, �rms accumulate collateral. When young, �rms are likely to
have little collateral and therefore to be constrained and small. They respond to movements in
interest rates primarily through their decision to continue producing. In contrast, older �rms
are more likely to be unconstrained and they respond to interest rates movements by adjusting
their scale of operations. During recessions led by high interest rates, more young �rms will be
liquidated while old �rms will reduce their scale of operation.

The model predicts that the destruction of �rms is concentrated in the �rst periods of
increasing interest rates. After a burst of destruction, surviving �rms are more likely to remain
active, even if interest rates remain high. The model assumes frictions in the creation rate
of �rms and endogenously generates frictions in the growth and survival of each �rm. Both
forces add persistence to the response of output to interest rate shocks. Moreover, aggregate
frictions in the rate of creation imply that recessions are shorter and sharper than recoveries.
The non-trivial life cycle dynamics of �rms adds to this feature of aggregate output dynamics.
Shocks and frictions in credit markets have received wide attention for aggregate dynamics
and for interpreting the observed behavior of individual �rms. Recent papers by T. Dunne, M.
Roberts and L.Samuelson [23, 24] , D. Evans [27, 28] and B. Hall [32] conclude that young, small
�rms grow faster but die more frequently than older, larger ones. At a more aggregate level
some authors �nd that smaller �rms (M. Gertler and S. Gilchrist [30]) or �rms with less access
to �nancial markets (A. Kashyap, J. Stein and O. Lamont, and D. Wilcox [41, 39]) are more
responsive to monetary shocks than their larger or less constrained counterparts. Also, R. Hall
[32] and S.Davis and J.Haltiwanger [18] report an association between the ows of destruction
of jobs and liquidation of plants with real interest rates.

In the context of the model, the limited contract enforceability explicitly links the �rm age
and size with its access to external �nancing in an environment with shocks to the interest
rates as the only source of aggregate uctuations. The model emphasizes the liquidation and
creation of �rms in the transmission of interest rate shocks, yielding observable implications at
both micro and macro levels. Yet, the existent empirical work runs short with respect to the
predictions of the model. The work cited above on �rm dynamics uses data recollected every
�ve years, and therefore cannot be linked with business cycle uctuations, and even less with
interest rates or other indicators of �nancial markets. The cited work on asymmetric responses
of small and large �rm between responses in the extensive margins (entry, exit) from responses
in the intensive margin. Speci�cally, [30] ignore the composition and use the aggregate of �rm
groups while [41] eliminate from the sample the �rms liquidated during the period.

Because the interest rate transmission mechanism works through credit constraints, we
derive these constraints endogenously from features of the environment. The model is closely
related to recent literature on limited enforcement on dynamic economies. Speci�cally, we
borrow intensively from the seminal work of R. Albuquerque and H. Hopenhayn [1] who in turn
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their model of dynamic credit constraints can explain the observed patterns of �rm dynamics.
Our focus in this paper, is on the behavior of aggregate creation and destruction ows.

We extend the work of Albuquerque and Hopenhayn by including uctuations in the interest
rate in their contract design problem. Besides other relevant results, we extend the work of
Albuquerque and Hopenhayn by providing a decentralization scheme in which entrepreneurs
trading in one period securities can replicate the allocations from the optimal in�nite horizon
contract. This result, similar to the one in F.Alvarez and U.Jermann[2], hinges on solvency
and borrowing constraints. The decentralization scheme makes it natural to link the implied
asymmetries of interest rates to the collateral or net worth of the entrepreneur.

The role of �nancial markets for aggregate uctuations has traditionally been a center
of attention. Recently, Bernanke-Gertler [5] and Fisher [29] study how incentive constraints
propagate shocks by rationing the credit of a subset of �rms. By design, their models cannot
address the responses on the margins of creation and destruction of �rms. T. Cooley and V.
Quadrini [16] construct a model suitable to study these margins. In contrast to Cooley and
Quadrini, we do not impose the form of contracts, but we derive the optimal in�nite horizon
contracts between banks and �rms, and then derive the age and state contingent constraints
required to achieve the allocations in decentralized one-period securities. Moreover, they focus
on parameter con�guration in which interest rates do not a�ect entry or exit. The attention
here is on the response of series of activation and liquidation of �rms.

The rest of the paper proceeds as follows: In the next section, we briey overview the actual
time series for the U.S. economy. In the third section we lay down the environment. The fourth
section characterizes the optimal, in�nite horizon contract between a bank and entrepreneur
and discuss the implied �rm dynamics, including entry and exit decisions. With the optimal
contract at hand, in the �fth section we construct the solvency and borrowing constraints so
that entrepreneurs trading in one-period securities can replicate the allocations of the in�nite
horizon relationships. The sixth section discusses the notions of credit constraints in the model,
concluding that the least productive �rms are the most constrained. In the seventh we examine
more closely the asymmetric e�ects of interest rate shocks on the entry and exit decisions. The
eighth section examines the implied aggregate dynamics, and provides a numerical illustration,
discussing the limitations of the environment. The last section contains our conclusions and
discusses extensions. The appendix has three sections. The �rst contains the proofs, the
second provides a general equilibrium interpretation and the third describes the computational
algorithm.

2 The Environment and Individual Contracts

We �rst describe in detail the model environment. Then, we explore two di�erent trading
schemes and verify that the allocations coincide. In the third section we explore the qualitative
implications for the aggregate dynamics.

The Environment

The following primitives {preferences, demographics, technologies, information{ of the model
are maintained in this work.

Demographics and Preferences

Time is discrete and the horizon is in�nite; periods are indexed by t = :::0; 1; 2; 3:::. Each period
brings along a vintage of many new potential entrepreneurs. All vintages have mass Æ. I shall
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of the agents dies. The death probability of each agent is Æ. The total population in the
economy is always equal to one. Agents are risk neutral and discount the future geometrically
by a factor � 2 (0; 1). Thus, their evaluation of own consumption processes fctg as of any time
to is given by

E

8<
:
X
t�t0

(�(1 � Æ))tct j Fto

9=
;

where the probability of death renders an e�ective discount factor of �(1� Æ), and Ft0 denotes
all the information available as of to.

Technologies

Entrepreneurs are born with zero endowments. 1 Upon birth, each entrepreneur has access
to two mutually exclusive technologies, stochastically identical across agents. The �rst is a
productive technology. Its activation requires a set-up investment cost Ko > 0. In each period
of activity, it also requires resources (working capital) to produce output. In actual economies,
working capital takes the form of materials, inventories of �nished goods, hours of labor, etc.
Here I bundle all components into a single scalar variable k. With an amount of k, the technol-
ogy current production is zf(k) where fzig is a stochastic process of productivities idiosyncratic
to �rm i, and f(�) is a non-negative, strictly increasing, concave function. I will assume:

A. 1 (F). f(k) = k�; � 2 (0; 1);

A. 2 (P). fzig is a stationary, ergodic, process, that is identical and independently distributed

across agents of all vintages. It has �nite support Z = fz1; z2; :::; zng; n < 1. The transitions

are given by Pz(�; z), and the unique invariant c.d.f. by Fz(�). The processes fz
ig have positive

persistence over time, i.e. if z0 < z1 2 Z, then, Pz(�; z1) �f Pz(�; zo), where �f denotes �rst

order stochastic dominance.

For simplicity, I assume the option of activating the productive technology is available only
in the �rst period of life for each agent, and it can be operated as long as the agent has not
abandoned it or the �rm has been liquidated.

The second option is a "backyard" technology. It is always available to the agent. We also
use the term underground for this option, which requires no set up costs and produces a constant
ow e > 0 each period. The use of the term underground is consistent with our assumption
that once an agent is using that technology he cannot be enforced to pay any liability. Once
the agent has opted for the underground his utility U is simply

U =
e

1� �(1� Æ)

In what follows, agents operating the productive technology are called active entrepreneurs.

1The results of the paper are robust to assuming that the entrepreneurs are born with a small endowment.
However, if the initial endowment is large enough, the incentive problems would disappear, as a bond-posting
scheme will be available (on the long term relationships) or they do not need to borrow at all (in the decentralized
setting).
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In most of the paper, we will assume a market structure with many (an in�nite number of)
in�nitely lived banks that compete with each other to sign contracts with the entrepreneurs.
Banks can commit to honor long term contracts, and competition occurs only at the time of

signing up entrepreneurs. Each bank has a suÆciently large array of customers to fully diversify
the idiosyncratic shocks. A bank's sole objective is to maximize the expected present value of
each and every contract. For the purposes of this work, di�erences across banks or frictions in
their liabilities and assets portfolios are of no relevance and shall be omitted altogether.

In the beginning of every period all the banks compete to sign up members of the new born
cohort. Each of the potential entrepreneurs draws his initial productivity zo from the distribu-
tion Fz(�). The realization zo is also observed by banks before bidding for each entrepreneur.
This is important because zo will determine whether the agent becomes an entrepreneur or not
and the contract received.

The Enforceability Problem and the Liquidation Option

Given the previous assumptions, an active entrepreneur always has the option of switching to
the underground. The key assumption that separates this economy from a standard frictionless
environment is that there is no enforcement device that directly rules out this option from
entrepreneurs. On the contrary, I will assume that banks can fully commit to honor their con-
tractual obligations. Therefore, the analysis centers on the incentive problems of entrepreneurs.

There are two possible ways in which entrepreneurs can walk away from the productive
technology. First, they can opt out in the beginning of the period. In this alternative they can
access the underground technology immediately, attaining an utility of U . On the other hand,
they can leave in the middle of the period. In this case he will miss the underground technology
for that period, but he can seize all the working capital k under his control. Therefore, the
default option depends on k:

Vd(k) � k + �(1� Æ)U

Given his inability to commit, these outside options to the entrepreneur will e�ectively
restrict the contracts between banks and entrepreneurs. The �rst option imposes a minimum
on the utility of active entrepreneurs.

Finally, by scrapping the plant they can recover an amount L of the set up cost, where,
L � Ko. Besides the present value of fk

ig, L+U determines the opportunity cost of maintaining
a productive technology in operation. However, as opposed to L, U will also have a separate
e�ect as it constrains the set of incentive compatible plans between entrepreneurs and banks. 2

Bond Prices

The opportunity cost of the resources used by banks is determined by the interest rate they
face. I assume that the price of one-period real bond qt, for all t, follows an exogenous Markov
process fqg. The following is assumed:

2Alternatively, one could assume that in addition to the working capital, the entrepreneur can also seize a
fraction of the value of the plant, �L. Here, Vd(k) = k+ �L+�(1� Æ)U . This extension does not complicate the
analysis at all, but the credit constraints will be tighter in this world. The same remark applies if the agent can
access the backyard technology in the same period of default, in which case Vd(k) = U + k. The results of these
alternative cases can be replicated in the current set-up by manipulating the values of U and L.
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(0; 1);m < 1 The transitions are denoted Pq(�; q) and the unique invariant c.d.f. by Fq(�).
Moreover,fqg has positive persistence in the same sense used in P.

In this environment, individual entrepreneurs are a�ected by a common aggregate shock q.
Two alternative interpretations can be given. The �rst is that this is a small economy open to
international capital markets. The second takes this as an economy in which the government
follows a rule for the interest rate such that the interest rate is a stochastic interest rate policy
rule. An example of the second interpretation is presented in the appendix.

The following assumption, whose payo� will be evident later, is sustained in all paper:

A. 4 (I). Entrepreneurs are more impatient than banks: � � minfQg

Taking the interest rates an exogenous stochastic process has the obvious disadvantage
of omitting the feedback e�ects of its shocks. But, in addition of gains in analytical and
computational tractability, the strategy here has the pedagogical value of isolating the e�ects
of shocks in q on the macroeconomic structure of the industry.

3 Economies with Long Term Contracts

In this section we assume that the competition of banks is only in terms of signing up the
new potential entrepreneurs. To save on notation, the exposition specializes to relationships
initiated at period t = 0. A dynamic contract speci�es, for every period the amount of capital
advanced from the bank, kt, and the repayment, rt from the �rm as functions of the history
of the relationship. In each period, the idiosyncratic productivity zt and the economy-wide
discount factor qt are observed prior to setting (kt; rt). The allocations of each period will be
functions of ht � fzs; qs : 0 � s � tg, the history of shocks in the relation . Denote Ht the set
of all feasible histories ht; 8t � 0, and Ht the product space formed by t-products of H, the
power set of Z �Q.

A dynamic contract is a sequence of Ht-measurable functions � � f�t : t � 0g, �t : Ht !
R+ � R+ , of the form �t1(h

t) = kt and �
t
2(h

t) = rt, indicating how much working capital is ad-
vanced and the amount re-payed by the �rm. Contracts must satisfy several constraints. First,
the non-negativity of entrepreneur's consumption imply a form of limited liability constraint:

�t2(h
t) � ztf(�

t
1(h

t)); 8ht 2 Ht; 8t 2 N (1)

The possibility of default also constraints the admissible set of �. The transitions Pq; Pz and
the functions � will de�ne the payo�s for each party of the relationship. For each ht 2 Ht; t 2 N,
Pq; Pz de�ne the sequence of probability kernels, �s(�; ht) on the measurable spaces (Hs;Hs)
for s � t. These kernels de�ne the evolution of the history of each relationship. Indeed, at
history ht the continuation value for the entrepreneur implied by � is given by

V t
�(h

t �
X
s�t

(�(1 � Æ))s�t
Z
Hs

�
zsf(�1(h

s))� �2(h
s)
�
�s(dhs; ht) (2)

Thus, the inability of entrepreneurs to commit imposes the constraints

V t
�(h

t) � U and ; V t
�(h

t) � Vd(�1(h
s)) 8ht 2 Ht; 8t 2 N (3)
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bond markets is needed to de�ne the net payo� for banks. The following picture displays the
timing used in this model.

Open Closed

Relationships

Bonds Market

Within-Period Flow of Events

q is realized;

z is realized;
V is given

Liquidate
Continue
Set (k; V 0)

zf(k) divided

between bank
and entrepreneur

�
���

Q
Q
QQs

�
��	

@
@@R

-

The investment of working capital occurs at the beginning of the period, when the bonds
market of the period t is open, but the bank collects the repayments only in the beginning of
t+1 . The net present value of the payout for the bank in given history ht is qt�

t
2(h

t)��t1(h
t).

Note also that because they access bonds markets, the discount factor for banks is qt.Therefore,
the value of a continuing relationship for the bank is

Rt
�(h

t) �
X
s�t

(1� Æ)s�t
Z
Hs

�s�1Y
j=t

qj
��
qs�

s
2(h

s))� �s1(h
s)]�s(dhs; ht); 8 t (4)

This equation assumes that if the entrepreneur dies, the bank cannot seize, L, the liquidation
value of the plant. Banks can always liquidate the �rm. Commitment does not force banks to
maintain the plants operating in all the eventualities, but instead to honor the utility entitlement
to the entrepreneur dictated by the contract in every node of the relationship. Thus, in the
case of liquidating the �rm, the value of the bank is

L� [V t
�(h

t)� U ] (5)

Notice that the bank needs only to compensate the di�erence between U and V s
� (h

s), which
is simply V s

� (h
s)� U in units of the good and because of the linear utility assumption.

Clearly, an active �rm will continue operating if and only if

Rt
�(h

t) � L� [V t
�(h

t)� U ] (6)

Otherwise the �rm is scrapped. � will denote the set of all incentive compatible allocations
with elements �. Notice that, despite the potential non-convexities originated by the scrapping
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consider the randomizations in the recursive formulation, and verify that all non-trivial ran-
domizations are relevant only outside the equilibrium allocation. Thus, the description here is
without loss of generality.

Initialization of Contractual Relationships

An optimizing bank will design � so as to maximize his pro�ts, but by competition, at the time
of activation, agents would not sign unless they receive the best, feasible, incentive compatible
contract. Thus, in equilibrium, entrepreneurs will be entitled the best initial utility V 0

� (h0).
The initial level of utility depends on the idiosyncratic characteristics z0 of each entrepreneurs
and the economy-wide discount factor q. For each initial history h0 = (z; q) 2 Z �Q let


(h0) �
�
y � U : sup

�2�
fR0

�(h
0)�K0 � yg � 0

	
(7)


(h0) is the set of promised utilities to the entrepreneurs that permit non-negative payo�s to
banks. This set can be empty, in which case the agent does not become active. Otherwise he
is activated with an utility entitlement of

V 0
� (h

0) = supf
(h0)g (8)

As show below, the sup operator insures that the contract is established is immune to future
renegotiations.

3.1 A Recursive Formulation

The Markov nature of the shocks fzg and fqg allows the use of recursive methods to solve
for the contracting problem. Following the initial insight of Spear and Srinivastava, we can
specify the problem in terms of constructing rules for updating the continuation values for

the entrepreneur, V . The vector (V; z; q) is the state of individual relationships, in the sense
that it summarizes the history of it and contains all the relevant information for the future
evolution of the relationship. The state has two components that evolve exogenously but the
stochastic process followed by V is derived endogenously by the contract design. Given (V; z; q),
the bank must decide the amount of working capital k, the amount repaid by the �rm r, and
the continuation values for each possible realization in the next period. This is to say, given
current state (V; z; q) the contract speci�es for the next period the values Gz0;q0(V; z; q) for the
continuation utility of the entrepreneur for each and every (z0; q0).

3.1.1 Ongoing Relations

Let C(V; z; q) be the cost (in expected present value) of providing an active entrepreneur with
a utility level V when the market discount factor is q and the productivity of his plant is z. It
C is negative the bank obtains positive payo� from the relationship. C can be positive which
implies that the bank has to put net positive resources in the relationship to deliver the value
V . The objective of the bank is to minimize this function. First, in case of liquidating the plant
the net cost is V � U � L. If the plant continues, the period cost for the bank is �qr + k and
commits to face the cost for the next period. Hereafter we use the shorthand

E[V 0] =
X
z0;q0

Gz0;q0(V; z; q)Pz(z
0; z)Pq(q

0; q) (9)
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P (z0; q0jz; q) � Pz(z
0jz)Pq(q

0jq) (10)

for the conditional probabilities.
For all (V; z; q) 2 [U;1)� Z �Q, C consider the following Bellman Functional Equation:

C(V; z; q) = min

(
V � U � L; min

Gz0;q0 ;k;r

�
k � qr + q

X
z0;q0

C(Gz0;q0 ; z0; q0)P (z0; q0jz; q)

�)

subject to the constraints

U � Vz0q0 (Participation)

k + �(1� Æ)U � V (No Default)

zf(k)� r + �(1� Æ)E[V 0] � V (Promise Keeping)

r � zf(k) (Limited Liability)

It is convenient to eliminate from the problem all the intra-temporal decisions. Let �(z; q); ku(z; q)
denote respectively the maximum pro�ts from the technology and the unrestricted optimal use
of working capital when enforcement problems are not binding, i.e.

�(z; q) � max
y�0

�
qzf(y)� y

	
ku(z; q) � argmax

y�0

�
qzf(y)� y

	
(11)

Under F � and ku are ku(z; q) = (zq�A)1=(1��) and �(z; q) = �(zq)1=(1��), respectively,
where � is a positive constant that depends on (A;�).

We are interested in economies where the no default constraint might be binding. In those
cases, the �rm will use less working capital than the optimal level. We will say that the �rm is
credit constrained in the intensive margin. More formally, for any V 2 [U;+1) the maximum
level of capital that is sustainable with no default is

kr(V ) � V � �(1� Æ)U (12)

It can never be optimal to use k above the unrestricted optimum; for any (V; z; q) the
amount e�ectively used by continuing �rms equals

k(V; z; q) = min

�
ku(z; q); kr(V )

�
(13)

The enforcement-constrained surplus S is

S(V; z; q) =

(
�(z; q) if V � V u(z; q)

qzf(k(V ))� k(V ) otherwise
(14)

Several properties of S will be useful in characterizing the optimal allocation �:

Proposition 3.1. Under the assumption (F), the function S is strictly increasing, and su-

permodular in (q; z). For V � Vd(k
�(z; q)), S(V; z; q) is strictly increasing , strictly concave,

and strictly supermodular in (V; z; q). Moreover, S(V; z; q) is globally concave and continuously

di�erentiable in V .
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(x; y), then an increment in y reduces the marginal cost of x. The notions of submodularity and
supermodularity are not restricted to di�erentiable functions a fact that makes them particularly
useful in the context of dynamic where the di�erentiability results are rather limited. In the
case twice continuously di�erentiability, a function f(x; y) is supermodular (submodular) in

(x; y) if @2f
@x@y � (�)0. See the appendix for a brief discussion of supermodular and submodular

functions and Topkis [50] for a complete treatment.
Using S we can eliminate k; r, and focus on the choice of the stochastic di�erence equation

Vz0q0 = Gz0q0(V; z; q) followed by the endogenous state and given by the optimal policy function
in the recursive problem. First, the Promise Keeping constraint with equality implies that
r = zf(k)+�(1�Æ)E[V 0]�V . We verify below that one can take the promise keeping constraint
to hold with equality because in equilibrium, the relevant allocations are re-negotiation proof (C
is strictly increasing in V ). Plugging this expression into the Non-Negativity of consumption,
it becomes

�(1� Æ)
X
z0;q0

Vz0q0(V; z; q)P (z
0; q0jz; q) � V

The limited liability of the �rm impose a ceiling on how fast fVtg can grow. For each V 2
[U;+1), de�ne the feasible set of continuation values �(V; z; q) by

�(V; z; q) =

(
y : Z �Q! [U;+1) s.t.

X
z0;q0

y(z0; q0)P (z0; q0jz; q) �
V

�(1� Æ)

)
(15)

a convex and compact set. The net payo� for the bank becomes

k � qr = k � q
�
zf(k) + �(1 � Æ)E[V 0]� V

�
(16)

which takes the form of �S(z; q; V ) + q[V � �(1 � Æ)E[V 0]] once the optimal incentive
compatible choice of k is plugged in. These substitutions transform the Bellman Equation to,

C(V; z; q) =min

(
V � U � L; Cc(V; z; q)

)
(17)

where

Cc(V; z; q) = min
y2�(V;z;q)

(
�S(z; q; V ) + q[V � �(1� Æ)E[y]]

+ q(1� Æ)
X
z0;q0

C(yz0q0(V; z; q); z
0; q0)P (z0; q0jz; q)

)
(18)

Finally, note that the option of liquidation introduces a non-convexity in the problem for
ongoing relationship. Such non-convexity indicates gains from trade between the bank and the
entrepreneur that are not being exploited. Randomizing the exit decisions eliminates those
ineÆciencies and the problem becomes convex. In turn, convexity greatly pays o� in terms of
sharp characteristics of the allocations and �rm dynamics.

A risk neutral entrepreneur with utility entitlement V accepts any lottery that o�ers V 0

with probability � and V 1 with probability 1 � � as long as �V 0 + (1 � �)V 1 � V . Given V
the admissible set of those lotteries is
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�E(V ) =

�
� 2 [0; 1]; V 1 � V 0 � U : �V 0 + (1� �)V 1 � V

�
(19)

where, the normalization V 0 � V 1, is obviously with no loss of generality. We can take
that the entrepreneur is liquidated if he loses the lottery, and this is without loss of generality
because banks and entrepreneurs will only use optimal randomizations. Therefore when the
entrepreneur loses he is liquidated at utility value V 0 and if he wins he remains active with an
entitlement V 1 � V .

The Bellman Equation becomes that describe the optimal decisions of active �rms is:

C(V; z; q) = min
(�;V 0;V 1)2�E(V )

(
�(V 0 � U � L) + (1 � �)Cc(V 1; z; q)

)
(20)

where Cc,the cost of continuing the relationship is as given above by equation 18.
Given the value function C, the initialization of relationships is also simpli�ed. Let 
(z; q) =

fy � U : C(y; z; q) +K0 � 0g. If 
(z; q) is not empty the entrepreneur will become active and
with an initial entitlement of V0(z; q) = supf
(z; q)g. Otherwise, the agent will never be an
entrepreneur. The sup operator is needed because the function C may not be monotone. Taking
the sup insures the renegotiation proofness of the allocations (see below).

3.2 Optimal Contracts and Firm Dynamics

This subsection characterizes the value function C and the optimal policy correspondence G.
The detail of the proofs and the notation required for them are relegated to the appendix. First,
we can verify that the problem is well de�ned as there is a unique C that solves the functional
Bellman Equation.

Proposition 3.2. Let �E ;�; S; be as de�ned above. If conditions F,P,Q hold, the B.E. has
a unique solution C : RU � Z � Q ! R. The function C is globally decreasing in z and it is

strictly decreasing in the regions where the probability of liquidation is less than one. Moreover,

C is globally convex in its �rst argument.

Proof. See appendix.

That C is decreasing in z is very intuitive: the cost of providing any level of utility to the
entrepreneur is a decreasing function of the productivity the technology under his control, as
more resources can be expected from it in the current and subsequent periods. If the optimal
decision were to liquidate, the cost is invariant w.r.t. z. Exit randomizations suÆce to make
a C convex function in its �rst argument. Because S is concave, Cc is convex whenever the
function C under the expectation is convex; taking the optimal randomization, the LHS of the
equation is convex whenever the function Cc in the RHS is convex.

Convexity is highly desirable analytically. First of all, it implies that C is everywhere sub-
di�erentiable, and almost everywhere di�erentiable in the �rst argument. We use the notation
@C denote the subdi�erential of C, where @C(V; z; q) indicates the set of subgradients of C w.r.t.
the �rst argument at the point (V; z; q). C is di�erentiable w.r.t. V at (V; z; q) i� @C(V; z; q) is
a singleton.

As we will see below, for a relevant region, the optimal policy will be at the corners. Then
the usual manipulations a la Benveniste-Scheinkman, for the di�erentiability of C are of limited
use. Yet, characteristics of @C will help characterizing the optimal policies. Indeed, we can
easily verify that:
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are such that @C(V; z; q) � 1 and @Cc(V; z; q) � q for all (V; z; q) 2 RU � Z �Q. Moreover, if

for given (z; q); 9V � 2 RU with C(V �; z; q) < �L, @C(V; z; q) is also bounded above by q

Proof. See appendix.

Therefore the joint surplus V � C(V; z; q) is increasing in V , and strictly increasing in
neighborhoods where Cc = C. This is not surprising as a higher V helps coping with the
default problems of entrepreneurs, the only incentive issue in this economy. However, the
�xed point C is not necessarily increasing in V . To see this, observe that the period return
�S(V; z; q)+ q[V �

P
z0;q0 Gz0;q0(V; z; q)P (z

0; q0jz; q)] for the bank it is not necessarily increasing
in V : On the one hand, for any given policy Vz0;q;, the higher the resources consumed by
the entrepreneur the higher is the entitlement V ; on the other hand, however, lower values
of V will constraint more the surplus S from the technology. If the second dominates the
period return of the bank can be increasing in V . Moreover, even if restriction on U; f; Z;Q
can assure that �S(V; z; q) + qV be increasing in V , the �xed point C may have decreasing
regions w.r.t. V because the feasible set is increasing in V in the set inclusion sense (i.e.
V0 < V1 ) �(V0; z; q) � �(V1; z; q)). This is troublesome because if C is decreasing in V , it is
not valid to take the promise keeping constraint with equality. Indeed, both parties would be
willing renegotiate up the value of V and be better o�. We can rule out this possibility, but
only after we characterize the initialization of the relationship. This is, while the value function
C can have segments where it is decreasing V , in equilibrium, those segments could never be
reached. 3

The submodularity of S in (V; z) indicates a form of complementarity of the productivity of
the technology with the value for the entrepreneur. The larger is the value of the relationship for
the entrepreneur, the lesser are the temptations for him to default. Then, higher productivities
could be met with larger employment of working capital. The supermodularity of S suÆces for
the submodularty of C when fzg has positive persistence, which holds by assumption P.

Therefore,

Proposition 3.4. Assume that the conditions F,Q,P hold. Then, the �xed point C is a sub-

modular function in (V; z).

Proof. See the appendix.

The convexity and submodulartiy of the value function can be used to characterized the
optimal allocation � and the implied �rm dynamics. First we analyze the continuation decisions
(the evolution of V given that the �rm survives that period). Then we characterize the entry
and exit decisions.

We also verify below that the non-trivial randomization are outside the equilibrium alloca-
tion and that the equilibrium allocations are re-negotiation proof.

Continuation policies

Let Gz0;q0(V; z; q) denote the entrepreneur's utility entitlement pro�le for the next period, i.e.
for each realization z0; q0 in that period given a current state (V; z; q). The �rst order conditions
{ suÆcient and necessary for a convex problem{ for the optimal Gz0;q0(V; z; q) are

�(1� �2(V; z; q)) + �1(z
0; q0;V; z; q) 2 @C(Gz0;q0(V; z; q); z

0; q0); for all z0; q0 (21)

3For the case of Q = � Albuquerque and Hopenhayn [1] prove that the joint surplus V �C(V; z) is increasing
in V . This does not eliminate the renegotiation problem as it does not imply that the payo� for the bank {the
part with full commitment and designing the contract{ is decreasing in V .
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�2(V; z; q) � 0; �(1� Æ)
X
z0;q0

Gz0;q0(V; z; q)P (z
0; q0jz; q) � V; (one with =) (23)

where �1(z
0; q0;V; z; q) and �2(V; z; q) are (#Z�#Q)+1 (scaled) Kuhn-Tucker multipliers.

The �rst set of multipliers makes sure that the bank does not assign a value below the under-
ground's value for the entrepreneur while the last multiplier ensures that the his consumption
is non negative. Manipulation of these FOCs provide restrictions on the valid Gz0;q0(V; z; q).
First we can verify that Gz0;q0(V; z; q) is non-decreasing in V:

Proposition 3.5. Let v denote the higher set partial ordering, i.e. A v B if for x 2 A, y 2 B
x_ y 2 B and x^ y 2 A. Then, the policies Gz0;q0(V; z; q) are non decreasing in V , in the sense
that for any (z; q) and V0 < V1, Gz0;q0(V0; z; q) v Gz0;q0(V1; z; q) for all (z

0; q0)

Proof. See appendix.

This result is hardly surprising as V imposes only an upper bound on E[V 0]. Therefore,
if it does not bind for a V0, it does not bind for V � V0. In periods when V binds, the
entrepreneur has zero consumption and the expected utility entitlement for the next period
is as high as possible. This is very intuitive, given the one-sided nature of incentive problem
studied here. Initially the value of the relationship for the entrepreneur must grow as fast as
possible because it enhances the future pro�ts extractable from the technology. The result
obtains regardless of how Q compares with �, in sharp contrast with the results obtained by
O.Hart and J.Moore [34] in models with two-sided imperfect commitment. Hart and Moore's
model assumes incomplete contracting with continuous renegotiation between the bank and the
entrepreneur. In their model, if maxfQg < �, the optimal contract is the slowest repayment
schedule, and if � < minfQg, it is the fastest repayment schedule. For � = Q there is an
indeterminacy as a continuum of contracts are optimal.

The optimal contract not only must specify the evolution of the entrepreneur's utility en-
titlement over time but also across realizations of the idiosyncratic and aggregate shocks. The
submodulartiy C provides another clear restriction of the optimal continuation pro�le:

Proposition 3.6. Let (V; z; q) 2 RU�Z�Q. C is submodular, then Gz0;q0(V; z; q) is increasing
in z0. Moreover, if Gz0;q0(V; z; q) > U , then it is strictly increasing.

Proof. See appendix.

The economics of this result is very simple. A higher productivity increases the optimal use
of working capital. Yet, a higher advance of credit increases the temptations of the entrepreneur
to default. Foreseeing this, it is optimal to increase the utility entitlement in a positive relation
with the productivity of the states. Moreover, a higher productivity signals higher productivities
thereafter, and a higher value V 0 will relax the constraints for setting V 00; V 000; ::::: and so on.
Symmetrically, low realizations of z reduce the value of the relationship for the entrepreneur,
but this is a result of its optimal design. Indeed, we will see below that when the entrepreneur
is liquidated, the bank does not have to compensate the entrepreneur and simply seizes the
plant. Before turning to exit decisions, it is convenient to characterize further the continuation
policies. Speci�cally, we will provide conditions under which they are bounded.

By inspection of the �rst order conditions and of the convexity of Cc the bank would it �nd
it optimal to prescribe that, regardless of the current state (V; z; q), either Gz0;q0(V; z; q) = U
(liquidation) or Gz0;q0(V; z; q) to be set as large as required for the FOC to hold with equality.
This is to say, in those states in which the bank is more impatient than the entrepreneur, the
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this degeneracy by imposing condition I.
The participation constraint of the entrepreneur provides a lower bound G � U . Under

assumption I we proceed to verify that G has a �nite upper bound. The boundedness of G
brings about obvious computational advantages.

First, assume that for a given state (V; z; q) the choice of Gz0;q0(V; z; q) is interior in the sense
that V is not binding (�2(V; z; q) = 0). In these cases, one can use Benveniste-Scheinkman and
obtain

@C(V; z; q)

@V
= �

@S(V; z; q)

@V
+ q

Now, let us assume that the optimal continuation policyGz0;q0(V; z; q) is such that �2(Gz0;q0(V; z; q); z
0; q0) =

0. Using the functional form in F we obtain a unique value M�(z0; q0) that solves the FOC,
given by

M�(z; q) = �(1� Æ)U +

�
�z

1 + 1��
q

� 1

1��

(24)

One cannot conclude however that M�(z0; q0) is an upper bound of Gz0;q0(V; z; q) as we have
not yet ruled out that it binds in the subsequent choice of G. This is to say, it might be the
case that for some z0; q0

M�(z0; q0) < �(1� Æ)
X
z0;q0

M�(z0; q0)P (z0; q0jz0; q0)

Yet, the boundedness of M� leads to an upper bound on GZ;Q(�). One can �nd a �nite
function D : Z �Q! R++ such that the policies always lie within [U;D(z0; q0)]:

Proposition 3.7. Assume that I holds. Then the continuation policies are bounded. Speci�-

cally, U � Gz0;q0(V; z; q) � D(z0q0) � M(�z; �q) < 1 for all z0; q0; V; z; q. The function D is the

unique �xed point that solves

D(z; q) = max

8<
:M�(z; q); �(1 � Æ)

X
z0;q0

D(z0; q0)P (z0; q0jz; q)

9=
;

Moreover, D is strictly increasing both arguments and D(�z; �q) =M�(�z; �q)

Proof. See appendix.

Therefore, for the computations one can restrict attention to the domain of the continuation
values to an interval [0;M(�z; �q)]. Furthermore, one can safely assume that the policy corre-
spondence G is indeed a continuous function, which is guaranteed by the following proposition.

Proposition 3.8. Cc(�; z; q) is strictly convex and strictly submodular in (V; z) if either �2(V; z; q) >
0 or V < M(z; q). Moreover, for any (V; z; q) 2 RU � Z � Q, the policy correspondence

Gz0;q0(V; z; q) is a continuous function of V .

Proof. See the appendix.

Therefore, the policy correspondence GZ;Q(�) is singled valued, and that indeed, it varies
continuously on the endogenous state V . Therefore, the previous monotonicity results, not only
can be rewritten with the partial ordering � instead of the set ordering v, but can be taken to
be strict as long as G > U .
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We now turn the attention to the extensive margin decision of whether to liquidate or continue
a relationship. It turns out that, as long as V > U , there are only two possibilities: either the
entrepreneur continues with probability one or there is a liquidation lottery. This is because
either Cc is always below the value of liquidation or they cross at some �nite value, V ��, a fact
that can easily be established because the slope of Cc is uniformly bounded by q < 1 while the
slope for the liquidation is always 1. Therefore, the envelope of Cc and V � U � L is Cc in its
all region or forms from a convex combination.

This suggests that an entrepreneur is never liquidated without a lottery. But we will soon
see that exactly the opposite is true. From risk neutrality, it follows that entrepreneurs losing
the lottery must obtain the lowest utility U and exit. If not, C would have a segment with
slope 1 and then a segment with slope q violating convexity.

When V = U , the bank recommends exit, and seizes the plant, obtaining the liquidation
value L. Such process resembles bankruptcy in many respects, as the entrepreneur enters the
pool in the underground with no assets left from the �rm. More formally,

Proposition 3.9. Fix (V; z; q). If the optimal liquidation probability �(V; z; q) 2 (0; 1), then,
V 0 = U and there is a unique value V 1 < M�(�z; �q) that satis�es

Cc(V 1; z; q) + L

V 1
2 @Cc(V 1; z; q)

The optimal liquidation probability, �, is given by � = V 1�V
V 1�U

Proof. See the appendix.

Entrepreneurs winning the lotteries obtain a new utility entitlement V 1 in a region where Cc
is strictly convex. If that were not the case, Cc would have a constant slope of q. Generically,
this implies that additional gains can be obtained by setting V 1 even larger, and consequently, �
closer and closer to unity. We haven't found conditions to rule out degenerate lotteries V 1 =1
and � = 1. They are not present in the computations presented below.

Notice that for each (z; q) either �(�; z; q) = 0 in all the domain [U;1) or there is a region
V 2 [U; V 1] such that �(�; z; q) > 0, and for V 2 (V 1;1) �(�; z; q) = 0. Indeed,

Proposition 3.10. The liquidation probability function � : [U;1)�Z�Q! [0; 1] is decreasing
in its �rst argument and is strictly decreasing whenever � 2 (0; 1).

The economics is also simple. The presence of both a �xed cost U +L of operating a plant
and the complementarity of z; V implies that it is worth to operate the plant as long as the
level of operations is large enough. If the current value of V is above V 1, the scale of operations
is large enough, and no randomization is needed; the plant continues operation with certainty.
The lower the value of current V the larger is the risk of liquidation faced by the �rm in a
fair lottery with a constant winning and losing prizes of V 1 and U respectively. Therefore, the
model implies that the lower the value of V , the lower is the survival probability, and that
conditional on surviving, the larger is the growth. Conditional on z; q, the lower V the larger
is the variance of growth, unconditional on survival.

However, it is unnecessary to examine the function � to characterize exit. By inspection
of the �rst order conditions we can verify that non-Trivial randomizations are relevant only
outside the equilibrium allocation:

Proposition 3.11. Fix any (V; z; q) 2 RU � Z � Q, and V 1(�) as de�ned above. Then, the
optimal continuation mapping GZ�Q(�) can be selected so that

Gz0;q0(V; z; q) 2 fUg
S�

V 1(z0; q0);D(z0; q0)
�
for all z0; q0
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Too see this, notice that in the regions where randomizations occur, the slope of the cost
function is constant. The �rst order conditions equate the marginal reduction in the current
cost with the marginal cost of assigning the utility entitlement in every realization of the next
period. If the limited liability constraint does not bind, the �rst term is just the discount factor
� while the second is the would be a constant in the region of randomizations. If the discount
factor is strictly higher, then the optimal plan requiresGz0;q0 = U while if it is strictly lower, then
Gz0;q0 = V 1(z0; q0). In case of equality, either extreme can be chosen, as the entrepreneur and
the bank are indi�erent in the timing of the transfers. In those knife-edge cases deterministic
rules suÆce.

Now, if the limited liability constraint binds, then there is a state z0; q0 in which the slope
of the cost is strictly below the discount factor of the entrepreneur. Then for the cases where
� 2 @C(V 1(z"; q"); z"; q"), the optimal solution is Gz";q" = U . Even if the limited liability
binds, there is a possibility that �(1 � �2(V; z; q) 2 @C(V 1(z"; q"); z"; q"). But again, the
deterministic rule that assigns Gz";q" = U achieves the optimum. Clearly, a lower value V
prescribes a larger set in which the �rm is liquidated in the next period.

Initialization of Relationships

Competition prompts banks to o�er the best feasible incentive compatible contract to en-
trepreneurs. Because banks need to �nance the �xed cost K0 > L, the ex-ante breaking-even
condition implies that the bank ex-post makes a strictly positive pro�t from the entering ven-
tures. The function V0(z0; q0) indicates the value of the entrepreneur at the time of signing the
contract with the bank.

Proposition 3.12. Let V0 : Z � Q as de�ned above. Given the assumptions F,P,Q, then V0
is strictly increasing in z. Moreover, given L if K0 > L is large enough, for � close enough to

1 and Æ close enough to 0 then V0 is also strictly increasing in q.

Entrepreneurs with a higher initial productivity draw z0 receive a higher value V0(z0; q0)
as the present value of the stream of pro�ts is larger, and also because a larger value V0 will
enhance the incentive-compatible allocation of credit. The second part requires that � and Æ
close to 1 and 0, respectively only insofar they limit Et[Vt+1] and then, in expectation, C is also
negative in the next period. In such a case, higher interest rate unambiguously increases the
cost and reduces the breaking-even value V0(z0; q0).With higher interest rates not only entering
entrepreneurs receive a lower V0, but also some entrepreneurs may no longer become activate.

In periods of high interest rates, the mass of �rms entering is smaller. In those periods,
the requirements of productivity z to activate are higher. As a result, the entering �rms in
periods of high interest rates are more likely to survive. On the other hand, the model has
the observable implication that conditional on z and given the stationarity of Fz , the pool of
entrants, entering �rms in periods of high interest rates are smaller than �rms that enter in
periods of lower interest rates. The lower value V0 reduces the survival probabilities of those
�rms.

We close this section confronting our claim that in equilibrium the allocations are not subject
to renegotiation. While, at the time of signing the contract, V0(z; q) cannot lie in regions where
C is decreasing in its �rst arguments, one might question whether the allocations in the future
would entail possible Pareto improvements. If that is the case, the contracting parties will
renegotiate a new contract and the studied allocations would no longer be relevant.

Competition implies that the initial entitlement V0(z0; q0) must be located in a neighborhood
where C(�; z0; q0) is strictly increasing. Otherwise, the entrepreneur is not receiving the best
feasible contract. But it is easy to verify that this fact along with the optimization underlying
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U , they lay in regions where C is also strictly increasing in the �rst argument. Formally,

Proposition 3.13. Fix (z; q) and assume that V � V0(z; q). Then, for every z0; q0 2 Z � Q,
either Gz0;q0(V; z; q) = U , or @C(Gz0;q0(V; z; q)�; z

0; q0) > 0

Proof. See appendix for details.

The economics captured by this proposition is very clear. For the initial expected payo� of
the bank to be strictly decreasing in the initial expected payo� of the entrepreneur, then it must
be the case that no renegotiation can be feasible in any future date or contingency with positive
probability. Otherwise, the contract is not optimally designed, as it can be strictly dominated
by modifying it with the Pareto improving renegotiations. Therefore, once the contract is
established, the rules speci�ed in at the time of signing the contract.

In a more technical note, this result validates our using the promise keeping constrained
with equality.

Decentralization With Short-Term Securities

In this section we show that the allocations attained by long term contracts can be replicated
by sequences of one-period contingent contracts. Our argument follows closely Alvarez and
Jermann [2] and to a lesser degree Kehoe and Levine [38] and Zhang [55]. As Alvarez and
Jermann [2], we will examine environments where entrepreneurs trade in standard securities
markets, but their portfolio choices are restricted, in our case, by solvency as well as borrowing
constraints. 4 We show how to �nd the price system and the pro�le of constraints so that the
allocation attained in these less sophisticated trading environments replicates.

In our environment borrowing constraints are needed in addition to solvency constraints.
This extra requirement is the consequence of the added possibility of entrepreneurs to ap-
propriate the working capital. Extra investments in notation are required by the liquidation
option. The steps of this exercise are the following. First, we de�ne the problem of a maxi-
mizing entrepreneur facing given arbitrary asset prices and solvency and borrowing constraints.
Second, from the long term contract we construct a candidate pro�le for the constraints and
the securities prices. In the third, ignoring the participation and default constraints, we verify
that the agent �nd it optimal to choose the allocations from the long term contract, given the
candidate prices and constraints. Finally, we verify that the allocation also solves the problem
of the agent, even when facing the participation, exit, entry and default decisions.

Albuquerque and Hopenhayn [1], following Bulow and Rogo�, [7] consider the case when
defaulting entrepreneurs can maintain savings in other �nancial intermediaries and write down
contingent contracts. The key di�erence is that we assume a strong form of concertated action on
behalf of �nancial intermediaries: that defaulting agents are out of the entire �nancial system.
This is, we assume that while �nancial intermediaries compete with each other in the securities
market, they can commit not to lend and also to seize the savings of any entrepreneur who,
in any previous period, has defaulted, to any �nancial intermediary. This form of cooperation
among intermediaries could be derived from an in�nite horizon game among intermediaries.
We can also �nd support for the assumption from the working of actual civil (common) courts,
credit bureaus, etc, in actual economies. Indeed, information sharing arrangements among
creditors are pervasive world-wide, f.g. Padilla and Pagano [45], even in developing countries.
Indeed, creditors share information not only on credit performance but also on asset ownership
by debtors. See f.g. Monge et. al [44] for a country study.

4Kehoe and Levine [38] follow Prescott and Townsend by imposing the incentive constraints directly in the
consumption sets.
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previous environment as one in which the entrepreneur acquires long term, contingent liabilities
from an intermediary, but that he can move from one bank to another as long as he pays back
the remaining balance in the original relation. Banks break-even in expectation in every period,
as the entrepreneur transfer his debt to the new bank which pays back to the original bank.
This last interpretation is an immediate by-product of the construction of the candidate budget
constraints.

Anyway, the exercises in this section yield an explicit link between the conceptual variable V
in a relationship with a much more pedestrian form of collateral, the wealth of the entrepreneur
in a decentralized setting.

The Deterministic Case

The essence of the argument can be captured by the case with no uncertainty where Æ = 0,
and normalize units so that zt = 1 all t. The results for the general case are straightforward
extensions once the appropriate notation is in place.

Consider the problem of an entrepreneur that can borrow or lend using one-period assets
in impersonal markets. The only asset is a one-period bond with price q. For now, ignore
the occupational choice and the option of default. Assume that for unspeci�ed reasons, the
entrepreneur must satisfy solvency and borrowing constraints Â;B = fÂt; B̂tg. The solvency
constraints indicate that in every period t, the wealth at of the agent must always be at least
Ât and the borrowing constraint restricts the external borrowing at period t to be at most B̂t.
The only asset needed in this case is a one period bond, which price we take as q.

The problem P(Â; B̂) of the entrepreneur, given q and A = fÂt; B̂tg, the arbitrary solvency
and borrowing constraints is:

max
ct;at;kt;

X
t�0

�tct (P(Â; B̂))

such that for all t

at � At (Solvency Const.)

0 � kt � at �At + B̂t (Borrowing Constraints)

0 � qct � at + q[f(kt)]� qat+1 + kt (Sequential Budget Constraint)

The speci�cation of Â; B̂ determines whether the agent can become active, the feasible level
of operation, his consumption, etc. For example, to become active, the entrepreneur at t = 0
it is necessary that Â0 � �K0 so we can buy the plant, and that B̂0 > 0 to make it operate
in that period. Yet, we are not interested in the allocations from arbitrary Â; B̂. The question
is whether the is a pro�le, say A;B, in which the allocations in this far less sophisticated
environment replicate � .

Using the long term allocation, � we can read o� the implied net asset positions of the
entrepreneur in the relation, as At � C�

t , i.e. the value assumed by Ct along the optimal long
term contract. The initial value for the sequence is given by A0 = �K0, i.e. the entrepreneur
starts with net debt to �nance the plant. The wealth is updated according to the repayments
and working capital advances r�t ; k

�
t , following the recursion:

At = �qr�t + k�t + qAt+1 (25)
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liability. Say, in the beginning of the period an entrepreneur owes At < 0. Then, he can
borrow the amount At + kt from another bank, and ask the new bank to pay his debt At

to the old bank, freeing him from any that liability. In that period the entrepreneur would
use the working capital kt, produce f(kt) and make the repayment rt to the new bank; those
transactions imply that the next period will begin with the agent having a debt (or deposit) of
At+1 in the new bank. At that point he can decide to remain or to move on with a di�erent
bank, and so on. Banks would be breaking-even in every period. It requires that no bank
will lend to entrepreneurs who have previously defaulted. To cope with the incentive to switch
to the underground sector and to appropriate of the working capital require the lower limits
in the debt rolled over (for participation) and upper limits on the borrowing (default with
appropriation of k). The obvious candidate for the borrowing constraint is simply B = fk�t g.

The allocation implied by � uniquely solves P(A;B;q). Suppose that the economy is such
that it is optimal to activate the �rm in the long term contracts setting. Since A0 = C0 = �K0,
here the entrepreneur can also become active in the �rst period of life and by construction he
can operate the plant up to k0 = B0 = k�0 . This holds for any period t; the allocation implied
by � is feasible because by construction it and respects the constraints A;B. We can verify
that indeed the agent cannot do better (see the appendix) because otherwise the contract used
to design A;B could be improved upon, which is a contradiction with the de�nition of C or the
initial value V0. Finally, assume that the entrepreneurs can have the option of leaving without
honoring previously accumulated debt or alternatively, leaving the system and appropriating
the working capital advanced in the period, exactly as above. Would their participation and
default decision be di�erent in this trading environment with A;B with respect to the long term
contract environment? Clearly no. While the pro�le of credit constraints allows in�nitely many
paths with nodes in which the entrepreneur would run away as the entrepreneur will disregard
those paths as suboptimal. This is, for any period t, including the activation date t = 0, once
the agent is placed along the optimal default free allocation from the long term contracts, he
will disregard those other alternatives as suboptimal.

The General Case

The case with uncertainty follows naturally from the previous considerations, but requires
extra notation. Here, the solvency and borrowing constraints need to be speci�ed as functions
of the partial histories of the relationship. The steps of the argument are the same: de�ne
the problem of agents facing exogenously given solvency and borrowing constraints; from the
long term contract �nd the candidate prices for the securities traded and the solvency and
borrowing constraints; ignoring the participation and default constraints, it would be obvious
that the allocation � is optimal, and then argue that incorporating the default and participation
options does not a�ect the arguments.

First, we look at the interpretation of the contract as rolling over a short-term �nancial
liability. Here the entrepreneur in the �rst period obtains a loan of K0 from one bank to start
up the plant, plus k0 for the working capital of that period. The �nancial system records his
balance of �C(z0; q0)�k0 with that bank. Uncertainty present, the optimal one period contract
will be contingent on the realization at t = 1. Clearly, the bank and the entrepreneur can sign a
contract in which the balance of the latter is the value C�(z1; q1) attained from the long recursive
problem solved in the previous section. This is, a one period contract in which the entrepreneur
commits to repay r�0(z0; q0) and the next period is the random variable C�((z1; z0); (q1; q0)).
When the uncertainty of the next period is realized, the �nancial system records the debt of
the entrepreneur. At that point, we is free to contract with that bank with a similar contract,
or move on to another bank. If he opts for the latter, then he needs to pay for the balance
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the credit bureau records that the balance of the entrepreneur is with the new bank. And so
on. It is possible that C�((z1; z0); (q1; q0)) = �L; in this case, the value of the plant is exactly
the amount owed to the bank. We know from the long term contracts that happens when
Gz;q(�) = U . Then, the plant is seized by the bank to recover the debt. Finally, if the agent
dies, no one can recover any resources from the technology and the balance is recorded as zero.
By construction, as before, in each period the bank breaks even in expectation.

Along the lines of the previous subsection, we ask whether we can replicate the allocation of
the in�nite horizon contracts in centralized asset markets with endogenously designed exogenous
constraints. A very signi�cant simpli�cation is that in recording the histories of the relationships
we can ignore (non-trivial) liquidation randomizations because they are relevant only outside
the equilibrium allocation. In addition to z; q shocks, the relationships also face the risk of the
death of the entrepreneur, in which case no resources can be recovered. Moreover, we need to
keep track of whether the agent has been previously liquidated, which implies, by assumption,
that he cannot operate the productive technology anymore.

Denote dt the realization of the death risk; dt = 0 indicates that the agent dies at period t
and dt = 1 that he survives. Naturally, dt denotes the partial history of the death risk and Dt

the set of all partial histories.
The assets used by the entrepreneur to trade are contingent on the realization of the

(zt; qt; dt) shocks. Take p� as arbitrary the Arrow prices, and A;B arbitrary solvency and
borrowing constraints. Then, P(A;B; p�), the problem of the agent becomes:

max
fc;a;kg

X
ft�0g

X
fZt�Qt�Dtg

�tct(d
t; zt; qt)�t(d

t; qt; ztjq0; z0) (P(A;B;p�))

such that, for all (dt; qt; zt) 2 Zt �Qt �Dt all t

at(d
t; zt; qt) � At(d

t; zt; qt) (Solvency Const.)

0 � kt(d
t; zt; qt) � at(d

t; zt; qt)�At(d
t; zt; qt) + B̂t(d

t; zt; qt) (Borrowing Constraints)

at(d
t; zt; qt) + qt[f(kt(d

t; zt; qt))� ct(d
t; zt; qt)]� kt(d

t; zt; qt) �X
fzt+1;qt+1;dt+1g

�
p � (dt+1; zt+1; qt+1jzt; qt)at+1(dt+1; zt+1; qt+1; z

t; qt)
�

(Seq.Budget Constraint)

ct(d
t; zt; qt) � 0 (Limited Liability)

(26)

We have ignored the choices after being liquidated. Following our line of argument, they
are considered at the end.

We now construct our candidate price system and solvency and borrowing constraints. The
natural candidate for Arrow prices are:

p�t (d
t+1; zt+1; qt+1jdt; zt; qt) =

8>>><
>>>:

0 if dt+1 = 0 or

or if ds = 0 for some s � t

Gzs;qs(z
s�1; qs�1; Vs�1(z

s�1; qs�1)) = U

(1� Æ)qtP (zt+1; qt+1jzt; qt) otherwise

The implied Arrow-Debreu prices are de�ned by the recursion

P �t (d
t+1; qt+1; zt+1jz0; q0) = p�t (dt+1; zt+1; qt+1jd

t; zt; qt)P �(dt; qt; ztjz0; q0)

20



this price system is valid if and only if the credit constraints insure that active entrepreneur
will not default. Obviously, the value of a security that pays in the states of the world in which
the entrepreneur defaults must be equal to zero.

The price system indicates that the liabilities of dead entrepreneurs or liabilities of en-
trepreneurs that payo� only in the states where the entrepreneur dies must necessarily be zero.
The valuations of these securities do not pose any discussion. But notice that we have speci�ed
that the liabilities of agents who have been previously liquidated have zero value too. This
obeys to the assumption held all over the paper that once the agent is in the underground
sector, he does not have any incentives to repay debts. Notice also that since we are assuming
q � �, liquidated agents would not want to save, and therefore, the assumption is not with loss
of generality.

From the long term contract, the obvious solvency constraints are:

At(d
t; zt; qt) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�K0 if t = 0 and V0(z0; qt) > U

C(zt; qt; Gzt;qt (z
t�1; qt�1; Vt�1(z

t�1; qt�1))) if ds = 1 all s <= t

and for all s < t

Gzs;qs(z
s�1; qs�1; Vs�1(z

s�1; qs�1)) > U

�L if d1 = : : : = dt = 1 and

Gzt;qt(z
t�1; qt�1; Vt�1(z

t�1; qt�1)) = U

0 otherwise

while the simplest speci�cation of borrowing constraints are given by

Bt(d
t; zt; qt) =

8><
>:

k�(zt; qt; Vt(d
t; zt; qt)) if for all s � t, ds = 1 and

Gzs;qs(z
s�1; qs�1; Vs�1(z

s�1; qs�1)) > U

0 otherwise

The A;B pro�le is very simple and intuitive. First, the solvency constraints allows the
entrepreneurs in their �rst period of life to borrow up to the cost of the plant K0 only if, given
the economywide interest rate and the realized idiosyncratic productivity z the entrepreneur
can expect a utility higher than U . The solvency constraints specify that in those states of
the world in which the entrepreneur is going to be liquidated, then he can owe at most the
liquidation value of the plant. Entrepreneurs that have been liquidated or died previously
cannot negative balances.

Borrowing constraints are necessary because the entrepreneur might be better o� by ap-
propriating the working capital at hand and leaving the �nancial system with all the liabilities
unpaid. For active agents the constraint is the incentive compatible upper limit that results
from comparing the utility that a maximizing agent can achieve inside the system to the one
attained by defaulting. Trivially, agents dead in that period cannot borrow, but more im-
portantly, entrepreneurs who are alive but that have been previously or are currently being
liquidated, cannot borrow in positive amounts, as they would not have the incentives to repay.

With the candidate A;B; p� in the place, the argument is exactly as for the case of certainty.
First, by construction the allocation � of the in�nite horizon contract is feasible. Second, given
the constraints, the allocation is indeed optimal. Too see this, notice that constraints and prices
given, P(A;B; p�) is a convex problem. Since � < q the transversality condition holds trivially,
the Euler conditions are suÆcient. Given prices p�, we can readily verify that the allocation �
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entry decisions coincide in both environments.
To �nish the argument, we then consider P(A;B; p�) allowing the agent to default and

to decide whether to participate. By our assumptions, once the entrepreneur defaults or is
liquidated, his problem becomes trivial: consume e every period. This is a logical implication
of the assumption that once in the background sector, he cannot be forced to honor any liability.
5 The pro�le A;B allows trading strategies that involves nodes in which the entrepreneur will
be better o� defaulting. Some of those trading strategies require that the agent consume over
time below the dictates of � and accumulate assets a above the speci�cation of A, or that
accumulates assets. Since q < �, there are values a high enough so that the entrepreneur would
�nd it optimal to borrow Bt and default. By construction, the incentive problems would arise in
excessive savings as the solvency constraints impel the agent to save. However, once the agent
is in the path of � we would �nd it suboptimal to implement any of this strategies. Optimizing
entrepreneurs will start and remain in the path �.

Conditional on z; q, there is a one-to-one positive relationship between the state V in the
economy with long term contracts with the equilibrium asset a owned by the entrepreneur in
the centralized asset trading environment. Both can legitimately be thought of as collateral:
the �rst one because of the full commitment of the bank to honor his commitments; the second
for much more obvious reasons. We refer to them interchangeably as collateral.

4 Which Firms are Credit Constrained?

In this section we discuss the credit constraints implied the limited commitment of the en-
trepreneurs. In our environment, credit limits can a�ect �rm behavior in the scale of oper-
ations (intensive margin) as well as in the entry and exit (extensive margins). De�nitions of
these notions of credit constraints arise naturally after we compare the allocations with those
in an environment with full enforcement. We then link the likehood of a �rm to be constrained
in terms of its age and size.

In a world of perfect commitment the no-default constraint disappears. Once they have
signed the contract, entrepreneurs cannot opt out. With no default constraint disappear, re-
gardless of their age and history, active �rms, would always use the unrestricted level of working
capital ku(z; q) and the period surplus is equal to the unconstrained pro�ts �(z; q). The most
obvious notion of ineÆciency is that active �rms cannot use the optimal level because they
cannot commit not to default:

De�nition 4.1. Given (V; z; q) a �rm is credit rationed in the intensive margin if re-
mains active but k(V; z; q) < ku(z; q)

But credit constraints can also a�ect entry and exit decisions. To see this, we need to lay out
the value function for ongoing relationships need only to satisfy the promise keeping constraint
and the non-negativity of entrepreneur's consumption. Therefore, the set of feasible promise
utilities �u is given by

�u(V; z; q) =

(
y : Z �Q! [0;+1) s.t.

X
z0;q0

y(z0; q0)P (z0; q0jz; q) �
V

�(1� Æ)

)
(27)

It is not hard to see that since q � �, the full enforcement allocations requires that after the
initial period, as and as long as the �rm is in operation, the consumption of the entrepreneur

5Otherwise, given that � < Q the entrepreneur would want to borrow everything, e=(1 � q) and consume it
right away. Of course, the next period he would default and consume his endowment.
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they consume all it right away. 6 Using this feature, the value function for ongoing relationships
is simply:

Cu(z; q) = min

(
�L;

n
��(z; q) + q(1� Æ)

X
z0;q0

Cu(z0; q0)P (z0; q0jz; q)
o)

(28)

Of course, there is no need for randomizations on V . The initialization of contractual
relationships is done a similar fashion as above. Because �(z; q) � S(V; z; q) and �(V ) �
�u(V ); 8V � U , it is obvious that Cu(z; q) � C(V; z; q) all (V; z; q). With commitment,
entrepreneurs would receive a higher initial entitlement. The second type of ineÆciency arises
because some �rms that would be created with perfect enforcement are not activated because
incentive problems along the expected operation of the plan. This is

De�nition 4.2. Given (z; q) a �rm is credit rationed in the (extensive) creation margin

if simultaneously

9 yu � U s.t. yu � U + Cu(z; q) +K0 � 0 and 8y � U; C(y; z; q) +K0 > 0 (29)

Similarly, for subsets of exogenous states Z�Q, some �rms might be destructed only because
of the enforceability problem. This type of credit rationing can be de�ned as:

De�nition 4.3. Given (V; z; q) a �rm is credit rationed in the (extensive) destruction

margin if

C(V; z; q) = V � U � L > Cu(V; z; q)

All three types of credit rationing can be present, depending on the processes z and q and
the values of �;Ko; L and U . These notions of rationing are not independent. Rationing in the
intensive margin is a necessary but not suÆcient condition for the existence of rationing in any
of the extensive margins.

Which �rms are more likely to be constrained? The larger is the value of V (a), the larger is
the amount of working capital that banks can advance to the entrepreneur without concerns of
triggering his default. Thus, conditional on z; q, �rms who poses a larger collateral in the initial
period are less constrained. In economies in which the limited liability constraint is binding
in the �rst stages of life of the �rm, then younger �rms are more likely to have a lower level
of V (a) than more mature �rms. Moreover, again conditional on z; q, for a �rm to be larger
than other is just equivalent to be less constrained. Now, since the optimal usage of working
capital for more productive �rms is also higher, one could suspect that they are more likely to
be constrained in the intensive margin. But this is not necessarily the case because the optimal
policy function speci�es that Gz0;q0(�) is strictly increasing in z

0.
Firms with small levels of collateral are also more likely to be constrained in the destruction

margin. Remember that the optimal liquidation policy requires no randomization and that
when �rms are liquidated, all the assets are seized. The more binding the limited liability
constraint, i.e. the lower V (a), the larger is the set of states in which the next period the
�rm will be liquidated. Clearly, the lower the productivity, the more likely those �rms will
be shut down. The higher the productivity of the �rm, the less relevant the participation

6The contract under full enforcement resembles the very sad situation described by Horacio Quiroga in Los

Mens�u.
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productivities are also more prompted to be constrained in the creation margin.
Higher interest rates are associated with more �rms constrained in the extensive margins.

In our setting the continuation value of �rms depends on interest rates while the scrapping
value L+ U does not. In the regions where liquidation/creation decisions are made, the value
of continuation is decreasing in the interest rate. Therefore, with higher interest rates less �rms
will have a continuation value above L+U for continuation of K0+U for creation. Just because
of the limited commitment of the entrepreneur, more �rms are destroyed and less are created.

5 Asymmetries in the E�ect of q Shocks

The realization of q a�ects not only the pool of new entrants, but also which of the active �rms
are liquidated. For entry, there are two opposite e�ects: higher interest implies a higher initial
z0 for a �rm to be active; but given z0 the newly created �rms are more credit constrained as
the value V0(z0; q) is decreasing in q. It also turns out that the e�ect on active �rms depends
on their value V . The liquidation of �rms with smaller V is more responsive to q. This section
extends this discussion.

5.1 Asymmetric E�ect of q across active �rms

The function C is not monotone in q. In this model, q shocks are relevant only for their e�ects
on Cc, the continuation value as the scrapping value of the plant is independent of q. On one
hand, the timing between the commitment of working capital and the recollection of output
implies that with higher interest rates, the net present value of the pro�ts of the technology is
reduced. But on the other hand, q discounts the present value of the consumption (dividends)
for the entrepreneur, and hence higher q implies lower C; the net e�ect results of the balance
of these two forces. Because the state V has the dual role of determining both pro�ts and
consumption streams, C is not submodular in (V; q). But for larger values of V , the imperfect
enforceability is not binding and the e�ect on the present value of consumption dominates.
Imperfect enforceability implies that,for same productivity z, �rms with lower V (younger and
smaller) are more likely to liquidate in periods of high interest rates.8

Even if in equilibrium the contract never arrives to regions in which C is increasing in q
(increasing in the real interest rate), interest rates a�ect more the continuation of small �rms,
because of the transition dynamics. Firms that have accumulated enough collateral can use
more working capital and the total expected discounted value of the surplus from the technology
can dominate the opportunity cost L + U , and the plant continues. However, during the �rst
periods the �rm is operating at a much lower scale, and the present value of the surplus of the
�rm might fall below the liquidation value.

To illustrate this assume that zt = z, qt = q for all t, and Æ = 0. Here, a relationship
either liquidates immediately or remains active forever; continuing relationships converges to a
steady state. During the transition, Vt grows as fast as possible until reaching its steady state
value. LetM(q) and S(q) denote respectively, the steady state level of V and the period pro�ts
extracted from the technology in steady state. Let V0 � M(q). Obviously the cost Cc(V0; q)

7Note the di�erence with the endowment economies of Kehoe-Levine and Alvarez-Jermann [38, 2]. In their
case, in autarky the entrepreneur retains his endowment, and therefore higher current productivities make the
participation constraints more binding. In our case, the autarky is independent of the productivity z which of
the technology, which can only be used if the entrepreneur remains in the �nancial system.

8Perhaps the intuition is more clear using the decentralize trading environment. Interest rates reduce the
present value of the �rms. But there is also a wealth e�ect of q: if a < 0 higher q reduces further the expected
present value of the consumption for the agent that continues in the �nancial system. If a > 0 the e�ect is the
opposite and if a is high enough, the expected utility of the agent can actually increase with higher interest rates.
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pro�ts (NPVP) minus the NPV of the dividends (NPVC), or

Cc(V0; q) = NPV C(V0; q)�NPV P (V0; q) (30)

De�ning T �(V0; q) the number of periods needed to achieve the steady state, i.e.

T �(V0; q) = min
t2Z

�
��tV0 �M(q)

	
(31)

we can decompose the previous terms in steady state and transition components:

NPV P (V0) =

T �(V0;q)�1X
t=0

qtS(V0�
t) + qT

�(V0;q) S(q)

1� q
(32)

NPV C(V0) = qT
�(V0;q)�1[q(�T

�(V0;q)�1V0 � �M(q))]+ + qT
�(V0;q)

�
qM(q)(1 � �)

1� q

�
(33)

Notice that T �(V0; q) is strictly decreasing in V0, and because for all t � T �(V0; q) S(V0�
t) <

S(q) the NPV P (V0) is strictly decreasing in V0.

If, S(q)
1�q > L+ U then those �rms that have achieved the steady state remain active at the

given rate q. Similarly for �rms that are close to the steady state. However, it may easily be
the case that for a low value V0 NPV P (V0) falls way below L + U , and they are optimally
liquidated. This is reinforced by the e�ect on the NPV of the dividends. One can verify that
V0 �NPV C(V0) is strictly increasing in V0.

5.2 E�ects on Entry: Cleansing vs. Sullying E�ects

Is the average productivity of the resources used by the plant higher or lower with higher
interest rates? In general, higher interest rates (lower q), heighten the ineÆciencies of the
timing of production. Therefore, the working capital used by all active plants is reduced,
implying, that for all z the marginal product of working capital is higher and therefore its
average productivity also higher. This intensive margin e�ect is reinforced by the extensive

margins because surviving and newly created �rms have also higher zs. Therefore, if we are
only concerned with the productivity of the working capital used by the �rms, productivity
is higher with higher interest rates (recessions). Moreover, extensive margin responses induce
cleansing in the pool of �rms in terms of z.

On the other hand, if we also consider the average productivity of the �xed capital, which
in the model is given by plants, then it is very likely that the average productivity declines,
depending on the relative strengths of the intensive versus the extensive margins e�ects, which
now operate in the opposite direction. Moreover, there is a sullying e�ect in the sense that
with higher interest rates, the entrants are more credit constrained, a fact that reduces the
productivity of the plant as well as the chances of future survival.9

9Gadi Barlevy pioneered the exploration of sullying e�ects.
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Here we briey examine the empirical evidence and compare it with the main qualitative pre-
dictions of the model: First, the rate of destroyed �rms is positively correlated and the rate of
newly created �rms is negatively correlated with interest rate shocks; moreover, the survival of
small and young �rms are the most sensitive. Second, the response of �rm destruction to shocks
must be highly concentrated in short periods of time, as surviving �rms are likely to endure
higher interest rates, and indeed, lower interest rate may induce higher future destruction ows.
Finally, aggregate output responds negatively to interest rate shocks, not only from the reduced
mass of active �rms but also for the reduction in the production of remaining ones. Frictions in
the creation rate of new �rms and on the expansion of the existent �rms generates persistence
and asymmetry in the aggregate response.

Interest Rates, Gross Flows and Output in the U.S.

The empirical literature on gross job ows (see Davis, Haltiwanger and Schuh [20] and the
references therein) highlights a set of stylized facts: Gross ows are large, even in periods
of macro stability. Job destruction is countercyclical while job creation is procyclical. Most
notably, job destruction is more volatile than job creation. These facts are evident from a
casual inspection of Figure 1.10 As much as 10% of manufacturing jobs were destructed in a
single quarter, 1975:I; in most quarters around 5% of the jobs are newly created or destroyed.
Clockwise, the top-left panel shows the rate of job creation and destruction for the entire
manufacturing sector. The second shows the job creation and job destruction accrued by
plant start-ups and plant shut-downs respectively. The third panel shows the fraction of total
job creation and total job destruction that are accounted for by, respectively, start-ups and
liquidations. The bottom-right panel exhibits the gross real borrowing (FedFunds) and lending
(Prime) interest rates. The ination rate was calculated from the CPI. We take geometric
average the three annualized gross nominal return implied by the interest rate for each of the
month of the quarter and divided it by the annualized geometric average of the e�ectivemonthly
gross ination rate. In quarterly averages, the two rates comove very closely, and the results
discussed below are insensitive to choosing either series.

Our model emphasizes the rate of activation and liquidation of �rms. Unfortunately, there
is no high frequency data available on these series. Following J.Campbell [12], however, we
can interpret the job destruction (creation) from plant liquidation (startup) as a employment-

weighted exit (entry) exit rates. This is the best series available at business cycle frequencies
as con�dentiality clauses impede a direct access to the Census data. While the rate of jobs
destroyed or created by exit or entry is not high, it can account for as much as 24% of the total
manufacturing ow. Furthermore, the quantitative relevance of entry and exit is likely to be
underestimated.11 Observe that destruction ows has many spikes and many of those coincide
with episodes of increasing interest rates.

Figures 3.5 and 3.6 make clear the main di�erences in the job destruction patterns across
plants with di�erent age is mostly in the extensive margin. In both of these �gures, the top
panel shows the job destruction for exiting �rms and the bottom panel the job destruction by
continuing �rms. We follow the suggestion of Davis, Haltiwanger and Schuh of grouping the

10The data runs for the period of 1972:II to 1993:IV and was taken from the anonymous ftp site of Davis-
Haltiwanger-Schuh.

11Davis-Haltiwanger-Schuh [20], explain that their methodology is likely to reduce the participation of shut
downs and start ups. Moreover, entering plants may intensively use temporary workers and delay recording them,
and moreover e�ectively shut plants may retain a few employees just for tax, maintenance or other purposes not
related with the activities of the plant.
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Figure 1: U.S.: Realization of Gross Flows and Interest Rates
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employment destroyed by deaths and by continuing plants in each category. It is surprising the
symmetry in the behavior of job destruction by �rms continuing, independent of their age or
size. The di�erences are however dramatic one we look at the destruction series from deaths
across di�erent ages and size. Clearly, the younger and smaller categories are the ones with
much more volatility. Moreover, the peaks of job destruction by exiting young and small plants
roughtly coincide with episodes of tightening in the monetary policy.

Indeed, looking at Figure 4. it is clear that the gross ows comove with leads and lags of
the real interest rate. Series were seasonally adjusted using OLS on quarter dummies. Job
destruction (creation) is positively (negatively) correlated with real interest rates. The correla-
tions with destruction series is higher than with creation series. Shutdowns correlate more with
interest rates than total job destruction. Moreover, the correlations for the destruction (and
reallocation) series have an inverted U-shape that peaks at the zero lag/lead. In general the
correlations are not too high, but it is interesting to observe that the correlations of interest
rates are not too far from the obvious rival, total factor productivity innovations, as reported
by Campbell[12].

In Figure 1. we saw that there are short episodes of time in which the destruction ows are
unusually high. This observation has led to view the destruction ows as temporally concen-

trated. One way to examine the degree of temporal concentration of the series is by assessing
the importance of fast reverting cycles {high frequencies components{ in the series. Inspecting
the spectra of the series, shown in Figure 5., also provides a comprehensive and parsimonious
summary of the stochastic properties of the series, that will help us specifying the features of
the data for which our model is relevant.

The spectra of all the destruction series is almost uniformly above of the corresponding
creation series, which is consistent with the relative volatilities, as the area of the spectral
density equals the estimated variance of the series. Seasonal frequencies (cycles of 4 quarters)
are important, specially for the destruction series. Of course, to estimate these �gures, the the
series are not seasonally adjusted. The low frequencies are a very important part of the series,
indicating the relevance of the persistent decline of manufacturing during the sample period.
The secular trend and the seasonal variations present in the manufacturing data overshadows
the temporal concentration of the series. Yet, the spikes observed in the time domain manage
to reect themselves in a rising tail at high frequencies. It would be interesting to observe data
from the whole economy or sectors without secular trends.

Figure 6. shows a negative relation of interest rates with the net employment growth
(creation-destruction) and net establishment growth (births-deaths). In fact, the net establish-
ment growth correlations are stronger. The e�ect of interest rates on employment and number
of plants are reected in negative relations with aggregate output as shown in Figure 4. The
results are obtained by �ltering the log of real aggregate output and interest rates with the
Hodrick-Prescott, Baxter-King, and linear detrending �lters.For Baxter-King we use (6,32,12),
their preferred parameterization for quarterly series, i.e. remove cycles that last less than 6
quarters and more than 8 years, using 12 leads and lags in the moving average. For Hodrick-
Prescott we set � = 1600. Consistently with the claim highlighted by a variety of authors, e.g.
King-Watson, [42], real interest rates are a negative lead indicator of aggregate output.

Qualitative Implications of the Model

Because the market discount factor is a common component in the state of every ongoing
relationship, it is only necessary to track qt and the distribution of the idiosyncratic components
of the active relationships. Hence, the state for the whole economy is the pair (qt;  t) where  t
is a measure over (V; z) the idiosyncratic components of the state of individual relationships.
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Figure 2: U.S.: Job Destruction of Plants with Di�erent Age
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Figure 3: U.S.: Job Destruction of Plants with Di�erent Size
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Figure 4: U.S.: Correlation of Gross Flows Levels with Leads/Lags of Real Interest Rates
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Figure 5: U.S.: Spectra of Gross Flows and Real Interest Rates
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Figure 6: U.S.: Correlation of Net Flows Levels with Leads/Lags of Real Interest Rates
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Figure 7: U.S.: Correlation of Output with Leads/Lags of Real Interest Rates
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total mass of active �rms varies according to the entry and exit. However, the relevant measures
are bounded because at most the entire unit mass of agents can be active. Let Y � [U;+1)�Z,
the set of idiosyncratic states and (Y;Y), the respective measurable product space. Denote
M1 �

�
 2 M(Y;Y);  (Y) � 1

	
, and � �

�
 2 M(Y;Y);  (Y) = 1

	
the set of measures

bounded by the total mass of living agents and the set of probability measures.
The contracts de�ned at the individual level will de�ne operators that render the aggregate

time series of creation, (TC), destruction of �rms, (TL), as well as the evolution of the states
for the enduring �rms, (TE). Respectively, these operators take the form of the mappings,

TC :Q! � (34)

TL :Q�Q�M1 ! [0; 1] (35)

TE :Q�Q�M1 !M1 (36)

Since fqg is taken to be exogenous, we need only to trace the dynamics of f tg. For
simplicity the exposition omits the randomizations in the exit margin. Given the interest rate
of the period, TC will provide us with a measure over the entrant entrepreneurs. Notice that I
have assumed that entry decisions are based on the productivity of the current period and that
these productivities are drawn from the unique invariant c.d.f. Fz . Either all, none or only a
fraction of the possible entrants become active and that will depend on the realization q.

Competition �xes the initial value V0. Those agents who are not initialized obtained a
promised utility entitlement of U . If V 0(z; q) > U the agent became active. It's easy to
keep track of the population of entrants. For any pair of Borelian sets A � B � (U;1) � Z,
TC(qt)(A�B) is given by

TC(qt)(A�B) =
X
z2B

�[V 0(z; q) 2 A]Fz(z) (37)

and therefore the mass of entrants in A�B is

 0(qt)(A �B) = ÆTC(qt)(A�B) (38)

We adopted the convention to denote byGz0;q0(V; z; q) = U the case when a �rm is liquidated.
The total mass of �rms begin liquidated, when the previous state was (qt�1;  t�1) and current
exogenous state is qt is given by

TL(qt; qt�1) t�1 =

Z
RU�Z

 X
z2Z

�[Gz0;qt(V; z; qt�1) = U ]Pz(z
0; z)

!
 t(dV � dz) (39)

Finally, enduring relationships Gz0;qt(V; z; qt�1) > U will update their state so that for any
A 2 B(U ;1) and B � Z

TE(qt; qt�1) t�1(A�B) =

Z
RU�Z

 X
z2B

�[Gz0;qt(V; z; qt�1) 2 A]Pz(z
0; z)

!
 t(dV � dz) (40)

The exposition has ignored so far the exogenous death of �rms. Since only (1 � Æ) �rms
actually overcome the exogenous risk the transition of  is actually given by

 t = (1� Æ)
�
TE(qt; qt�1) t�1

�
+ ÆTC(qt) (41)
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Because of the presence of aggregate uncertainty, in general these economies cannot converge to
an invariant distribution of �rms. 12 However, there is a sense in which their limiting behavior
is stationary, i.e. independent of calendar time.

Rolling backwards the transition for  t, for any positive integer N

 t =ÆTC(qt; qt�1) + Æ

N�1X
j=1

(1� Æ)jPE(qt : qt�j)TC(qt�(j+1))

+ (1� Æ)NPE(qt : qt�N ) t�N

where the operator

PE(qt : qt�j) :M !M

is of the form

PE(qt : qt�j) �TE(qt:qt�1)TE(qt�1; qt�2):::TE(qt�j ; qt�j�1)

(42)

for j = 0; 1; 2; ::: Because TE is mass decreasing so is PE(qt : qt�j), and because (1�Æ)
N ! 0

as N grows, the e�ect of  t�N on  t washes out over time. Equivalently, the e�ect of  t on
 t�N vanishes as N !1. Taking that limit

 t = ÆTC(qt) + Æ
1X
j=1

(1� Æ)jPE(qt : qt�j)TC(qt�(j+1)) (43)

Because fqtg is a stationary process and TC ; TE are time invariant operators, it is immediate
that the distribution of  t does not depend on the calendar time. This is very convenient because
all the time series that we are interested in are functions of  t; qt, and as such, they will also
be stationary.

A special case is when there is not aggregate uncertainty, i.e., when qt = q 2 (0; 1) for all
t. In this case, independently of the initial conditions, the economy will converge to a unique
invariant distribution. To see this, notice that the measure of entrants TC(q) is time invariant
and that PE(qt : qt�j) = T jE(q; q); j = 0; 1; 2; 3; :::. Then the unique invariant distribution is

 (q) = Æ
h 1X
j=0

(1� Æ)jT jE(q; q)
i
TC(q) (44)

Numerical Illustrations

In this section we presents a brief review of the features of the aggregate uctuations in the
arti�cial series generated by the model. We believe that the model abstracts from important
shocks and transmission mechanisms driving the aggregate uctuations in actual economies.

12A trivial exception is when no �rms are ever created.
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Table 1: Parameter Values Used

Parameter Value Used

Discount Factor Entrepreneurs � = (1:1)4

Death Prob./Entry Mass Æ = 0:025
Entrepreneur's backyard income e = 4:79;) U = 100
Liquidation Value Plants L = 30
Installation Cost of Plants K0 = 33:3333 = L=0:9
Output elasticity to working capital � = 0:85

Shocks

Idiosyncratic Productivities z Z � [1:75; 2:25]; Nz = 5
�z = 0:9; �z = 0:12

Market Discount Factor q Q � [�; 0:99999]; Nq = 5
�q = 0:62; �q = 0:00635

The exercises summarized here are aimed to show the qualitative features, and, at this stage,
we are not aiming to match the moments of the data.

Notice, anyway, that a complete calibration exercise is not entirely feasible as many objects
in the model do not have an obvious empirical counterpart, for example the set-up cost K0, the
liquidation value of the plant L or the reservation utility U . Other ingredients of the model,
for example, z the stochastic process of the idiosyncratic productivity of plants, are hard to
measure, specially if one must consider credit constraints of the �rms as well as other elements
(e.g. learning) ignored in the model.

However, after running simulations for many parameter speci�cations, the qualitative strengths
and weaknesses of the model are very robust to the parameter. We report here the case for
parameter values we think are reasonable. The table presents the parameter speci�cations. We
also specify z given the common belief that idiosyncratic productivity shocks are very persis-
tent. We set z as a Tauchen-Hussey Markov chain approximation of a log normal process, with
a correlation of 0:9. The support Z was normalized to be contained in an close interval.

For the process follow by the interest rate, we also took the Tauchen-Hussey Markov chain
approximation of the actual quarterly FedFunds rate. In some periods, the ex-post real interest
rate is negative, and we re-scale it so that its support lies within [�; 1). Therefore, the main
ingredient for the aggregate uctuations is directly taken from the data. In the section C of
the appendix we display the �gure of the actual interest rate process with the Markov chain
approximation. The other parameters are displayed in the table.

A problem with doing the simulations is the discreteness of shocks. We need to use numerous
supports Z and Q, because with a small number, the z shocks have radical e�ects on the
survival of �rms and the q shocks radical e�ects on the creation and destruction series. We use
Nz = Nq = 5 number of states for each shock. This allows us to generate series that are not too
extreme and keep the computations feasible. Yet, notice that we have to solve for the optimal
contract we need to solve a dynamic programming problem with 25 states (z; q). The Bellman
Equation is solve using quadrature based methods, as discussed in Christiano and Fisher [14].
In the section C of the appendix we discuss in detail the algorithm used. There we also display
the form of the value function C and of the policy function G.

Not surprisingly, the model is to the values assigned to L;K0; U . It is not hard to �nd
speci�cations of these parameters such that there is no entry at all or that all the �rms enter
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of operations of �rms is independent of the age. It can be time consuming to �nd parameter
speci�cations where the allocations are interesting. Notice that the model is very tight in
parameters. The only real free parameter in the model is K0 that governs entry. Any other
parameter a�ects the �xed point C, and hence entry, exit, growth, etc. in non-trivial ways.

Much more interestingly, the results are very sensitive to the elasticity of the production
function with respect to working capital. The closer � is to one, the closer to linear is the
production function and the larger is the optimal unrestricted working capital. In those cases,
pro�ts, entry and exit are very sensitive to the shocks. Given that �; Æ have to be set to realistic
values, they do not allow for much manipulation, � is very much the only room for altering
the number of periods to maturity of the �rms. Thus, the larger � the longer is the life cycle
dynamics. Because of computational limitations, one cannot push too much because then the
set [U;M(�z; �q)] becomes arbitrarily large, and we would need many more grid points to have
an accurate approximation.

Whenever the model is set with parameter speci�cations in which interest a�ect entry and
exit, the model implies comovement of aggregate ows with interest rates, but the environment
also allows for either margin to respond more strongly. For instance, if K0 is too large with
respect to L;U then most of the response to interest rates is in the creation margin. This is,
once a �rm is created, it is not liquidated because the liquidation value is insigni�cant. On the
other hand, since K0 > L, it is a necessary condition for entry to respond to interest rates that
exit respond to them. Yet, it is not a suÆcient condition. It is not hard to set the shocks Z,
specially when working with a small number of them, so that a constant fraction of �rms enter.
All these possibilities are not really interesting.

But, the qualitative results in environments where interest rates a�ect both entry and exit,
are very robust. As expected, both creation and destruction of �rms are very strongly correlated
with the interest rates. From the previous paragraph, we know that the relative magnitudes are
not of direct interest because they are driven by assumptions on parameters that we have not
estimated and do not have the information to calibrate. Figure 6 displays the spectral densities
of the arti�cially generated ows of �rms. Several patterns in the �gure are interesting and
robust. First, the model implies a much more volatile series of destruction than of creation.
Second, and more interestingly, most of the extra volatility is in higher frequencies. The largest
fraction of the variability of �rm liquidation is done in very short periods of time. The arti�cial
destruction series are obtained by feeding the model with interest rates with a large fraction of
the variation in low frequencies, and therefore the model implies that after a long-lived rise in
the interest rates, the �rms that survive are likely to remain active in the next period.

Therefore, the destruction series are highly temporally concentrated in the sense discussed
above. Notice that this is true either if we look at the rate (mass of ow/mass of active) or
the mass of the destruction. Comparing Figure 5 with Figure 8we observe that in general, the
model predicts that the process of destruction should be much more temporally concentrated
than in the data. Also, observe that given the behavior of entry, the result goes through to net
growth of active �rms.

Looking at the behavior of �rm creation, indicates a limitation of the modeling of entry
in the model. While the implied spectra implies that the relative importance of the di�erent
frequencies are similar to the implied by the data in Figure 3, the result holds mostly because
of the tight connection between entry and interest rates, which is much higher than the one
observed in the data. In the conclusions we discuss how to extend the modeling of the entry
even within the context of an OLG framework used here.

The information on the third panel of the Figure 6 is very important for the implied dynamics
of output. As we can see, the stochastic process follow by the mass (number) of active �rms,
while showing an important degree of temporal concentration, its variability is also strongly
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Figure 8: Model's implied Spectra of Firm Flows
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Figure 9: Spectra for Aggregate Output: Model and U.S. economy
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Figure 10: Model's Implied Real Interest Rate/Aggregate Output Correlations
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Figure 11: Aggregate Output Realizations: U.S. and Model Economy
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governed by low frequency innovations.
The persistence in the series of active �rms goes through to the implied series of output.

Figure 8, displays the spectra of actual U.S. linearly detrended output and the implied by the
model. (Below we explain how we make the series comparable.) The implied output series
have important persistent components, as can be seen from the relative importance of low
frequencies. Indeed, the output series are more persistent than the driving force. While �rst
order autocorrelation of quarterly real gross interest rates 0:62 the implied autocorrelation
of output in this example is 0:81 (output de�ned as net pro�ts ztf(kt) � kt of active �rms
plus the income e of agents in the background; using only the �rst component increase the
autocorrelation to 0:85). While the numbers can be made even larger, I have not run a case
that matches the autocorrelation of actual output, which is 0:9775.

The persistence of aggregate output is largely delivered by the persistence in the mass
of active �rms, which unfortunately is not empirically observable. For reasons discussed in
the conclusions, the life-cycle dynamics of �rms does not provide much additional persistence.
Figure 8 shows the dynamic correlations between arti�cial aggregate output and real interest
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lag, the correlations are very similar to the ones obtained actual linearly detrended output. But
the aggregate output in the model is much more responsive to interest rate than documented
by the data.

The limitations of the model are more evident by looking at the series of output generated
by the model once the actual realization of interest rates are fed into the model. Figure 9 shows
the data for the U.S. and the implied by the model. The U.S. output series are expressed as a
ratio to the trend, while the arti�cial series as a ratio of the sample mean. The arti�cial data
are started with the invariant measure of �rms associated with the median q = q3 interest rate.
By the radical mismatch in the �rst periods, it is clear that we are not giving the model its
best shot. It is interesting to observed that the behavior of the model is in line with the data in
some periods where the U.S. authorities were known to tighten the monetary policy. Moreover,
the series show some persistence, which, as we said below is driven by the measure of active
�rms. However, the arti�cial series is consistent with our observation that the model predicts
that the adjustments in the economy are more concentrated in short periods of time. Clearly,
the data displays much more persistence. And of course, the e�ect of shocks omitted in the
model.

7 Concluding Remarks

We studied a model in which the creation, expansion and liquidation of �rms are determined and
limited by incentives to default of the entrepreneurs. We studied the allocations from optimal
long-lived �nancial arrangements and derived the implied �rm dynamics. We generalized the
work of Albuquerque-Hopenhayn [1] on individual �rm dynamics by allowing shocks in the
interest rate faced by the bank. This extension is used to construct an equilibrium model
and study the implications of interest rate uctuations on the aggregate ows of creation and
liquidation of �rms, the reallocation ows across active �rms and the aggregate output.

But, despite our main focus on aggregate dynamics, we extended the micro analysis of
the long term contract under imperfect enforceability. We provided an alternative trading ar-
rangement, one in which entrepreneurs �nance their �rms using one period securities in an
environment with centralized information, that can replicate the allocations attained in the
in�nite horizon one-side commitment environment. The exercise provides an explicit link of the
�rm behavior with its collateral. We also verify that even so the value function is not necessarily
monotone, the equilibrium allocations are always renegotiation proof. More interestingly, we
also establish that randomizations are necessary to convexify the problem, deterministic alloca-
tion rules are suÆcient as non-trivial randomizations are only relevant outside the equilibrium
allocations.

The dynamics of aggregate output requires explicit consideration of the cross-section of
active �rms. The model implies interesting e�ects of interest rate shocks as they a�ect �rms
asymmetrically depending on their collateral. Indeed, the larger the collateral of �rms, the
less sensitive is the exit probability. Therefore, the survival of small, younger �rms is more
sensitive to interest rates than that of larger, more mature �rms. The model has also interesting
implications on entry. One the one hand, with higher interest rates less �rms are created, and
the minimum productivity needed for activation is higher. Therefore, higher interest rates
purify the pool of entrants and therefore their survival probabilities must be higher. But, on
the other hand, conditional on their idiosyncratic characteristics, the �rms that are created
during recessions face tighter credit constraints, their operations are more limited and their
survival probabilities are lower.

With the approximate quarterly real interest rates of the U.S. economy, we feed a parame-
terized version of the model and examine the arti�cial series. Implied aggregate output and job
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negatively with output, gross creation, net growth, of jobs and �rms, and positively with ows
of job and �rm destruction. With its built-in aggregate frictions in the creation of �rms, the
model also compatible with the volatility of destruction ows being much larger than that of
creation ows. Furthermore, the response in the mass of active �rms propagate the interest rate
shocks, as the resulting persistence of output series is higher than that of the original interest
rate shocks. Additionally, the destruction series are highly concentrated in short periods of
times.

We have not subjected the model to formal empirical testing. Yet, the numerical simulations
described at the end of the paper suÆce to grasp important qualitative limitations of the model.
First, output and gross �rm and job ows comove much more tightly with the interest rate in
the model than in the data. Second, with only working capital, the life cycle dynamics of �rms
is rather short, which reduces the potential of endogenous persistence in the model. Finally,
comparing the model series with the evidence on the manufacturing data in the U.S. makes it
clear the serious limitations in our modeling of entry. We conclude the paper by discussing the
extensions of the model to cope with the previous limitations.

The general equilibrium embedding of the model, which is discussed in the appendix, is
designed to abstract from the feedback of the measure of active �rms on the determination of
the interest rate. Such obvious limitation of the analysis is made for analytical tractability,
which is badly needed in the context of in�nite horizon contracts. The modeling strategy has
the advantage of focusing directly on interest rate shocks in addition of abstracting from the
particular details that drives the shock in q. But, while some of the implied uctuations are
in line with qualitative features of the actual data, it is very clear that the model leaves aside
important sources of the uctuations in actual economies, and over-emphasize the sole aggregate
shock. An extension, available to any other model, is to complicate the set up by including
other, say technology, shocks, as in Cooley-Quadrini [16]. A more interesting route would be to
allow for another input, as in Bergin-Bernhardt and Caballero-Hammour [3, 11], whose price,
say w, must clear the markets. We have reasons to believe that the asymmetric e�ect across
�rms and the direction of e�ects on aggregate output of shocks in the assets markets will be
robust to those extensions. The general equilibrium e�ects would only a�ect the timing of the
response of the aggregate economy and will most likely deepen the asymmetry in the e�ects
across �rms.

The overlapping generations structure imposed on the model e�ectively operates as an
aggregate friction in the creation of �rms and jobs. In this sense, the model incorporates
frictions stressed by the search and matching literature or the more barefaced aggregate creation
costs, e.g.[10]. 13 With this structure in hand, the model easily produces destruction ows that
are more volatile than creation, aggregate persistence due to sluggish response of the mass of
�rms, and asymmetry of the recessions versus expansions.

However, the model's creation series show the shortcomings of delivering the results from
this assumption. Counterfactually, creation inherits practically all the properties of the interest
rates. An extension to push in the near future, is to assume that the entrepreneur once liqui-
dated can return. Every period the agent is in the underground sector he draws a productivity
from the invariant distribution Fz, independent of the previous entrepreneurial spells. At the
aggregate economy, there is a measure  t of active entrepreneurs and a mass nt of agents in
underground. The pool of entrants is described by ntFz and depends on the state q. With
this added feature, the reservation utility, U�(q) will be a function of the current interest rate,
a�ecting exit decisions. Entry decisions must now solve an optimal stopping time problem,
making entry more sensitive and, we speculate, more temporally concentrated.

13Notice that the OLG structure we employ poses much more discipline in the sense of fewer parameters.
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and recessions is to include physical capital accumulation in the technology managed by �rms.
If the production function is f(K; k), and in addition of the working capital the entrepreneurs
could appropriate a fraction �K of the physical capital under their control, the life cycle of
�rms will be much longer. Here, the value of the entrepreneur V and the capital K under his
control will be complementary, and before the K can be expanded without triggering default,
the value V must be increased, a time consuming process because of the limited liability of
entrepreneurs.

A Proofs

Preliminaries and Notation

Let RU � [U;1), and consider the set of functions

F � ff : RU � Z �Q! R; f bounded and continuous in the �rst argumentg

and the norm

kfk = max
(z;q)2Z�Q

sup
x2RU

jf(x; z; q)j

Obviously, (F; k � k) is a normed linear space. With the metric d(f; g) � kf � gk, (F; d)
is a Banach space. We denote the operators T;Cc that take any function f in F , and return
functions which for any (V; z; q) 2 RU � Z �Q, have the values

Cc(f)(V; z; q) = min
y2�(V;z;q)

n
�S(V; z; q) + q

�
V � �(1� Æ)

X
z0;q02Z�Q

y(z0; q0)P (z0; q0jz; q)

�

+ q(1� Æ)
X

z0;q02Z�Q

f
�
y(z0; q0); z0; q

�
P (z0; q0jz; q)

o
(45)

and

T (f)(V; z; q) = min
(�;V 0;V 1)2�E(V;z;q)

n
�(V 0 � U � L) + (1� �)Cc(f)(V 1; z; q)

o
(46)

l(x; z; q) � �L� U + x is the cost of the bank for liquidating the �rm.
We make use of convex and submodular functions. Comprehensive treatment of these topics

are in Rockafellar [47] and Topkis [50]. We summarize the results used here:
Let the correspondence (multivalued mapping) @f denote the subdi�erential of f , where

@f(x) denotes the set of subgradients of C at x. f is di�erentiable at x i� @f(x) is a singleton.
A convex function f is almost everywhere di�erentiable; the left and right derivatives, f 0�; f

0
+

satisfy f 0�(x) � f 0+(x) all x 2 X. f 0� is left-continuous and f 0+ is right continuous. For
x1 < x < x2, then f+(x1) � @f(x) � f�(x2); if f is strictly convex, the two inequalities are
strict

Let � be a partial ordering de�ned on a set X. For x1; x2 2 X the operations _ and ^ are
de�ned as x1 _ x2 = inffxjx1 � x and x2 � xg and x1 ^ x2 = supfxjx � x1 and x � x2g.
A set X with the partial ordering � is a lattice if for all x1; x2 2 X then both x1 _ x2 and
x1^x2 are in X. Given two sets A;B � X, B is said to be higher than A, denoted A v B if for
x1 2 A; x2 2 B, x1 _ x2 2 B and x1 ^ x2 2 A. We say that B is strictly higher, A < B if the
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all x1; x2 2 X, f(x1_x2)+f(x1^x2) � f(x1)+f(x2). f is said to be strictly submodular if for
all unordered x1; x2 2 X , i.e. x1 < x1_x2 and x2 < x1_x2 and x1 < x1^x2 and x2 < x1^x2,
then f(x1 _ x2) + f(x1 ^ x2) < f(x1) + f(x2). A function f is (strictly) supermodular in X if
�f is (strictly) submodular in X.

Properties of the Value Function

Proof of Proposition 2.2, First Part

The cost of liquidation, �L + V � U is an unbounded function and for any f 2 F Cc(�) is
also unbounded. We use a restricted version of the recursive problem, and later verify that the
restriction is not binding.

Consider the Bellman Equation in the text, but impose an arbitrary upper bound, B <1
on the admissible set of promise utilities. For any (V; z; q) 2 [U;B]�Z �Q, the value function
CB in this restricted problem must satisfy the same Bellman Equation, but with the additional
restriction that Gz0;q;(V; z; q) � B. De�ne TB the functional operator associated with the
Bellman Equation is monotone and that because q(1 � Æ) < 1, discounting holds. Thus TB is
a contraction on (FB ; d), where FB restricts the domain of the functions to [U;B].

Below, we use the assumption of q < � to �nd a B < 1 such that for any V 2 RU the
constraint does not bind. Using the unique �xed point of TB , we can also write the formula for
the unique �xed point C of the operator T , for any V 2 RU .

Convexity holds by de�nition of optimal lotteries. Since S is strictly increasing in z so is
the �xed point. The details are standard and omitted.

Proposition 2.3: @C � 1 and @Cc(V; z; q) � q

We �rst show the second part. Pick z; q and let V0 < V1 and f 2 F . Given f let also y0 be the
optimal policies given (V; z; q). y0 2 �(V0; z; q), and therefore, if Cc0(f)(V1; z; q) denotes the
continuation value at state (V; z; q) but restricted to use the policy y0, then Cc0(f)(V1; z; q) �
Cc(f)(V1; z; q). Therefore

Cc(f)(V1; z; q)� Cc(f)(V;z; q) � Cc0(f)(V1; z; q) �Cc(f)(V0; z; q) (47)

= �S(V1; z; q) + qV1 � [�S(V0; z; q) + qV0] (48)

� q(V1 � V0) (49)

(50)

as desired. The �rst part is immediate.

Proposition 2.4

We already know that the �xed point is convex. Consider a function f convex and submodular
in (V; z). For simplicity assume that @f is a singleton f1 everywhere. Fix V; q0, two states
z0 < z1 and, consider two other z0 < z1 in which there is not liquidation, given next interest
rate q1. Then,
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@Cc(f)(V; z0; q) =�
@S(V; z0; q0)

@V
+ q0 + q0(1� Æ)f1(Gz0;q1(V; z0; q0); z

0; q1)

��
@S(V; z1; q0)

@V
+ q0 + q0(1� Æ)f1(Gz0;q1(V; z0; q0); z

0; q1)

��
@S(V; z1; q0)

@V
+ q0 + q0(1� Æ)f1(Gz0;q1(V; z1; q0); z

0; q1)

= @Cc(f)(V; z1; q) (51)

The �rst equality derives by using the envelope condition and the assumption thatGz0;q1(V; z0; q0) >
U ; the second from the fact that z1 > z0 and that �S is submodular. The second inequality
requires more argument. First, our assumption that Gz0;q1(V; z0; q0) > U and Gz1;q1(V; z0; q0) >
U , then optimality requires f1(Gz0;q1(V; z0; q0); z

0; q1) = f1(Gz1;q1(V; z0; q0); z
0; q1); but since f

is submodular, then, (Gz0;q1(V; z0; q0); z
0; q1) � (Gz1;q1(V; z0; q0); z

0; q1). Therefore, given sub-
modular f , the optimal continuation policies are increasing in z0; But since Pz(z

0; z) is mono-
tone in z, the non-negativity constraint of consumption requires that (Gz0;q1(V; z1; q0); z

0; q1) �
(Gz0;q1(V; z0; q0); z

0; q1) all z
0. Using this, the second inequality follows from the convexity of f .

The last equality holds again from using the envelope condition, which completes the argument
for Cc(f) to be submodular. .

Continuation Policies

From the convexity of C it follows that he �rst order conditions are necessary and suÆcient for
the continuation policies. They are given by

�(1 � �2(V; z; q)) + �1(z
0; q0;V; z; q) 2 @C(Gz0;q0(V; z; q); z

0; q0); 8(z0; q0) 2 Z �Q (52)

�1(z
0; q0;V; z; q) � 0; Gz0;q0(V; z; q) � U ; one with equality 8(z0; q0) 2 Z �Q (53)

�2(V; z; q) � 0; �(1� Æ)
X
z0;q0

Gz0;q0(V; z; q)P (z
0; q0jz; q) � V; one with equality (54)

where �1(z
0; q0;V; z; q) and �2(V; z; q) are #Z �#Q+ 1 (scaled) Kuhn-Tucker multipliers.

Proof of Proposition 2.5: G is non-decreasing in V

Fix (z; q) and let V) < V1. For all those z0; q0 s,t �1(Z
0; q0; V; z; q) > 0 the proposition holds

trivially as Gz0;q0(V0; z; q) = Gz0;q0(V1; z; q) = U . Also, if �2(V0; z; q) = �2(V1; z; q) = 0 then
Gz0;q0(V0; z; q) = Gz0;q0(V1; z; q), as the choice is not restricted by V0; V1. Assume now that
�2(V0; z; q) > 0 and hence it is the case that �(1 � Æ)

P
z0;q0 Gz0;q0(V; z; q)P (z

0; q0jz; q) = V0.
Assume to the contrary of the proposition that 9z�; q� s.t. that all the optimal choice for z�; q�

is strictly at state (V0; z; q) than given V1; z; q, i.e. Gz�;q�(V1; z; q) < Gz�;q�(V0; z; q). If that is
the case, necessarily C(�; z�; q�) cannot have constant slope in the entire region

[maxfGz�;q�(V1; z; q)g;minfGz�;q�(V0; z; q)g]
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Using the �rst order conditions for (V0; z; q) and (V1; z; q) is direct to verify that @C(Gz0;q0(V1; z; q); z
0; q0) <

@C(Gz0;q0(V0; z; q); z
�; q�) all z0; q0. Since �2(V; z; q) > 0 it cannot be the case that there is a

policy selection Ĝ such that Ĝz0;q0(V0; z; q) � Gz0;q0(V0; z; q) for all z
0; q0 and that for some the

inequality is strict (otherwise the FOC could be satis�ed with �2(V0; z; q) = 0). Therefore, it
must be the case that Gz0;q0(V0; z; q) � Gz0;q0(V1; z; q) all z

0; q0 and for some z0; q0 the inequality
being strict. But that contradicts the optimality of Gz0;q0(V1; z; q) as Gz0;q0(V0; z; q) 2 �(V1; z; q)

Proof of Proposition 2.6

Let (V; z; q) be the initial state, �x any q0 2 Q and let z0 < z1. If both multipliers �1(z1; q
0jV; z; q) >

0; �1(z0; q
0jV; z; q) > 0 the conclusion trivially holds. Consider the case where �1(z1; q

0jV; z; q) =
�1(z0; q

0jV; z; q) = 0. The �rst order conditions imply that @C(Gz0;q0((V; z; q); z0; q
0) v @C(Gz1;q0((V; z; q); z1 ; q

0).
The proposition holds from the convexity and submodularity of C. In the regions where
Gz;q(�) > U , the probability of continuation is positive, and Cc is strictly decreasing in strictly
submodular in V; z, and therefore the order is strict.

Proof of Proposition 2.7

The operator in the RHS de�nes a contraction on the space of bounded functions; hence D <1
and is unique. SinceM is strictly increasing in both arguments and P (�; �jz; q) is monotone, then
the �xed point D is also strictly increasing in both arguments too. That D(�z; �q) = M�(�z; �q)
follows immediately from D(�z; �q) > �(1 � Æ)D(z0; q0) all z0; q0.

Proof of Proposition 2.8

For the second part, because q � �, the FOC indicate that either Gz0;q0(V; z; q) = M(z0; q0) or
that �2(V; z; q) > 0. by convexity policies outside these regions cannot intersect with the region
where the probability of liquidation is positive, because in the latter region C has a constant
slope lower than q. The argument for the strict submodulartiy of Cc on (V; z) follows the same
lines.

Proof of Proposition 2.9

Assuming that � 2 (0; 1). Since Cc has a slope lower or equal to q < 1, it is optimal to make

V 1 as large as possible. Then, if � 2 (0; 1), then V 0 = U and � = V 1�V
V 1�U . Substituting this

expression, and optimizing with respect to V 1 gives the expression in the proposition. The
LHS is strictly decreasing as @Cc � q, and the RHS is increasing. Then if there is a �nite
V 1 satisfying the equation, it is unique. The conclusion that such V 1 must be necessarily less
or equal to M(�z; �q) follows from the fact that C has constant slope q < 1 for V > M�(�z; �q).
Thus, if no value less or equal toM(�z; �q) can satisfy that expression, then a degenerate solution
V 1 !1 and �! 1 is optimal.

End of Proof of Proposition 2.2

When the upper-bound B � M(�z; �q), then, the optimal continuation policies in the restricted
problem coincide with those in the general problem. Then, the unique �xed solution of C is as
follows: for any (V; z; q), if V 2 [U;B], C(V; z; q) = CB(V; z; q). For V > B,

C(V; z; q) = min
n
�L+ V � U;CcB(V; z; q) + q(V �B)

o
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If �1 > 0 then Gz0;q0(V; z; q) = U , and the result holds trivially. Assume then �1 = 0. First
consider the case with assume �2 = 0 (the limited liability does not bind). In the �rst order
conditions, the �rst term is the discount factor � while the second is the would be a constant
in the region of randomizations, and strictly increasing outside of it until achieving q. If the
discount factor is strictly higher, then the optimal plan requires Gz0;q0 = U while if it is strictly
lower, then Gz0;q0(V; z; q) = V 1(z0; q0). In, zero probability even that � 2 @C(V 1(z0; q0); z0; q0),
then select either extreme, say U . (and therefore the agent consumes in the present date). If
limited liability holds of equality, either extreme can be chosen, as the entrepreneur and the
bank are indi�erent in the timing of the transfers. If the limited liability binds, repeat the
argument with �(1� �2).

Proof of Proposition 2.12

As long as K > L, it is easy to prove that it is never optimal to create a �rm that will be
liquidated with positive probability in the very �rst period. Then, necessarily newly created
�rms satisfy Cc(V0; z0; q0) +K0 = 0. The �rst part of the proposition follows as Cc is globally
strictly decreasing with respect to z, and in the relevant region, strictly increasing in V . Now
for a given L, for a large enough K0 > L, there exist 0 < ÆK0

and 0 < �K0
< 1 s.t. for all

0 < Æ < ÆK0
and � < [�K0

; 1), it is the case that whenever Cc(V0; z; q) = �K0 then

q

�
V0 + (1� Æ)

X
z0;q0

[C(Gz0;q0(V0; z; q); z
0; q0)� �Gz0;q0(V0; z; q)]P (z

0; q0jz; q)

�
< 0

This conditions simply says that the loan cannot be fully recovered from the repayment in
the �rst period of the �rm. In this case, higher q unambiguously reduces the value Cc(V0; z; q)
for all V) and since Cc(V0; z; q) is strictly increasing {in the region of initialization{ then the
breaking even condition requires V0(z; q) to increase.

Proof of Proposition 2.13

Fix (V; z; q) and assume that V � V0(z; q). Notice that independentently of the value of
�2(V; z; q), for those realizations (z0; q0) such that �1(z

0; q0jV; z; q) > 0 the optimal policy is
Gz0;q0(V; z; q) = U and the proposition follows directly.

From now on, assume that �1(z
0; q0jV; z; q) = 0. Consider �rst the case in which �2(V; z; q) =

0. Then the �rst order condition implies that

� 2 @C(Gz0;q0(V; z; q); z
0; q0) (55)

but since C is convex, then for any � > 0

@C(Gz0;q0(V; z; q) + �; z0; q0) � � > 0 (56)

and therefore, a positive increment in the utility entitlement of the entrepreneur induces
a strictly positive increment in the cost for the entrepreneur, as claimed in the proposition.
Finally, consider the case �2(V; z; q) > 0. The envelope condition is

@Cc(V; z; q) = �
@S(V; z; q)

@V
+ q(1� �2(V; z; q)) (57)
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necessarily �2(V; z; q) < 1. But then, from the FOC and for any � > 0

@C(Gz0;q0(V; z; q) + �; z0; q0) � �(1� �2(V; z; q)) > 0 (58)

and the argument is complete.

Allocations in P(A;B; p�) replicate �

Deterministic case Assume that there is an allocation f�ct; �at; �ktg that dominates � and sat-
is�es P(A;B). Consider �rst the case where q = �. There is a t0 such that

P
t�t0

�tc�t <P
t�t0

�t�ct, with �ct0 > c�t0 . Let �t0 � �ct � c�t . By construction
P

t�t0
�t > 0. Therefore, it is the

case that the optimal long term contract at time t0 could have achieved the utility
P

t�t0
�tc�t

with the resources At �
P

t�t0
�t < At = C�

t which is absurd given the de�nition of C�
t . But

since in the case of � = q there are in�nitely many solutions to the recursive optimal �nancial
relationships, then there can also be in�nitely many optimal solutions to P(A;B). Consider
now the case q > �; now the allocation solving the recursive long term contract is unique. By
of discounting, the far future can be neglected, so, without loss of generality, we can assume
that there is a �nite n, such that �s = �ct; �at; �kt t � n = fc�t ; a

�
t ; k

�
t : t � ng. That �s dominates

� means that
P

0�t�n �
tc�t <

P
0�t�n �

t�ct. If �ct � c�t all t and at least in one period the
inequality is strict, we obtain a contradiction with the construction of A. The only possibility
is that there are at least two dates �1 < �2 such that the in one date the consumption is lower
while in the other it is higher. Because � is the fastest repayment, then, �c�1 > c�� 1.Then,
�a�1+1 = A�1+1 � q[ �c�1� c�� 1] < A�1+1, so �s is not feasible in P(A;B).

B A General Equilibrium Interpretation

In this section I provide an interpretation of the model as the general equilibrium of a closed
economy with four types of agents: households, potential entrepreneurs, banks and a govern-
ment.

Asset markets play a crucial role in this economy because they determine the opportunity
cost of the resources used by active entrepreneurs, inuencing as well, the optimal decisions
for creation and liquidation of �rms. One can view this economy as one in which all, banks,
government and households have access to the access to frictionless asset markets. Assuming
that households own all the shares of the banks, I can restrict attention to the trading between
the government and households. 14 I shall consider economies whether the government only
trades in one-period riskless bonds, and thus, with symmetric households, bonds will be the
only asset that needs explicit pricing. While each household takes fqg this process as given,
the government is a large agent whose portfolio decisions can a�ect it. We assume that random
portfolio/expenditure decisions of the government are the only source of uncertainty in the
economy.

Households

There is a continuum (with unitary total mass) of identical, in�nitely lived households. House-
holds own all the shares of the banks and with no loss of generality I assume that each period
they receive (or pay for) the surplus st of the banking intermediation sector. They have another
primary source of income, a positive constant ow yH of the consumption/investment good.

14An alternative is to allow banks to trade bonds while also allowing households to trade shares of the banks.
This alternative adds nothing but notation.
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E

8<
:
X
t�t0

�th

h(cht )1��
1� �

i
j Hto

9=
; (59)

where �h 2 (0; 1); � > 0; and Hto is the household's relevant information as of to. Every
period, each household produce lt, receives the banks net surplus st and pays lump-sum taxes
�t to the government. Letting at be the units of consumption good bought at time t � 1 to
be delivered at time t, the budget constraint of the households are given by the sequential
constraint,

qtat+1 + cht = yH + st � �t + at (60)

and the transversality constraint

8t; lim
T!1

�T�1Y
j=0

qt+j
�
at+T = 0 a:s: (61)

Households take qt; st; �t as given and maximize their utility by choosing ct; lt subject to the
sequential and transversal constraints.

Government

The government consumes non-negative amounts gt of the good. The sequential budget con-
straint of the government is

qtbt+1 + gt = �t + bt all t

and the transversality constraints

lim
T!1

�T�1Y
j=t

qj
�
bT = 0; a:s: (62)

The maintained assumption in this paper is that the policy of the government is exogenous
in the sense that two out of fbt+1; �t; gt; qtg are exogenous stochastic process. More speci�cally,
these two processes may dependent on each other, but are independent of any other variables
in the economy. The other two components of the government must satisfy the market clearing
requirement (budget constraints and optimality of households.)

While the original source of aggregate uncertainty in this economy is from the processes
fbt; �tg, we follow a "back-solving" strategy of assuming that these processes are set such that
fqt] follows an exogenous, stationary, ergodic Markov process.

The government follows a policy of �xing the interest rates, as appears to be the case in
many actual economies. Here, the government adjust the "quantities" in its control so as to
sustain fqtg as an equilibrium price process. 15 The assumptions on the borrowing and lending
of the government is simply to guarantee that e�ectively the government can sustain fqtg as an
equilibrium process.

15As opposed to the traditional equilibrium models that impose that given an exogenous process for the
quantities of the government, the prices must adjust to clear markets. Here is the converse.
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receive the repayment from the entrepreneurs active the previous period. They can also receive
net resources (not necessarily positive) from liquidating �rms. In addition, they need positive
resources for the newly created �rms as well as for the working capital for all active �rms. The
relevant expressions are:

Repayments

Rt = R(qt�1;  t�1) =

Z
Z

Z
RU

�
zf(k(V; z; qt1 ) + �(1� Æ)g(V; z; qt�1)� V

	
 t�1(dV; dz) (63)

Resources from Liquidations

Lt = L(qt�1;  t�1) =

Z
Z

Z
RU

l(V; z; qt)
�
U + L� V

	�
TE(qt�1) t�1

�
(dV; dz) (64)

Set-Up Costs of New Firms

I(qt) = ÆK0m[Tc(qt)] (65)

Working Capital

Kt = K(qt�1;  t�1) =

Z
Z

Z
RU

k(V; z; q) t(dV; dz) (66)

where the last equation uses the fact that  t is determined by ( t; qt).
Thus, the net surplus for the consolidated banking sector is

s( t�1; qt; qt�1) = R( t�1; qt�1) + L( t�1; qt; qt�1)� I(qt)�K( t�1; qt�1) (67)

Equilibrium

Recall that households receive every period the net surplus st from the banks. At this point is
must be clear that the information setHt contains all the relevant information regarding �t; qt;  t
including possibly bt; gt. Given Ht, and taking as given qt; �t; st, the suÆcient conditions for
the optimal choice of lt; ct; at+1 are the �rst order conditions

(yH + st � �t + at � qtat+1)
�� =

�h
qt
E
�
(yH + st+1 � �t+1 + at+1 � qt+1at+2)

��jHt

�
and the transversality constraint discussed before.

De�nition B.1. Equilibrium Given the primitives on households (�h; �; �0; v), entrepreneurs
and their technologies (�; Æ; f; Pz ; L; U;K0) and government policy Pq, and the initial conditions
a0;  �1; q�1, an equilibrium in this economy consists of (a) a household allocation fat+1; ct : t �
0g,(b) a government policy process f�t; gt; bt+1; qt : t � 0g, (c) Policy and value functions of

individual contracts (g; C) and V0, (d) aggregate operators TL; TE ; TC of creation, endurance

and destruction, (e) a sequence of measures f t : t � 0g and a sequence of net surpluses

fst : t � 0g, such that:
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contract for ongoing bank-entrepreneur relationships.

2. Competition in Intermediation Market Given the functions (g; C), and for every

pair (z; q), the �rms are activated if and only if the bank obtains non-negative expected

payo�s and in that case, the initial utility of the entrepreneur is V0(z; q) � arg supV�U �
fC(V; z; q) +K0 � 0g.

3. Aggregation Consistency The aggregate operators TL; TE ; TC are derived from the

functions (g; V0), and the transitions (Pz ; Pq)

4. Consistent Aggregate Dynamics The process fqtg has transitions Pq and the transi-

tion for f tg, is given by

 t = (1� Æ)
�
TE(qt) t�1

�
+ ÆTC (qt)

The banking surplus is given by st = s( t�1; qt�1; qt) as de�ned above.

5. Bond Markets Equilibrium Given a0;  0 and for any realization of fqt : t � 0g, and
the implied fst : t � 0g, the realization of the processes f�t; bt+1 : t � 0g is such that:

(a) Taking fst; �t : t � 0g as given, fcht ; at+1 : t � 0g solves the problem of households.

(b) The quantity of government bonds clears the markets, at + bt = 0 all t.

6. Government Policy Feasibility Given a0, the sequences fqt; �t; bt+1; gt : t � 0g satisfy

the sequential and transversal constraints of the government and gt � 0 all t.

Imposing additional restriction on fqtg one can obtain the �scal policy shocks fgt; �t; bt+1g
so that all the market clearing, individual maximizations and budget constraints are satis�ed.
Because of the Ricardian Equivalence, many f�t; bt+1g are compatible with fqtg and what
matters is the sequence fgtg.

C Computational Algorithm

Here we discuss in some the detail the steps followed to obtain the aggregate time series.
First, the optimal policies (continuation, liquidation and activation decisions) are computed.
Second, from the liquidation, continuation and activation operators are computed. Finally, the
realizations of the interest rates and the initial conditions of the economy are explained.

Computing Individual Contracts

As explained above, I assume that both shocks in the economy follow Markov chain process
that approximate AR(1) Gaussian processes. As explained in the text, I employ the methods
of Tauchen and Haussey[52] to obtain the approximation. Thus, the support for the exogenous
states for relationships are Z � Q, and the optimal contract solves a dynamic programming
problem with a �nite con�guration Z � Q of exogenous states and a continuous endogenous
state V . From the paper, we know that continuous policies are contained in the compact set
[U;M(�z; �q)]

In this problem we have a known linear function for the underlying value of the option of
liquidation. Moreover, the liquidation value is independent of the realization of the exogenous
shocks. Exploiting the �nite number of shocks, I parameterize the continuation cost of the
relationship. For each (z; q; V ) 2 Z �Q�RU the continuation cost is
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Figure 12: Continuation and Liquidation Cost Function

100 110 120 130 140 150 160 170
−30

−20

−10

0

10

20

30

40

50

B
an

k 
C

os
t C

(V
,z

,q
) p

lu
s 

ac
tiv

at
io

n 
co

st
 K

0

Current Value V

Figure 13: Continuation Policy Pro�le for a given state (z,q)
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Cca(V; z; q) � A(z; q)tT ['(V )] (68)

where A(z; q) is a column vector Np� 1, and the superscript t denotes transposition;

T (x) = [T0(x); T1(x); T2(x); : : : ; TNp�1(x)]
t

.
where Tn(�) is the n-th Chebyshev polynomial, i.e. T0(x) = 1;T1(x) = x and for n � 2,

Tn(x) = 2xTn�1(x) � Tn�2(x). Chebyshev polynomials are de�ned on x 2 [�1; 1]. Then the
bijective function '(V ) = 2 V�U

M(�z;�q)�U � 1 is used to map [U;M(�z; �q)] into [�1; 1]. Here Np is

the number of polynomials used. It is well known that the family fTn : n � 0g is a basis for
all C[�1; 1]. The �xed point functions C;Cc are known to be continuous, and approximations
with high values of Np are virtually exact.

Given any value A, it is not hard to derive an array of values a such that

Cc(V; z; q) =

Np�1X
j=0

aj(z; q)V
j (69)

Given the a, then it is easy to compute the continuation, liquidation and activation decisions.

Activation

Find the maximum root of the polynomial K0 +
PNp�1

j=0 aj(z; q) � V
j. If that root is greater

than U the �rm is activated. Otherwise, the entrepreneur goes to the background.

Liquidation

First, we compute the continuation value V 1(z; q) for entrepreneurs that win the lottery. Given
a(z; q) such value is given by the highest root of the polynomial

K0 +

Np�1X
j=0

(1� j)aj(z; q)V
j

If V > V 1(z; q) the entrepreneur continues with probability one.

Continuation

For each state (V; z; q), the computation of the continuation policies is as follows. First, if for
a given (z0; q0),

� <
PNp�1

j=0 jaj(z; q)(V
1(z; q))j�1 then the prescribe policy is Gz0;q0(V; z; q) for all (V; z; q).

On the other extreme, when the limited liability constraint is not binding, the continuation
choice is a root of the polynomial

� �

Np�1X
j=0

jaj(z
0; q0)V j (70)
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In general we proceed as follows: we pick one state such that if the �rm continues in any state
in the future, it will continue in that state. Therefore, we pick the state f�z; �qg. We consider
a very �ne grid on V g � [U;M(�z; �q)] of possible values assigned to that state. For each of the
grid points V g(n), then the choice for the other states fz0; q0gis given by a root of

Np�1X
j=0

jaj(z
0; q0)V j �

Np�1X
j=0

jaj(�z; �q)V g(m) (71)

Then, for each state (V; z; q), we select the set of points of V g such that the implied pro�le
of continuation values satisfy the limited liability constraint. The optimization is thus one
dimensional, and given the parameters a it consists on selecting the element in the grid that
minimizes the continuation cost.

Iterating the Algorithm

Thus, given an array of values A one can derive the continuation, liquidation and activation
decisions. The problem is then to obtain the values A(z; q) that yield a good approximation to
Cc. The steps required and how I proceeded are as follows:

Select a grid of M � Np) points on which evaluate the value function. The grid is taken to
be the zeroes of the M -th degree polynomial. (i.e. '�1(zeroes)) .

The steps of the iterative algorithm are:

1. For each of the M grid points and given a value for the vectors An(z; q), obtain the
optimal liquidation and continuation decisions. Obtain the value achieved for each grid
point Cc(V (m); z; q).

2. Update the parameters An(z; q) by minimizing the square residuals of

A(z; q)tT ('(V ))� Cc(V; z; q)

at the grid points. This step is simple, and yields

An+1(z; q) = (X 0X)�1X 0Ccn(:; z; q)

where X(i; j) is the value of the j-th polynomial, j = 1 : Np evaluated at the i-th zero of
the M-th Chebyshev necessarily. To insure numerical stability, use a relaxation parameter
for updating An.

3. Iterate until convergence.

Notice that the continuation policies not restricted to belong to the grid of M-points. Also,
the grid for the candidates values for the continuation values for state �z; �q is chosen to be much
�ner than the grid for which we are computing the value of Cc(�; Z;Q).

A restricted version of this algorithm is to impose that Np = 3. In this case the functions
are quadratic. This brings along a great simpli�cation, as the roots of the �rst order conditions
are unique, and easy to compute, without the need of numerical interpolation. Such restriction,
which is used in the experiments reported in the paper, greatly speed up the iterations but
work well only when the value function is globally increasing.

56



Figure 14: E�ective and Approximate Real Interest Rate
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Computing the Aggregate Operators

The policy function, derived from this dynamic program is the basis for the numerical simula-
tions for the aggregate economy. While the continuation policies were not restricted, in order
to keep track of the distribution of �rms, in this paper I used a grid of values z; V . The grids
are the states of the Markov chain of z and the grid of M points on [U; �V ]. The experiments
use values of M that range between 70 and 200. Given the equipment available, larger values
are computationally unfeasible.

Realization of Aggregate Shocks

While the properties of the process fqg are needed to compute the dynamic contract, its real-
izations are needed to compute the aggregate time series. Naturally, the simulations use the
approximation values from the 5-state Markov chain, as the contracts are not de�ne for other
realizations.

The �gure here displays the e�ective real interest rate and the implied approximation. The
simulations presented in the body of the paper are obtained by running �rst 500 periods the
economy assuming a constant interest rate fqt = q3 : 1 � t � 500 and then running the economy
for the approximated interest rates from 1959:I-1997:II. This arbitrary strategy to select the
initial distribution is not giving necessarily the best performance of the economy,
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