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Abstract

The aim of this paper is to provide exact inference in �nite sample

for econometric models whose likelihood function is intractable and

require thereby simulation-based estimation method like Indirect In-

ference Method or E�cient Method of Moments. To do so, we resort

to the technique of Monte Carlo Tests which naturally applies to any

simulable model. In particular, maximized Monte Carlo tests allow

for test statistics whose distribution depends on nuisance parameters.

This technique of Monte Carlo tests is applied here to a stochastic

di�erential equation.
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1 Introduction

Econometrics models often lead to complex formulations for the conditional

distribution of the endogenous variables given the exogenous variables and

the lagged endogenous values. Econometricians have therefore tried to ap-

proximate the structural model by an auxiliary model chosen for its simplicity

of estimation. Indirecte Inference estimation method [Gouriéroux. Monfort

et Renault (1993)] and E�cient Method of Moments [Gallant et Tauchen

(1996)] come within this scope. They both proceed by simulation and re-

quire the structural model to be simulated. In this framework, various test

statistics have also been proposed to make inference on the parameters of

interest of the structural model. The latter include among others Wald-

type statistics, score-type statistics or statistics based on the di�erence of

optimized objective functions: see Gouriéroux, Monfort and Renault (1993),

Gallant and Tauchen (1996), Gallant (1987), Andersen, Chung and Sorensen

(1997). However, the distributional theory associated with those statistics is

asymptotic and the choice of the existing statistics importantly depends on

the possibility to obtain an asymptotic nuisance-parameter free distribution

under the null hypothesis. This opens up the way for errors of approximation

of any magnitude [voir Dufour (1997)]. The aim of the paper is to develop

exact tests as well as more reliable asymptotic procedures in such models.

To do so, we resort to the technique of Monte Carlo tests which naturally

applies to any simulable model. In particular, maximized Monte Carlo tests

allow for test statistics whose distribution depends on nuisance parameters

[Dufour (1996)]. Thus the technique of Monte Carlo tests naturally matches

with simulated estimation methods.

In the second section we explain the Indirect Inference estimation method

[Gouriéroux, Monfort and Renault (1993)] together with tests of hypotheses

which allow for correct inference from an incorrect criterion. The third sec-

tion summarizes E�cient Method of Moments (EMM) [Gallant and Tauchen

(1996)] where a speci�c criterion based on the quasi-scores is used for the

estimation of the parameter of interest. The EMM estimator is then used in

inference methods. The fourth section extends the previous standard tests

to �nite sample Monte Carlo tests insofar as the structural model can be

simulated. Monte Carlo tests with or without nuisance parameters are ana-

lyzed. The asymptotic validity of Monte Carlo tests based on consistent set

estimators of the nuisance parameters is then stated in a �th section. In a

sixth section we propose new test statistics straightforwardly built from the
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objective function of the auxiliary model. The last section applies Monte

Carlo tests to a geometric brownian motion estimated by Indirect Inference

method.
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2 Indirect Inference method

Econometric models often lead to complex formulations yielding intractable

formulation of the likelihood function and thereby the impossibility to e�-

ciently estimate the parameters of interest. A natural procedure consists in

replacing the likelihood function by another criterion (an approximation of

the exact likelihood function or either the likelihood function of an auxiliary

model): this is the Indirect Inference approach [Gouriéroux, Monfort and

Renault (1993)]

2.1 The estimation method

We consider the following dynamic model :

yt = r(yt�1; xt; ut; �)

ut = '(ut�1; �t; �); � 2 � 2 Rp

where the x0t are observable exogenous variables whereas the ut and �t are

not observed. We assume moreover that:

Hypothèse 1 fxtg is an homogeneous Markov process independent of f�tg
and futg, the process f�tg is a white noise whose distribution G0 is known,

and the process fyt; xtg is stationary.

With such a parametric model it is theoretically possible to compute the

conditional density function of y1; : : : ; yT given z0; x1; : : : ; xT , where z0 is a

vector of initial values and therefore to estimate the unknown true value �0
of � by a conditional maximum likelihood approach. However, in practice

this likelihood function may be computationally intractable. The Indirect

Inference method constitutes an alternative two-step estimation method, in

which all that is required from model ( 1) is to be easily simulated. We can

summarize this method in the following way.

First an observation-dependent criterion and an auxiliary parameter � 2
B � R

q are introduced. Let y1
T
= (y1; : : : ; yT ) and x

1

T
= (x1; : : : ; xT ) be the

observation vectors. Let �̂T be the solution to this problem:

�̂T = argmax
�2B

QT (y
1

T
;x1

T
; �)
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where the criterion QT is de�ned by

QT (y
1

T
;x1

T
; �) =

1

T

TX
t=1

 (yt; xt; �) ;

which suggests an M-estimation procedure for the auxiliary parameter �.

Let us assume that the criterion QT tends asymptotically (and uniformly

almost certainly) to a non-stochastic limit and that the limit criterion is

continuous in � with a unique maximum.

Hypothèse 2

lim
T!1

QT (y
1

T
;x1

T
; �) = Q1(F0; G0; �0; �) a:s:

Hypothèse 3

�0 = argmax
�2B

Q1(F0; G0; �0; �) :

According to the usual asymptotic theory [see Gallant and White (1988), ch.

3) and under the assumptions 1, 2 and 3, the estimator �̂T is a consistent

estimator of the auxiliary parameter �0. It is clear that the auxiliary param-

eter �0 is unknown since it depends on the unknown parameter of interest �0
as well as the unknown transition distribution F0 of the exogenous variables.

We can then de�ne the binding function:

b(F;G; �) = argmax
�2B

Q1(F;G; �; �) :

In particular,

�0 = b(F0; G0; �0) :

If the binding function

b(F0; G0; �) : � ! b(F0; G0; �)

was known and one to one, we could deduce from �̂T a consistent estimator

of the unknown parameter of interest �0 by considering the solution ~�T of

�̂T = b(F0; G0;
~�T ).

It is clear that the estimator �̂T satis�es �̂T = b(F̂T ; ĜT ; �0) where F̂T
and ĜT are the empirical probability distributions of x and �. Therefore if

the �nite sample binding function b(F̂T ; ĜT ; �) was known and one to one

4



we could deduce from �̂T the exact value �0 of the unknown parameters

while the knowledge of the true binding function b(F0; G0; �) the solution of

�̂T = b(F0; G0;
~�T ) only provides a consistent estimator ~�T . This is the reason

why the second step of the estimation procedure of �0 follows the previous

idea after replacement of the unknown function b(F̂T ; ĜT ; �) by a functional

estimator based on simulations of the y0s. The following assumption is re-

quired for identifying the parameter �.

Hypothèse 4 b(F0; G0; �) is one to one and @

@�
0 b(F0; G0; �0) is of full-column

rank.

For a given value of �, we can consider H simulated paths [~yht (�; z
h
0 ); t =

0; : : : ; T ], h = 1; : : : ; H, based on independent drawings of �t; (~�
h
1 ; : : : ; ~�

h
T ),

and on initial values zh0 ; h = 1; : : : ; H. For each of these paths, we can also

consider the optimization problem:

max
�2B

QT ((~y
h)1
T
;x1

T
; �)

in which the observed values are replaced by the simulated ones. This prob-

lem has a solution:

~�hT (�; z
h
0 ) = argmax

�2B
QT ((~y

h(�; zh
0
))1
T
;x1

T
; �) :

When T tends to in�nity this solution tends to a solution of the limit problem:

max
�2B

Q1(F0; G0; �; �)

i.e.

lim
T!1

~�hT (�; z
h
0 ) = b(F0; G0; �) a:s:

~�hT (�; zh0 ) is therefore a consistent functional estimator of b(F0; G0; �). It is

now possible to de�ne the indirect estimator of �. The idea is simply to

calibrate the value of � in order to make

1

H

HX
h=1

~�hT (�; z
h
0 )

as close as possible to �̂T .
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Proposition 1 An indirect estimator of � is de�ned as a solution ~�HT (
) of

a minimum distance problem:

min
�2�

�
�̂T �

1

H

HX
h=1

~�hT (�; z
h
0 )

�
0


̂T

�
�̂T �

1

H

HX
h=1

~�hT (�; z
h
0 )

�

where 
̂T is a positive de�nite matrix converging to a deterministic positive

de�nite matrix 
. Under the assumptions 1, 2, 3 et 4, the indirect estimator
~�HT (
) is a consistent estimator of �0.

Proposition 2 Under the assumptions 1, 2, 3 et 4, the assumptions A5-A8

of Gouriéroux and al (1993) and under some usual regularity conditions, the

indirect estimator is asymptotically normal, when H is �xed and T tends to

in�nity: p
T (~�HT (
)� �0)

d�!
T!1

N [0;W(H;
)]

where

W(H;
) =

�
1 +

1

H

��
@b
0

@�
(F0; G0; �0)


@b

@�0
(F0; G0; �0)

�
�1

@b
0

@�
(F0; G0; �0)
J �10 (I0 �K0)J �10 


@b

@�0
(F0; G0; �0)�

@b
0

@�
(F0; G0; �0)


@b

@�0
(F0; G0; �0)

�
�1

The asymptotic variance-covariance matrix depends on the metric 
 and

there is an optimal choice of this matrix in the sense that it minimizes

W(H;
): The optimal choice of the 
 matrix is: 
� = J0(I0 � K0)
�1J0

and

W�H =W(H;
) =

�
1+

1

H

��
@b
0

@�
(F0; G0; �0)J0(I0�K0)

�1J0

@b

@�0
(F0; G0; �0)

�
�1

The optimal estimator thus obtained is denoted by �̂HT .

2.2 Speci�cation tests

We will now describe the di�erent test criteria which have been proposed

by Gouriéroux, Monfort and Renault (1993) in order to test hypotheses on

models estimated by indirect inference method.
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A speci�cation test for the model may be based on the optimal value

of the objective function used in the second step of the indirect estimation

method.

Proposition 3 The statistic

"T =
TH

1 +H
min
�2�

�
�̂T �

1

H

HX
h=1

~�hT (�; z
h
0 )

�
0


̂�T

�
�̂T �

1

H

HX
h=1

~�hT (�; z
h
0 )

�

where 
̂�T is a consistent estimator of 
�, is asymptotically distributed as a

chi-square with q�p degrees of freedom, with q = dim� and p = dim �, when

the reduced-form ( 1) or either the stuctural model is well spesi�ed. The

speci�cation test of asymptotic level � is associated with the critical region

W = f"T > �
2
1��(q � p)g:

2.3 Indirect tests of hypotheses on the parameter of in-

terest

The indirect estimation approach can be used to test hypotheses on param-

eter �. We assume that the parameter � is partitioned into

� =

�
�1

�2

�

where �1 and �2 have dimensions p1 and p2 respectively. We consider the

null hypothesis H0 : �1 = 0. Despite the use of simulated values, the usual

equivalence between the Wald test, the score test, and the test based on

the comparison of the constrained and unconstrained values of the objective

function used in the second step remains valid

Let

�̂
H
T =

�
�̂
H
1T

�̂
H
2T

�
;

be the optimal unconstrained indirect estimator and let

�̂
0H
T =

�
0

�̂
0H
2T

�
;
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be the optimal constrained indirect estimator obtained by optimizing the

criterion submitted to �1 = 0.

The Wald statistic is de�ned as:

"
W

T = T (�̂H1T )
0Ŵ��11 (�̂H1T )

where Ŵ�1 is a consistent estimator of the variance-covariance matrix ofp
T �̂

H
1T . The score statistic is de�ned from the gradient of the objective

function with respect to �1 evaluated at the constrained estimator. This

gradient is given by

DT =
@ ~�

0

HT

@�1
(�̂0HT )
̂�T [�̂T � ~�HT (�̂

0H
T )] ;

and the test statistic is

"
S

T = TD0

TADT ;

where A is a consistent estimator of (Vas(
p
TDT ))

�1 = (1 + 1
H
)�1(A11 �

A12A
�1
22 A21)

�1 Finally, we can introduce the di�erence between the optimal

values of the objective function:

"
C

T =
TH

1 +H
[�̂T � ~�HT (�̂

0H
T )]0
̂�T [�̂T � ~�HT (�̂

0H
T )]

� TH

1 +H
[�̂T � ~�HT (�̂

H
T )]
0
̂�T [�̂T � ~�HT (�̂

H
T ):]

Proposition 4 The test statistics "WT , "ST and "CT are asymptotically equiva-

lent under the null hypothesis, and have the common distribution �2(p1).
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3 E�cient Method of Moments

The E�cient Method of Moments (EMM) proposed by Bansal, Gallant,

Hussey and Tauchen (1993, 1995) and Gallant and Tauchen (1996) relies

on a speci�c form of the auxiliary criterion QT (y
1

T
;x1

T
; �) optimized in the

indirect inference approach. This one takes here the form of a quasilikeli-

hood. But while the indirect inference approach uses the parameters of the

auxiliary model to de�ne the GMM criterion, e�cient method of moments

builds the GMM criterion from the score function of the auxiliary model.

3.1 The method

The e�cient method of moments (EMM) consists in taking the expectation

under the structural model of the score from an auxiliary model as the vector

of moment conditions. The structural model assumed to have generated the

data f~yt; ~xtgnt=1 is de�ned by:�
p1(x1j�0);

�
pt(ytjxt; �0)

	n
t=1

	
where �0 indicates the true value of � in the model

fp1(x1j�); fpt(ytjxt; �)g1t=1g�2R :

Moreover, we can consider an auxiliary model

ff1(x1 j �); fft(ytjxt; �)g1t=1g�2�
which constitutes an approximation of the structural model. The former is

called the �score generator� model.

De�nition 1 The model fp1(x1j�); fpt(ytjxt; �)g1t=1g�2R is said to be smoothly

embedded within the score generator ff1(x1j�); fft(ytjxt; �)g1t=1g�2� if for some

open neighborhood R0 of �0 there is a twice continuously di�erentiable map-

ping g : R0 ! � such that

pt(ytjxt; �) = ft[ytjxt; g(�)] t = 1; 2; :::;

for every � 2 R0 and p1(x1j�) = f1[x1jg(�)] for every � 2 R0 .
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The score generator need not encompass the structural model. If it does,

then the estimator is as e�cient as the maximim likelihood estimator. If the

score generator closely approximates the actual distribution of the data, even

though it does not encompass it, then the estimator is nearly fully e�cient.

Hypothèse 5 There is a �0 such that pt(ytjxt; �0) = ft(ytjxt; �0) for t =

1; 2; : : : , and p1(x1j�0) = f1(x1j�0):

The method consists of two steps. First, the idea is to use the scores

@

@�
ln ft(ytjxt; �)

evaluated at the quasimaximum likelihood estimate

~�n = argmax
�2�

1

n

nX
t=1

ln ft( ~ytj ~xt; �) ;

to generate GMM moments conditions. In the case that the data f~yt; ~xtgnt=1
are a sample from

Qn

t=1 p(ytjxt; �0)p(x1j�0) the moment conditions are :

m(�; ~�n) = E�[sf (Yt; ~�n)]

=
R R

@

@�
ln f(yjx; ~�n)p(yjx; �) dyp(xj�) dx :

These are the moment conditions that de�ne the EMM estimator (�̂EMM). It

is because the expected score of the auxiliary model is de�ned under the prob-

ability measure induced by the structural model that the moments depend

on parameters of both models. In most applications, analytic expressions

for the integrals will not be available due to their high complexity, there-

fore the sample moments will be computed through Monte-Carlo integration

following the simulated method of moments of Du�e and Singleton (1993).

Second, a simulated serie fŷt; x̂tgnt=1 is generated from the density
Qn

t=1 p(ytjxt; �)p(x1j�)
for a given value of � and used to evaluate the sample moments at the QML

estimate ~�n :

mn(�; ~�n) =
1

n

nX
�=1

@

@�
ln f(ŷ� jx̂� ; ~�n)

where x̂� is a vector of exogenous variables with possibly lagged dependent

variables . When n ! 1; mn(�; ~�n) ! m(�; ~�n). For n su�ciently large,
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the Monte-Carlo error is negligible. Identi�cation conditions are on the other

hand required to the identi�cation of the parameter of interest. Thus the

number of moment conditions has to be greater or equal to the number of

structural parameters: dim � � dim �. The rank condition mn(�; �
0
n) = 0 )

� = �
0 for n � n

0 is more di�cult to verify.

A GMM criterion function can then be constructed from the sample mo-

ment conditions of the auxiliary model. The EMM estimator of � is de�ned

by

�̂n = argmin
�
[mn(�; ~�n)

0

(~In)�1mn(�; ~�n)]

where ~In is a consistent estimator of the asymptotic variance-covariance ma-

trix of the scores of the auxiliary model I0n,
p
nmn(�

0
; ~�n) � N (0; I0n)

where

I0n = V ar

�
1p
n

nX
t=1

@

@�
ln ft(~ytj~xt; �0n)

�

or either

I0n = p lim
n!1

�
1

n

nX
t=1

nX
�=1

sf (Yt; ~�n)sf(Y� ; ~�n)
0

�
:

If the auxiliary model �ts well the systematic features of the data in the sense

that the quasi-scores constitute a martingale di�erence sequence, then from

the standard likelihood theory a convenient estimator of I0n is given by

~In =
1

n

nX
t=1

�
@

@�
ln ft( ~ytj ~xt; ~�n)

��
@

@�
ln ft( ~ytj ~xt; ~�n)

�0
:

3.2 Asymptotic distribution of the EMM estimator

Gallant et Tauchen (1996) show under general regularity conditions (condi-

tions 8-11 in Gallant 1987, ch.7), that the EMM estimator is consistent and

asymptotically normal.
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Theorem 1

lim
n!1

�̂n = �0 a:s;

p
n(�̂n � �0)

a.s�! N
�
0;

�
(M0

n)
0

(I0n)�1(M0
n)

�
�1�

;

lim
n!1

(M̂n �M0
n) = 0 a.s;

where M̂n =Mn(�̂n; ~�n), M0
n =Mn(�

0
; �

0
n) and Mn(�; �) =

@

@�0
mn(�; �):

3.3 Speci�cation tests

The two following subsections describe test statistics which have been pro-

posed by Gallant and Tauchen (1996) and Gallant (1987) within the E�cient

Method of Moments estimation framework. These authors mostly focused

on the asymptotic behaviour of these test procedures. We will rather analyze

their exact behaviour.

Under correct speci�cation hypothesis, n times the GMM optimized cri-

terion is distributed as a �2(n� � n�):

nmin
�2R

�
mn(�; ~�n)

0(~In)�1mn(�; ~�n)

�
:

This statistic may constitute a test of the overidentifying restrictions of the

structural model (Hansen 1982). The p-values are asymptotically uniform

under the null hypothesis.

3.4 Tests of hypotheses

Direct use of the above theorem for setting con�dence intervals on the ele-

ments of � or testing hypotheses with the Wald test requires computation of

Mn(�; �). Computation of Mn(�; �) can be avoided by testing hypotheses

using the criterion di�erence test statistic (Gallant, 1987, ch. 7, theorem 15

) and setting con�dence intervals by inverting it. Let

dn(�) = mn(�; ~�n)
0

( ~In)�1mn(�; ~�n)
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We will exploit here the asymptotic normality of the EMM estimator �̂n as

established by Gallant and Tauchen in theorem 1 as well as the asymptotic

normality of the score of the objective function dn(�), i.e.:

p
n
@

@�0
dn(�)

L�> Np(0; �I): (1)

where
�I =M00

nD0
nI0nD0

nM0
n

and where D0
n = @2

@mn@m0
n

dn(�
0), to construct Wald-type statistics, likelihood

ratio statistics and Lagrange multiplier-type statistics. We will use usual

asymptotic derivations in order to derive the asymptotic chi-square distribu-

tion of these three statistics. The hypothesis to be tested is : H0: h(�
0
n) = h

�

n

against H1: h(�
0
n) 6= h

�

n,

where h(�) is a twice continuously di�erentiable mapping from � � R
p onto

R
q . The �rst statistic considered is a Wald-type statistic :

W = n(ĥ� h
�

n)
0(ĤV̂ Ĥ 0)�1(ĥ� h

�

n)

where ĥ = h(�̂), h�n = h(�0n), Ĥ = @h

@�
(�̂): V̂ = ^V ar(�̂n) = (M̂0

n
~I�1n M̂n)

�1 is

a consistent estimator of ((M0
n)

0

(I0n)�1(M0
n))
�1 Given asymptotic normality

of the estimator �̂n, this quadratic form will asymptotically be distributed as

a �2 with q degrees of freedom. The second statistic "likelihood ratio" type

statistic (LR):

L = 2n[dn(~�n)� dn(�̂n)]

The LR test requires that :

H
�

n(M�
0

n (I�n)�1M�

n)
�1
H
�
0

n = H
�

n(M�

n)
�1
H
�
0

n + o(1)

where H�n = @h

@�
(�0n) in order to obtain the usual asymptotic distribution.

M�

n = I�n if the score generator is a good approximation to the true data

generating process. This LR-type statistic is asymptotically distributed as a

chi-square with q degrees of freedom.

The last statistic to be considered is a Lagrange multiplier-type statistic:

R = n

�
@

@�
dn( ~�n)

�0

V ar

�p
n
@

@�
dn( ~�n)

�
�1

@

@�
dn( ~�n) :

This one derives from the Lagrangian
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@

@�
L(~�n; ~�) =

@

@�

�
dn(�) + �

0[h(~�n)� h
�

n]

�
= 0

corresponding to the minimization of the criterion dn(�) submitted to the re-

striction: h(�) = h
�

n: This statistic follows also a chi-square distribution due

to the asymptotic normality of the score function of the objective function

dn(�).

For these three tests, the hypothesis: H0 : h(�
0
n) = h

�

n is rejected when

the test statistic exceeds the critical values �� 100% of a chi-square variable

with q degrees of freedom to achieve a test of asymptotic level �.
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4 Finite sample Monte Carlo tests

The technique of Monte Carlo tests has been suggested for the �rst time

by Dwass (1957) to implement permutation tests, then independently by

Barnard (1963) and Birnbaum (1974) for statistics with continuous distri-

butions. The advantage of this technique is to provide (randomized) exact

tests based on test statistics whose �nite sample distribution may be in-

tractable but can be easily simulated. The validity of the tests so obtained

does not dependat all on the number of replications made (which can be

small). Only the power of the procedure is in�uenced by the number of repli-

cations, but the power gains associated with lenghty simulations are typically

rather small. For further discussion of Monte Carlo tests, see Dufour (1996),

Dufour and Kiviet (1996,1997),Kiviet and Dufour (1996),Dufour and Khalaf

(1996a,1996b,1996c) Edgington (1987), Foutz (1980), Jöckel (1986) and

Marriott (1979) .

Only standard test statistics have been proposed up to now in the litera-

ture as these authors only focuse on the asymptotic distributional properties

of these statistics. The technique of Monte Carlo tests allow for general test

statistics. In particular, maximized Monte Carlo tests (Dufour, 1996) allow

for test statistics whose distribution depends on nuisance parameters. In a

�rst step we will consider the case without nuisance parameters in order to

better analyze the case with nuisance parameters.

4.1 Monte Carlo tests without nuisance parameters

Consider now a situation where the distribution of S under H0 may not be

easy to compute analytically but can be simulated. Let S1; � � � ; SN be a sam-

ple of independent and identically distributed (i.i.d) real random variables

with the same distribution as S. The technique of Monte Carlo tests provides

a simple method allowing one to replace the theoretical distribution F (x) by

its sample analogue based on S1; : : : ; SN :

F̂N [x;S(N)] =
1

N

NX
i=1

s(x� Si) =
1

N

NX
i=1

1[0;1](x� Si)

where S(N) = (S1; : : : ; SN)
0, s(x) = 1[0;1](x) and 1A(x) is the indicator

function associated with the set A. We also consider the corresponding sample

15



tail area function:

ĜN [x;S(N)] =
1

N

NX
i=1

s(Si � x)�

The sample distribution function is related to the ranks R1; � � � ; RN of the

variables S1; : : : ; SN (when put in ascending order) by the expression:

Rj = NF̂N [Sj;S(N)] =

NX
i=1

s(Sj � Si); j = 1; : : : ; N:

The central property we shall exploit here is the following: to obtain

critical values or compute p-values, the �theoretical� null distribution F (x)

can be replaced by its simulation-based �estimate� F̂N in a way that will

preserve the level of the test in �nite samples, irrespective of the number N

of replications used. For continuous distributions, this property is expressed

by proposition 5 below which is easily proved by using the following simple

lemma.

Lemme 1 Let (y1; : : : ; yN)
0 be a N � 1 vector of exchangeable real random

variables such that

P [yi = yj] = 0 for i 6= j, i,j = 1; : : : ; N

and let Rj =
PN

i=1 s(yj � yi) be the rank of yj when (y1; : : : ; yN) are ranked

in nondecreasing order. Then, for j = 1; : : : ; N ,

P [Rj=N � x] =
I[xN ]

N
, for 0 � x � 1

and

P [Rj=N � x] = 1 , if x � 0

=
I[(1� x)N ] + 1

N
, if 0 < x � 1

= 0 , if x > 1;

where I[x] is the largest integer less than or equal to x.
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Proposition 5 (Validity of Monte Carlo tests when ties have zero probabil-

ity). Let (S0; S1; : : : ; SN)
0 be a (N+1)�1 vector of exchangeable real random

variables such that

P [Si = Sj] = 0 for i 6= j, i,j= 0; 1; : : : ; N

let F̂N � F̂N [x;S(N)]; ĜN(x) = ĜN [x;S(N)] and F̂
�1
N (x) be the quantile

function de�ned by:

F̂
�1
N (x) = inffy : F̂N(y) � xg , if 0 < x < 1,

= inffy : F̂N(y) > 0g , if x = 0,

= supfy : F̂N(y) < 1g, if x = 1,

and

p̂N (x) =
NĜN (x) + 1

N + 1
:

Then

P [ĜN(S0) � �1] = P [F̂N(S0) � 1� �1]

=
I[�1N ] + 1

N + 1
; for 0 � �1 � 1,

(2)

P [S0 � F̂
�1
N (1� �1)] =

I[�1N ] + 1

N + 1
; for 0 < �1 < 1, (3)

and

P [p̂N(S0) � �] =
I[�(N + 1)]

N + 1
; for 0 � � � 1. (4)

The latter proposition can be used as follows: choose �1 and N so that

� =
I[�1N ] + 1

N + 1
(5)

is the desired signi�cance level. Provided N is reasonably large, �1 will be

very close to �; in particular, if �(N + 1) is an integer, we can take

�1 = �� (1� �)

N
;

17



in which case we see easily that the critical region ĜN(S0) � �1 is equivalent

to ĜN(S0) � �: For 0 < �1 < 1, the randomized critical region S0 � F̂
�1
N (1�

�1) has the same level � as the nonrandomized critical region S0 � F
�1(1�

�), or equivalently the critical regions p̂N(S0) � � and ĜN(S0) � �1 have

the same level as the critical region G(S0) � 1� F (S0) � �:

4.2 Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic S de-

pends on nuisance parameters. We consider a family of probability spaces

f(L;AL; P�) : � 2 
g and suppose that S is a real valued AL-measurable

function whose distribution is determined by P�� where
�� is the �true� param-

eter vector. We wish to test the hypothesis

H0 : �� 2 
0;

where 
0 is a nonempty subset of 
. Again we take a critical region of the

form S � c, where c is a constant which does not depend on �. The critical

region S � c has level � if and only if

P�[S � c] � �; 8� 2 
0;

or equivalently,

sup
�2
0

P�[S � c] � �:

Firthermore, S � c has size � when

sup
�2
0

P�[S � c] = �:

If we de�ne the distribution and p-value functions,

F [xj�] = P�[S � x]; x 2 �R;

G[xj�] = P�[S � x]; x 2 �R;

where � 2 
, it is again easy to see that the critical regions

sup
�2
0

G[Sj�] � �(c);
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where �(c) � sup�2
0
G[cj�]; and

S � sup
�2
0

F
�1[(1�G[cj�])+j�] � �c

are equivalent to S � c in the sense that c � �c.

We shall now extend proposition 5 in order to allow for the presence of

nuisance parameters. For that purpose, we consider a real random variable

S0 and random vectors of the form

S(N; �) = (S1(�); : : : ; SN(�))
0
; � 2 
;

all de�ned on a common probability space (L;AL; P ), such that the vari-

ables S0; S1(��); : : : ; SN(��) are exchangeable for some �� 2 
, each one with

distribution function F [xj��] = P [S0 � x]: Typically, S0 will refer to a test

statistic computed from observed data when the true parameter vector is ��

(i.e., � = ��), while S1(�); : : : ; SN(�) will refer to i.i.d replications of the test

statistic obtained independently (e.g., by simulation) under the assumption

that the parameter vector is � (i.e., P [Si(�) � x] = F [xj�]). The notation

Si(�) does not mean that the value of � is required for computing the test

statistic Si(�): it simply indicates that the distribution function of Si(�) is

F [xj�]: Let also

F̂N [xj�] � F̂N [x;S(N; �)]; ĜN [xj�] � ĜN [x;S(N; �)];

p̂N [xj�] =
NĜN [xj�]
N + 1

and F̂�1N [xj�] be de�ned as in proposition 5 and suppose the variables supfĜN [S0j�] :
� 2 
0g and inffF̂N [S0j�] : � 2 
0g are AL-measurable (where ; 6= 
0 � 
).

We then get the following proposition.

Proposition 6 Under the above assumptions and notations, set

S0(��) = S0 and suppose that

P [Si(��) = Sj(��)] = 0; for i 6= j, i; j = 0; 1; : : : ; N:

If �� 2 
0, then for 0 � �1 � 1;

P [supfĜN [S0j�] : � 2 
0g � �1] � P [inffF̂N [S0j�] : � 2 
0g � 1� �1]

� I[�1N ] + 1

N + 1
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where

P [inffF̂N [S0j�] : � 2 
0g � 1� �1] = P [S0 � supfF̂�1N [1� �1j�] : � 2 
0g]

for 0 < �1 < 1, and

P [supfp̂N [S0j�] : � 2 
0g � �] � I[�(N + 1)]

N + 1
; for 0 � � � 1:

Following the latter proposition, if we choose �1 and N so that equation 5

holds, the critical region supfĜN [S0j�] : � 2 
0g � �1 has level � irrespective

of the presence of nuisance parameters in the distribution of the test statistic

S under the null hypothesis H0 : �� 2 
0: The same also holds if we use

the (almost) equivalent critical regions inffF̂N [S0j�] : � 2 
0g � 1 � �1 or

S0 � supfF̂�1N [1� �1j�] : � 2 
0g: We shall call such tests maximized Monte

Carlo (MMC) tests.

We will now describe how to make exact the standard tests developped

in sections 2 and 3. We consider for instance the Wald statistic established

in section 2.3:

S = �
W
T = T (�̂H1T )

0
Ŵ
��1
1 (�̂H1T )

We want to generate by simulation N di�erent values of this test statistic

denoted by S. Each simulated statistic simulée Si (i = 1; : : : ; N) requires

H simulated series each one of length T generated under the structural

model for a given value of �: [~yht (�; z
h
0 ) t = 0; : : : ; T ] for h = 1; : : : ; H.

Moreover, inorder to obtain N independent replications of the statistic S, it

will be necessary to simulate also N samples of quasi-true data for some

value échantillons de pseudo-vraies données pour une certaine valeur �0,

i.e. [ŷ
(i)
t (�0; z

(i)
0 ) t = 0; : : : ; T ]i=1;:::;N based on independent drawings of �t,

(�̂
(i)
1 ; :::; �̂

(i)

T ) and on initial values z
(i)
0 such that:

�̂
(i)

T (�0) = argmax
�2B

QT ((ŷ
1
T (�

0))(i); x1T ; �); i = 1; :::; N:

For each simulated statistic Si the following optimization problem will need

to be solved:

min
�2�

�
�̂
(i)

T (�0)� 1

H

HX
h=1

~�hT (�; z
h
0 )

�
0


̂
(i)

T (�0)

�
�̂
(i)

T (�0)� 1

H

HX
h=1

~�hT (�; z
h
0 )

�
; i = 1; : : : ; N

which yields (�̂H1T )
(i)(�0) for i = 1; : : : ; N: This yields in total N optimization

problems of this form and N �H auxiliary optimization problems to obtain
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~�hT . We then get the vector S(N; �0) = (S1(�
0); : : : ;

SN(�
0)) where each Si(�

0) is computed from this estimator (�̂H1T )
(i)(�0): In

the Wald statistic considered here:

Si(�
0) = T (�̂H1T )

0(i)(�0)Ŵ ��1
1H(i)

(�0)(�̂H1T )
(i)(�0) i = 1; : : : ; N:

The sample p-value function ĜN [ : jS(N; �0)] is then built from this vector

S(N; �0) = (S1(�
0); : : : ; SN(�

0)) for each �0 2 
0: The function ĜN [ : jS(N; �0)]
is a function of �0 through S(N; �0) the p-values will therefore be maximized

over the set 
0 of the admissible values of �0 i.e.

supfĜN [ S0 jS(N; �0)] : �0 2 
0g:

But as ĜN [ : jS(N; �0)] is a piece-wise function, maximizing

supfĜN [S0jS(N; �0)] : �0 2 
0g requires speci�c algorithms capable of opti-

mizing nondi�erentiable functions. We will resort to �simulated annealing�

algorithm which optimizes from a stochastic search of the values of �0 in

the set 
0 (Go�e, Ferrier and Rogers, 1994). The best thing to do would

be to maximize the p-values over the larger possible set of admissible values

of the nuisance parameter �0. But this raises numerical di�culties mostly

in this context of computationnally intensive simulated methods as we have

just seen. Thus a serious e�ciency problem raises from simulated methods.

We will search for that to restrict the set of admissible values for �0 to only

consistent estimators.
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5 Tests de Monte Carlo asymptotiques

In this section, we propose simpli�ed approximate versions of the procedures

proposed in the previous section when a consistent point or set estimate

of � is available. To do this, we shall need to reformulate the setup used

previously in order to allow for an increasing sample size.

5.1 Monte Carlo tests based on consistent set estima-

tors

Consider

ST0; ST1; : : : ; STN ; T � I0; � 2 
;

real random variables all de�ned on a common probability space (L;AL; P )
and set

ST (N; �) = (ST1(�); : : : ; STN(�)); T � I0:

We will be primarily interested by situations where the variables ST0; ST1(��); : : : ; STN(��)

are exchangeable for some �� 2 
 each one with a distribution function

FT [xj��] = P [ST0 � x]: Here ST0 will normally refer to a test statistic with

distribution FT [:j�] based on a sample of size T, while ST1(�); : : : ; STN(�)

i.i.d. replications of the same test statistic obtained independently under the

assumption that the parameter vector is � : P [ST i(�) � x] = FT [xj�]; i =
1; : : : ; N: Let also

F̂TN [xj�] = F̂N [x;ST (N; �)]; ĜTN [xj�] = ĜN [x;ST (N; �)];

p̂TN [xj�] =
NF̂TN [xj�] + 1

N + 1
;

and let F̂�1TN [xj�] be de�ned as in proposition 5. We consider �rst the situation

p-values are maximized over a subset CT of 
 (e.g., a con�dence set for �)

instead of 
0. Consequently, we introduce the following assumption: CT ; T �
I0; is a sequence of (possibly random) subsets of 
 such that supfĜTN [ST0j�] :
� 2 CTg and inffF̂TN [ST0j�] : � 2 CTg are AL-measurable for all T � I0

where ; 6= 
0 � 
: Then we have the following proposition.

Proposition 7 (Asymptotic validity of con�dence-set restricted maximized

Monte Carlo tests. Continuous distributions). Under the previous assump-

tions and notations, set ST0(��) = ST0 and suppose

P [ST i(��) = STj(��)] = 0 for i 6= j and i; j = 0; 1; : : : ; N;
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for all T � I0, and let CT ; T � I0 be a sequence of (possibly random) subsets

of 
 such that

lim
T!1

P [�� 2 CT ] = 1: (6)

If �� 2 
0; then

lim
T!1

P [supfĜTN [ST0j�] : � 2 CTg � �1] � lim
T!1

P [inffF̂TN [ST0j�] : � 2 CTg � 1� �1]

= lim
T!1

P

�
ST0 � supfF̂�1TN [1� �1j�] : � 2 CTg

�

� I[�1N ] + 1

N + 1
(7)

and

lim
T!1

P [supfp̂TN [ST0j�] : � 2 CTg � �] � I[�(N + 1)]

N + 1
; pour 0 � � � 1.

It is quite easy to �nd a consistent set estimate of �� whenever a consistent

point estimate �̂T of �� is available. For instance, if �̂ is a consistent estimator

of ��, with �� 2 
0, a possible con�dence set for �� could be a ball of �xed

radius centred on �̂T satisfying the condition

lim
T!1

P [k�̂T � ��k < �] = 1; 8� > 0; (8)

where 
 � R
k and where k:k is the Euclidean norm in Rk. Then any set of

the form CT = f� 2 
 : k�̂T � �k < cg where c is a �xed positive constant,

which does not depend on T, satis�es ( 6). We can also consider balls whose

radius decreases with sample size T. More generally, if there is a sequence of

(possibly random) matrices AT and a non-negative exponent � such that

lim
T!1

P [T �kAT (�̂T � ��)k2 < c] = 1; 8c > 0;

then any set of the form

CT = f� 2 
 : (�̂T � �)0A0TAT (�̂T � �) < c=T
�g

= f� 2 
 : kAT (�̂T � �)k2 < c=T
�g; c > 0

satis�es ( 6) since in this case,

P [�� 2 CT ] = P��[(�̂T � ��)0A0TAT (�̂T � ��) < c=T
�]

= P [T �(�̂T � ��)0A0TAT (�̂T � ��) < c] �!
T!1

1:
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6 Empirical applications

We will apply in this section Monte Carlo tests procedures to a stochastic

volatility model and to a brownian motion with drift.

6.1 Geometric Brownian motion: Indirect Inference es-

timation and Monte Carlo tests

6.1.1 Geometric Brownian motion with drift estimated by indi-

rect inference

The price yt of the underlying asset is assumed to satisfy the stochastic

di�erential equation:

dyt

yt
= �dt+ �dWt ; (9)

where Wt is a standard brownian motion. � and � are the drift and volatility

parameters respectively. Let

� =

�
�

�

�
(10)

denote the parameter of interest. The equation (9) will be the structural

model under which we will perform the simulations. Let (M) denote it. By

applying Ito's formula, we get the equivalent form:

d(log yt) = (�� �
2

2
)dt+ �dWt : (11)

We deduce from (11) the exact discretized version of (9), which corresponds

to a random walk with drift in the log-price:

log yt = log yt�1 + (�� �
2

2
) + ��t ; (�t) � IIN(0; 1); (12)

and to a lognormal distribution for the price. We may also introduce the

direct Euler approximation of equation (9):

yt = yt�1 + �
�
yt�1 + �

�
yt�1�

�

t

= (1 + �
�)yt�1 + �

�
yt�1�

�

t ; (��t ) � IIN(0; 1): (13)
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It gives an autoregressive form for (yt) with some conditional heteroscedastic-

ity. This will be the instrumental model which replaces the structural model

in the estimation procedure. Let (M�) denote it and

� =

�
�
�

�
�

�
(14)

the auxiliary parameter. The auxiliary model criterion to optimize will be

denoted by L�T (y
T
1 ; �) which corresponds to the log-likekihood function based

on the instrumental model (M�) but evaluated in the data simulated under

the true model (M).

~�hT (�; y
h
0 ; ~�

h) = argmax
�2B

L
�

T (~y
h
t (�; y

h
0 ; ~�

h)T1 ; �); h = 1; : : : ; H

= argmax
�2B

�
�T
2
log 2� � 1

2

TX
t=1

log(��2~yht�1(�; y
h
0 ; ~�

h)2)

�1

2

TX
t=1

(~yht (�; y
h
0 ; ~�

h)� (1 + �
�)~yht�1(�; y

h
0 ; ~�

h))2

��2(~yht�1(�; y
h
0 ; ~�

h))2

�
(15)

Then the simulated data come from the initial model (M) for a small time

unit �. Let us rewrite model (M) as :

dyt = �ytdt+ �ytdWt (16)

So by integrating (16) we obtainZ t+�

t

dys = �

Z t+�

t

ysds+ �

Z t+�

t

ysdWs

yt+� � yt ' �yt� + �yt

p
��t+� (17)

More precisely, we de�ne the process (y
(�)
t ) such that:

y
(�)
t = y

(�)

k� if k� � t < (k + 1)�

where

y
(�)

(k+1)�
= y

(�)

k� + (�y
(�)

k� )� + (�y
(�)

k� )
p
��

(�)

(k+1)�
(18)

and (�
(�)

k ; k varying) is a Gaussian white noise with unit variance. Then for

each parameter value �, we may simulate using (18) some values ~y
(�)h

k� (�; yh0 ; ~�
(�)h

k ) ; k =
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1; : : : ; [T=�]; h = 1; : : : ; H and deduce simulated values for the observation

dates by just selecting the values corresponding to integer indexes:

~yht (�; y
h
0 ; ~�

h) = ~y
(�)h
t (�; yh0 ; ~�

(�)h

k ) [i:e:with k = t=�]: (19)

� will be taken equal to 1=10 and y
h
0 = y

(�)h

k� with k = 1. We will have to

simulate H � [T=�] perturbation vectors ~�
(�)h

k . For instance, for T = 150

and � = 1=10 we will need 150= 1
10

i.e. 1500 perturbation vectors for each

simulation h.

So the objective function used to calibrate � where

�̂
H
T (y0; ~�

H
T ;
) =

�
�̂
H
T (
)

�̂
H
T (
)

�

is:�
�̂
H
T (
)

�̂
H
T (
)

�
= argmin

�
�̂T �

1

H

HX
h=1

~�HT (�; yh0 ; ~�
h)

�
0


̂T

�
�̂T �

1

H

HX
h=1

~�HT (�; yh0 ; ~�
h)

�
(20)

where ~�HT = (~�ht )
h=1;::: ;H
t=1;::: ;T and �̂T = �̂T (�

0) is obtained from optimizingL�T (y
T
1 ; �)

based on the true observations (y1; : : : ; yT ). 
̂T is a consistent estimator of

the inverse of the asymptotic covariance matrix of
p
T

�
�̂T� 1

H

PH

h=1
~�HT (�; yh0 ; ~�

h)

�
.
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6.1.2 The estimators

The parameters'estimators The estimators which maximize the log-

likelihood function (15) are solution of the following equations. Let

~�hT (�; y
h
0 ; ~�

h) =

�
~��(�)

~��(�)

�

be the quasi maximum likelihood estimators. Let ~yht and ~yht�1 stand for ~yht (�)

and ~yht�1(�) At �rst, let us consider the estimator of �� i.e.

@L
�

T

@��
(~��) = 0

, �1
2

TX
t=1

2��(~yht�1)
2

��2(~yht�1)
2
� 1

2

TX
t=1

�2��
��4

:

�
~yht � (1 + �

�)~yht�1
~yht�1

�2

= 0

, �T
��

+
1

��3

TX
t=1

�
~yht � (1 + �

�)~yht�1
~yht�1

�2

= 0

, �T +
1

��2

TX
t=1

�
~yht � (1 + �

�)~yht�1
~yht�1

�2

= 0 : (21)

So the estimator is

~��2ML =
1

T

TX
t=1

�
~yht � (1 + �

�)~yht�1
~yht�1

�2

= T
�1k(~yh

�1)
�1
:(~yh � (1 + �

�)~yh
�1)k2 (22)

The concentrated log-likelihood is then given by

L
�

T (~y; �
�)c = �T

2
log(2�)� T

2
log[T�1k(~yh

�1)
�1
:(~yh � (1 + �

�)~yh
�1)k2]�

T

2

= �T
2
log(2�) +

T

2
log(T )� T

2
log[k(~yh

�1)
�1
:(~yh � (1 + �

�)~yh
�1)k2]�

T

2
(23)
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The estimator of �� is then obtained by maximizing the concentrated log-

likelyhood function, i.e.

max
��

L
�c
T (~y; �

�)

, min
��

log(k(~yh
�1)
�1
:(~yh � (1 + �

�)~yh
�1)k2)

, min
��
k(~yh
�1)
�1
:(~yh � (1 + �

�)~yh
�1)k2 (24)

since the log-function is an increasing function of its arguments. So from the

�rst-order conditions

@L
�c
T

@��
= �2

TX
t=1

~yht�1(~y
h
t � (1 + ~��ML)~y

h
t�1)

(~yht�1)
2

= 0

,
TX
t=1

(~yht�1)
�1~yht �

TX
t=1

(1 + ~��ML) = 0

,
TX
t=1

(1 + ~��ML) =

TX
t=1

�
~yht
~yht�1

�
(25)

which yields

(1 + ~��ML) =
1

T

TX
t=1

�
~yht
~yht�1

�
(26)

we obtain

~��hML(�) =
1

T

TX
t=1

�
~yht (�)

~yht�1(�)

�
� 1 : (27)

The estimator of ��2 is then given by

~�
�2(h)

ML (�) =
1

T

TX
t=1

�
~yht (�)

~yht�1(�)
� 1

T

TX
t=1

~yht (�)

~yht�1(�)

�2

(28)
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A consistent estimator of 
 In order to calibrate �, we need a consistent

estimator of 
� = J0(I0 �K0)
�1
J0. J0 can be consistently estimated by

� 1

T

@
2
L
�

T

@�@� 0
(y(�0)T1 ; �̂T (�

0)) (29)

where y(�0)T1 denotes the true observations and �̂T (�
0) the estimator based

on the true observations. So the second derivative of L�T is

@
2
L
�

T

@��@��
0

=
T

�̂�2
� 3�̂�2

�̂�6

TX
t=1

�
yt(�

0)� (1 + �̂
�)yt�1(�

0)

yt�1(�0)

�2

=
T

�̂�2
� 3

�̂�4
:T �̂

�2

= � 2T

�̂�2
: (30)

So

� 1

T

@
2
L
�

T

@��@��
0
=

2

�̂�2
: (31)

On the other hand,

@
2
L
�

T

@��@��
0
= � T

�̂�
� 2

�̂�3

TX
t=1

�
yt�1(�

0)
yt(�

0)� (1 + �̂
�)yt�1(�

0)

(yt�1(�0))2

�
(32)

� 1

T

@
2
L
�

T

@��@��
0
= 0 (33)

since from the �rst-order conditions we have

@L
�

T

@��
j

�̂
�

�̂
�

=

TX
t=1

�
yt�1(�

0)
yt(�

0)� (1 + �̂
�(�0))yt�1(�

0)

��2(yt�1(�0))2

�
= 0: (34)

The second-order derivative of L�T with respect to �� is given by

� 1

T

@
2
L
�

T

@��@��
0

= � 1

T
(� 1

�̂�2

TX
t=1

yt�1(�
0)

yt�1(�0)
)

=
1

�̂�2
(35)
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So the estimator of J0 is given by

Ĵ(�0) = Ĵ0 =

 
1

�̂�2(�0)
0

0 2
�̂�2(�0)

!
: (36)

On the other hand, a consistent estimator of (I0�K0) as T !1 is given by

T

H

HX
h=1

(Wh � �W )(Wh � �W )0 (37)

where

Wh =
@L
�

T

@�
(yh(~�)T1 ; �̂T )

=

0
BB@

@L�
T

@��

�
y
h(~�)T1 ;

�
�̂
�(�0)

�̂
�(�0)

��
@L�

T

@��

�
y
h(~�)T1 ;

�
�̂
�(�0)

�̂
�(�0)

��
1
CCA (38)

and

�W =
1

H

HX
h=1

Wh =

0
BB@

1
H

PH

h=1

@L�
T

@��

�
y
h(~�)T1 ;

�
�̂
�(�0)

�̂
�(�0)

��
1
H

PH

h=1

@L�
T

@��

�
y
h(~�)T1 ;

�
�̂
�(�0)

�̂
�(�0)

��
1
CCA (39)

where ~� is any consistent estimator of � (for instance ~�HT (Id)).

The case considered here does not include any exogenous variables, in

this case K0 = 0 and I0 is equal to

lim
T 1

V0

�
1p
T

TX
t=1

@L
�

@�
(~yht (�; y

h
0 ; ~�

h); ~yht�1(�; y
h
0 ; ~�

h); �)

�
= lim

T 1
V0

�
1p
T

TX
t=1

@L
�

t

@�
(�)

�
:

(40)

Therefore I0 can be approximated (see Newey and West, 1987) by

�̂0 +

KX
k=1

�
1� 1

K + 1

�
(�̂k + �̂

0

k) (41)

with

�̂k =
1

T

TX
t=k+1

@L
�

t�k

@�
(�̂T )

@L
�

t

@� 0
(�̂T ) (42)
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A consistent estimator of W �

1 Let W �

1 denote the inverse of the asymp-

totic covariance matrix of the indirect estimator
p
T �̂

H
1T =

p
T �̂

H
T .

Vas[
p
T �̂

H
1T ] = (1 +

1

H
)(A11 � A12A

�1
22 A21)

�1
; (43)

so

W
�

1 = [Vas(
p
T �̂

H
1T )]

�1

= (1 +
1

H
)�1(A11 � A12A

�1
22 A21) ; (44)

where

Aij =
@b
0

@�i

�

@b

@�j
: (45)

By using the fact that

@b

@�0
(F0; G0; �0) = J

�1
0

@
2
L
�

1

@�@�0
(F0; G0; �0; �0) (46)

and that


� = J0(I0 �K0)
�1
J0 : (47)

So a consistent estimator of Aij will be given by

Âij = (
@
2
L
�

T

@�@�i
)0(
T

H

HX
h=1

(Wh � �W )(Wh � �W )0)�1(
@
2
L
�

T

@�@�j
) (48)

where
@2L�

T

@�@�0
=

@2L�
T

@�@�0
(yh(�)1T ; x

1
T ; �̂T (�

0)) evaluated at the indirect estimator

�̂
H
T where yh(�)1T is a simulated path of y based on the parameter �. When

K0 = 0, 
� = J0(I0)
�1
J0 ;

Âij = (
@
2
L
�

T

@�@�i
)0(Î0)

�1(
@
2
L
�

T

@�@�j
) ; (49)

and when 
� = Id,

Âij = (
@
2
L
�

T

@�@�i
)0Ĵ�10 Ĵ

�1
0 (

@
2
L
�

T

@�@�j
) : (50)
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@
2
L
�

T

@�@�0
=

 
@

@�0
[
@L�

T

@��
(yh(�)1T ; x

1
T ; �̂T (�

0))]
j�̂H
T

@

@�0
[
@L�

T

@��
(yh(�)1T ; x

1
T ; �̂T (�

0))]
j�̂H
T

!
(51)

is a matrix 2 by 2. The following second derivatives call on numerical deriva-

tives.

@
2
L
�

T

@��@�0
=

@

@�0

� TX
t=1

�
y
h
t�1(�):

(yht (�)� (1 + �̂
�(�0))yht�1(�))

�̂�2(�0)(yht�1(�))
2

��
j�̂H
T

(52)
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@��@�0
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� �T
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1

�̂�3(�0)

TX
t=1

�
y
h
t (�)� (1 + �̂

�(�0))yht�1(�)

y
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t�1(�)

�2�
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(53)

Finally

Ŵ
�

1 = (1 +
1

H
)�1(Â11 � Â12Â

�1
22 Â21) : (54)

will denote a consistent estimator of the inverse of the asymptotic covariance

matrix of the indirect inference estimator
p
T �̂

H
1T =

p
T �̂

H
T .

A consistent estimator of W �

H A consistent estimator of

W
�

H = (1 +
1

H
)[
@L
�

1

@�@� 0
(I0 �K0)

�1 @L
�

1

@�@�0
]�1 (55)

is

Ŵ
�

H = (1 +
1

H
)[
@L
�

T

@�@� 0
^(I0 �K0)

�1 @L
�

T

@�@�0
]�1 (56)

obtained as soon as we have a consistent estimator of
@2L�

1

@�@�0
which can be ob-

tained as aforementionned by numerical derivation of
@L�

T

�0
[(ys(�)1T ; x

1
T ; �̂T (�

0)]

with respect to � evaluated at �̂HT where (ys(�))1T is a simulated path of y

based on the parameter �.
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6.1.3 Test Statistics

We are interested in testing a null hypothesis on the drift � of the initial

model (M) but the volatility parameter � is a nuisance parameter for our

test. The interest parameter is

� =

�
�

�

�
and the instrumental parameter is:

� =

�
�
�

�
�

�
The null hypothesis we are interested in is H0 : � = �0. We will denote here

�̂
H
T (y0; ~�

H
T ;
) by �̂

H
T for short. Let

(�̂HT ) =

�
�̂
H
1T

�̂
H
2T

�
=

�
�̂
H
T

�̂
H
T

�
(57)

denote the unrestricted indirect estimator and

(�̂0HT ) =

�
�0

�̂
0H
T

�
(58)

the restricted estimator.

The Wald statistic

�
W
T = T (�̂H1T )

0
Ŵ
�

1 (�̂
H
1T )

= T (�̂HT � �0)
0
Ŵ
�

1 (�̂
H
T � �0) (59)

where Ŵ �

1 is a consistent estimator of the inverse of the asymptotic covariance-

variance matrix of
p
T �̂

H
T .

The Score statistic The Score function is

DT =
@ ~� 0HT

@�1
(�̂0HT )
̂�[�̂T � ~�HT (�̂

0H
T )]

=
@ ~� 0HT

@�

�
�0

�̂
0H
T

�

̂�
�
�̂T � ~�HT

�
�0

�̂
0H
T

��
(60)

which yields for the score statistic

�
S
T = TDTADT (61)

where A is a consistent estimator of [V ar(
p
TDT )]

�1.
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The statistic based on the di�erence between the optimal values of

the objective function

�
C
T =

TH

1 +H

�
�̂T � ~�HT

�
�0

�̂
0H
T

��
0


̂�
�
�̂T � ~�HT

�
�0

�̂
0H
T

��

� TH

1 +H

�
�̂T � ~�HT

�
�̂
H
T

�̂
H
T

��
0


̂�
�
�̂T � ~�HT

�
�̂
H
T

�̂
H
T

��
(62)
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6.1.4 Implementation of Monte Carlo Tests for the above Test

Statistics

At �rst the implementation of the Wald Statistic and the Statistic based

on the di�erence between the optimal values of the objective function, with

the identity matrix for the metric 
 in the Indirect Inference optimization

criterion together with the simulation number H = 1 is much less costly in

computation time than the use of the optimal weight matrix 
� together

with H > 1. Moreover the use of this optimal weight matrix 
� is mainly

justi�ed through asymptotic e�ciency considerations and thereby not rele-

vant in �nite samples. The optimization of the p-value over a subset of the

parameters space under the null hypothesis due to the presence of nuisance

parameters is relatively easy to perform through the GAUSS version of Sim-

ulated Annealing optimization programm and yields a test with the exact

level �. Here it has been performed at the levels of 5% and 1% for the Wald

Statistic and for the Statistic based on the di�erence between the optimal

values of the objective function under the null hypothesis � = 0 with the

nuisance parameter corresponding to �. The startup value for the nuisance

parameter in the Simulated Annealing optimization programm has been set

up to a consistent restricted estimator. The Maximized Monte Carlo Test

to test the null hypothesis � = 0 together with only one nuisance parameter

� to optimize is thus theoretically and computationally feasible in this Indi-

rect Inference framework for both of these statistics. The next step would

be to investigate the way to reduce the computation time by picking up an

intermediary estimator instead of the Indirect Inference estimator obtained

through the use of the Optmum algorithm of the version GAUSS 3.2.18.

On the other hand, an exchangeability property could be explored in this

Indirect Inference setting in order to reduce the simulations length.
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