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Abstract

In this paper we consider a class of structural econometric models in which
the distribution of the endogenous variables is implicitly defined as the solution
of a fixed-point problem. We propose a simple two-stage estimator which does
not require the econometrician to solve the fixed point problem, and provide
sufficient conditions for its consistency and asymptotic efficiency. We show that
these sufficient conditions hold if a Newton operator is used to solve the fixed
point problem. Finally, we study the finite sample performance of this estimator
in the context of several structural models: a dynamic discrete choice model,
a static game with incomplete information, a model of irreversible investment,
and a model of oligopolistic competition in a differentiated product market.

1 Introduction

The concept of equilibrium in economics is intimately related to the mathemati-
cal concept of fixed point. Many interesting economic models involve fixed point
problems in highly dimensional spaces. Bellman equations characterizing the value
function of a dynamic decision model, or best response functions defining the equi-
librium of a game are two examples. During the last two decades techniques for the
estimation of structural econometric versions of these models have been developed.1

1Recent literature on this topic is very extensive. In the context of dynamic discrete choice
structural models see the seminal papers by Wolpin (1984), Miller (1984), Pakes (1986), Rust (1987),
Hotz and Miller (1993), Keane and Wolpin (1996), and the survey by Rust (1994). For static game
theoretic models see Bresnahan and Reiss (1991), Berry (1994), Berry, Levinshon and Pakes (1996),
and the survey by Pakes (1994). For the estimation of general equilibrium models using micro data
see Heckman, Lochner and Taber (1999) and the recent survey by Browning, Hansen and Heckman

1



Although methods which make full use of the restrictions embodied in the theoretical
model, such as full maximum likelihood estimation, are desirable for efficiency and,
sometimes, identification reasons, these methods require the use of computationally
burdensome nested solution-estimation algorithms which are often not feasible in all
but the simplest models.

In this paper we consider a class of structural econometric models in which the
distribution of the endogenous variables can be defined as the solution of a fixed-point
problem. We propose a simple two-stage estimator which avoids repeated solution
of the fixed point problem. The first stage involves non-parametric estimation of
the distribution of endogenous variables. In the second stage a pseudo-likelihood
function is maximized. Given parameter values, the pseudo-likelihood function is
computed by a single iteration on the fixed point operator, using the first stage
non-parametric estimates as starting values. Our two-stage estimator is the value of
the structural parameters that maximizes this pseudo-likelihood function. We state
regularity conditions for consistency of this estimator and provide additional sufficient
conditions under which the two-stage estimator can be used instead of a maximum
likelihood estimator with no loss of asymptotic efficiency. We also show that these
sufficient conditions will be satisfied if a Newton operator is used to solve the fixed
point problem. Finally, we study the performance of this estimator in finite samples
for several specific examples: a dynamic programming discrete choice model, a static
game with incomplete information, a model of irreversible investment, and a model
of oligopolistic competition in a differentiated product market.

The idea behind our estimator builds on previous work by Hotz and Miller (1993),
Manski (1993) and Aguirregabiria and Mira (1999) in the context of dynamic dis-
crete choice models. This paper extends this previous literature in several directions.
First, we consider a general class of structural models where the distribution of the
endogenous variables is implicitly defined as a fixed point. Second, we show that
the two-stage estimator is asymptotically efficient under conditions that seem quite
general.

The rest of the paper is organized as follows. Section 2 presents the general
econometric model and illustrate it with four examples. In section 3 we define the two-
stage estimator and present our main results of consistency and asymptotic efficiency.
In Section 4 [NOT INCLUDED IN THIS VERSION] we present our Monte Carlo
experiments. The method used to obtain the second stage estimator can be extended
to define K-stage estimators (i.e., K > 2) which, although asymptotically equivalent,
may have better finite sample properties. Our experiments will compare the finite
sample performance performance of ML, 2 and K-stage estimators in the different
example models.

(1999). Finally, Ericson and Pakes (1995), Pakes and McGuire (1995), and Pakes, Gowrisankaran
and McGuire (1995) present a very interesting and promising framework for empirical analysis of
Markov-Perfect equilibria in dynamic games.
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2 Econometric model

Let y ∈ Y ⊆ NL and x ∈ X ⊆ NM be two vectors of discrete random variables,
where N is the space of the natural numbers. Let p∗(y0, x0) be the true probability
(i.e., probability in the population) of y = y0 conditional on x = x0, and define p̃∗ as
the vector with all the true probabilities, i.e., p̃∗ ≡ {p∗(y0, x0) : y0 ∈ Y ;x0 ∈ X}. A
parametric model for p̃∗ is a family of probability distributions

{p̃(θ) : θ ∈ Θ}, (1)

where p̃(θ) = {p(y0, x0; θ) : y0 ∈ Y ;x0 ∈ X} and θ is a finite vector of parameters.
We are interested in models with the following properties.

Property 1: For any θ ∈ Θ, p̃(θ) is the unique fixed point in π of the mapping:

π = Ψ̃(θ; π) (2)

where Ψ̃(θ; π) ≡ {Ψ(y0, x0; θ; π) : y0 ∈ Y ;x0 ∈ X}, and Ψ(.) is twice continuously
differentiable in (θ, π).

Property 2: For any pair (θ, π), Ψ̃(θ; π) is a probability distribution for y condi-
tional on x.

Property 3: There is a unique vector in Θ, say θ∗, that maximizes in θ the function

Q∗(θ) ≡
∑
x0∈X

p∗(x0)
∑
y0∈Y

p∗(y0, x0) ln p(y0, x0; θ)

where {p∗(x0)} is the true marginal distribution of x.
Given a random sample of y and x, {xi, yi : i = 1, 2, ..., n}, we are interested in

the estimation of θ∗. The conditional log-likelihood function is:

l(θ) =
n∑
i=1

ln p(yi, xi; θ) (3)

where the probabilities p(yi, xi; θ) satisfy p̃(θ) = Ψ̃(θ; p̃[θ]).

2.1 Example 1: Discrete choice dynamic programming model

Consider a dynamic programming model where y ∈ Y = {1, 2, ..., J} is the discrete
decision variable, and s ∈ S is the vector of state variables (see Rust 1994a, 1994b).
Time is discrete and indexed by t. Utility is time separable, the discount factor
is β, and U(yt, st) represents the one-period utility function. The time horizon of
the decision problem is infinite. An agent’s beliefs about uncertain future states
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can be represented by a Markov transition probability fs(dst+1|st, yt) . According
to these assumptions, the value function and the optimal decision rule are time in-
variant (Blackwell’s theorem). Let V (y, s) be the value function conditional on the
(hypothetical) choice of alternative y. These conditional choice value functions are
implicitly defined by the Bellman equations

V (y, s) = U(y, s) + β
∫

max
j∈Y
{V (j, s′)} fs(ds′|s, y) for y = 1, 2, ..., J (4)

We partition the state vector as follows: s = (x, ε), where x includes the state
variables which the econometrician observes and ε those that are unobservable. We
assume Conditional Independence; that is, the transition probability of the state
variables factors as:

fs(xt+1, εt+1| xt, εt, yt) = fε(εt+1| xt+1) fx(xt+1| xt, yt) (5)

where fε(.) has finite first moments and is continuous and twice differentiable in ε. Let
EU(y, x) be the expected (one-period) utility conditional on x and on the hypothetical
choice of alternative y, and define µ(y, x, ε) ≡ U(y, s) − EU(y, x). Similarly, let
EV (y, x) be the expected value function conditional on x. Using these definitions
and the conditional independence assumption, it is simple to verify that:

V (y, s) = EV (y, x) + µ(y, x, ε)

Notice that, by construction, µ̃(x, ε) ≡ (µ[1, x, ε], µ[2, x, ε], ..., µ[J, x, ε])′ is mean in-
dependent of x.

Suppose the primitives of the model {U, fx, fε, β} are known up to a finite vector
of parameters θ. Let p(y0, x0; θ) be the probability that alternative y0 is the optimal
choice given x = x0 and given the vector of structural parameters θ. According to
this model:

p(y0, x0; θ) =
∫
I
(
y0 = arg max

j∈Y
{EV (j, x; θ) + µ(j, x, ε)}

)
fε(dε|x; θ) (6)

where I(.) is the indicator function. Given the conditional independence assumption,
and the mean independence of µ̃(x, ε) and x, it is possible to obtain an expression
for EV (y, x; θ) in terms of the primitives U fx, fε and the set of choice probabilities
p̃(θ) (see Hotz and Miller, 1993, and Aguirregabiria and Mira, 1999). We denote
this function by σ(y, x; θ; p̃[θ]). This function σ(.) can be evaluated at any arbitrary
vector of choice probabilities π, ”optimal” or not. In general, σ(y, x; θ; π) represents
the expected value of choosing alternative y today if future decisions are based on
the choice probabilities in π. If x is discrete, i.e., x ∈ {x1, x2, ..., xM}, it is possible to
show that σ(j, xm; θ; π) is the m− th component of the vector:

EŨx(j) + βF j
x(IM − βFU

x [π])−1

{
J∑
k=1

πk ∗
[
Ũ(k) + e(k, π)

]}
(7)
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where EŨx(j) is the vector of one period utilities conditional on y = j and all states;
F j
x is the matrix of transition probabilities of x conditional on y = j; πj is the

subvector of π associated with alternative j; FU
x (π) is the matrix of unconditional

transition probabilities induced by π, i.e., FU
x (π) =

∑J
j=1 π

j ∗ F j
x ; and e(j, π) is a

vector of functions of π: the form of these functions depends on the distribution of ε
(e.g., if µ̃(x, ε) has an extreme value distribution e(j, π) = − ln πj).2

Therefore, we can write the set of conditional choice probabilities p̃(θ) as the
unique fixed point of the mapping π = Ψ̃(θ; π), where,3

Ψ(y, x; θ; π) =
∫
I
(
y = arg max

j∈Y
{σ(j, x; θ; π) + µ(j, x, ε)}

)
fε(dε|x; θ) (8)

For instance, if µ̃(x, ε) has an extreme value distribution,

Ψ(y, x; θ; π) =
exp{σ(y, x; θ; π)}∑J
j=1 exp{σ(j, x; θ; π)}.

(9)

2.2 Example 2: Static game with incomplete information4

Consider an N -player game, and let i ∈ {1, 2, ..., N} be the index that denotes a
player. The payoff function for player i is Ui(yi, y−i, x, εi), where yi represents his
own action and y−i is the vector of actions of the other players. The set of choice
alternatives is discrete, i.e., yi ∈ Y = {1, 2, ..., J}. x is a vector of exogenous charac-
teristics of all players and/or the environment which is known by all players, whereas
εi represents characteristics of player i which are private information. Each player
knows the other players’ payoff functions up to the private information components;
furthermore, every player has a subjective probability distribution over the ε′s of the
other players, Gi(ε−i;x, εi), where ε−i = {εj : j 6= i}.

Notice that, without further assumptions, players are unable to calculate equilib-
ria on their own because each player i is ignorant of the subjective beliefs of the others.
Here we assume that it is known to all players that conditional on x the private infor-
mation components ε′is are independently and identically distributed over individuals
with cumulative distribution function F (ε;x); therefore, Gi(ε−i;x, εi) =

∏
j 6=i F (εj;x),

which is the same for all players.
Let αi(x, εi) be a strategy function for player i. Define Vi(yi, x, εi;α−i, ) as player

i’s expected payoff from choosing action yi, conditional on x and εi and given that
the other players have strategy functions α−i = {αj : j 6= i}.

Vi(yi, x, εi;α−i) =
∫
U(yi, α−i[x, ε−i], x, εi) G(dε−i;x) (10)

2More specifically, e(j, π) = {e(j, xm, π) : m = 1, 2, ...,M}, where e(j, x, π) is the expected value
of µ(j, x, ε) conditional on x and on the choice of alternative j, if choices are made according to the
choice probabilities in π.

3See Lemma 1 in Aguirregabiria and Mira (1999) for a proof of the existence and uniqueness of
this fixed point.

4This example is based on Rust (1994b).
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Player i chooses yi in order to maximize his expected payoff . A Bayesian Nash
Equilibrium in this game is a collection of strategies {y∗i (x, εi) : i = 1, 2, ..., N} such
that for all i:

y∗i (x, εi) = arg max
j∈Y

{
Vi(j, x, εi; y

∗
−i)
}

(11)

where y∗−i = {y∗j (x, εj) : j 6= i}.
Now suppose the econometrician observes x and actions {yi}. Players are assumed

to choose equilibrium actions and to have rational expectations; i.e.,
∏
j F (εj;x) is the

true distribution of ε given x. The payoff functions and the probability distribution of
ε are known up to a finite vector of parameters θ. Define the equilibrium probabilities
p(y, x; θ) as:

pi(y, x; θ) = Pr(y∗i [x, εi] = y | x; θ) =
∫
I{y = arg max

j∈Y
Vi(j, x, εi; y

∗
−i)} F (dεi;x)

(12)
Let p̃(θ) be the vector {pi(y, x; θ) : y ∈ Y ;x ∈ X; i = 1, 2, ..., N}. Notice that these
probabilities are the ones that a player uses to predict the behavior of the other
players. Therefore, we can use these probabilities to obtain an alternative expression
for the expected payoff functions Vi(.) evaluated at the equilibrium strategies of the
other players, y∗−i. We denote these functions by δi(yi, x, εi; θ; p̃[θ]).

δi(yi, x, εi; θ; p̃[θ]) =
∑
y−i

∏
m6=i

pm(ym[y−i], x; θ)

U(yi, y−i, x, εi) (13)

where ym[y−i] represents the choice of individual m in the vector y−i. The functions
δi(.) can be evaluated at any vector of choice probabilities, equilibrium or not. For an
arbitrary vector of choice probabilities, δi(.) represents the expected payoff function
under the hypothesis that the decision of the other players will be based on these
probabilities. We can combine equations (12) and (13) to write the set of equilibrium
choice probabilities p̃(θ) as a solution of the fixed point equation π = Ψ̃(θ; π), where
Ψ̃(θ; π) ≡ {Ψi(y, x, θ; π) : y ∈ Y ;x ∈ X; i = 1, 2, ..., N}, and

Ψi(y, x, θ; π) =
∫
I
(
y = arg max

j∈Y
{δi(j, x, εi; θ; π)}

)
F (dεi|x; θ) (14)

As an example of this rather general setup, consider the market of a differentiated
product as in Anderson, de Palma and Thisse (1991) or Berry, Levinshon and Pakes
(1995). There are N firms in this market, and each of these firms sells one variety
of the product. The demand is the result of a logit model, i.e., the demand for the
i− th variety is:

D(di, d−i, xi, x−i) = M
exp{x′iβ − αdi}

N∑
j=0

exp{x′jβ − αdj}
(15)

6



where M is the market size; (α, β) are parameters; variety 0 is the outside alternative;
xi represents a vector of exogenous characteristics of variety i that affect consumers’
utility; di is the price of variety i, and d−i is the vector of prices for the other varieties.
We assume that for the outside alternative x′0β − αd0 = 0.

The unit cost of producing variety i is ci, that depends on characteristics xi but
also on a firm specific effciency component εi.

ci = exp{x′iγ + εi} (16)

Therefore, the profit function is:

U(di, d−i, xi, x−i, εi) = [di − exp(x′iγ + εi)] D(di, d−i, xi, x−i) (17)

The characteristics {xi} are known by all the firms in the market, but the relative
efficiency of a firm {εi} is private information of that firm. We assume that it is
known to all players that conditional on x the private information components ε′is are
independently and identically distributed over individuals with zero mean, constant
variance µ2, and normal distribution; therefore, Gi(ε−i;x, εi) =

∏
k 6=i Φ(εk/µ), which

is the same for all players. Finally, the set of possible prices is discrete, i.e., di ∈ D =
{d[1], d[2], ..., d[J ]}.

Let θ be the vector of model parameters, θ = (α, β′, γ′, µ)′. Let pi(d, x; θ) be the
probability that firm i chooses price d in the equilibrium of a market with character-
istics x and parameters θ. Define p̃(θ) as the vector of probabilities {p(d, xi, x−i; θ) :
d ∈ D;xi ∈ X, x−i ∈ XN−1}. It is possible to show that the expression for the
mapping Ψ̃(.) in this model is:

Ψ(d, xi, x−i, θ; π) =
∫
I
(
d = arg max

j∈D
{δ(j, xi, x−i, εi; θ; π)}

)
Φ(dεi/µ) (18)

where:

δ(d, xi, x−i, εi; θ; π) =
∑
d−i

∏
m6=i

πm(dm[d−i], xm, x−m)

 [d−exp(x′iγ+εi)] D(d, d−i, xi, x−i)

(19)

2.3 Example 3: Model of irreversible investment5

Consider a firm that produces a good using labor and physical capital as inputs. The
firm purchases the capital that it employs and it operates in a competitive market
both for the output and for the inputs. There are no adjustment costs associated
with labor. Let F (kt, ηt) be the production function net of labor costs (once the

5See Abel and Eberly (1996) and Abel et al (1996) for a version of this model in continuous time.
Bentolila and Bertola (1990) present a similar model in the context of labor demand with linear
hiring and firing costs.
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optimal amount of labor has been solved), where kt is the stock of physical capital
at the beginning of period t, and ηt is a productivity shock. F (k, η) is continuous,
differentiable, strictly concave in k, and limk→0 F (k, η) = ∞. The firm’s current
profit function is:

U(kt, ηt, ct, it) = F (kt, ηt)− ct I(it > 0)it − cut I(it < 0)it, (20)

where it is investment in physical capital; ct is the price that the firm should pay
when buying new equipment; and cut is the price that the firm receives when it sells
its used capital in the second hand market. Due to asymmetric information and/or
firm-specific equipment used by the firm, the selling price of capital is lower than its
purchasing price. In particular, we assume that cut = λct, where λ < 1. Installed
capital depreciates geometrically, kt+1 = δkt + it, where δ ∈ (0, 1). The productivity
shock follows a first order Markov processes with transitional density φη(ηt+1; ηt). The
purchasing price of capital has two components: an aggregate component, c̃t, common
to all firms in this market; and an idiosyncratic component, εt, such that ct = c̃tεt.
For the sake of simplicity we assume here that the aggregate price is constant, but it
is simple to obtain similar results when c̃t follows a first order Markov process. The
idiosyncratic component is iid over time and firms.

The Bellman equation of this problem is:

V (kt, ct, ηt) = max
{it}

U(kt, ηt, ct, it) + β EV (δkt + it, ηt) (21)

where β ∈ (0, 1) is the discount factor, V (.) is the value function and

EV (δkt + it, ηt) =
∫ ∫

V (δkt + it, ct+1, ηt+1) φη(dηt+1; ηt) φc(dct+1) (22)

It is possible to show that this problem has a unique solution with the following
optimal decision function:

i∗(kt, ct, ηt) =


kP (ct, ηt)− δkt if ln ct < ln[β EVk(δkt, ηt)]
0 if ln[β EVk(δkt, ηt)] ≤ ln ct ≤ ln[β EVk(δkt, ηt)]− lnλ
kS(ct, ηt)− δkt if ln ct > ln[β EVk(δkt, ηt)]− lnλ

(23)
where kP (.) and kS(.) are the optimal capital stocks when the firm decides to purchase

new capital and when it sells used capital, respectively; and EVk ≡ ∂EV/∂k. kP (.)
and kS(.) are implicitly defined by the equations:

β EVk(k
P
t , ηt) = ct (24)

β EVk(k
S
t , ηt) = λct

Notice that if we knew the function EVk(.) we could obtain a closed form expression
for the optimal decision rule. However, EVk(.) has to be obtained recursively. In
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particular, it is possible to show that this function is the unique fixed point of the
following functional equation:

EVk(kt+1, ηt) = E
(
Fk[kt+1, ηt+1] | kt+1, ηt

)
+ δ Pr

(
i∗t+1 > 0 | kt+1, ηt

)
E
(
ct+1 | i∗t+1 > 0, kt+1, ηt

)
+ δλPr

(
i∗t+1 < 0 | kt+1, ηt

)
E
(
ct+1 | i∗t+1 < 0, kt+1, ηt

)
+ βδ Pr

(
i∗t+1 = 0 | kt+1, ηt

)
E
(
EVk(δkt+1, ηt+1) | i∗t+1 = 0, kt+1, ηt)

)
(25)

Now, let yt be the sign of the investment at period t, i.e., yt ≡ sign(it) ∈
{−1, 0,+1}, and define xt as the vector (kt, ηt). We define p(y, x; θ) as the prob-
ability, conditional on x, that the optimal sign of investment is y, where θ is the
vector of structural parameters. Taking into account the optimal decision rule in
(18), it is clear that:

p(1, x; θ) = Φc(ln{β EVk[δk, η]})
p(−1, x; θ) = 1− Φc(ln{β EVk[δk, η]} − lnλ)

(26)

Furthermore, the conditional expectations of ct+1 on the right hand side of equation
(20) can be written as a function of the probabilities p(θ); if we do this and solve for
EVk we obtain an alternative expression for EVk in terms of the probabilities p(θ) and
the primitives φη, φc and Fk. We denote this function by σ(x; θ, p[θ]). As in previous
examples, the function σ(.) can be evaluated at any vector of probabilities π, not
just at the probabilities associated with optimal behavior. Therefore, substituting
the function σ(x; θ, p[θ]) for EVk in (21) we can write p(θ) as the solution of the fixed
point equation π = Ψ̃(θ; π), where

Ψ(1, x, θ; π) = Φ(ln{β σ[δk, η; θ, π]})
Ψ(−1, x, θ; π) = 1− Φ(ln{β σ[δk, η; θ, π]} − lnλ)

3 Two–stage estimator

Let {yi, xi : i = 1, 2, ..., n} be a random sample of y and x. The Maximum Likelihood
Estimator (MLE) of θ∗ is:

θ̂
MLE

n = arg max
θ∈Θ

n∑
i=1

ln p(yi, xi; θ) (27)

where the probabilities are known to satisfy p̃(θ) = Ψ̃(θ; p̃(θ)). The MLE can be ob-
tained using a nested fixed point solution -estimation. Consider instead the following
Two-stage Estimator of θ∗. Let p̂n be a nonparametric estimator of p̃∗. Then,

θ̂
2S

n = arg max
θ∈Θ

n∑
i=1

Ψ(yi, xi; θ, p̂n) (28)
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For given θ the pseudo-likelihood in (23) can be computed with a single evaluation of
the operator Ψ̃, whereas computing the likelihood in (22) requires iterating in Ψ̃ until
convergence. It is clear that using the two-stage estimator may result in large savings
in the computational cost of estimation, extending the class of estimable models.
In Proposition 1 below we give sufficient conditions for consistency of the two-stage
estimator, and in Proposition 2 we provide additional conditions under which the
two-stage estimator can be used instead of the Maximum Likelihood estimator at no
cost in terms of asymptotic efficiency.

PROPOSITION 1 (Consistency):
Let Γ ≡ Θ × [0, 1](J−1)M . Consider the following regularity conditions.
(i) Θ is a compact sets.
(ii) Ψ(y, x; θ, π) is continuous and twice continuously differentiable in (θ, π).
(iii) Ψ(y, x; θ, π) > 0 for any (y, x) ∈ Y xX and for any (θ, π) ∈ Γ.
(iv) {yi, xi} for i = 1, 2, ..., n are independently and identically distributed.
(v) There is a θ∗ ∈ Θ such that, for any (y, x) ∈ Y xX, p(y, x; θ∗) = p∗(y, x), and

for any θ 6= θ∗ the set {(y, x) : Ψ(y, x; θ, f ∗y|x) 6= p∗(y, x)} has positive probability.
(vi) (θ∗, p̃∗) ∈ int(Γ).
(vii) p̂n is a consistent estimator p̃∗.

Under these conditions the two-stage estimator θ̂
2S

n converges a.s. to θ∗.

Proof: See Appendix.

PROPOSITION 2 (Asymptotic Efficiency):
Under regularity conditions (i)-(vii), in Proposition 1, and
(viii) p̂n is such that[

1√
n

∑
i

∂ ln Ψ(yi, xi; θ
∗, p̃∗)

∂θ′
,
√
n(p̂n − p̃∗)′

]′
→d N(0,Ω)

(ix) For any θ ∈ Θ, ∂Ψ̃(θ; p̃[θ])/∂π′ = 0,

the two-stage estimator θ̂
2S

n is asymptotically normal and asymptotically equivalent
to the conditional maximum likelihood estimator.

Proof: See Appendix 1.
Notice that whereas consistency of the first-stage non-parametric estimators (to-

gether with regularity conditions) is enough to obtain consistency in the second stage,
sufficient conditions for asymptotic efficiency include an additional restriction on the
model. This is condition (ix) which states that the Jacobian matrix of the fixed point
operator should be zero at the fixed point. If this is the case, the proof of Proposition
2 shows that the asymptotic variance matrix of the first stage estimators does not
affect the asymptotic variance of the second stage estimators.
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Aguirregabiria and Mira (1999) have proved that this condition is satisfied for the
class of problems and for the fixed point operator considered in Example 1. However,
in general working with condition (ix) will require a deep understanding of the model
at hand. Even when .we are able to write the distribution of endogenous variables as
a solution of a fixed point problem, verifying condition (ix) may be non-trivial, or we
may find that it is not satisfied. We now show that, provided a fixed point operator
has been found, Newton’s algorithm can be used to define another valid fixed point
operator which will satisfy condition (ix).

Consider a model with fixed point mapping Ψ̃(., .). Suppose that for given θ we
solve the fixed-point problem p̃(θ) = Ψ̃(θ; p̃(θ)) using Newton’s method to find a zero
of π − Ψ̃(θ; π). Newton iterations have the following form:

πk+1 = Γ(θ; πk) ≡ πk −
(
I − ∂Ψ̃(θ; πk)

∂π′

)−1 (
πk − Ψ̃(θ; πk)

)
The following Lemma establishes two relevant porperties of the Newton fixed point
operator Γ()

LEMMA 1:

(1) A fixed point π∗of Ψ̃(θ; .) is a fixed point of Γ(θ; .) if the inverse of I−∂Ψ̃(θ; π∗)

∂π′

exists, and a fixed point of Γ(θ; .) is a fixed point of Ψ̃(θ; .).

(2) Let π∗ be a fixed point of Γ(θ, ·); then,
∂Γ(θ; π∗)

∂π
= 0

Proof: See Appendix 1.
This suggests that, if a fixed operator Ψ̃() has been found which does not satisfy

condition (ix), an asymptotically efficient estimator based on the associated Newton
operator may be available.
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APPENDIX 1. Proofs

Proof of Proposition 1 (Consistency):

Let n denote sample size. Consider the sample functions:

Q̃n(θ, π) =
1

n

n∑
i=1

ln Ψ(yi, xi; θ, π) ; Qn(θ) = Q̃n(θ, p̂n)

And define:
Q̃∞(θ, π) ≡ E(ln Ψ[di, xi; θ, π])

By Property 24.2 in Gourieroux and Monfort (vol. II, page 387), if: (I) Qn(θ) con-
verges a.s. and uniformly in θ to Q∞(θ); and (II) Q∞(θ) has a unique maximum in

Θ at θ∗; then θ̂
2S

n ≡ arg max
α∈Θ

Qn(θ) converges a.s. to θ∗. Regularity condition (v)

implies (II) by the information inequality. We have to prove (I).
By Lemma 24.1 in Gourieroux and Monfort (vol. II, page 392), we have that if: (a)

Q̃n(θ, π) converges a.s. and uniformly in (θ, π) to Q̃∞(θ, π); (b) Q̃∞(θ, π) is uniformly
continuous in (θ, π); and (c) p̂n converge a.s. to p̃∗; then Q̃n(θ, p̂n) converges a.s. and
uniformly in θ to Q̃∞(θ, p̃∗) ≡ Q∞(θ). Condition (c) holds directly from (vii). By
regularity conditions (i) and (ii), Q̃∞(θ, π) is continuous on a compact set, so it is
uniformly continuous, i.e., (b) holds. Now, we prove that condition (a) holds.

Let H∗(., .) be the true probability distribution of (y, x), and let Hn(., .) be the
empirical distribution of (y, x) in a sample with size n. By definition, for any (θ, π):

|Q̃n(θ, π)− Q̃∞(θ, π)| = |
∑
x∈X

J∑
j=1

ln Ψ(j, x; θ, π) [Hn(j, x)−H∗(j, x)]|

≤
∑
x∈X

J∑
j=1

| ln Ψ(j, x; θ, π)| |Hn(j, x)−H∗(j, x)|

By condition (iv)Hn(j, x)→a.s. H∗(j, x). Furthermore, by conditions (i)-(iii) | ln Ψ(j, x; γ)|
is bounded. Therefore,

Pr

(
lim
n→∞

sup
(θ,π)∈Γ

|Q̃n(θ, π)− Q̃∞(θ, π)| = 0

)

≥ Pr

 lim
n→∞

sup
θ,π)∈Γ

∑
x∈X

J∑
j=1

| ln Ψ(j, x; θ, π)| |Hn(j, x)−H∗(j, x)| = 0


≥ Pr

(
∀(j, x) : lim

n→∞
|Hn(j, x)−H∗(j, x)| = 0

)
= 1

i.e., Q̃n(θ, π) converges a.s. and uniformly in (θ, π) to Q̃∞(θ, π).

Proof of Proposition 2 (Asymptotic efficiency):
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Given conditions (ii) and (vii) and the definition of θ̂
2S

n , the first order conditions
of optimality imply that with probability approaching one ∂Q̃n(γ̂n)/∂θ = 0 where

γ̂n ≡ (θ̂
2S′
n , p̂′n)′. By condition (ii), Q̃n(.) is twice continuously differentiable and we

can apply the stochastic mean value theorem to ∂Q̃n(.)/∂θ between γ̂n and γ∗ ≡
(θ∗′, p̃∗)′. There are K vectors {γ̄1

n, γ̄
2
n, ..., γ̄

K
n } which are convex combinations of γ̂n

and γ∗ such that:

∂Q̃n(γ̂n)

∂θ
− ∂Q̃n(γ∗)

∂θ
=

 ∂2Q̃n(γ̄1
n)/∂θ1∂γ

′

...

∂2Q̃n(γ̄Kn )/∂θK∂γ
′

 (γ̂n − γ∗)

Given that any γ̄jn is a convex linear combination of γ̂n and γ∗, and given that γ̂n →a.s.

γ∗, then γ̄jn →a.s. γ
∗. Furthermore, ∂2Q̃n(γ)/∂θ∂γ′ converges in probability and uni-

formly in γ to ∂2Q̃∞(γ)/∂α∂γ′ and therefore ∂2Q̃n(γ̄jn)/∂θj∂γ
′ →p ∂

2Q̃∞(γ∗)/∂θj∂γ
′

(see Amemiya, Thm 4.2.2 and Thm.4.1.5). We can now rewrite the previous mean
value theorem as follows:

−∂Q̃n(γ∗)

∂θ
=

(
∂2Q̃∞(γ∗)

∂θ∂θ′
+ op(1)

)
(θ̂

2S

n − θ∗) +

(
∂2Q̃∞(γ∗)

∂θ∂π′
+ op(1)

)
(p̂n − p̃∗)

Or:

√
n(θ̂

2S

n − θ∗) = −
(
∂2Q̃∞(γ∗)

∂θ∂θ′
+ op(1)

)−1

(
I;
∂2Q̃∞(γ∗)

∂θ∂π′
+ op(1)

)( √
n∂Q̃n(γ∗)/∂θ√
n(p̂n − p̃∗)

)

Notice that condition (vi) implies that ∂2Q̃∞(γ∗)/∂θ∂θ′ is a non singular (negative
definite) matrix. By condition (viii) and the Mann-Wald Theorem, it is straightfor-

ward that
√
n(θ̂

2S

n − θ∗)→d N(0, V ∗), where:

V ∗ =

(
∂2Q̃∞(γ∗)

∂θ∂θ′

)−1 (
I;
∂2Q̃∞(γ∗)

∂θ∂π′

)
Ω

(
I;
∂2Q̃∞(γ∗)

∂θ∂π′

)′ (
∂2Q̃∞(γ∗)

∂θ∂θ′

)−1

Now, using condition (ix) it is possible to simplify this expression. First, notice
that,

∂2Q̃∞(γ∗)

∂θ∂π′
= E

(
∂2 ln Ψ(yi, xi; γ

∗)

∂θ∂π′

)
= E

(
∂ ln Ψ(yi, xi; γ

∗)

∂θ

∂ ln Ψ(yi, xi; γ
∗)

∂π′

)

By condition (ix), for any pair (y, x): (a) Ψ(y, x; γ∗) = p(y, x; θ∗); (b) ∂Ψ(y, x; γ∗)/∂π =
0; and (c) ∂Ψ(y, x; γ∗)/∂θ = ∂p(y, x; θ∗)/∂θ. Therefore, ∂2Q̃∞(γ∗)/∂θ∂π′ = 0 by
equivalence of the information matrix and we get:

V ∗ = Ω−1
00
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where Ω00 is Fisher’s information matrix,

Ω00 = E

(
∂ ln p(yi, xi; θ

∗)

∂θ

∂ ln p(yi, xi; θ
∗)

∂θ′

)

Proof of Lemma 1:
The fixed point problem is π = Ψ̃(θ, π). The associated Newton operator was

defined as

Γ(θ; π) ≡ π −
(
I − ∂Ψ̃(θ; π)

∂π′

)−1 (
π − Ψ̃(θ; π)

)
where π, Ψ and Γ are vectors of dimension M . The proof of (1) trivial given the

definition of Γ. As for (2), let π∗ be a fixed point of Γ; taking derivatives we get

DΓ(π∗) = I −
M∑
i

[π∗i −Ψi(π
∗)]
∂{[I −DΨ(π∗)]−1}•i

∂x′
− [I −DΨ(π∗)]−1[I −DΨ(π∗)]

= I − 0− I = 0

since π∗ is also a fixed point of Ψ.
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