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1. Introduction

Within the social sciences and in particular fields such as economics, education
and psychology, many of the phenomenon that we wish to explain are either
measured with error or not directly measurable. Other examples include intel-
ligence, education, management expertise and institutional change. Perhaps the
most prevalent example in economics is based upon Friedman’s (1957) permanent
income hypothesis where there is no directly observable measure of permanent
income®. In practice, the existence of true measurements for theoretical counter-
parts is the exception to the rule. In such cases a number of alternate approaches
have been advocated. In time series analysis Harvey (1981) has developed struc-
tural time series models to handle unobserved components such as the business
cycle, seasonality and trend. More recently economists have analysed the extent
to which monetary policy is endogenously determined. However, given that there
is no single measurable quantity which represents monetary policy, studies such
as Avery (1979) have used a model specification where it assumed that monetary
policy is represented by a single latent variable, and that policy is manifest in the
behaviour of a set of indicators. In Lahiri (1976) the author examines the im-
pact of the Fisher effect of inflationary expectations on the nominal interest rate,
where the unobserved price expectations variable is modelled using a structural
equations approach. Of relevance to this research Kaufmann, Kraay, and Zoido-
Lobaton (1999) adopt a similar approach in examining cross-country variation in
three broad areas of governance: probity, bureaucratic quality and the rule of law.

The modelling strategy we will discuss has been extensively used in psycho-
metrics and more recently in econometrics. It is founded upon the specification
of a system of equations which specify the relationship between a set of unobserv-
able latent variables, y*, a set of observable endogenous indicators y, and a set of
observable exogenous variables x. This approach builds upon the early work of
Joreskog and Goldberger (1975) and Zellner (1970), and has been formalised in
the LISREL? model of a set of linear structural equations.

2. Regression with an Unobserved Exogenous Variable

Consider the following linear regression model

ISee Crockett (1960)
2LISREL is an acronym for linear structural relationships.



y=102"+¢, (2.1)

where g is an observed scalar, z* is an unobserved regressor and ¢ is a stochastic
error term. z* is in standardised units (mean zero, variance 1).

The Observed Data

The analyst will only observe the variance and mean of y, where the variance of
y is given by 6+ 2. Obviously § is not identified. To circumvent this problem we
need to introduce additional information. We do this by postulating the existence
of a measurement equation for z* which we write as

z = 2Z'4u (2.2)
2 = G'x, (2.3)

where x = (21,9, ...,x5) is a s X 1 vector of causes and B = (3;, Bs, ..., 3,)" is a
s x 1 vector of unknown parameters. We assume that Fleu] = 0.
Equations (2.1), (2.2) and (2.3) constitute the structural model.

Example 2.1. Friedmans (1957) Permanent Income Model
Think of (2.1) as the consumption function, (2.2) as measured income and
(2.3) as the multiple causes of permanent income.

The Reduced Form
If we combine (2.1), (2.2) and (2.3) we may write the reduced form as

M - { 0 x } {Zl ! M (2.4)

where 7 = 63 and ¥, , the covariance matrix of ¢, u, is diagonal.

We note that an alternate approach is based upon the method of instrumen-
tal variables. For example, in the context of the above problem we might have
available a variable ¢ which is correlated with z* and y but not with u. It is also
worth emphasising that if the model contains a number of fully observed exoge-
nous variables and one explanatory variable which is measured with error, then
the following trade-off exists. One strategy would be to simply drop the unobserv-
able regressor and incurr the normal omitted variable bias. Alternately, we could
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include a proxy, or indicator variable, However, since by definition this variable
will contain measurement error, parameter estimates will also be inconsistent.
Studies by McCallum (1972) and Wickens (1972) have demonstrated that based
upon the criteria of asymptotic bias, the use of a proxy variable is preferred.

2.0.1. Estimation: ML or Two-Step Approach

A Simle Two-step Method

Note that the measurement equation z = 3'x +u satisfies all the requirements
of OLS. Thus 8 and the asymptotic covariance matrix for 3 can estimated. For
the structural equation

y=0(0'%)+e, (2.5)

we may substitute 2* = B/X and obtain an estimate of . Pagan (1984) shows that
this procedure is consistent, as asymptotically efficient as full MLE and much
easier to implement. Note that we may think of Z* as an instrumental variable
for the unobserved z*.

3. Mutiple Indicators of an Unobserved Latent Variable

In section 2 we saw that for y and z* scalar quantities we cannot estimate the
parameters without the use of additional information. Above this information
took the form of a measurement equation for the unobserved exogenous variable
z*, which is based upon a model of multiple causes of z*.
Below we consider how information in the form of multiple indicators of z*
can also assist in identifying model parameters.
Let y = (y1, Y2, -, Ym) denote a m x 1 vector of observed indicators
B = (B4, Ba, .-, B,,) is a m x 1 vector of unknown parameters.
e = (e1,€2,...,em) 18 @ m X 1 vector of stochastic terms.

Example 3.1. m=3
y; = B;2" +¢5, 1 =1,2,3. (3.1)

We let 03 denote the variance of €; and set cov(e;, ;) = 0 Vi # j. Based upon
(3.1) there are six unknown parameters: 0 = (34, 35, 35,0%,03,03).
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What do we observe?
The analyst observes X, the 3 x 3 covariance matrix of y, where the diagonal
elements, s;;, represent the variance of y;, written as

sij = 35+ 07
The off-diagonal elements, s12 513 and sq3 are, respectively, given by 3,85, 5,035,
and (3,05.
3.1. Solution

An application of the Method-of-Moments (MOM) allows us to express the un-
known population moments, 6, in terms of the six pieces of observed (sample)
moments. This sample information is contained in the unique® elements of %,,.

51281305
pr =
523
3, = 5128230
, = —=
813
3, = 513523 0-
g =
S12
2 . 2
o; = 8j;—B;

Based upon the moments of the sampled data we have enough information to
exactly identify the structural parameters in 6. Note also that if € ~mvn(0,3,)
then these estimates are ML with the attendant properties.

Example 3.2. m=M

y = By +e (3.2)
Var(y) = ¥, =08 +6? (3.3)

where ©? is a diagonal matrix with elements o73.

If M > 3 there exists more unique sample variance and covariance terms in
>, than the 2M unknown parameters. For M < 3 the model is underidentified.

Multiple indicators provide one method for identifying population parameters
and is the same route that is used in factor analysis.

3Note: for a m x m covariance matrix there are m(m + 1)/2 unique elements.
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4. Multiple Indicators and Multiple Causes

The canonical form of a structural equations model in which we combine the
models of the last two sections is given by the following system of linear structural
relations

y =By +v€+¢, (4.1)

where y* = (v, y5, ...,y;) and & = (§1,&,, ..., §,,) are, respectively, [ x 1 and n x 1
unobservable random vectors of latent dependent and independent variables. 3
and ~ are, respectively, [ x [ and [ X n matrices of unknown parameters, { =
((y,Cqy -, C;) is a vector of structural disturbance terms. The elements of 3
represent the direct influence of latent variables on other latent variables in the
system. Elements of v represent the influence of latent explanatory variables on
y*. We assume that ¢ is uncorrelated with &. Vectors of indicators for y* and &
are given, respectively, by y = (y1, %2, ..., ym) and x = (z1,z9, ..., xs)’, with the
two measurement equations given by

y =Ny +e (4.2)
and
x = A*€+9. (4.3)

AY and A* denote m x [ and s X n parameter matrices. € and § represent er-
rors of measurement which may exhibit intra-set correlation. We assume that
cov(ej, g;) = 0 Vi # j such that any correlation across the indicators is driven by
the common factor y*. We let ©O. and Ojs represent the covariance matrices of
e and §. (4.1) represents the most general form of the LISREL formulation. Note
that we may think of (4.1) and (4.2) as factor analysis models for the observable
variables y and x, where AY and A* are the factor loadings.To specify a model in
which & is measured without error one simply sets A* = I, where I, is a s X s
identity matrix.

We might also think of elements of y as possible instruments for y*. For ex-
ample, if only a single instrument is available an IV approach could be utilised.
Faced with multiple instruments that are correlated, then one or more elements
of y could be selected using prior information. Alternately principle component
analysis (PCA) could be used to construct a synthetic variable. Following this
(4.1) could be estimated using either an instrument or a synthetic variable in
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place of the unobserved y*. The major differences between this approach and the
MIMIC are two fold. First, the MIMIC model utilises the information contained
in all the multiple indicators in y, and therefore will represent higher efficiency rel-
ative to either IV or PCA. Second, the combination of both a structural equation
and a measurement equation®.

5. A Structural Equations Approach to Modelling Institu-
tional Change

An innovative application of this modelling strategy is to determine empirically
the factors behind the demand for institutional change. This approach is founded
upon the belief that no single observed variable can adequately measure insti-
tutional change and therefore a latent variable representation is utilised which
explicitly accounts for measurement error. Indicators of institutional change are
corporate governance, competition policy, financial regulation and EBRD legal
transition indicators.” The causes include budget constraints based upon explicit
subsidies and tax data, external factors influencing institutional reform and an
index of liberalisation.® These variables are listed in Table 1.1. The principal
advantage of this approach is that it does not rely on exact measurement of in-
stitutions. In addition, using an estimate of the variance of the stochastic term
for each indicator, estimates of how informative each indicator is with regards to
institutional change can be generated. A welcome side-product of our approach is
that it is possible to create an index of institutional change based on the observ-
able variation in both EBRD’s transition indicators and the exogenous variables,
which may be represented as a weighted average of the former, with endogenously
generated weights.

The structure of the model is as follows. Each y; (i = 1,...,m) represents an
independent indicator of institutional change, denoted y*, such that we may write

yi =Ny +ej, j=1,...,m (5.1)

4Seminal studies using the MIMIC model include Zellner (1970),Hauser and Goldberger
(1971), and Goldberger (1972).

For a complete discussion of the legal transition indicators see Annex 2.2 of the 1999 EBRD
Transition Report.

6See Section * for a full explanation of the indicators and causes. (Maria: we need to
summarise Annex 2.2 here for EBRD legal transition indicators).



We ley T denote the m x 1 vector of diagonal elements of ©.. We also posit that
the institutional change is linearly determined by a set of observable exogenous
variables x, subject to an error (, giving

Y= a4 7T+ T2+ + YT + G (5.2)

Examining (5.1) and (5.2) we may think of the model as comprising two parts:
(5.2) is the structural (or state) equation and (5.1) is the measurement equation
reflecting that the observed measurements are imperfect indicators. The mea-
surement equation specifies how the unobservable construct institutional change
is determined by the observed endogenous variables and the structural equation
specifies the causal relationship between the observed exogenous causes and in-
stitutional change™®. In this instance (5.2) is a special case of a factor analysis
model with a set of [ observable indicators determined linearly by a single un-
observed (common) factor - institutional change. Figure 1 adapted from Chen
(1981) graphically illustrates the relationship between the indicators and causes
of institutional change using a path diagram..

The two key assumptions which underly our modelling strategy are that: i)
measurement errors in the individual indicators of institutional change are uncor-
related across indicators namely cov(g;,e;) # 0 V; = j; and 2) the relationship
between unobserved institutional change and the observed indicators is linear.
One way of circumventing the second assumption has been proposed by Kauf-
mann, Kraay, and Zoido-Lobaton (1999) and simply forms a composite indicator
by aggregating over the observed ordinal indicators. Why does this not require
linearity assumption?

Since y* is unobserved it is not possible to recover direct estimates of v. How-
ever if we combine these two equations and solve for the reduced form represen-
tation, then based upon a sample of T" observations we may write

y = X7 +V, (5.3)

where w = AY4’ is the m x s reduced form coefficient matrix and v = AY( + € is
the reduced form disturbance with covariance matrix

0, = E[(AY¢ + €)(AY¢ + €)' = o?AYAY + O, (5.4)

"More general forms of (??) and (5.2) are possible including models which specify a mea-
surement equation for x and models which allow elements of y* to appear on the RHS of (5.2).
8See Table 1.2 for dimension of parameter matrices.
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Note that the structure of the reduced form covaraince matrix ©, is characteristic
of factor analysis models where the correlations between the observed variables
(here indicators) are accounted for by the unobserved (common) latent variable.
In this instance the common factor is (, € denotest the unique factor, and AY the
vector of factor loadings.

Based upon equations (5.3) and (??) there are two sets of restrictions on the
reduced form®. First, the m x s coefficient matrix 7 has rank 1, since the ms
elements of 7 are expressed in terms of the m + s elements of AY and ~. Second,
the m x m covariance matrix ©, represents the sum of a rank one matrix and
a diagonal matrix, ©.. The m(m + 1)/2 unique elements of O, are expressed in
terms of the 1 + 2m elements of AY, a%, and T.

The question of identification can be addressed by examining equations (5.2)
and (5.4). Here we see that the relationship between observable moments and
structural parameters may be written as

Elyy'] = olAYAY 46, (5.5)
Exy'] = E[xx']AY (5.6)

which using may be trivially rewritten in terms of the reduced form parameters,
namely,

m = Ay = E[xx'| " E[xy’].

Since equation (5.6) expresses the ¢ = ms observable moments in terms of the
p = m + s structural paramters, then if ¢ — p > 0 the set of mean paramters will
be identified. If this condition holds, then the remaining paramters in equation
(5.5) will be identified.

The existence of an unobserved latent variable y* provides for a complex re-
duced form where the vector of parameters AY appears in both the reduced form
coefficient matrix and the covariance matrix. As noted by Chen (1981) this makes
the method of ML intractable. If y* were observed then each equation could be
estimated separately using OLS. Exploiting this fact the parameters of (5.1) and
(5.2) may be estimated using the EM algorithm which circumvents this problem

9 As presented (5.3) and (??) are indeterminate since the reduced form parameters are invari-
ant to a transformation given by AYw, v /oo and og /@, where tw is a scalar. The normalisation
0'?: =1 or setting one element of AY = 1 circumvents this problem.
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by working with a set of initial estimates of v and AY and an estimate of the
conditional moment E[y*|X,y] which is given by

it = Bly*[X,y] = 1+ A8,A)1X4 + 46, 'Av.

For example, with g’ denoting an estimate of the conditional expectation of y*then
updated estimates of v together with variances o7 and o2, j = 1,... ,m can be
obtained from the standard least squares formulae

v = (X'X) Xy (5.7)
A= (YY) Ty, (5.8

where X, y* and y are data matrices.

6. A MIMIC Model of Social Status and Participation

Hodge and treiman (1968) examined the relationship between social status and
particiaption in a sample of 530 women. The model may be written as

Y* = 7121 + Yoo + Y373 + ¢ (6.1)

1 =My +e1, Yo =My +e2, Ys = A3y" + €3 (6.2)

where 6.1 denotes the structural equation for the unobserved construct social
participation (y*) with x1, 25 and x3, representing three causes of participation,
respectively, income, occupation and education. 6.2 denotes the set of indicator
equations for y*, with y; (church attendance), yo (memberships) and y; (friends
see), denoting indicators of participation. A path diagram which summarises this
model is given in figure 2.
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Schematic Representation of MIMIC Model of Social Participation
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Figure 6.1: Schematic Representation of Mimic Model
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Table 1.1: Multiple Indicators and Multiple Causes of Institutional Change

Causes

Reform Measures
WB measures
Liberalisation
WB Internal Lib. Index
WB External Lib. Index

Privatisation
WB Privatisation Index

EBRD Measures
Small Scale Privatisation
Price Liberalisation

Trade
Share of Trade with EU
Share of Trade with ROW

Political Factors
Civil Liberties
Political Reform
Freedom Rating

Macro Causes
No. years inflation <30%;
budget deficit <5%
years since macroeconomic
stabilisation

Fiscal
Budgetary Subsidies (% GDP)

Indicators:

EBRD Transition Indicators™
Enterprise Restructuring
Competition Policy

Banking Reform and Interest Rate
Overall Legal Extensiveness...
Securities and Non-Bank

Alternative Measures

Corporate Governance
Competition Policy Index 14
Rule of Law

Variable Name

WB_IL
WB_EL

WB_P

SCP
PL

EX shE
EX row

civilib
polright
freedom

yearsIBD

yearsMS

BUDG_S (242)

ER_ST (267)
COM_POL (272)
BR_I (275)
O_LE

S _NB

CORPG (133)
COMP _T (137)
ROL

* EBRD Transition Indicators are all measured on a common scale




