
Nonlinear minimization estimators in the presence of
cointegrating relations

Robert M. de Jong∗

January 31, 2000

Abstract

In this paper, we consider estimation of a long-run and a short-run parameter jointly
in the presence of nonlinearities. The theory developed establishes limit behavior of
minimization estimators of the long-run and short-run parameters jointly. Typically,
if the long-run parameter that is present in a cointegrating relationship is estimated,
its estimator will be superconsistent. Therefore, we may conjecture that the joint
minimization estimation of both parameters jointly will result in the same limit distri-
bution for the short-run parameter as if the long-run parameter was known. However,
we show that unless a regularity condition holds, this intuition is false in general. This
regularity condition, that clearly holds in the standard linear case, is identical to the
condition for validity of a two-step Granger-Engle type procedure. Also, it is shown
that if the cointegrated variables are measured in deviation from their averages, the
standard asymptotic normality result (that one would obtain if the long-run parameter
was known) holds.

1 Introduction

In this paper, the properties of minimization estimators of parametric models that are non-
linear in the cointegrating relationship will be considered. The concept of cointegration was
introduced by Granger (1981) and extended in Engle and Granger (1987), Engle (1987), En-
gle and Yoo (1987), Phillips and Ouliaris (1990), Phillips (1991), and Johansen (1988,1991).

∗I thank Jeff Wooldridge for suggesting this problem to me and James Davidson for pointing out the
problem of including the cointegrated variables in deviation from their averages.
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The literature on this subject is now huge. This paper considers the following problem. As-
sume that xt and yt are I(1) processes and assume that there is some θ0 such that εt = yt−θ′0xt

is I(0), and Eεt = 0. The Granger-Engle procedure is then to obtain an estimator θ̂ of θ0,
for example the OLS estimator. In the second step, yt−1 − θ̂′xt−1 is used as a regressor to
estimate a relationship such as, for example,

∆yt = β0(yt−1 − θ′0xt−1) + ηt. (1)

A different estimation procedure could be to estimate β0 and θ0 jointly, for example by non-
linear least squares. Also, we may want to estimate a nonlinear model instead of the linear
model of Equation (1). Recently, some models have been proposed that are nonlinear in
the cointegrating relationship; for example the STECM model of Granger and Terasvirta
(1993), and Davidson and Peel (1998) propose a model that is bilinear in the cointegrating
relationship. Nobay and Peel (1997) also use a model that is bilinear in the cointegrating re-
lationship, but they assume that the cointegrating vector is known. Granger and Lee (1989)
suggest an asymmetric adjustment process for inventories, and a model that is nonlinear in
the cointegrating vector is proposed in this article. Clearly, for such models no equivalent
of the Granger Representation Theorem exists, and there is no transparant overall model
from which short-run and long-run dynamics follow. One technique for estimation of such
models is to use a Granger-Engle type technique where an estimator θ̂ of θ0 is plugged in,
and in the second stage, the short-run parameter β0 is estimated. The asymptotic properties
of that procedure were studied in De Jong (1997). The central question of this paper is the
following: is it possible to give a general asymptotic theory for minimization estimators in
the presence of a cointegrating relationship, when the short-run and long-run parameters are
estimated jointly ?
Saikkonen (1995) studied the problem of characterizing the asymptotic behavior of the joint
maximum likelihood estimator, but a general framework for the study of this type of esti-
mator has - to the best of the author’s knowledge - not been attempted before.
It is straightforward to provide examples where the theory presented in this paper can be
useful. For example, we may want to estimate Equation (1), but add a square of yt−1− θ̂′xt−1

as an extra regressor. We could now perform nonlinear least squares estimation, and use
the t-statistic for testing the correctness of the original linear specification. The results of
this paper show that in general the standard asymptotic theory for this model (treating θ̂
as if θ0 was known) is invalid, thereby making the t-values of such a regression useless in
general. A second example could be an ordered probit model for the demand for luxury
cars in some time period. One may want to include the difference between consumption and
long-run consumption in our regression. Assuming that consumption and income are cointe-
grated, this difference could be obtained as the error of the linear regression of consumption
on income, which would result in a two-step procedure. We could also choose to minimize
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some criterion function with respect to both parameters jointly, and for such an analysis, the
framework of this paper applies. Third, our analysis includes the STECM model proposed
by Granger and Terasvirta (see Granger and Terasvirta (1993)). Their model is

∆yt = β01 + β02wt + (β03 + β04wt)G(εt−d) + ηt (2)

where G(.) is some distribution function, possibly depending on parameters that will have
to be estimated also; for example, the logistic distribution function

G(a) = (1 + exp(−β5(a− β6)))
−1 (3)

where β5 ≥ 0. Note that testing for β03 = β04 = 0 adds an extra difficulty, because θ0 will
not be identified under the null hypothesis if both parameters are estimated jointly using,
for example, nonlinear least squares. Such tests can be done using the two-step procedure
described earlier and using the variables of the cointegrating relationship in deviation from
their average; see De Jong (1997).
In De Jong (1997) it was shown that for a model such as the STECM, standard asymptoti-
cally normal inference for the two-step procedure is invalid unless yt and xt are included in
deviation from their average. Because the least squares estimator b = (b1, b

′
2)
′ of the linear

regression of yt on xt and a constant satisfies

yt − b1 − b′2xt = yt − ȳ − b′2(xt − x̄), (4)

this implies the somewhat counterintuitive conclusion that adding a constant to the long-
run regression will give us the standard asymptotic normality, while excluding the constant
from the long-run regression may invalidate that conclusion. If yt and xt are not included in
deviation from their average, it was shown that an orthogonality condition needs to be met
for the second stage estimator to be asymptotically normally distributed according to the
standard theory (i.e., treating θ̂ as if it equaled θ0).
This paper establishes a similar phenomenon for the full minimization estimator. In this
paper, we show that if yt and xt are included in deviation from their average and we perform
full minimization estimation with respect to both parameters, the short-run parameter is
asymptotically normally distributed with the same distribution as if θ0 was known. If yt

and xt are not included in deviation from their average, the same orthogonality condition
that was obtained for the two-step procedure in De Jong (1997) is also necessary to justify
minimization estimation of (β′0, θ

′
0)
′ jointly using the standard asymptotic normality result

for known θ0.
Section 2 of this paper states the consistency result of this paper. In Section 3, we discuss
the asymptotic distribution of the minimization estimator. Section 4 concerns covariance
matrix estimation. Section 5 specializes our results to the case of the STECM model. This
paper concludes with a Mathematical Appendix.
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2 Consistency result

In this paper, we consider minimization estimators that equal

argmin(β,θ)∈(B×Θ)n
−1

n∑
t=1

f(wt, εt + (θ0 − θ)′zt + an, β) (5)

with probability one as n →∞, where wt and εt = yt− θ′0xt are stationary random variables
and B × Θ is the parameter space. We assume that zt, xt, and θ are elements of Rk, and
β is assumed to be an element of Rr. Note that εt is unobserved here, and an

p−→ 0 by
assumption. Setting zt = xt and an = 0 implies that yt − θ′xt is included, while zt = xt − x̄
and an = −ε̄ implies that (yt − ȳ)− θ′(xt − x̄) is included. Therefore, the analysis below is
sufficiently general to include both cases.

In this paper, the notation
d−→ and

p−→ denotes convergence in distribution and in proba-
bility, respectively. Let ⇒ denote weak convergence with respect to the Skorokhod metric,
as defined and discussed e.g. in Davidson (1994), Chapter 26-28.
The weak dependence concept that we will use is that of near epoch dependence. Near epoch
dependence is defined as follows:

Definition 1 A sequence of random variables yt is called near epoch dependent on vt if

E(E(yt|vt−m, . . . , vt+m)− yt)
2 ≤ c2

t ν(m)2 (6)

where ct ≥ 0 and ν(m) ≥ 0, and ν(m) → 0 as m →∞.

See Gallant and White (1988) and Pötscher and Prucha (1991) for detailed discussions of
this and related dependence concepts. The random variables vt typically need to satisfy some
mixing or independence condition in order to obtain results such as central limit theorems
or laws of large numbers.
The intuition behind the consistency proof of the next theorem is as follows. Suppose for
the moment that an = 0 and zt = xt. Then we can rewrite our criterion function as

n−1

n∑
t=1

f(wt, εt + n1/2(θ0 − θ)′(n−1/2xt), β), (7)

which, assuming that n−1/2x[ξn] ⇒ X(ξ) where X(ξ) is some random element of Ck[0, 1] (e.g.
Brownian motion), suggests that by the law of large numbers, perhaps the criterion function
behaves similar to

n−1

n∑
t=1

Ewt,εtf(wt, εt + n1/2(θ0 − θ)′(n−1/2xt), β), (8)
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where the expectation Ewt,εt denotes the expectation with respect to the measure of (wt, εt)
only. By continuity, we may conjecture that in some sense, the last expression resembles∫ 1

0

Ewt,εtf(wt, εt + n1/2(θ0 − θ)′X(ξ), β)dξ. (9)

Note that the last expression is random asymptotically, but minimized at θ = θ0, β = β0 by
assumption. |.| will denote the Euclidean norm in what follows.
The assumption that we need for the consistency proof of this paper is the following:

Assumption 1

1. The parameter space B is compact.

2. an
p−→ 0.

3. n1/2(θ̂ − θ0) = OP (1).

4. For any normally distributed random vector X, Ewt,εtf(wt, εt − δ′X, β) is uniquely
minimized at (β′, δ′)′ = (β′0, 0

′)′ with probability 1.

5. (εt, wt) is a strictly stationary sequence of random variables that is L0-approximable by
an α-mixing process.

6. f(w, a, β) is a function from W × A× B to R, and is continuous in all its arguments
and for all compact sets A,

E sup
a∈A

sup
β∈B

|f(wt, εt − a, β)| < ∞. (10)

7. n−1/2z[ξn] ⇒ Z(ξ), where Z(ξ) is a Gaussian random element of Ck[0, 1] such that
there does not exist a nonzero k-vector λ such that λ′Z(ξ) = 0 a.s., and

lim sup
n→∞

n−1

n∑
t=2

E|zt − zt−1|2+δ < ∞ (11)

for some δ > 0.

Theorem 1 Under Assumption 1, (β̂′, n1/2(θ̂ − θ0)
′)′

p−→ (β′0, 0
′)′.
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Note that in Theorem 1, n1/2(θ̂ − θ0) = OP (1) is assumed rather than derived. Typically
n-consistent estimators of θ0 exist in this framework, and the assumed n1/2 rate is lower
than this. The mathematical problem of relaxing this assumption is similar to the problem
of establishing consistency for minimization estimators that are defined as minimizing over a
parameter space such as Rk instead of some compact set, and seems hardly avoidable because
of the scaling of zt that has to take place. Therefore, this property has to be established on
an ad hoc basis for each estimator that is considered. One generic solution is to assume that
we have a preliminary estimator θ̃ that satisfies n(θ̃ − θ0) = OP (1). Then we could define θ̂
as minimizing the criterion function over {θ ∈ Θ : |θ− θ̃| ≤ Cn−1/2}. For this estimator, the
reasoning leading up to Theorem 1 is easily copied, but Assumption 2 has become trivial.
Other than this solution, we may be able to draw on the repertoire of techniques that exists
in the literature to restrict attention to a compact parameter space. See for example Pötscher
and Prucha (1991) for a discussion of such techniques.

3 Asymptotic distribution

In this section, we will derive the limit distribution of the estimator analyzed earlier. Define

B = (
n∑

t=1

(∂/∂β)f(wt, εt + an, β0),−
n∑

t=1

z′t(∂/∂a)f(wt, εt + an, β0))
′ ≡ (B′

1, B
′
2)
′, (12)

where the differentiation with respect to a is with respect to the second argument of f(., ., .),
and

A(β, θ) =

(
A11(β, θ) A12(β, θ)
A21(β, θ) A22(β, θ)

)
(13)

where

A11(β, θ) =
n∑

t=1

(∂/∂β)(∂/∂β′)f(wt, εt + (θ0 − θ)′zt + an, β) (14)

A21(β, θ) = A12(β, θ)′ = −
n∑

t=1

zt(∂/∂β)(∂/∂a)f(wt, εt + (θ0 − θ)′zt + an, β) (15)

and

A22(β, θ) =
n∑

t=1

ztz
′
t(∂

2/∂a2)f(wt, εt + (θ0 − θ)′zt + an, β). (16)
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Also, define Aij = Aij(β0, θ0) for i, j = 1, 2, and

L = E(∂2/∂a2)f(wt, εt, β0) (17)

and

M = E(∂/∂β′)(∂/∂a)f(wt, εt, β0). (18)

In order to prove the central result of this section, we need the following assumption:

Assumption 2

1. ((β̂ − β0)
′, n1/2(θ̂ − θ0)

′)′
p−→ 0, (19)

where β0 and θ0 are in the interiors of the parameter spaces B and Θ.

2. Assumptions (1.4), (1.5), and (1.7) hold.

3. (∂/∂β)f(w, a, β), (∂/∂β)(∂/∂β′)f(w, a, β) and (∂/∂β)(∂/∂a)f(w, a, β) are continuous
on W × A × B, and for some open neighborhood Γ of 0 and for some φ > 0 and for
j = 1, . . . , k,

E sup
|γ|∈Γ

sup
β∈B

|(∂/∂β′)(∂/∂βj)f(wt, εt + γ, β)|1+φ < ∞, (20)

E sup
|γ|∈Γ

sup
β∈B

|(∂/∂β′)(∂/∂a)f(wt, εt + γ, β)|1+φ < ∞. (21)

and

E sup
|γ|∈Γ

sup
β∈B

|(∂2/∂a2)f(wt, εt + γ, β)|1+φ < ∞. (22)

4. vt = (w′
t, εt, ∆z′t)

′ is strong mixing with strong mixing coefficients α(m) such that
α(m) ≤ Cm−r/(r−2) for some C and some r > 2 such that

E|∆zt|r < ∞, (23)

E|(∂/∂β)f(wt, εt, β0)|r < ∞, (24)

E|(∂/∂a)f(wt, εt, β0)|r < ∞, (25)

E|(∂/∂a)(∂/∂β′)f(wt, εt, β0)|r < ∞, (26)
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5. n−1/2z[ξn] ⇒ Z(ξ), (27)

where Z(ξ) is a Gaussian random element of Ck[0, 1].

6.

((
n−1A11(β0, θ0) n−3/2A12(β0, θ0)

n−3/2A21(β0, θ0) n−2A22(β0, θ0)

)
,

(
n−1/2B1

n−1B2

))
d−→ (Ã, B̃), (28)

where (Ã, B̃) is defined as follows:

(a) n−1/2B1
d−→ B̃1, (29)

(b) n−1B2
d−→ B̃2, (30)

(c) n−1A11
p−→ E(∂/∂β)(∂/∂β′)f(wt, εt, β0) = Ã11, (31)

(d) n−2A22
d−→ L

∫ 1

0

Z(ξ)Z(ξ)′dξ = Ã22, (32)

(e) n−3/2A21
d−→ −

∫ 1

0

Z(ξ)dξM ′ = Ã21. (33)

(f) Ã is invertible with probability 1.

It is straightforward to impose weak dependence conditions ensuring that the above assump-
tions hold. Such results are by now standard tools in time series literature. In this paper, we
chose to impose the above high-level assumption and note that using e.g. the results from
Davidson (1994), it is relatively straightforward to list weak dependence conditions ensuring
that the above properties hold.
The assumption of Equation (19) can be verified by applying Theorem 1. Equation (27)
assumes that a functional central limit theorem holds for n−1/2z[nξ]. B1 is assumed to satisfy
a central limit theorem-type result in Equation (29). Note that for the choice an = −ε̄,

n−1/2

n∑
t=1

(∂/∂β′)f(wt, εt − ε̄, β0) (34)

will be asymptotically equivalent to

n−1/2

n∑
t=1

(∂/∂β′)f(wt, εt, β0)− n−1/2

n∑
t=1

εtE(∂/∂β′)(∂/∂a)f(wt, εt, β0) (35)

under the stated regularity conditions. We can rewrite this as

(I : E(∂/∂β′)(∂/∂a)f(wt, εt, β0))(n
−1/2

n∑
t=1

(∂/∂β)f(wt, εt, β0),−n−1/2

n∑
t=1

εt)
′, (36)
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and therefore in general the asymptotic variance of B1 will be

V = (I : M)

(
Σ11 Σ12

Σ21 Σ22

)
(I : M)′, (37)

where

Σ11 = lim
n→∞

E(n−1/2

n∑
t=1

(∂/∂β′)f(wt, εt, β0))(n
−1/2

n∑
t=1

(∂/∂β)f(wt, εt, β0)), (38)

Σ21 = Σ′
12 = − lim

n→∞
E(n−1/2

n∑
t=1

(∂/∂β)f(wt, εt, β0))(n
−1/2

n∑
t=1

εt) (39)

and

Σ22 = lim
n→∞

E(n−1/2

n∑
t=1

εt)
2 (40)

where we assume existence of Σ11, Σ21, and Σ22. Note that from the results in De Jong
(1997), it follows that under Assumption 1 and 2, M̂

p−→ M where

M̂ = n−1

n∑
t=1

(∂/∂β′)(∂/∂a)f(wt, yt − θ̂′xt, β̂). (41)

For B2 a ”convergence to stochastic integrals” result (see e.g. Davidson (1994), Chapter 30)
typically holds (using the fact that E(∂/∂a)f(wt, εt, β0) = 0 by assumption). For zt = xt− x̄,
a ”convergence to stochastic integrals” type result for B2 will typically hold as well. n−1A11

will satisfy a weak law of large numbers under the stated conditions, and n−3/2A21 can be
rewritten as

−n−3/2

n∑
t=1

zt((∂/∂β)(∂/∂a)f(wt, εt + an, β0)−M ′)− n−3/2

n∑
t=1

ztM
′ (42)

and typically the first term will be OP (n−1/2); such a result can be obtained, for example,
by assuming that a ”convergence to stochastic integrals” result holds for this first term. A
similar argument can be made for A22.
Using Theorem 1 and Assumptions 1 and 2, the following result can be obtained:

Theorem 2 Under Assumption 1 and 2,

(n1/2(β̂ − β0)
′, n(θ̂ − θ0)

′)′
d−→ Ã−1B̃. (43)
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The above theorem implies that in general the limit distribution of the short-run parameter
is not normal in general unless M = 0 or

∫ 1

0
Z(ξ)dξ = 0 almost surely. This is because under

either of these two conditions, Ã21 = 0, implying that

n1/2(β̂ − β0)
d−→ Ã−1

11 B̃1, (44)

and therefore the same limit distribution is obtained as if θ0 was known. The property∫ 1

0
Z(ξ)dξ = 0 occurs if yt − ȳ − θ′(xt − x̄) was included in the original regression. Setting

zt = xt− x̄, and assuming that n−1/2x[ξn] ⇒ X(ξ) where X(ξ) denotes some random element
of Ck[0, 1], we have

n−1/2z[ξn] ⇒ X(ξ)−
∫ 1

0

X(ξ)dξ (45)

which clearly integrates to zero almost surely over ξ ∈ [0, 1]. Therefore, if we include yt and
xt in deviation from their average, the ”usual” asymptotic normality result (that we would
have if θ0 was known) for the short-run parameter β̂ holds, and we may want to interpret
the diagonal structure of the Ã matrix as indicating that the short- and long-run parameter
estimators have become somewhat disconnected now. The possibility of obtaining this type
of result was suggested to me by James Davidson after reading a first draft of this paper. In
general, however, if yt and xt are not included in deviation from their average, the estimation
of the long-run parameter seems to affect the limit distribution of the short-run parameter
unless M = 0.
One leading case where M = 0 is obtained is the standard Granger-Engle procedure. If we
consider

f(w, ε, β) = (w − βε)2 (46)

where our model is

∆yt = β0(yt−1 − θ′0xt−1) + ηt, (47)

then

M = E(∂/∂β)(∂/∂a)(wt − βεt)
2 |β=β0= −2Eηt + 2β0Eεt = 0 (48)

in general. Therefore, the fact that the long-run parameter is estimated does not affect the
distribution of the short-run parameter here. However, suppose we add a square to our
specification, i.e. our model becomes

∆yt = β01(yt−1 − θ0xt−1) + β02(yt−1 − θ0xt−1)
2 + ηt (49)
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and

f(w, ε, β1, β2) = (w − β1ε− β2ε
2)2. (50)

We could do this for purposes of model specification. If our desire is to test the hypothesis
β02 = 0, then in general, M2 = 2β01Eε2

t + 4β02Eε3
t + 4Eεtηt 6= 0, so using the regular t-

statistic for testing for β02 = 0 will in general be an incorrect procedure unless β01 = 0. Note
that, interestingly, if β01 = β02 = 0 we will have M = 0 if Eεtηt = 0, but this does not imply
that the usual chi-square test of the hypothesis β01 = β02 = 0 can be used here, because - as
noted earlier - θ0 will be unidentified under that hypothesis.

4 Covariance matrix estimation

In order to have a complete asymptotic theory for the estimation of models that are non-
linear in the cointegrating relationship, the problem of the estimation of V of Equation (37)
remains. From the results in De Jong (1997), it follows that under Assumption 1 and 2,

M̂
p−→ M where

M̂ = n−1

n∑
t=1

(∂/∂β′)(∂/∂a)f(wt, yt − θ̂′xt, β̂). (51)

However, for the estimation of Σ11, Σ21, Σ12 and Σ22, typically we will need heteroskedasticity
and autocorrelation consistent covariance matrix estimators. Consistency proofs for these
estimators are well-known; see for example White (1984), Newey and West (1987), Gallant
and White (1988), Andrews (1991), Hansen (1992), and De Jong and Davidson (1997) for
weak consistency proofs, and De Jong (1998) for a strong consistency proof. However, the
proofs in these references are not directly applicable to the present situation because both a
short-run and a long-run parameter are present. In the case where only a root-n consistent
estimator is present, consistency will follow from one of the above-mentioned references.
Similarly to Hansen (1992), define Ω̂ =

∑n−1
l=−n+1 k(l/γn)Γ̂(l) where Γ̂(l) = n−1

∑n−l
t=1 g(wt, yt−

θ̂′xt, β̂)g(wt+l, yt+l−θ̂′xt+l, β̂)′ for l ≥ 0 and Γ̂(l) = Γ̂(−l)′ for l < 0, where g(wt, yt−θ̂′xt, β̂) =
(∂/∂β′)f(wt, yt − θ̂′xt, β̂) if an = 0 and g(wt, yt − θ̂′xt, β̂) = ((∂/∂β)f(wt, yt − θ̂′xt, β̂), εt)

′ if
an = −ε̄. Define Ω̃ similarly to Ω̂ but using g(wt, εt, β̂) instead of g(wt, yt−θ̂′xt, β̂). Then note
that for Ω̃, standard results will hold because it only depends on a root-n consistent estimator
but no longer on the long-run estimator θ̂. Therefore, we seek to establish asymptotic
equivalence between Ω̂ and Ω̃ and refer to the above references for exact listings of regularity
conditions for the consistency of Ω̃. The following theorem establishes such a result:
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Theorem 3 Assume that Assumption 1 and 2 hold. Also, assume that γnn
−1/2 = o(1) and

assume that k(.) is continuous at all but a finite number of points and satisfies
∫∞
−∞ |k(x)|dx <

∞. In addition, assume that for some open neighborhood Γ of 0,

E sup
|γ|∈Γ

sup
β∈B

|(∂/∂a)g(wt, εt + γ, β)|2 < ∞ (52)

and

E sup
|γ|∈Γ

sup
β∈B

|g(wt, εt + γ, β)|2 < ∞, (53)

Then Ω̃− Ω̂
p−→ 0.

5 The STECM model

The theory as set out in the earlier sections of this paper can be applied to derive the limit
distribution of the nonlinear least squares estimator of the short- and long-run parameters
in the STECM model of Equation (2). We assume that G(a) = L(β5(a − β6)), for some
distribution function L(.). We noted before that this asymptotic theory cannot be used for
constructing an chi-square test for the null hypothesis H0: β03 = β04 = 0 because of the
identification problem. Also, we need to bound the parameter space B for the β5 parameter
away from zero (e.g. assume that the parameter space for β5 is of the form [β5L, β5U ] where
0 < β5L < β5U ), because for β5 = 0, an additional identification problem arises. For this
model, we will directly show that

n1/2(θ̂ − θ0) = oP (1) (54)

using an argument similar to the consistency argument of Theorem 1. We will show this
property using a compactification argument. The criterion function now is

n−1

n∑
t=1

f(wt, εt + (θ0 − θ)′zt + an, β)

= n−1

n∑
t=1

(∆yt − (β1 + β2wt)− (β3 + β4wt)G(εt + (θ0 − θ)′zt + an))2, (55)

and note that this function is bounded in θ. For this model, it is possible to show that under
the stated regularity conditions,

sup
β∈B

sup
δ∈Rk

sup
h
|n−1

n∑
t=1

f(wt, εt + δ′h(t/n), β)− Ef(wt, εt + δ′h(t/n), β)| p−→ 0, (56)
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where the ”sup” over h is as in the proof of Theorem 1. Therefore, the consistency argument
given in the proof of Theorem 1 directly applies here, establishing that n1/2(θ̂ − θ0)

p−→ 0

and β̂
p−→ β0. To show the above law of large numbers, note that the assertion is equivalent

to

sup
β∈B

sup
α∈[0,1]k

sup
h
|n−1

n∑
t=1

f(wt, εt + P (α)′h(t/n), β)− Ef(wt, εt + P (α)′h(t/n), β)| p−→ 0, (57)

where P (α) = (Φ−1(α1), Φ
−1(α2), . . . , Φ

−1(αk))
′. Rewriting the expression in this way has

the advantage that now the parameter space is compact, and therefore the uniform law of
large numbers can be proven analogously to the proof of Theorem 1.
Summarizing, we obtain the following consistency result for the STECM nonlinear least
squares estimator:

Assumption 3 (β̂′, θ̂′)′ is obtained by minimizing the expression of Equation (55) over B×
Rk, where either zt = xt and an = 0, or zt = xt − x̄ and an = −ε̄. In addition,

1. The parameter space B is compact, while the parameter space Θ is Rk.

2. L(.) is a continuous and bounded function.

3. E(∆yt−(β1 +β2wt)−(β3 +β4wt)L(β5(εt−φ)))2 is minimized at (β′, φ′)′ = (β′0, 0)′, and
this minimum exceeds limφ→∞ E(∆yt − (β01 + β02wt) − (β03 + β04wt)L(β05(εt − φ)))2

and limφ→−∞ E(∆yt − (β01 + β02wt)− (β03 + β04wt)L(β05(εt − φ)))2.

4. (εt, wt) is a strictly stationary sequence of random variables that is L2-near epoch de-
pendent on vt, where vt is an α-mixing sequence.

5. E(∆yt)
2 < ∞ and Ew2

t < ∞, and E|εt|2+φ < ∞ for some φ > 0.

6. n−1/2x[ξn] ⇒ X(ξ), where X(ξ) is a random element of Ck[0, 1], and

lim sup
n→∞

n−1

n∑
t=1

E|xt − xt−1|2+δ < ∞ (58)

for some δ > 0.

The above assumption leads to the following theorem:

Theorem 4 Under Assumption 3, (β̂′, n1/2(θ̂ − θ0)
′)′

p−→ (β′0, 0
′)′.

13



We can also specialize Theorem 2 to case of the STECM model:

Assumption 4

1. Assumption 3 holds, and β0 and θ0 are in the interiors of the parameter spaces B and
Θ.

2. l(a) = (∂/∂a)L(a) and l′(a) = (∂2/∂a2)L(a) are bounded.

3. For some φ > 0, E|wt|2+φ < ∞.

4. n−1/2z[ξn] ⇒ Z(ξ), where Z(ξ) is a Gaussian random element of Ck[0, 1].

5.

((
n−1A11(β0, θ0) n−3/2A12(β0, θ0)

n−3/2A21(β0, θ0) n−2A22(β0, θ0)

)
,

(
n−1/2B1

n−1B2

))
d−→ (Ã, B̃), (59)

where (Ã, B̃) is defined as follows:

(a) n−1/2B1
d−→ B̃1, (60)

(b) n−1B2
d−→ B̃2, (61)

(c) n−1A11
p−→ Ã11, (62)

(d) n−2A22
d−→ L

∫ 1

0

Z(ξ)Z(ξ)′dξ = Ã22, (63)

(e) n−3/2A12
d−→ −

∫ 1

0

Z(ξ)dξM ′ = Ã12. (64)

(f) Ã is invertible with probability 1.

Using the above assumption, the following result is now established:

Theorem 5 Under Assumption 3 and 4,

(n1/2(β̂ − β0)
′, n(θ̂ − θ0)

′)′
d−→ Ã−1B̃. (65)

For the above STECM model, from elementary calculations it can be shown that

M = E


2(β03 + β04wt)ltβ05

2(β03 + β04wt)wtltβ05

2β05(β03 + β04wt)ltLt − 2ηtβ05lt
2β05(β03 + β04wt)wtltLt − 2ηtwtβ05lt

2(β03 + β04wt)
2l2t (εt − β06)− 2ηt(β03 + β04wt)l

′
t(εt − β06)

−2(β03 + β04wt)
2l2t β05 + 2ηt(β03 + β04wt)l

′
tβ05

 , (66)

14



where Lt = L(β05(εt−β06)), lt = l(β05(εt−β06)) and l′t = l′(β05(εt−β06)). Clearly, the above
result illustrates that M 6= 0 in general for the STECM model, implying that in general, if
xt and yt are not included in deviation from their average, t-values and F -tests are invalid.
Also note again that we can not test the null H0: β03 = β04 = 0 using asymptotic results
”as if θ0 was known”, even if M = 0 for that null hypothesis, because θ0 will be unidentified
under that null hypothesis.

Robert M. de Jong, Department of Economics, Michigan State University, 215 Marshall Hall,
East Lansing, MI 48824, U.S.A., e-mail ”dejongr@pilot.msu.edu”.

Proofs

The lemma below is reminiscent of Theorem 2.7 of Kim and Pollard (1990); because we
defined weak convergence in the ”traditional” way (using the Skorokhod topology), we need
to prove a result similar to Kim and Pollard’s, but assuming that weak convergence holds
in the ”traditional” way. Let (Ω,F , P ) denote the probability space.

Lemma 1 Assume that Qn(ω, α) ⇒ Q(ω, α) for α ∈ A, and assume that Qn(ω, α) and
Q(ω, α) are almost surely continuous on A, where A is a compact subset of Rk. Assume that
Q(ω, α) is uniquely minimized with probability 1 at α = α0. Then

argminα∈AQn(ω, α)
d−→ α0. (67)

Proof of Lemma 1:

By the Skorokhod Representation theorem (see e.g. Davidson (1994), theorem 26.25), there
exists a sequence Qn(ω, α) of elements of C[A] that are distributed identically to Qn(ω, α)
such that

sup
α∈A

|Qn(ω, α)−Q(ω, α)| as−→ 0. (68)

Define α̂ = argminα∈AQn(ω, α) and α̃ = argminα∈AQn(ω, α). Note that α̃ and α̂ have the
same distribution, and therefore for all η > 0,

P (|α̂− α0| > η) = P (|α̃− α0| > η), (69)
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and therefore showing consistency of α̃ is sufficient to show consistency of α̂. Next, note that

0 ≤ Q(ω, α̃)−Q(ω, α0)

≤ 2 sup
α∈A

|Qn(ω, α)−Q(ω, α)| as−→ 0, (70)

and therefore by uniqueness of α0, the result follows.

Proof of Theorem 1:

Define δ̂ = n1/2(θ̂ − θ0) and δ = n1/2(θ − θ0). We will show that (β̂′, δ̂′)′
p−→ (β′0, 0

′)′ under
the conditions of the theorem. Define α = (β′, δ′)′, and define α0 and α̂ analogously. Let

H(β, γ, δ) = Ef(wt, εt − δ′γ, β), (71)

and note that H(., ., .) is continuous in all its arguments by the dominated convergence
theorem and Assumption 4. Our proof is based on the observation that

Qn(ω, β, δ) = n−1

n∑
t=1

f(wt, εt + an − δ′n−1/2zt, β) (72)

converges weakly (as a function of (β, δ)) to

Q(ω, β, δ) =

∫ 1

0

H(β, Z(ξ), δ)dξ, (73)

and the last criterion function is minimal at (β′, δ′)′ = (β′0, 0
′)′ with probability 1 by assump-

tion. The ”usual” consistency proof (see e.g. Pötscher and Prucha (1991) for a discussion)
is based on the fact that the limit objective function is nonrandom. One of the difficulties of
this consistency proof is the fact that the limit objective function Q(., ., .) is asymptotically
random. First note that by assumption, δ̂ = OP (1), so we can find a compact set Cη such

that P (δ̂ ∈ Cη) ≥ 1 − η. Therefore, we can assume that δ̂ ∈ Cη for the remainder of this
proof. By Lemma 1, it is possible to deduce

argminα∈AQn(ω, α)
p−→ argminα∈AQ(ω, α) (74)

where α = (β′, δ′)′, by verifying the conditions of the Lemma 1. We will set the parameter
space A equal to B × Cη. The conditions of Lemma 1 are verified as follows. Q is uniquely
minimized at (β′0, 0)′. Q is almost surely continuous by the dominated convergence theorem,
compactness of Cη × B, and the continuity of H(., ., .) in all its arguments, and is uniquely
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minimized at (β′0, 0
′)′ with probability 1 by assumption. It therefore only remains to prove

weak convergence of Qn to Q on C[B × Cη]. This will follow if we show

sup
β∈B,δ∈Cη

|n−1

n∑
t=1

(f(wt, εt + an − δ′n−1/2zt, β)−H(β, n−1/2zt, δ))|
p−→ 0 (75)

and

n−1

n∑
t=1

H(β, n−1/2zt, δ) ⇒
∫ 1

0

H(β, Z(ξ), δ)dξ. (76)

The second result is relatively easy to show. By the continuous mapping theorem, for each
(β′, δ′)′ we have convergence in distribution. By Billingsley (1968), Theorem 8.1, it suffices to
verify tightness to obtain the second result. Tightness follows from Theorem 8.2 of Billingsley
(1968). To show it, note that sup1≤t≤n n−1/2|zt| = OP (1) and therefore with asymptotically

arbitrary large probability sup1≤t≤n n−1/2|zt| ≤ K for some K > 0. If the latter condition
holds,

sup
α∈A

sup
α′:|α−α′|<ρ

|n−1

n∑
t=1

H(β, n−1/2zt, δ)−H(β′, n−1/2zt, δ
′)|

≤ n−1

n∑
t=1

sup
α∈A

sup
α′:|α−α̃|<ρ

sup
|z|≤K

|H(β, z, δ)−H(β̃, z, δ̃)| → 0 (77)

as ρ → 0 by uniform continuity. This completes the tightness proof. To show the result
of Equation (75), using a construction as in Billingsley (1968), Theorem 9.1, we note that
n−1/2z[ξn] = Zn(ξ)− Yn(ξ) where

Yn(ξ) = (nξ − [nξ])n−1/2(z[nξ+1] − z[nξ]), (78)

and zn+1 and z0 are both zero by definition here. The construction is such that Zn(ξ) is
continuous. Now

bn ≡ sup
ξ∈[0,1]

|Yn(ξ)| ≤ n−1/2 sup
2≤t≤n

|zt − zt−1|, (79)

and in addition we note that for all ε > 0, by the Markov inequality,

lim sup
n→∞

P (n−1/2 sup
2≤t≤n

|zt − zt−1| > ε) ≤ lim sup
n→∞

n∑
t=2

P (n−1/2|zt − zt−1| > ε)

17



≤ lim sup
n→∞

ε−2−δn−1−δ/2

n∑
t=2

E|zt − zt−1|2+δ = 0 (80)

by assumption. Next, note that by tightness of Zn, for each η > 0 there exists a compact
subset Kη of Ck[0, 1] such that

lim sup
n→∞

P (Zn ∈ Kη) ≥ 1− η. (81)

Therefore, with probability exceeding 1− η,

sup
α∈A

|n−1

n∑
t=1

(f(wt, εt + an − δ′n−1/2zt, β)−H(β, n−1/2zt, δ))|

= sup
α∈A

|n−1

n∑
t=1

(f(wt, εt + an − δ′(Zn(t/n)− Yn(t/n)), β)−H(β, n−1/2zt, δ))|

≤ sup
α∈A

sup
h∈Kε

|n−1

n∑
t=1

f(wt, εt − δ′h(t/n), β)− Ef(wt, εt − δ′h(t/n), β)|

+n−1

n∑
t=1

sup
α∈A

sup
h∈Kε

|f(wt, εt + an + δ′Yn(t/n)− δ′h(t/n), β)− f(wt, εt − δ′h(t/n), β)|. (82)

Note that measurability of the last supremum is guaranteed by compactness of Kε and
continuity of f(., ., .) in all arguments. We will show that the last two expressions converge
to zero in probability. The expectation of the second term is smaller than

E sup
β∈B

sup
φ,φ̃:|φ−φ̃|≤an+Cbn

|f(wt, εt + φ, β)− f(wt, εt + φ̃, β)| (83)

for some fixed constant C, and the above expression converges to zero as n → ∞ by con-
tinuity and because an

p−→ 0 and bn
p−→ 0. Next, we apply Theorem 5.2 of Pötscher and

Prucha (1991) (a uniform law of large numbers) to show that the first term of Equation
(82) converges to zero in probability. We will need the fact that that by compactness of Kε,
suph∈Kε

supx∈[0,1] |h(x)| < ∞ for all ε > 0. Pötscher and Prucha’s Assumption 5.1 (com-
pactness of the parameter space) holds by assumption. Assumptions B, C, and D are easily
verified from our assumptions. To verify their Assumption 5.2, we first note that

sup{f(wt, εt − δ̃′h̃(t/n), β̃) : h̃ ∈ B(h, ρ) ∩Kε, β̃ ∈ B(β, ρ′), δ̃ ∈ B(δ, ρ′′)}

= sup{f(wt, εt − δ′h(t/n) + ξ, β̃) : |ξ| ≤ C(ρ + ρ′′), β̃ ∈ B(β, ρ′), δ ∈ Cη}, (84)

and the proof is concluded if we can show that a LLN for those last quantities holds. For
this, we use Theorem 6.9 of Pötscher and Prucha (1991), and note that it is easily verified
that the conditions of this theorem hold here.
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Proof of Theorem 2:

Using a Taylor series expansion around (β′0, θ
′
0)
′, for n large enough we have

0 = n−1/2

n∑
t=1

(∂/∂α)f(wt, εt + (θ0 − θ̂)′zt + an, β̂)

= n−1/2

n∑
t=1

(∂/∂α)f(wt, εt + an, β0)

+n−1/2

n∑
t=1

(∂/∂α)(∂/∂α′)f(wt, εt + (θ0 − θ̃)′zt + an, β̃)(α̂− α0) (85)

for some mean values (θ̃, β̃). Therefore,

(n1/2(β̂ − β0)
′, n(θ̂ − θ0)

′)′ =

(
n−1A11(β̃, θ̃) n−3/2A12(β̃, θ̃)

n−3/2A21(β̃, θ̃) n−2A22(β̃, θ̃)

)−1

B̃. (86)

In De Jong (1997) it was shown that A11(θ̃, β̃) and A12(θ̃, β̃) can be asymptotically replaced
by A11(θ0, β0) and A12(θ0, β0) under the conditions of the theorem (using the assumptions of
Equations (20), (21) and (22)). Note that for A22(θ̃, β̃), this result is easily obtained using
an analogous argument.

Proof of Theorem 3:

Let Aij denote element (i, j) of a matrix A and let Bi denote element i of a vector B. Then
for some mean value θ̃,

|Ω̃ij − Ω̂ij|

≤ max
i,j

|
n−1∑

l=−n+1

k(l/γn)n−1

n−l∑
t=1

(g(wt, yt − θ̂′xt, β̂)ig(wt+l, yt+l − θ̂′xt+l, β̂)j

−g(wt, εt, β̂)ig(wt+l, εt+l, β̂)j)|

≤ max
i,j

|
n−1∑

l=−n+1

k(l/γn)(θ̂ − θ0)
′n−1

n−l∑
t=1

xt((∂/∂a)g(wt, yt − θ̃′xt, β̂)i)g(wt+l, yt+l − θ̃′xt+l)
j
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+xt((∂/∂a)g(wt+l, yt+l − θ̃′xt+l, β̂)i)g(wt, yt − θ̃′xt)
j

≤ ( sup
1≤t≤n

n−1/2|xt|)(n(θ̂ − θ0))
n−1∑

l=−n+1

|k(l/γn)|×

2 max
i,j

n−3/2

n−l∑
t=1

|((∂/∂a)g(wt, εt + (θ0 − θ̃)′xt, β̂)i)g(wt+l, yt+l − θ̃′xt+l)
j|. (87)

Next, note that by Theorem 2 under the stated conditions sup1≤t≤n n−1/2|xt| and n(θ̂ − θ0)
are OP (1). Also,

sup
1≤t≤n

|(θ0 − θ̂)′xt| = OP (n−1/2), (88)

and therefore for n large enough with probability arbitrarily close to one, by the Cauchy-
Schartz inequality,

(n−1

n−l∑
t=1

|((∂/∂a)g(wt, εt + (θ0 − θ̂)′xt, β̂)i)g(wt+l, yt+l − θ̂′xt+l)
j|)2

≤ n−1

n∑
t=1

sup
γ∈Γ

sup
β∈B

|(∂/∂a)g(wt, εt + γ, β)|2n−1

n∑
t=1

sup
γ∈Γ

sup
β∈B

|g(wt, εt + γ, β)|2 (89)

which is OP (1) by assumption. Therefore, the remaining probability order is that of

n−1/2

n−1∑
l=−n+1

|k(l/γn)| = OP (γnn
−1/2

∫ ∞

−∞
|k(x)|dx) = oP (1) (90)

by assumption.
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