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1 Introduction

The estimation of continuous-time models, such as those described by potentially nonlinear stochas-
tic differential equations, has been intensively studied in recent research. Stanton (1998) provides
a recent concise survey and discussion of applications in finance. In the last few years, this litera-
ture has shown a tendency to turn to fully functional procedures to identify and estimate the two
functions that describe the solution to the stochastic differential equation of interest, that is the
drift and diffusion functions [c.f. Jiang and Knight (1997), Stanton (1998) and Bandi and Phillips
(1998) — hereafter BP]. The motivation for this focus is clear. By not imposing a specific parametric
structure, fully functional methods reduce the extent of potential misspecifications. Unfortunately,
they do so at the expense of slower convergence rates and the potential of greater estimation er-
ror over their parametric counterparts. Yet, the informational content of accurately implemented
functional methods can be put to work as a useful descriptive tool to understand more about the
underlying dynamics from a general perspective and to investigate more effective procedures for
parametric inference.

This paper seeks to design an estimation methodology that exploits the generality of functional
methods while improving on their convergence properties. Also, we wish to utilize any available
information about possible parametrizations for the two functions of interest. A natural way to
proceed is to define a semiparametric estimation procedure that matches functional estimates to
their parametric counterparts. In order to do so, we specify a parametric class for the underlying
diffusion process and estimate the parameters of interest by minimizing two criteria which can be
readily interpreted as the integrated squared differences between kernel estimates of the drift and
diffusion function and their corresponding parametric expressions.

The nonparametric estimates we use here are simplified versions of those in BP (1998). As
discussed in BP (1998), drift and diffusion functions can be identified separately using functional
analogues of the true theoretical functions. Only minimal requirements need to be placed on the
data generating mechanism for this approach to be justified. In particular, we do not require the
existence of a time-invariant marginal data density, so stationarity is not needed.

The present work develops an asymptotic theory for the new semiparametric estimates. The
limit theory relies on infill and long span asymptotics, just as in the fully nonparametric case
[c.f. BP (1998) and Bandi (1999)], and the asymptotic distributions are shown to depend on the
chronological local time of the underlying diffusion process, that is on the time that the process
spends in the vicinity of each spatial point [see Protter (1990) for a general discussion and Phillips
and Park (1998) for an introduction to this concept in econometrics]. As expected, semiparametric
methods entail efficiency gains with respect to fully functional procedures by virtue of their faster
convergence rates. The same intuition as in the standard semiparametric regression context carries
over to the continuous-time model examined in this paper [c.f. Andrews (1989)].

From a purely technical point of view, this work merges two strands of the most recent econo-
metrics literature, namely the estimation of nonlinear models of integrated time-series [Park and
Phillips (1999, 2000)] and the functional identification of diffusions under minimal assumptions on
the dynamics of the underlying process [Florens-Zmirou (1993), Jacod (1997) and BP (1998)]. In
effect, the ‘minimum distance’ type of estimation that is presented in this paper can be interpreted
as extremum estimation for potentially nonstationary and nonlinear continuous-time models.

The paper proceeds as follows. Section 2 discusses the model and objects of econometric interest.
Section 3 details the estimation procedure. Section 4 presents the main results. In Section 5 we
outline the Brownian motion case. Section 6 discusses covariance matrix estimation. Section 7
concludes. Notation is listed in Section 8 and proofs are given in Section 9.
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2 The model

We consider a diffusion process {Xt : t ≥ 0} generated by

dXt = µ(Xt, θ
drift)dt+ σ(Xt, θ

diff )dBt, (1)

with initial condition X0 = X and where Bt is a standard Brownian motion defined on the filtered
probability space (Ω,=B, (=Bt )t≥0, P ). The initial condition X ∈ L2 and is taken to be independent
of {Bt : t ≥ 0}. The parameter vectors θdrift and θdiff are such that ¡θdrift, θdiff¢ = θ ∈ Θ
where Θ is a compact subset of RM for a generic M . More specifically, θdrift ∈ Θdrift ⊂ Rm1 and
θdiff ∈ Θdiff ⊂ Rm2 with m1 +m2 =M . The vectors θdrift and θdiff jointly define a parametric
family for (1). Since we will be dealing with extremum estimation procedures, it is convenient to
denote the true values of these parameters by θdrift0 and θdiff0 .

We now define the left-continuous filtration

=t := σ(X) ∨=Bt = σ(X,Bs; 0 ≤ s ≤ t) 0 ≤ t <∞

and the collection of null sets

ℵ := {N ⊆ Ω;∃G ∈ =∞ with N ⊆ G and P (G) = 0}.

We create the augmented filtration

e=Xt := σ(=t ∪ ℵ) 0 ≤ t <∞.

As in BP (1998), the following conditions are used in the study of (1). They guarantee the existence
and pathwise uniqueness of a nonexplosive solution to (1) that is adapted to the augmented filtration
{e=Xt }.
2.1 Assumption

(A) µ(·, θdrift) and σ(·, θdiff ) are time-homogeneous, B-measurable functions on D = (l, u) with
−∞ ≤ l < u ≤ ∞ where B is the σ-field generated by Borel sets on D. Both functions
are at least twice continuously differentiable. Hence, they satisfy local Lipschitz and growth
conditions. Thus, for every compact subset J = [1/H,H] with H > 0 of the range of the
process, there exist constants C1 and C2 such that, for all x and y in J,

|µ(x, θdrift)− µ(y, θdrift)|+ |σ(x, θdiff )− σ(y, θdiff )| ≤ C1|x− y|,

and

|µ(x, θdrift)|+ |σ(x, θdiff )| ≤ C2{1+ |x|}.

(B) σ2(·, θdiff ) > 0 on D.

(C) [Feller’s (1952) necessary and sufficient condition for nonexplosion]. We define V (α, θ) asZ α

0
S0(y, θ){

Z y

0

·
2

S0(x, θ)σ2(x, θdiff )

¸
dx}dy
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where S0(x, θ) is the first derivative of the natural scale measure,

S(α, θ) =

Z α

0
exp{

Z y

0

·
−2µ(x, θ

drift)

σ2(x, θdiff )

¸
dx}dy.

We require V (α, θ) to diverge at the boundaries of D, i.e.

lim
α→l

V (α, θ) = lim
α→uV (α, θ) =∞.

(D) µ(·, θdrift) and σ(·, θdiff ) are at least twice continuously differentiable in θdrift and θdiff .

As discussed in BP (1998), under conditions (A), (B) and (C), the stochastic differential equation
has a strong solution Xt that is unique, recurrent and continuous in t ∈ [0, T ]. Assumption (D) will
be used in the development of our asymptotics.

The objects of econometric interest are the drift, µ(., θdrift), and the diffusion term, σ2(., θdiff ).
Their conditional moment definitions are well known. They can be interpreted as representing
the ‘instantaneous’ conditional mean and the ‘instantaneous’ conditional variance of increments in
the process [c.f. Karlin and Taylor (1981), for example]. More precisely, µ(., θdrift) describes the
conditional expected rate of change of the process for infinitesimal time changes, whereas σ2(., θdiff )
gives the conditional rate of change of volatility.

3 The Econometric procedure

We define a ‘minimum distance’ type of estimation that exploits the consistency of accurately
defined functional estimators and provides estimates of the parameters of interest by ‘matching’
the parametric expressions to their nonparametric counterparts.

The first step consists of defining the functional estimates. We consider a simplified version of
the estimators in BP (1998). Assume the data Xt is recorded discretely at {t = t1, t2, .., tn} in the
time interval [0, T ], with T ≥ T0 > 0, where T0 is a positive constant. Also, assume equispaced
data. Hence,

{Xt = X∆n,T
,X2∆n,T

, X3∆n,T
, ..., Xn∆n,T

}
are n observations at

{t1 = ∆n,T , t2 = 2∆n,T , t3 = 3∆n,T , ..., tn = n∆n,T}

where ∆n,T = T/n. The diffusion function estimator is

bσ2(n,T )(x) = 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−x

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]2Pn

j=1K(
Xj∆n,T

−x
hn,T

)
. (2)

The drift function estimator is

bµ(n,T )(x) = 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−x

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−x
hn,T

)
. (3)
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Remark 3.1 The estimators above are defined as rather straightforward sample analogues of
the theoretical functions. BP (1998) discuss the properties of consistency and asymptotic mixed
normality of more general functional analogues to the true functions than (2) and (3) above. They
show that recurrence (which is implied by Assumption 2.1 above), rather than stationarity, is all
that is needed to achieve identification. They derive the asymptotics as (i) the time span (T )
and (ii) the number of data points (n) increase with (iii) the frequency of observations (Tn → 0).
Condition (iii) is necessary for the consistent estimation of continuous-time models using fully
functional methods under general assumptions. Condition (i) is crucial only for drift estimation as
the local dynamic of the process does not contain sufficient information to identify its infinitesimal
first moment. By letting the time span increase to infinity, the drift can be recovered in the limit
since the process continues to make repeated visits to different spatial points by virtue of recurrence.

Remark 3.2 Formulae (2) and (3) can be interpreted as estimates of Stanton’s first order ap-
proximations to the infinitesimal moments of a diffusion [c.f. Stanton (1997)]. They are proven to
be consistent and asymptotically mixed normal under the same conditions on the time span and
the sample size that were described in the previous remark [c.f. Bandi (1999)].

Remark 3.3 More general sample analogues to the true functions of the type described in BP
(1998) could be used to derive the functional estimates. We decided to employ specifications based
on simple smoothing rather than on convoluted kernels [as in the most general case examined by
BP (1998)] for simplicity. In effect, the use of more involved specifications would not qualitatively
change the asymptotic results given here.

In finite samples the use of convoluted kernels does make a difference [c.f. Bandi and Nguyen
(1999)]. In particular, we know that the choice of the optimal smoothing parameter for the drift is
empirically cumbersome. Yet, the use of convoluted kernels limit the effects of potentially subopti-
mal choices. Extension to more general kernels can be easily derived from the apparatus discussed
below.

Consider the criteria

Qdriftn,T =
T

n

nX
i=1

³bµ(n,T )(Xi∆n,T )− µ(Xi∆n,T , θdrift)´2 (4)

and

Qdiffn,T =
T

n

nX
i=1

³bσ2
(n,T )

(Xi∆n,T )− σ2(Xi∆n,T , θdiff )
´2

(5)

where bµ(n,T )(.) and bσ2(n,T )(.) are defined in (3) and (2), respectively. Formulae (4) and (5) can
be interpreted as the integrated mean squared differences between the kernel estimates and their
corresponding parametric specifications. We consider averaged squared differences over a fixed
time span T = T . Despite the fact that we fix T to define the criteria to be minimized, the
nonparametric estimates rely on asymptotic sampling over an enlarging time span for the reasons
discussed in Remark 3.1. In the sequel we will often refer to the expression “fixed time span” to
describe the situation where kernel estimation is assumed to be implemented (in the limit) over a
fixed observation span. As far as the criteria (4) and (5) are concerned, we will assume throughout
that the X 0

i∆n,T
s are recorded discretely over a fixed time period T . This assumption will be

extended in Remark 5.1.
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The semiparametric estimates bθdriftn,T and bθdiffn,T are obtained as follows:

bθdriftn,T : = arg min
θdrift∈Θdrift⊂Θ

Qdriftn,T

= arg min
θdrift∈Θdrift⊂Θ

T

n

nX
i=1

³bµ(n,T )(Xi∆n,T )− µ(Xi∆n,T , θdrift)´2 (6)

and

bθdiffn,T : = arg min
θdiff∈Θdiff⊂Θ

Qdiffn,T

= arg min
θdiff∈Θdiff⊂Θ

T

n

nX
i=1

³bσ2(n,T )(Xi∆n,T )− σ2(Xi∆n,T , θdiff )´2 . (7)

Remark 3.4 As in the fully nonparametric case, we identify the drift and diffusion parameters

(bθdriftn,T and bθdiffn,T , that is) separately. This is of particular importance when we are interested in the
parametrization of a specific function in situations where the other function is treated as a nuisance
parameter.

Remark 3.5 In the next section we derive the consistency and asymptotic mixed normality ofbθdriftn,T and bθdiffn,T as T →∞, n→∞ and T
n → 0. As in the fully nonparametric case, we show thatbθdiffn,T can be identified over a fixed time span (T = T ) provided T

n → 0, that is as the frequency of
observations increases.

4 Limit theory

First, we consider the drift case.

Theorem 4.1 (Consistency of the drift estimates) Assume n → ∞, T → ∞ and hn,T
→ 0 (as n, T → ∞) such that ∆n,T

hn,T
→ 0, LX(T,x)

hn,T
(∆n,T )

α = Oa.s.(1) for some α ∈ (0, 12) and
LX(T, x)hn,T

a.s.→ ∞, then

Qdriftn,T (θdrift)
a.s.→ Qdrift(θdrift, θdrift0 ) =

Z ∞

−∞

³
µ(s, θdrift0 )− µ(s, θdrift)

´2
LX(T , s)ds, (8)

uniformly in θdrift. Also, let B(θdrift, ε) denote an open ball in Θdrift of radius ε around θdrift.
Assume that for ∀δ > 0 and ∀ε > 0

inf
θdrift /∈B

³
θdrift
0 ,ε

´ Z
|s|≤δ

³
µ(s, θdrift0 )− µ(s, θdrift)

´2
ds > 0. (9)

Then,

bθdriftn,T
a.s.→ θdrift0 .
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Theorem 4.2 (The limit distribution of the drift estimates) Given n→∞, T →∞ and

hn,T → 0 (as n, T →∞) such that ∆n,T

hn,T
→ 0, LX(T,x)

hn,T
(∆n,T )

α = Oa.s.(1) for some α ∈ (0, 12) and
LX(T, x)hn,T

a.s.→ ∞, then

(Ξmu(T ))
−1/2

³bθdriftn,T − θdrift0

´
→d N(0, I), (10)

where

Ξmu(T ) = B(T )
−1
muΩ(T )muB(T )

−1
mu,

and

Bmu =

µZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T , a)da

¶
,

Ωmu =

ÃZ ∞

−∞
σ2(a)

µ
∂µ0(a)

∂θ

∂µ0(a)

∂θ
0

¶ ¡
LX(T, a)

¢2
LX(T, a)

da

!
.

Remark 4.3 The result is consistent with what we would expect to obtain in a correctly specified
standard nonlinear regression context with heteroskedastic errors [c.f. Davidson and MacKinnon
(1993) for a classical treatment]. The only difference is that we replace integrals with respect to
probability measures with spatial integrals [c.f. Park and Phillips (1998b)]. This is due to the
generality of the approach adopted here. In particular, it is due to the robustness to deviations
from stationarity.

Remark 4.4 Coherently with the fully nonparametric case, the rate of convergence is path-
dependent and is driven by the rate of divergence to infinity of the chronological local time of the
underlying process through the integral Ωmu. By virtue of the averaging, the rate is faster than in

fully functional context, i.e.
q
hn,TLX(T, x).

Remark 4.5 As usual, the limit theory clarifies the sense in which enlarging the time span
(T →∞) is crucial for consistent estimation of the infinitesimal first moment of a diffusion. In effect,
if we fix T (= T ), then LX(T , x) = Op(1) and Ξmu(T ) = Op(1). In consequence, bθdriftn,T

p9 θdrift0 [c.f.
formula (10) above] when T is fixed.

We now turn to the diffusion parameter estimates.

Theorem 4.6 (Consistency of the diffusion estimates) Assume n→∞, T →∞ and hn,T
→ 0 (as n, T →∞) such that ∆n,T

hn,T
→ 0 and LX(T,x)

hn,T
(∆n,T )

α = Oa.s.(1) for some α ∈ (0, 12), then

Qdiffn,T (θ
diff )

a.s.→ Qdiff (θdiff , θdiff0 ) =

Z ∞

−∞

³
σ2(s, θdiff0 )− σ2(s, θdiff )

´2
LX(T, s)ds. (11)
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uniformly in θdiff . Also, let B(θdiff0 , ε) denote an open ball of radius ε around θdiff0 in Θdiff .
Assume that for ∀ δ > 0 and ∀ ε > 0

inf
θdiff /∈B

³
θdiff
0 ,ε

´ Z
|s|≤δ

³
σ2(s, θdiff0 )− σ2(s, θdiff )

´2
ds > 0. (12)

Then,

bθdiffn,T
a.s.→ θdiff0 .

Theorem 4.7 (The limit distribution of the diffusion estimates) Given n→∞, T →∞
and hn,T → 0 (as n, T →∞) such that ∆n,T

hn,T
→ 0, LX(T,x)

hn,T
(∆n,T )

α = Oa.s.(1) for some α ∈ (0, 12)
and

h3n,T

∆n,T
→ 0, then

1p
∆n,T

Ξ
−1/2
sigma(T )

³bθdiffn,T − θdiff0

´
→d N(0, I) (13)

where

Ξsigma(T ) = B(T )
−1
sigmaΩ(T )sigmaB(T )

−1
sigma

and

Bsigma =

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T , a)da

¶

Ωsigma =

ÃZ ∞

−∞
4σ4(a)

µ
∂σ20(a)

∂θ

∂σ20(a)

∂θ0

¶ ¡
LX(T , a)

¢2
LX(T, a)

da

!
.

Remark 4.8 In light of Remark 4.3, the integrals Bsigma and Ωsigma can be readily interpreted
as spatial analogues of the expectations that would arise from the standard nonlinear estimation
of conditional expectations. The term 4σ4(a) is generated by the quadratic nature of the nonpara-
metric estimator of the infinitesimal second moment of a diffusion.

Remark 4.9 As in the drift case, the rate of convergence is path-dependent. Also, the semipara-
metric estimates entail efficiency gains with respect to their nonparametric counterparts. In effect,

the functional estimates have slower pointwise convergence rates given by
√
hn,TLX(T,x)√

∆n,T
.

Remark 4.10 The rate of convergence of the diffusion estimates is faster than the rate of con-
vergence of the drift estimates. The difference is remarkable and is given by the multiplicative
factor 1√

∆n,T
=
p

n
T . This is a standard result that reflects perfectly the difference in the pointwise

convergence rates of the nonparametric estimates (that is,
q
hn,TLX(T, x) versus

√
hn,TLX(T,x)√

∆n,T
).
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Remark 4.11 The condition
h3n,T

∆n,T
→ 0 guarantees that the limit distribution is driven by the

‘variance term’ in the estimation error decomposition [see the proof of Theorem 4.7]. Should
h3n,T

∆n,T
→ ∞, then the ‘bias term’ would dominate, but the semiparametric estimates would still

converge to a Gaussian distribution. No choice of the smoothing parameter can make the ‘bias
term’ dominate in the drift case due to the slow rate of convergence of the ‘variance term’.

Remark 4.12 As usual, the diffusion parameters can be identified over a fixed time span [c.f.
BP (1998)]. In this case the convergence rate ceases to be path-dependent: we experience

√
n-

convergence for the semiparametric estimates and
q
nhn,T -convergence for the fully nonparametric

counterpart in (2) above. The gain in efficiency which is assured by the adoption of the semipara-
metric approach is noteworthy and is perfectly consistent with more traditional semiparametric
models [c.f. Andrews (1989), for example]. To summarize, if T is fixed (= T ) then,

√
n
³bθdiffn,T − θdiff0

´
→d MN

µ
0,
1

T
Ξsigma(T )

¶
,

where

Ξsigma(T ) = B(T )
−1
sigmaΩ(T )sigmaB(T )

−1
sigma

and

Bsigma =

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T , a)da

¶

Ωsigma =

µZ ∞

−∞
4σ4(a)

µ
∂σ20(a)

∂θ

∂σ20(a)

∂θ0

¶
LX(T , a)da

¶
.

5 An instructive example: Brownian Motion

Assume the data is generated from a Brownian motion B = σW with variance σ2.We parametrize
the diffusion as

dXt = µdt+ σdWt

and minimize the criteria (4) and (5). It follows that

bθdriftn,T =
1

n

nX
i=1

bµ(n,T )(Xi∆n,T
)

and

bθdiffn,T =

vuut1

n

nX
i=1

bσ2(n,T )(Xi∆n,T
).

The limit theories can be derived in closed form since the rate of divergence to infinity of the
Brownian local time is known. In particular,
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Bmu =

µZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T , a)da

¶
=

Z ∞

−∞
LX(T , a)da

=
1

σ2
[B]T

=

Z ∞

−∞
1

σ
T
1
2LW

Ã
1,
1

T
1
2

a

σ

!
da

=

Z ∞

−∞
TLW (1, x)dx

= T [W ]1

= T ,

and

Ωmu =

ÃZ ∞

−∞
σ2(a)

µ
∂µ0(a)

∂θ

∂µ0(a)

∂θ0

¶ ¡
LX(T , a)

¢2
LX(T, a)

da

!

=

Z ∞

−∞
σ2

1
σ2

µ
T
1
2LW

µ
1, 1

T
1
2

a
σ

¶¶2
1
σT

1
2LW

³
1, 1

T
1
2

a
σ

´ da

=

Z ∞

−∞
σ2
1

σ

T
1
2

T
1
2

µ
T
1
2LW

µ
1, 1

T
1
2

a
σ

¶¶2
T
1
2LW

µ
1, 1

T
1
2

T
1
2

T
1
2

a
σ

¶ da

=

Z ∞

−∞
σ2T

1
2

³
T

1
2LW (1, x)

´2
T
1
2LW

µ
1, T

1
2

T
1
2
x

¶dx
=

1

T
1
2LW (1, 0 + o(1))

Z ∞

−∞
σ2T

3
2 (LW (1, x))

2 dx.

Then,

T
1
4 (bθdriftn,T − θdrift0 )→d MN

Ã
0,

Z ∞

−∞
σ2

Ã
(LW (1, x))

2

T
1
2LW (1, 0)

!
dx

!
.

The rate of convergence, T
1
4 , is faster than in the fully nonparametric case, where it is known to

be T
1
4h
1/2
n,T [BP (1998)]. We now turn to diffusion estimation. Write

Bsigma =

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ
0 LX(T , a)da

¶
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=

Z ∞

−∞
4σ2LX(T , a)da

= 4σ2
Z ∞

−∞
LX(T , a)da

= 4σ2T ,

and

Ωsigma =

ÃZ ∞

−∞
4σ4(a)

µ
∂σ20(a)

∂θ

∂σ20(a)

∂θ0

¶ ¡
LX(T , a)

¢2
LX(T, a)

da

!

=

Z ∞

−∞
4σ4

¡
4σ2

¢Ã¡LX(T , a)¢2
LX(T, a)

!
da

=
1

T
1
2LW (1, 0 + o(1))

Z ∞

−∞
4σ4(4σ2)T

3
2 (LW (1, x))

2 dx.

In consequence,

T
1
4p
∆n,T

(bθdiffn,T − θdiff0 )→d MN

Ã
0,

Z ∞

−∞
σ2

Ã
(LW (1, x))

2

T
1
2LW (1, 0)

!
dx

!
.

As in the previous case, the rate of convergence that would emerge from purely functional estimation

is slower, viz. T
1
4√

∆n,T

h
1/2
n,T .

Remark 5.1 It appears that we can increase further the rate of converge by working with squared
differences defined over an enlarging time span. In this case,

T
1
2 (bθdriftn,T − θdrift0 )→d N

¡
0,σ2

¢
and

T
1
2p
∆n,T

(bθdiffn,T − θdiff0 )→d N
¡
0,σ2

¢
.

Of course, this result holds more generally. For more general diffusion processes than Brownian
motion we have

(Ξmu(T ))
−1/2

³bθdriftn,T − θdrift0

´
→d N(0, I)

where

Ξmu(T ) = B(T )
−1
muΩ(T )muB(T )

−1
mu,

and

Bmu =

µZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T, a)da

¶
,

11



Ωmu =

µZ ∞

−∞
σ2(a)

µ
∂µ0(a)

∂θ

∂µ0(a)

∂θ0

¶
LX(T, a)da

¶
.

Also,

1p
∆n,T

Ξ
−1/2
sigma(T )

³bθdiffn,T − θdiff0

´
→d N(0, I)

where

Ξsigma(T ) = B(T )
−1
sigmaΩ(T )sigmaB(T )

−1
sigma

and

Bsigma =

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T, a)da

¶
,

Ωsigma =

µZ ∞

−∞
4σ4(a)

µ
∂σ20(a)

∂θ

∂σ20(a)

∂θ0

¶
LX(T, a)da

¶
.

6 Covariance matrix estimation

We will only consider the drift case. The results readily extend to covariance matrix estimation in
the diffusion case. From Theorem 4.2 above, write

asicov(bθdriftn,T )

= Ξmu(θ
drift
0 , θdiff0 )

=
³
Bmu(θ

drift
0 )

´−1 ³
Ωmu(θ

drift
0 , θdiff0 )

´³
Bmu(θ

drift
0 )

´−1
with

Bmu(θ
drift
0 ) =

ÃZ ∞

−∞
∂µ(a, θdrift0 )

∂θ

∂µ(a, θdrift0 )

∂θ0
LX(T , a)da

!
and

Ωmu(θ
drift
0 , θdiff0 ) =

ÃZ ∞

−∞
σ2(a, θdiff0 )

Ã
∂µ(a, θdrift0 )

∂θ

∂µ(a, θdrift0 )

∂θ0

! ¡
LX(T , a)

¢2
LX(T, a)

da

!
.

It is straightforward to prove [see proof of Theorem 4.7] that

bBmu(θdrift)n,T
= ∆n,T

nX
i=1

∂µ(Xi∆n,T
, θdrift)

∂θ

∂µ(Xi∆n,T
, θdrift)

∂θ0

a.s.→
Z ∞

−∞
∂µ(a, θdrift)

∂θ

∂µ(a, θdrift)

∂θ0
LX(T, a)da

= Bmu(θ
drift)

12



and

bΩmu(θdrift, θdiff )n,T,T
=

hn,T
hn,T

³
∆n,T

´2
∆n,T

nX
i=1

σ2(Xi∆n,T
, θdiff )

∂µ(Xi∆n,T
, θdrift)

∂θ

∂µ(Xi∆n,T
, θdrift)

∂θ0

Pn
j=1K(

Xj∆
n,T

−Xi∆
n,T

hn,T
)Pn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)

a.s.→
Z ∞

−∞
σ2(a, θdiff )

µ
∂µ(a, θdrift)

∂θ

∂µ(a, θdrift)

∂θ0

¶ ¡
LX(T, a)

¢2
LX(T, a)

da

= Ωmu(θ
drift, θdiff.)

uniformly in Θdrift and Θdiff.. We combine this result with the continuity of ∂µ(.,θdrift)
∂θ and

σ2(., θdiff.) at θdrift0 and θdiff.0 (c.f. Assumption 2.1) and the consistency of bθdriftn,T and bθdiffn,T (from
Theorems 4.1 and 4.6) to yield

bBmu(bθdriftn,T )n,T
a.s.→ Bmu(θ

drift
0 )

and bΩmu(bθdriftn,T ,bθdiffn,T )n,T
a.s.→ Ωmu(θ

drift
0 , θdiff0 ).

The proof follows standard arguments in extremum estimation [see the proof of Theorem 4.2 for a
similar derivation]. In consequence,

³bBmu(bθdriftn,T )n,T

´−1 ³bΩmu(bθdriftn,T ,bθdiff.n,T )n,T

´³bBmu(bθdriftn,T )n,T

´−1
a.s.→
³
Bmu(θ

drift
0 )

´−1
Ωmu(θ

drift
0 , θdiff0 )

³
Bmu(θ

drift
0 )

´−1
= Ξmu(θ

drift
0 , θdiff0 ).

Defining the criterion over an enlarging time span as in Remark 5.1 above, we obtain

bBmu(bθdriftn,T )n,T

= ∆n,T

nX
i=1

∂µ(Xi∆n,T
,bθdriftn,T )

∂θ

∂µ(Xi∆n,T
,bθdriftn,T )

∂θ0

a.s.→
Z ∞

−∞
∂µ(a, θdrift0 )

∂θ

∂µ(a, θdrift0 )

∂θ0
LX(T, a)da

= Bmu(θ
drift
0 )

and

bΩmu(bθdriftn,T ,bθdiffn,T )n,T

= ∆n,T

nX
i=1

σ2(Xi∆n,T
,bθdiffn,T )

∂µ(Xi∆n,T
,bθdriftn,T )

∂θ

∂µ(Xi∆n,T
,bθdriftn,T )

∂θ0

13



a.s.→
Z ∞

−∞
σ2(a, θdiff0 )

Ã
∂µ(a, θdrift0 )

∂θ

∂µ(a, θdrift0 )

∂θ0

!
LX(T, a)da

= Ωmu(θ
drift
0 , θdiff0 ).

The last two expressions further clarify the analogy between the methods developed here and more
standard nonlinear estimation problems. As conventional in correctly specified nonlinear models
with heterogeneous errors, the asymptotic variance-covariance matrix is simply estimated as a
convolution of averages involving the outer-product of the gradient of the conditional expectation
calculated at the estimated parameter vector.

7 Conclusion

This paper shows how to utilize the informational content of carefully implemented nonparametric
methods in the estimation of continuous time models of the diffusion type while improving on
their generally poor convergence properties. From a practical point of view, the semiparametric
procedure suggested in this work combines the simplicity of limit theories that can be interpreted
as spatial counterparts of the standard asymptotics for nonlinear econometric models with the
generality of methods that are robust to deviations from strong distributional assumptions, such as
stationarity. Furthermore, the general estimation strategy given here provides a framework which
may be particularly appealing to researchers with strong beliefs about potential parametrizations
for the two functions of interest.

The next step is naturally to study a testing procedure for alternative parametric specifications
based on the quadratic criteria used in this paper. Due to the broadly applicable identifying
information that is embodied in the estimated functional drift and diffusion functions and the finite
sample accuracy of the asymptotics of the functional estimates [c.f. Bandi and Nguyen (1999)],
we believe such test procedures are likely to be attractive. They can, for instance, be expected
to have better size properties and more power than testing methods that are based on density-
matching procedures which rely on stationarity [c.f. Pritsker (1998)]. Research on this subject will
be reported by the authors in subsequent work.

8 Notation

→a.s. almost sure convergence
→p convergence in probability
⇒,→d weak convergence
:= definitional equality
op(1) tends to zero in probability
Op(1) bounded in probability
oa.s.(1) tends to zero almost surely
Oa.s.(1) bounded almost surely
=d distributional equivalence
MN(0, V ) mixed normal distribution with variance V
Ck, k = 1, 2, ... constants

14



9 Proofs

Proof of theorem 4.1 First, we prove uniform strong convergence of the criterion Qdriftn,T (θdrift)
as in (8). Write

Qdriftn,T (θdrift)

=
T

n

nX
i=1

³bµ(n,T )(Xi∆n,T )− µ(Xi∆n,T , θdrift)´2

=
T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)

− µ(Xi∆n,T
, θdrift)


2

=
T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


2

| {z }
(a)

+
T

n

nX
i=1

µ2(Xi∆n,T
, θdrift)| {z }

(b)

− 2T
n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


| {z }

(c)

Then, using the results in BP (1998),

(b) =
T

n

nX
i=1

µ2(Xi∆n,T
, θdrift)

=

Z T

0
µ2(Xs, θ

drift)ds+ oa.s.(1)

=

Z +∞

−∞
µ2(a, θdrift)LX(T, a)da+ oa.s.(1).

Furthermore,

(c) = −2T
n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


= −2T

n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
µ(Xs)dsPn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


| {z }

(c1)
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−2T
n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
σ(Xs)dBsPn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


| {z }

(c2)

.

It follows that,

(c1) = −2T
n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
µ(Xs)dsPn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


= −2T

n

nX
i=1

µ(Xi∆n,T
, θdrift)

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)µ(Xj∆n,T

+ oa.s.(1))Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)


= −2

Z T

0
µ(Xs, θ

drift)

 1
hn,T

R T
0 K(

Xu−Xs
hn,T

)µ(Xu + oa.s.(1))du

1
hn,T

R T
0 K(

Xa−Xs
hn,T

)da

 ds+ oa.s.(1)
= −2

Z +∞

−∞
µ(s, θdrift)

Ã 1
hn,T

R∞
−∞K(

u−s
hn,T

)µ(u+ oa.s.(1))LX(T, u)du

1
hn,T

R∞
−∞K(

a−s
hn,T

)LX(T, a)da

!
LX(T, s)ds+ oa.s.(1)

= −2
Z +∞

−∞
µ(s, θdrift)

ÃR∞
−∞K(c)µ(s+ hn,T c)LX(T, s+ hn,T c)dcR∞

−∞K(e)LX(T, s+ hn,T e)de

!
LX(T , s)ds+ oa.s.(1)

= −2
Z +∞

−∞
µ(s, θdrift)µ(s, θdrift0 )LX(T , s)ds+ oa.s.(1).

Also, it is easy to prove [see the proof of Theorem 4.2] that

(c2) = 2
T

n

nX
i=1

µ(Xi∆n,T
, θdrift)

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
σ(Xs)dBsPn

j=1K(
Xj∆n,T

−Xi∆n,T

hn,T
)

 a.s.→ 0,

and

Φ−1/2(T ) ∗ (c2) = Op(1),

with

Φ(T ) =

Z ∞

−∞

Ã
4σ2(a, θdrift0 )µ2(a, θdrift)

¡
LX(T, a)

¢2
LX(T, a)

!
da.

We now examine the quadratic term (a). Write,

T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆n,T

hn,T
)[X(j+1)∆n,T

−Xj∆n,T
]Pn

j=1K(
Xj∆n,T

−Xi∆n,T

hn,T
)

2
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=
T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
µ(Xs)dsPn

j=1K(
Xj∆n,T

−Xi∆n,T

hn,T
)

2
| {z }

(a1)

+

T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
σ(Xs)dBsPn

j=1K(
Xj∆n,T

−Xi∆n,T

hn,T
)

2
| {z }

(a2)

+

2T

n

nX
i=1


³

1
∆n,T

´2Pn−1
j=1

Pn−1
k=1K(

Xj∆n,T
−Xi∆n,T

hn,T
)K(

Xk∆n,T
−Xi∆n,T

hn,T
)
R (k+1)∆n,T

k∆n,T
µ(Xs)ds

R (j+1)∆n,T

j∆n,T
σ(Xs)dBsPn

j=1K(
Xj∆n,T

−Xi∆n,T

hn,T
)
Pn
k=1K(

Xk∆n,T
−Xi∆n,T

hn,T
)


| {z }

(a3)

We start with (a1). Following the same steps as for (c1) above we deduce that

T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
µ(Xs)dsPn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


2

a.s.→
Z +∞

−∞
µ2(s, θdrift0 )LX(T, s)ds.

We now examine (a2). Write

T

n

nX
i=1

 1

∆n,T

Pn−1
j=1 K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
σ(Xs)dBsPn

j=1K(
Xj∆n,T

−Xi∆
n,T

hn,T
)


2

=
T

n

nX
i=1

1µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2
 1

hn,T

n−1X
j=1

K(
Xj∆n,T

−Xi∆n,T

hn,T
)

Z (j+1)∆n,T

j∆n,T

σ(Xs)dBs

2

=
T

n

nX
i=1

1µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2 ¡M i
n(1)

¢2
,

where

M i
n(r) =

1

hn,T

J−1X
j=1

K(
Xj∆n,T

−Xi∆n,T

hn,T
)

Z (j+1)∆n,T

j∆n,T

σ(Xs)dBs

+
1

hn,T
K(
XJ∆n,T

−Xi∆n,T

hn,T
)

Z rn∆n,T

J∆n,T

σ(Xs)dBs

for J = [nr]. M i
n(r) is an L

2-martingale ∀i. Note that

dM i
n(r) =

1

hn,T
K(
XJ∆n,T

−Xi∆n,T

hn,T
)σ(Xrn∆n,T

)dBrn∆n,T
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and

d
h
M i
n,M

k
n

i
r
= dM i

n(r)dM
k
n(r)

=

"
n∆n,T
h2n,T

K(
XJ∆n,T

−Xi∆n,T

hn,T
)K(

XJ∆n,T
−Xk∆n,T

hn,T
)σ2(Xrn∆n,T

)

#
dr.

Then,h
M i
n,M

k
n

i
r
=

Z r

0
d
h
M i
n,M

k
n

i
s

=

Z r

0

"
n∆n,T
h2n,T

K(
X[ns]∆n,T

−Xi∆n,T

hn,T
)K(

X[ns]∆n,T
−Xk∆n,T

hn,T
)σ2(Xsn∆n,T

)

#
ds

∼ 1

h2n,T

Z rT

0

"
K(
Xu −Xi∆n,T

hn,T
)K(

Xu −Xk∆n,T

hn,T
)σ2(Xu)

#
du.

Furthermore,

M i
n(r) =

Z r

0
dM i

n(s)

=

Z r

0

1

hn,T
K(
X[sn]∆n,T

−Xi∆n,T

hn,T
)σ(Xsn∆n,T

)dBsn∆n,T

and

M i
n(r)M

k
n(r) =

Z r

0

"
n∆n,T
h2n,T

K(
X[sn]∆n,T

−Xi∆n,T

hn,T
)K(

X[sn]∆n,T
−Xk∆n,T

hn,T
)σ2(Xsn∆n,T

)

#
ds

∼
h
M i
n,M

k
n

i
r
. (14)

The approximation (14) will be used in what follows. Given the continuous martingale M i
n(r),

there is a unique decomposition of the continuous submartingale
¡
M i
n(r)

¢2 as the sum of a contin-
uous martingale and a continuous integrable increasing process [see Chung and Williams (1990),
for example] such that ¡

M i
n(r)

¢2 − ¡M i
n(0)

¢2
= 2

Z r

0
M idM i + [M i]r ∀r

with M i
n(0) = 0 in our case. Hence,

a2 =
T

n

nX
i=1

1³
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆n,T

hn,T
)
´2 ¡M i

n(1)
¢2

=
T

n

nX
i=1

1µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2 [M i
n]1

+2
T

n

nX
i=1

1µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2 µZ 1

0
M i
ndM

i
n

¶
.
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The first term can be represented as follows,

T

n

nX
i=1

1µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2 [M i
n]1

=
T

n

nX
i=1

1
h2n,T

R T
0 K

2(
Xu−Xi∆

n,T

hn,T
)σ2(Xu)duµ

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶2 + oa.s.(1)

=
1

hn,T

Z T

0

 1
hn,T

R T
0 K

2(Xu−Xs
hn,T

)σ2(Xu)du³
1

hn,T

R T
0 K(

Xa−Xs
hn,T

)da
´2

 ds+ oa.s.(1)
=

1

hn,T

Z T

0

 1
hn,T

R T
0 K

2( u−shn,T
)σ2(u)LX(T, u)du³

1
hn,T

R T
0 K(

a−s
hn,T

)LX(T, a)da
´2

LX(T , s)ds+ oa.s.(1)
=

1

hn,T
K2

½Z ∞

−∞
σ2(s)

LX(T , s)

LX(T, s)
ds

¾
+ oa.s.(1),

where K2 =
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which is implied by hn,TLX(T, x)
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converges to a normal variate with mean zero and whose variance is given by the limiting covariance
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This, in turn, implies that
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a.s.→ 0.

Similar steps allow us to show that (a3) a.s.→ 0. This proves the first part of the theorem. Note that
the limit quantity Qdrift(θdrift) is continuous in θdrift by virtue of Assumption 2.1. Then, by (9)
and for every ε > 0, ∃ξ > 0
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This proves the second part of the statement.
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where X∗ ∈ (X(j+1)∆n,T
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 ∂µ0(Xi∆n,T
)

∂θ
,

where x∗ = f(Xj∆n,T
,Xi∆n,T

) ∈ [Xj∆n,T
, Xi∆n,T

]. Hence,

A2n,T

=

Z T

0

1
hn,T

R T
0 K(

Xu−Xs
hn,T

)µ
0
0 (f(Xu, Xs)) (Xu −Xs)

1
hn,T

R T
0 K(

Xu−Xs
hn,T

)du

∂µ0(Xs)

∂θ
duds+ oa.s(1)

=

Z ∞

−∞

1
hn,T

R∞
−∞K(

u−s
hn,T

)µ
0
0 (f(s, u)) (u− s)

1
hn,T

R∞
−∞K(

u−s
hn,T

)LX(T, u)du

∂µ0(s)

∂θ
LX(T, u)LX(T , s)duds+ oa.s(1).

In consequence,

1

hn,T
A2n,T

=

Z ∞

−∞

1
hn,T

R∞
−∞K(

u−s
hn,T

)µ
0
0 (f(s, u))

³
u−s
hn,T

´
1

hn,T

R∞
−∞K(

u−s
hn,T

)L(T, u)du

∂µ0(s)

∂θ
LX(T, u)LX(T, s)duds+ oa.s(1)

=

Z ∞

−∞

R∞
−∞ cK(c)µ

0
0 (f(s, s+ hn,T c))R∞

−∞K(c)LX(T, s+ hn,T c)dc
∂µ0(s)

∂θ
LX(T, s+ hn,T c)LX(T, s)dsdc+ oa.s(1)

=

Z ∞

−∞

Z ∞

−∞
cK(c)

µ
0
0(s)

σ20(s)

∂µ0(s)

∂θ
LX(T, s+ hn,T c)

LX(T , s)

LX(T, s)
dsdc

−
Z ∞

−∞

Z ∞

−∞
cK(c)

µ
0
0(s)

σ20(s)

∂µ0(s)

∂θ
LX(T, s)

LX(T , s)

LX(T, s)
dsdc

+oa.s(1).
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Then,

1

hn,T
A2n,T

=

Z ∞

−∞

Z ∞

−∞
cK(c)

µ
0
0(s)

σ20(s)

∂µ0(s)

∂θ

LX(T , s)

LX(T, s)
(LX(T, s+ hn,T c)− LX(T, s)) dsdc.

In consequence,

1

h
3/2
n,T

A2n,T

= 2

Z ∞

−∞

Z ∞

−∞
cK(c)

µ
0
0(s)

σ20(s)

∂µ0(s)

∂θ

LX(T , s)

LX(T, s)

1

2
p
hn,T

(LX(T, s+ hn,T c)− LX(T, s))dsdc.

By a simple application of the results in BP (1998) we can write,

1

h
3/2
n,T

A2n,T

→ d2

Z ∞

−∞

Z ∞

−∞

Ã
cK(c)

Ã
µ
0
0(s)

σ20(s)

!
LX(T , s)

LX(T, s)

∂µ0(s)

∂θ

!
B (LX(T, s), c) dsdc,

where B (., .) is a standard Brownian sheet. Hence,

³bθdriftn,T − θdrift0

´
=

µµZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T , a)da

¶
+ oa.s.(1)

¶−1
[A1n,T +A

2
n,T +Bn,T (1)]

→ d

µZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T , a)da

¶−1
MN

Ã
0,

ÃZ ∞

−∞
σ2(a)

µ
∂µ0(a)

∂θ

∂µ0(a)

∂θ0

¶ ¡
LX(T, a)

¢2
LX(T, a)

da

!!
d
= N (0,Ξmu(T )) .

This, in turn, implies

Ξ−1/2mu (T )
³bθdriftn,T − θdrift0

´
→d N(0, I),

where

Ξmu(T ) = B(T )
−1
muΩ(T )muB(T )

−1
mu,

Bmu =

µZ ∞

−∞
∂µ0(a)

∂θ

∂µ0(a)

∂θ0
LX(T , a)da

¶
and

Ωmu =

ÃZ ∞

−∞
σ2(a)

µ
∂µ0(a)

∂θ

∂µ0(a)

∂θ0

¶ ¡
LX(T, a)

¢2
LX(T, a)

da

!
.

This proves the stated result.
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Proof of theorem 4.6 We can follow the same steps as in the proof of Theorem 4.1.

Proof of theorem 4.7 As in the proof of Theorem 4.2, write

bθdiffn,T − θdiff0 = −[
..
Q
diff

n,T (θ∗)]−1
.
Q
diff

n,T (θdiff0 ),

where

θ∗ ∈
³bθdiffn,T , θ

diff
0

´
.
Q
diff

n,T (θdiff0 ) = −T
n

nX
i=1

³bσ2n,T (Xi∆n,T
)− σ2(Xi∆n,T

, θdiff0 )
´ ∂σ2(Xi∆n,T

, θdiff0 )

∂θ

..
Q
diff

n,T (θ∗) =
T

n

nX
i=1

∂σ2(Xi∆n,T
, θ∗)

∂θ

∂σ2(Xi∆n,T
, θ∗)

∂θ0| {z }
..
Q

diff(A)

n,T (θ∗)

− T

n

nX
i=1

³bσ2n,T (Xi∆n,T
)− σ2(Xi∆n,T

, θ∗)
´ ∂σ2(Xi∆n,T

, θ∗)

∂θ∂θ
0| {z }

..
Q

diff(B)

n,T (θ∗)

.

First, we examine
..
Q
diff

n,T (θ∗). Consider
..
Q
diff(A)

n,T (θdiff ). Uniformly in Θdiff we obtain

..
Q
diff(A)

n,T (θdiff ) =
T

n

nX
i=1

∂σ2(Xi∆n,T
, θdiff )

∂θ

∂σ2(Xi∆n,T
, θdiff )

∂θ0

=

Z T

0

∂σ2(Xs, θdiff )

∂θ

∂σ2(Xs, θdiff )

∂θ0
ds+ oa.s.(1)

=

Z ∞

−∞
∂σ2(a, θdiff )

∂θ

∂σ2(a, θdiff )

∂θ0
1

σ2(a)
LX(T, a)da+ oa.s.(1)

=

Z ∞

−∞
∂µ(a, θdiff )

∂θ

∂µ(a, θdiff )

∂θ0
LX(T, a)da+ oa.s.(1)

=
..
Q
diff(A)

(θdiff ) + oa.s.(1), (16)

by the occupation time formula [c.f. BP (1998)]. Then, using the continuity of
..
Q
diff

(.), the a.s.

consistency of bθdiffn,T and result (16) as in the proof of Theorem 4.2, we can write

..
Q
diff(A)

n,T (θ∗) =
..
Q
diff(A)

(θdiff0 ) + oa.s.(1),

since θ∗ lies on the line segment connecting bθdiffn,T and θdiff0 . Further,

..
Q
diff(B)

n,T (θ∗) =
..
Q
diff(B)

(θdiff0 ) + oa.s.(1)
a.s.→ 0.

Now, consider
.
Q
diff

n,T (θdiff0 ).
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−
.
Q
diff

n,T (θdiff0 )

=
T

n

nX
i=1

³bσ2(Xi∆n,T
)− σ2(Xi∆n,T

, θdiff0 )
´ ∂σ2(Xi∆n,T

, θdiff0 )

∂θ

=
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
³
X(j+1)∆n,T

−Xj∆n,T

´2
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

− σ2(Xi∆n,T
, θdiff0 )

 ∂σ2(Xi∆n,T
, θdiff0 )

∂θ
.

Then, writing σ2(Xi∆n,T
, θdiff0 ) = σ20(Xi∆n,T

), we obtain

−
.
Q
diff

n,T (θdiff0 )

=
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
2
¡
Xs −Xj∆n,T

¢
µ0(Xs)ds

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ| {z }
An,T

+
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
2
¡
Xs −Xj∆n,T

¢
σ0(Xs)dBs

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ| {z }
Bn,T (1)

+
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T

³
σ20(Xs)− σ20(Xi∆n,T

)
´
ds

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ| {z }
Cn,T

.

Fisrt, we examine the second term Bn,T (1). Consider the martingale

s
1

∆n,T
Bn,T (r)

=
T

n

[nr]X
i=1


q

1
∆n,T

1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
R (j+1)∆n,T

j∆n,T
2
¡
Xs −Xj∆n,T

¢
σ0(Xs)dBs

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ
.

Then, as n → ∞, T → ∞ and hn,T → 0 such that ∆n,T

hn,T
→ 0 and LX(T,x)

hn,T
(∆n,T )

α = Oa.s.(1) for

some α ∈ (0, 12) [c.f. BP (1998)], we can write the quadratic variation process as

[Bn,T ]r

=

µ
T

n

¶2 [nr]X
i=1

[nr]X
k=1


³

1
hn,T

´2Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)K(

Xj∆n,T
−Xk∆
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hn,T
)
R (j+1)∆n,T
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2
¡
Xs −Xj∆n,T

¢
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∆n,T

µ
∆n,T
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Pn
j=1K(

Xj∆n,T
−Xk∆

n,T
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)
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∆n,T

hn,T

Pn
j=1K(
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n,T
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)

¶

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×
Ã
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)

∂θ

∂σ20(Xk∆n,T
)

∂θ0

!

=

µ
T
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[nr]X
k=1
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4
³

1
hn,T

´2
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)K(
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−Xk∆

n,T

hn,T
)σ40

¡
Xj∆n,T

+ oa.s.(1)
¢
(∆n,T )µ

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xk∆

n,T

hn,T
)

¶µ
∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

¶

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∂σ20(Xi∆n,T

)

∂θ

∂σ20(Xk∆n,T
)

∂θ0

!

=

Z rT

0

Z rT

0

Z T

0

4
³

1
hn,T

´2
K(Xu−Xa

hn,T
)K(Xu−Xb

hn,T
)σ40(Xu)du³

1
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R T
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Xu−Xa
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)du
´³

1
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R T
0 K(

Xu−Xb
hn,T

)du
´
µ∂σ20(Xa)

∂θ

∂σ20(Xb)

∂θ0

¶
dadb

+oa.s.(1)

=

Z ∞

−∞

Z ∞

−∞
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−∞

4
³

1
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´2
K( u−ahn,T

)K( u−bhn,T
)σ40(u)LX(T, u)du³

1
hn,T

R∞
−∞K(

u−a
hn,T

)LX(T, u)du
´³

1
hn,T

R∞
−∞K(

u−b
hn,T

)LX(T, u)du
´
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×
µ
∂σ20(a)

∂θ

∂σ20(b)

∂θ0

¶
LX(rT , a)LX(rT , b)dadb+ oa.s.(1).

Setting

u− a
hn,T

= z,

we can write

Z ∞

−∞

Z ∞

−∞

Z ∞

−∞

4 1
hn,T

K(z)K(
a+hn,T z−b

hn,T
)σ40(a+ hn,T z)LX(T, a+ hn,T z)dz³R∞

−∞K(z)LX(T, a+ hn,T z)dz
´³

1
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´
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×
µ
∂σ20(a)

∂θ

∂σ20(b)

∂θ0

¶
LX(rT , a)LX(rT , b)dadb+ oa.s.(1).

Further, setting
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hn,T

= k,

we obtain

Z ∞

−∞

Z ∞
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Z ∞
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−∞
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µ
∂σ20(a)

∂θ
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∂θ0
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¢2
LX(T, a)
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Then, as in the proof of Theorem 4.2,

1p
∆n,T

Bn,T (1)→d MN

Ã
0,

ÃZ ∞

−∞
4σ40(a)

µ
∂σ20(a)

∂θ

∂σ20(a)
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¶Ã¡
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LX(T, a)

!
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!!
.

Now examine Cn,T .

Cn,T

=
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
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σ20(Xs)− σ20(Xi∆n,T

)
´
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hn,T
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−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ

=
T

n

nX
i=1

 1
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j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
¡
σ20(X

∗)− σ20(Xj∆n,T
)
¢
∆n,T

∆n,T

hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ| {z }
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n,T

+
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T
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)
³
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hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ| {z }
C2

n,T

,

where X∗ ∈ (X(j+1)∆n,T
,Xj∆n,T

) by the mean value theorem. First, we analyse term C2n,T .

C2n,T =
T

n

nX
i=1

 1
hn,T

Pn
j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)
³
σ20(Xj∆n,T

)− σ20(Xi∆n,T
)
´
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j=1K(

Xj∆n,T
−Xi∆

n,T

hn,T
)

 ∂σ20(Xi∆n,T
)

∂θ
.

Following the same steps as for A2n,T in the proof of Theorem 4.2 we can prove that

1

h
3/2
n,T

C2n,T →d 4

Z ∞

−∞

Z ∞

−∞
cK(c)

Ã
σ
0
0(s)

σ0(s)

!
LX(T , s)

LX(T, s)

∂σ20(s)

∂θ
B (LX(T, s), c)dsdc,

where B(., .) is a standard Brownian sheet. As for An,T and C1n,T , it is easy to see that An,T =
oa.s.(Bn,T ) and C1n,T = oa.s.(C

2
n,T ). Then,

bθdiffn,T − θdiff0

= −[
..
Q
diff

n,T (θ∗)]−1
.
Q
diff

n,T (θdiff0 )

=

µµZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T , a)da

¶
+ oa.s.(1)

¶−1
[Bn,T +An,T +C

1
n,T +C

2
n,T ]

=

µµZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T , a)da

¶
+ oa.s.(1)

¶−1
[Bn,T + oa.s.(Bn,T ) + oa.s.(C

2
n,T ) +C

2
n,T ].

If
h3n,T

∆n,T
→ 0, then
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s
1

∆n,T

³bθdiffn,T − θdiff0

´
→ d

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T, a)da

¶−1
MN

Ã
0,

ÃZ ∞

−∞
4σ4(a)

µ
∂σ20(a)

∂θ

∂σ20(a)

∂θ0

¶ ¡
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da

!!
d
= N (0,Ξsigma(T )) .

In consequence,

1p
∆n,T

Ξ
−1/2
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³bθdiffn,T − θdiff0

´
→d N(0, I),

where

Ξsigma(T ) = B(T )
−1
sigmaΩ(T )sigmaB(T )

−1
sigma,

Bsigma =

µZ ∞

−∞
∂σ20(a)

∂θ

∂σ20(a)

∂θ0
LX(T , a)da

¶
,

and
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4σ4(a)

µ
∂σ20(a)
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!
.

This concludes the proof for the diffusion estimator.
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