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Abstract

This paper revisits the well-known result of Radner and Stiglitz

(1984) which shows that, under certain conditions, the value of infor-

mation exhibits increasing marginal returns over some range. Their

result assumes that both the number of states and the number of sig-

nal realizations are �nite, assumptions which preclude most analyses

of optimal information acquisition. We provide a set of suÆcient con-

ditions that yields this `nonconcavity' in the value of information in

a general framework; the role that these conditions play is clari�ed

and illustrated with several examples. We also discuss the robustness

of the nonconcavity result, and the diÆculties involved in getting the

value of information to be globally concave.
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1 Introduction

Is there an intrinsic nonconcavity to the value of information? In an im-

portant and in
uential paper, the analysis of Radner and Stiglitz (1984)

suggests that there is. They demonstrated, in a seemingly general model,

that the marginal value of a small amount of information is zero. Since the

marginal value of (costless) information is always nonnegative, this �nding

implies that, unless information is useless and hence always of zero value,

it must exhibit increasing marginal returns over some range. Radner and

Stiglitz do present a few examples that violate their assumptions for which

information exhibits decreasing marginal returns, so it is clear that the value

of information does not always exhibit a nonconcavity. Yet, the conditions

under which they obtain the nonconcavity seem at �rst glance to be fairly

innocuous. They assume that the number both of states and signal real-

izations are �nite. They index the information structure, represented by

a Markov matrix of state-conditional signal distributions, by a parameter

taking on values in the unit interval, with a zero value of the parameter rep-

resenting null information. They then impose two assumptions: one is that

this Markov matrix is a di�erentiable function of the index parameter at the

zero value; the other is a continuity restriction on a particular selection from

the correspondence of maximizers. These conditions appear to be standard

smoothness and continuity assumptions: although it may not always hold,

their result cannot easily be dismissed as depending on exotic assumptions.

As Radner and Stiglitz note, this nonconcavity has several important im-

plications: the demand for information will be a discontinuous function of

its price (under linear pricing); agents will not buy `small' quantities of in-

formation; and agents will tend to specialize in information production. As

with any nonconcavity, it will generally tend to complicate any analysis of

information acquisition, and it can also have important consequences in ap-

plications. For example, it may preclude the existence of a competitive equi-

librium (Wilson (1975), Radner (1989)), or the existence of a linear Rational

Expectations Equilibrium (La�ont (1985)) if information can be acquired by

agents; or it may have substantial e�ects on the organization of production

when moral hazard is present and there is a demand for monitoring (Singh

(1985)).1

1See also Arrow (1985) and Bradford and Kelejian (1977) for additional remarks on

the e�ects of the nonconcavity in the value of information.
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The nonconcavity has proven to be especially vexing to the literature on

active learning or experimentation.2 In this literature, an agent takes an ac-

tion in each period in the face of uncertainty about a parameter that a�ects

her payo�. The agent observes a random signal that depends both on her

action and the value of the unknown parameter; after observing the signal,

she updates beliefs and then chooses again. An interesting feature of such

models is that the agent not only learns, but can a�ect how much she learns

by varying her actions: she sacri�ces utility today to increase information

available tomorrow. As an example, a price setting �rm may face an uncer-

tain demand function: by varying the price, the �rm may be able to a�ect

how much it learns about its demand. Thus the present action acts as an

index of the informativeness of the `experiment' that the agent observes. If

the value of information is not concave in the present action, then the anal-

ysis of optimal experimentation is made much more complex. We will show

later that our suÆcient conditions for the nonconcavity to hold are met by a

broad class of experimentation problems commonly found in the literature.

Moreover, some recent papers have considered experimentation in strategic

settings, speci�cally, an industry of �rms that learn about demand while com-

peting with one another (Harrington (1995); Mirman, Samuelson and Schlee

(1994)). In these models, the nonconcavity means that the �rst period best

reply mappings of �rms may not be convex-valued, so that pure strategy

equilibria may not exist.3 Mirman, Samuelson and Schlee (1994) thus exam-

ine mixed strategy equilibria, while Harrington (1995) restricts attention to

models in which �rms discount the future heavily. Neither approach is very

satisfactory in an oligopoly model.

Besides complicating models of information acquisition, a more funda-

mental question remains: why is it that information should intrinsically ex-

hibit increasing marginal returns (starting from no information)? While in-

formation as a commodity is admittedly special, it is still somewhat puzzling

that it cannot generally exihibit diminishing marginal returns.

The purpose of this paper is to re-examine the conditions under which the

Radner-Stiglitz nonconcavity holds, that is, a small amount of information

2Among others, see Mirman, Samuelson and Urbano (1993), Tonks (1984), Kihlstrom,

Mirman and Postlewaite (1984), Harrington (1995), Easley and Kiefer (1988), and Mirman,

Samuelson and Schlee (1994).
3Other suÆcient conditions for the existence of pure strategy equilibria are not helpful

here either. For example, the restriction to supermodular games would eliminate many of

the examples in Mirman, Samuelson and Schlee (1994).
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has zero marginal value. (Of course, even if the marginal value of a small

amount of information is positive, the value of information can still exhibit

a nonconcavity; we shall refer to the Radner-Stiglitz nonconcavity as that

which arises from a zero marginal value at null information). We propose to

do so in a fairly general Bayesian decision problem. All of the aforementioned

applications have assumed either an in�nite number of signal realizations or

an in�nite number of states, unlike the original Radner-Stiglitz framework.

One of our main goals is to extend their theorem to this more general model.

We provide a set of suÆcient conditions under which the Radner-Stiglitz non-

concavity arises, and show that it subsumes the Radner-Stiglitz framework

as a special case, as well as most of the applications encountered in the liter-

ature where the nonconcavity is present. Although some of the assumptions

are purely technical, most are substantive: we present examples showing that

their failure leads to a failure of the nonconcavity.

Besides extending their theorem, we also want to clarify the role that

these conditions play. Of particular interest is the assumption by Radner

and Stiglitz of the existence of a particular continuous selection from the

correspondence of maximizers (one that is constant in the signal realization

at null information, our assumption A0 below). We provide suÆcient condi-

tions separately on the information structure and the decision maker's utility

function and prior beliefs to ensure the existence of such a selection. Sev-

eral examples are provided to illustrate the role played by the assumptions

imposed.

We also argue that the more general setting presented here will help us

to evaluate the robustness of the nonconcavity. Since there are important

contributions to the literature on information acquisition that do not exhibit

the nonconcavity,4 we revisit some of them and discuss why these information

structures avoid the problem in the models analyzed in those contributions.

We also present examples to illustrate the diÆculties involved in proving

results to get the value of information to be globally concave. The tentative

conclusion we draw from our Theorems and examples is that, although our

suÆcient conditions for the Radner-Stiglitz nonconcavity are strong, and

one can construct speci�c models that yield a concave value of information, a

nonconcavity in the value of information seems diÆcult to rule out in a model

of much generality. Whether the reader agrees with this interpretation of our

4In particular, Kihlstrom (1974), Freixas and Kihlstrom (1984), Arrow (1985),

Moscarini and Smith (1999, 2000).
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results, our hope is to stimulate thinking on the appropriate `functional form

restrictions' to impose on the information structure of a problem.

Moscarini and Smith (2000) hold out some hope that the nonconcavity

might at least be tamed, if not vanquished. Assume that both the number of

actions and states are �nite. They show that, if the quantity of information

is measured by the number of (state-conditionally) independent observations

from an experiment, then the marginal value of information eventually falls

as the number of observations increases. Hence, if the price of observations

is low enough, the demand for information will be well-behaved. By focusing

on the large demand case and measuring information by the sample size, they

thereby avoid the `small quantity' problem emphasized by the Radner and

Stiglitz result. We return to their paper after presenting our main results.

The paper is organized as follows. Section 2 presents a detailed descrip-

tion of the general decision problem we consider. In Section 3, we state the

Radner and Stiglitz theorem and provide an intuitive explanation of its main

assumptions. The main results are derived in Section 4, where we prove a

general theorem and illustrate the role of the assumptions with examples and

corollaries covering some special cases that are often assumed in the litera-

ture. Section 5 uses the main results to discuss some important contributions

on the demand for information that do not exhibit the nonconcavity result,

casting some light on the reasons for its absence. Section 6 concludes.

2 The Model

A Bayesian agent who is uncertain about the state of the world must choose

an action after observing the realization of a random variable that is possibly

correlated with the state. We index the set of information structures by a

real parameter � 2 �.

The formal description of the model is the following:

� The set of states of the world S is a complete, separable metric space,

endowed with the Borel �-algebra BS; the measure � : BS ! [0; 1]

represents the prior beliefs of the decision maker.

� The set of signals the decision maker can observe is denoted by Y , and

it is a complete, separable metric space with Borel �-algebra BY .

� � = [0; 1] is the index set.
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� For each �, Q(� j �; �) is a stochastic kernel on Y given S that represents

an information structure available to the agent; i.e, for each s 2 S,

Q(� j s; �) : BY ! [0; 1] is a probability measure, and for each C 2
BY , Q(C j �; �) : S ! [0; 1] is BS-measurable. Di�erent values of

� correspond to di�erent information structures. An uninformative

information structure is represented by � = 0; formally, for all s; s0 2 S,

Q(� j s; 0) = Q(� j s0; 0).

� The action space A is a complete, separable metric space with Borel

�-algebra BA.

� u : A � S �! R is the decision maker's vonNeumann-Morgenstern

utility function; it is assumed to be jointly continuous and bounded.

� D is the set of all functions d : Y ! A that are (BY ;BA)-measurable

(i.e., d�1(B) 2 BY for each B 2 BA). The set D contains the decision

functions or strategies available to the decision maker. 5

Since the agent can condition her decision on the signal observed, her

problem is:

max
d2D

Z
S

Z
Y

u(d(y); s)Q(dy j s; �)�(ds): (1)

Let V (�) be the value function of the problem, which is interpreted as the

value of the information structure �, and let D�(�) be the correspondence of

maximizers. That is,

V (�) = max
d2D

Z
S

Z
Y

u(d(y); s)Q(dy j s; �)�(ds);

and

D�(�) = fd 2 D :

Z
S

Z
Y

u(d(y); s)Q(dy j s; �)�(ds) = V (�)g:

A selection from this correspondence will be denoted by d�(y; �), in order to

emphasize the dependence on �. Given a selection d�(y; �), then

V (�) =

Z
S

Z
Y

u(d�(y; �); s)Q(dy j s; �)�(ds): (2)

5Most of the results of the paper also hold in the slightly more general case where the

set D depends on �, say D(�), and D(�1) � D(�2) whenever �1 > �2. The only exception

is the existence of the right-hand derivative of the value function.
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Although we shall prove the main results using the normal form of the

problem described by (1), an alternative and common way to analyze this de-

cision problem is in its extensive form, which exploits the sequential structure

of the model more explicitly.

The extensive form is derived as follows. Fix � 2 [0; 1]; given Q(� j �; �)
and �(�), then by Theorem 8.5 in Stokey, Lucas, and Prescott (1989) there

exists a unique probability measure �(� j �) on (S � Y;BS � BY ) such that,

for each B 2 BS and C 2 BY ,

�(B � C j �) =
Z
B

Q(C j s; �)�(ds):

Let �(C j �) = �(S � C j �) be the marginal of �(� j �) on BY ; i.e., �(C j �)
is the probability that y 2 C if the information structure is �. Under the

assumptions made on S and Y , given �(� j �) and �(� j �), then by Corollary

7.27.2 in Bertsekas and Shreve (1978) there exists a stochastic kernel

P (� j �; �) on S given Y such that

�(B � C j �) =
Z
C

P (B j y; �)�(dy j �):

The stochastic kernel P (� j y; �) can be interpreted as a version of the pos-

terior beliefs of the decision maker after observing y, when the information

structure is �; for each y, her problem is then

max
a2A

Z
S

u(a; s)P (ds j y; �): (3)

Let U(y; �) and A�(y; �) be the value function and the correspondence of

maximizers of problem (3); given any (BY ;BA)-measurable selection d�(y; �)

from this correspondence, then the value function in the extensive form rep-

resentation is

V (�) =

Z
Y

Z
S

u(d�(y; �); s)P (ds j y; �)�(dy j �)

=

Z
Y

U(y; �)�(dy j �) (4)

The extensive form representation a�ords a simple proof of existence of

a solution and satisfaction of the measurability requirements implicit in (4).

6



Proposition 1 If A is a compact metric space then, for each � 2 �,

(i) U(y; �) is BY -measurable and bounded;

(ii) A�(y; �) is nonempty and admits a (BY ;BA)-measurable selection

d�(y; �).

Proof: Fix � and set g(a; y; �) =
R
S
u(a; s)P (ds j y; �); continuity of

u : A � S ! R and BY -measurability of the stochastic kernel imply that

g(�; y; �) : A ! R is continuous and g(a; �; �) : Y ! R is BY -measurable.

Since A is compact, (i) and (ii) follow from the Measurable Maximum The-

orem (Aliprantis and Border (1999), Theorem 17.18). This completes the

proof of the proposition.

Until section 4.2, we will impose the following assumption on the corre-

spondence of maximizers:

A0: There exists a (BY ;BA)-measurable selection d�(y; �) with the fol-

lowing properties: (i) lim�!0+ d
�(y; �) = d�(y; 0) for every y, (ii) d�(y; 0) = a�0

for every y.

Radner and Stiglitz (1984) used this assumption in their model with a

�nite number of states and signals to derive their nonconcavity result. In

words, A0 says that there exists an optimal decision that is `continuous

in � and 
at in y' at � = 0. Since this imposes conditions jointly on the

information structure and the decision maker's utility function and prior

beliefs, it is not entirely satisfactory. One of our goals will be to justify A0

from conditions imposed separately on those elements, and explain their roles

in yielding the conclusion.

3 The Question

We are now ready to formulate our main question: under what conditions

is the marginal value of a small amount of information equal to zero? More

precisely, we seek conditions on the information structure such that, along

with A0, imply that V 0(0+) exists and equals zero. Note that the value

function V : � ! R excludes any cost of information acquisition. Since, in

the abstract, there may be no obvious natural units to measure the amount

of information, we should stress that this question has meaning only in the

context of a broader decision problem that involves choosing an information
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structure; and very often in such problems there is a natural index of the

available information structures. A simple, but very useful, formulation is

max
�2[0;1]

V (�)� C(�) (5)

Here C : � ! R represents the cost of di�erent information structures.

As an example, the decision maker could be a �rm that is uncertain about

its market demand. The parameter � could represent the number of hours

spent on marketing research, with zero hours yielding no information; V (�)

then is the maximum expected pro�t from operating in a market when the

�rm spends � hours doing market research at a cost of C(�) dollars. More

generally, all standard two-period experimentation models can be written in

form (5). In such models, an agent takes some action in the �rst period; a

noisy signal of the state is then revealed; the agent updates beliefs and then

chooses an action in the second period. In our notation, the utility function

u(a; s) gives the second period utility from taking action a (an element of

[0; 1] say) under state s. The parameter � represents a �rst period action

that a�ects the distribution of the observed signal, and hence how much

information the agent has in the second period; the value function V (�) then

gives the maximum second period expected utility as a function of the �rst

period action �. Finally, the cost function equals the di�erence between

�rst period expected utility from choosing � under the prior belief and the

maximum �rst period utility; formally (assuming that u is the utility function

in both period 1 and period 2),

C(�) = V �
Z
S

u(�; s)�(ds);

where

V = max
�02[0;1]

Z
S

u(�0; s)�(ds):

The prototypical problem studied in the optimal experimentation litera-

ture is that of a �rm learning about demand.6 That this �ts (5) is illustrated

by the following example:

6See, among others, McLennan (1984), Mirman, Samuelson, and Urbano (93), Gross-

man, Kihlstrom, and Mirman (1977), Aghion et al. (1991), Tre�er (1993), and Creane

(1994).
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Example 1: Let the demand function be given by f(p; s; "), where

p is the market price, s the state of demand, and " the realization of a

(i.i.d.) random noise variable. The �rm chooses price at date 1, observes

the sales realization (but neither s nor "), updates beliefs about s; and

then chooses a date 2 price. For concreteness, specialize further to the

case of linear demand: f(p; s; ") = (� � p)s + ": In terms of our notation

u(a; s) = ((�� a)s+ E["]) (a� k) ; where k is a constant marginal cost, a is

the second period price, and E["] is the expected volume of noise demand;

u(�) gives the date 2 pro�t as a function of the date 2 price and the demand

parameter s. Notice that a �rst period price of � gives no information about

the permanent part of demand (since only `noise traders' buy at this price).

Thus we can de�ne � = ��p; so that � = 0 corresponds to a null information

structure. The �rm sets � in period one, observes sales of �s + ", updates

beliefs about s, and then sets the date 2 price. In this case the cost func-

tion C(�) describes the expected pro�t loss as a result of deviating from the

myopically optimal price, and V (�) gives the maximum second period pro�t

from charging a price of �� � at date 1.

Now, as long as the cost function C(�) is increasing with C 0(0+) > 0, the

objective function in (5) will not be concave if V 0(0+) = 0 and information

has positive value for some � > 0. From the perspective of these applications,

we can rephrase our question as determining whether the objective function

in (5) can be concave for a cost function with positive marginal cost at � = 0.

As we have noted, Radner and Stiglitz (1984) answered this question for the

special case in which the set of signal realizations Y and the set of states

S are both �nite; that is, Q(C j s; �) = P
y2C q(y j s; �) for each C � Y ,

where q(y j s; �) is the probability of observing y if the state is s and the

information structure is �. They showed the following result:7

Proposition 2 Assume that

a) A0 holds;

b) q(y j s; �) is di�erentiable with respect to � at � = 0.

Then D+V (0) = lim sup�!0+
V (�)�V (0)

�
� 0.

In other words, if V 0(0+) exists, it must be nonpositive. Condition b)

ensures that the information structure varies smoothly with �. As we have

7They actually proved the result in a slightly more general set up that is a special case

of the framework described in footnote 5.
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noted, A0 jointly restricts the information structure and the decision maker's

utility function and prior beliefs. Proposition 3 (in Section 4.2) gives con-

ditions on the primitives of the problem that ensure that A0 holds in the

general model. Corollary 4 deals with the �nite case considered here: in

particular, it asserts that A0 holds if i) u(�; s) : A ! R is strictly concave

(assuming that A is convex); and ii) if q(y j s; 0) > 0 for all y 2 Y . The

�rst ensures that there is a unique optimal action for each posterior belief

in the extensive form of the problem; and the second says that the null in-

formation structure has full support on the signals. Intuitively, it is easy to

see how the conclusion can fail if i) doesn't hold. At � = 0; the posterior

belief of course equals the prior belief for all signal realizations; for � > 0;

the posterior will di�er from the prior for some values of y if the experiment

is informative. If there is more than one optimal action at the prior, then

even `small' changes in the posterior can result in `large' changes in the set of

optimal actions.8 Hence a small amount of information can have a positive

marginal value. To understand the role of ii), recall that the posterior belief

that the state is s after observing y for information structure indexed by � is

given by: P (fsg j y; �) = �sq(yjs;�)P
s2S

�sq(yjs;�)
, where �s = �(fsg) for all s 2 S. The

smoothness assumption b) is not suÆcient to ensure even the continuity of

P (fsg j y; �) in � at � = 0, as the following example illustrates:

Example 2: Let S = fsL; sHg, �sL = �sH = 1
2
, Y = fy1; y2g and, for all

� 2 [0; 1], q(y2 j sH ; �) = 1 and q(y1 j sL; �) = �. Then P (fsHg j y1; �) = 0

for all � > 0; so that P (fsHg j y1; �) doesn't converge to the prior of 1
2
as �

tends to 0. Without continuity of the posterior in � at � = 0, small changes

in � produce large changes in the distribution of posterior beliefs, which may

have a positive marginal value.

Assuming ii) holds, condition b) then ensures that the posterior belief

will also be di�erentiable at � = 0. Since the posterior never strays far

from the prior as � increases from zero, a small increase in � cannot improve

information very much over null information, and hence under i) such a

change has a zero marginal value at � = 0. In other words, under the

smoothness assumption, a small increase in � from � = 0 has only a second

order e�ect on expected utility.

8The Maximum Theorem merely ensures upper hemicontinuity of the correspondence

of maximizers. Example 7 shows that the nonconcavity can fail if the optimal choice in

the extensive form (3) is not single-valued.
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As we noted in the introduction our interest in this question is twofold:

�rst, we think it is intrinsically interesting to determine whether information

`generally' exhibits increasing marginal returns; and second, the nonconcav-

ity complicates the analysis of decision problems that involve information

production or acquisition, and can have important consequences in applica-

tions. Now, the di�erentiability condition in b) looks like a mild regularity

requirement; hence, it may appear that the nonconcavity is a fairly robust

phenomenon. The natural setting of problems of the form (5), however, is

one either with an in�nite number of signals or states, or at least that is

the setting in which most of the analysis of information acquisition has been

carried out. Thus we seek to determine conditions under which the conclu-

sion of Proposition 2 extends to the more general set up described in Section

2, and to identify some important speci�cations for which the nonconcavity

fails.

4 Main Results

The purpose of this section is to investigate whether, given a selection with

the properties stated in A0, the value of the information structure �

V (�) =

Z
S

Z
Y

u(d�(y; �); s)Q(dy j s; �)�(ds)

can be concave in �. It will be shown that, under certain conditions, if we

start with an uninformative information structure, then the marginal returns

of a small amount of information is zero; this in turn implies that, under those

conditions, V (�) cannot be globally concave.

An informal way to explain what we do below is the following: suppose

for a moment that d�(y; �) and Q(� j s; �) are di�erentiable in �, and assume

that we can `pass' the derivative through the integral. Then the Envelope

Theorem implies that:

V 0(�) =

Z
S

Z
Y

u(d�(y; �); s)Q�(dy j s; �)�(ds):

11



Evaluating this at � = 0 and using A0 yields

V 0(0) =

Z
S

Z
Y

u(a�0; s)Q�(dy j s; 0)�(ds)

=

Z
S

u(a�0; s)(

Z
Y

Q�(dy j s; 0))�(ds)

= 0; (6)

where the last step follows from the fact that
R
Y
Q(dy j s; �) = 1, and

therefore
R
Y
Q�(dy j s; 0) = 0. In other words, the marginal value of a small

amount of information is zero if we start with an uninformative information

structure. To be sure, this result was derived under the strong assumption of

di�erentiability of the selection and without justifying the interchange of the

derivative and the integral; moreover, we did not explain the meaning of the

`derivative' of the stochastic kernel, and whether integration with respect to

Q� was well-de�ned. The results below provide sets of suÆcient conditions

that i) relax the di�erentiability assumption on the selection; ii) justify the

interchange of di�erentiability and integration; and iii) gives a meaningful

interpretation to Q�, so that V 0(0+) exists and equals zero.

4.1 Generalization of the Radner-Stiglitz Theorem

We now present a set of suÆcient conditions for the nonconcavity result in our

general Bayesian decision framework. It will be shown that the �nite case and

all the applications cited in the introduction that exhibit the nonconcavity

are subsumed as special cases of our theorem.

Let ca(BY ) be the space of �nite signed measures on (Y;BY ), and endow

it with the total variation norm k�k =j � j (Y ) (Halmos (1950), pp.122-123).

We will impose the following `smoothness' assumption, which generalizes

the di�erentiability condition b) of Proposition 2 for the �nite case.

A1: For each s 2 S and C 2 BY ,

lim
�!0+

Q(C j s; �)�Q(C j s; 0)
�

= Q�(C j s; 0)

exists in R.

By Corollary 4 in Dunford and Schwartz (1957, p.160) Q�(� j s; 0) is an
element of ca(BY ). It turns out that A1 is not suÆcient for our purposes
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(see Example 4 below); we shall also require that the convergence condition

in A1 hold in the total variation norm.

A2: For each s 2 S,

lim
�!0+

kQ(� j s; �)�Q(� j s; 0)
�

�Q�(� j s; 0)k = 0:

The proof of the Theorem uses the following result, whose proof is in the

appendix:

Lemma 1 Let (X;F) be a measurable space, ca(F) the space of �nite signed
measures on F endowed with the total variation norm, f�ng a sequence in

ca(F) that converges in the total variation norm to �, and ffng a sequence

of bounded measurable functions that converge pointwise to f . Then

limn!1

Z
fnd�n =

Z
fd�:

Theorem 1 Assume that

a) A0, A1, and A2 hold;

b) There exists a �-integrable function M : S ! R such that, for every

� 2 (0; 1] and s 2 S,

kQ(� j s; �)�Q(� j s; 0)
�

k �M(s):

Then V 0(0+) exists and it is equal to zero.

Proof: We �rst show that lim sup�!0+
V (�)�V (0)

�
� 0. As in Radner and

Stiglitz (1984), write
V (�)�V (0)

�
=

T1(�)

�
+

T2(�)

�
, where

T1(�) =

Z
S

Z
Y

u(d�(y; �); s)Q(dy j s; �)�(ds)

�
Z
S

Z
Y

u(d�(y; �); s)Q(dy j s; 0)�(ds);

T2(�) =

Z
S

Z
Y

u(d�(y; �); s)Q(dy j s; 0)�(ds)

�
Z
S

Z
Y

u(a�0; s)Q(dy j s; 0)�(ds):

13



Since a�0 is optimal at � = 0, it follows that T2(�) � 0 and lim sup�!0+
T2(�)

�
�

0.

Consider

T1(�)

�
=

Z
S

Z
Y

u(d�(y; �); s)(
Q(dy j s; �)�Q(dy j s; 0)

�
)�(ds):

Assumption A1 ensures that this integral is well-de�ned for every �.9 More-

over, since

lim
�!0+

Q(C j s; �)�Q(C j s; 0)
�

= Q�(C j s; 0)

for each measurable set C, then Q�(� j s; 0) 2 ca(BY ) and, being the pointwise
limit of BS-measurable functions, it is BS-measurable.

We now prove that

lim
�!0+

T1(�)

�
=

Z
S

Z
Y

u(a�0; s)Q�(dy j s; 0)�(ds): (7)

Take any sequence �n converging to 0, and let

hn(s) =

Z
Y

u(d�(y; �n); s)(
Q(dy j s; �n)�Q(dy j s; 0)

�n
);

h(s) =

Z
Y

u(a�0; s)Q�(dy j s; 0):

Given A0, A1, and A2, it follows from Lemma 1 that hn(s) converges point-

wise to h(s); moreover, condition b) ensures that the convergence is domi-

nated. For

j hn(s) j = j
Z
Y

u(d�(y; �n); s)(
Q(dy j s; �n)�Q(dy j s; 0)

�n
) j

� BkQ(� j s; �n)�Q(� j s; 0)
�n

k

� BM(s);

9This follows from Stokey, Lucas, and Prescott (1989), Theorem 8.4 and its Corollary,

which also holds for signed kernels like the ones considered here (just decompose the signed

kernel into its positive and negative variation).
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where B <1 is such that j u(a; s) j� B (Royden (1988), p.275). It follows

by the Lebesgue Dominated Convergence Theorem (LDCT) that

lim
n!1

Z
S

hn(s)�(ds) =

Z
S

h(s)�(ds);

and, since f�ng was an arbitrary sequence converging to zero, (7) holds.

If we could show that
R
Y
Q�(dy j s; 0) = 0, it would then follow by (6)

that

lim
�!0+

T1(�)

�
= 0

But
Z
Y

Q(dy j s; �)�Q(dy j s; 0)
�

=

R
Y
Q(dy j s; �)�

R
Y
Q(dy j s; 0)

�
= 0:

Therefore, another application of Lemma 1 yields10

0 = lim
�!0+

Z
Y

Q(dy j s; �)�Q(dy j s; 0)
�

=

Z
Y

Q�(dy j s; 0):

Hence,

lim sup
�!0+

V (�)� V (0)

�
� lim sup

�!0+

T1(�)

�
+ lim sup

�!0+

T2(�)

�
� 0:

Finally, since V (�) � V (0) � 0, we have that lim inf�!0+
V (�)�V (0)

�
� 0.

Therefore V 0(0+) exists and it is equal to zero. This completes the proof.

The veri�cation of assumptions A1 and A2 may be a nontrivial task.

We now turn to consider some special cases commonly found in applications,

and show that they satisfy A1 and A2.

Consider �rst the case in which there is a �-�nite measure � : BY ! [0;1]

such that, for each (s; �) 2 S � �, Q(� j s; �) has a density q(y j s; �)
with respect to �, that is also �-integrable. That is, for every C 2 BY and

(s; �) 2 S � �,

Q(C j s; �) =
Z
C

q(y j s; �)�(dy):

10Set fn = 1 for every n.

15



In particular, this includes the important case in applications where Y is

a (Borel) subset of Rn (endowed with the Euclidean metric), � is the n-

dimensional Lebesgue measure, and q(� j s; �) is one of the familiar density

functions de�ned on R
n . It also covers the case where, for every � 2 �,

the stochastic kernels are mutually absolutely continuous, and then � is just

Q(� j s; 0). Finally, it includes the countable case if � is the counting measure

de�ned on the �-�eld of all subsets of Y (endowed with the discrete metric);

it is straightforward to check that Q(� j s; �) is absolutely continuous with re-
spect to � for each (s; �). Obviously, this subsumes the �nite case considered

by Radner and Stiglitz.

The value of information structure � in this case becomes

V (�) =

Z
S

Z
Y

u(d�(y; �); s)q(y j s; �)�(dy)�(ds):

Corollary 1 (Absolutely Continuous Stochastic Kernel) Assume that

a) A0 holds;

b) q(y j s; �) is di�erentiable with respect to � at � = 0, and there is a

� � �-integrable function z(y; s) such that j q(yjs;�)�q(yjs;0)
�

j� z(y; s) for every

(y; s) and � 2 (0; 1].

Then V 0(0+) exists and it is equal to zero.

Proof: It is enough to show that A1, A2, and the integrability condition b)

of Theorem 1 are satis�ed. Given any set C 2 BY , then for any s 2 S and

� 2 (0; 1],

Q(C j s; �)�Q(C j s; 0)
�

=

Z
C

q(y j s; �)� q(y j s; 0)
�

�(dy):

Since the integrand is dominated, the LDCT implies

lim
�!0+

Q(C j s; �)�Q(C j s; 0)
�

=

Z
C

q�(y j s; 0)�(dy):

De�ne

Q�(C j s; 0) =
Z
C

q�(y j s; 0)�(dy):

Since q�(y j s; 0) is integrable, then Q�(� j s; 0) is a �nite signed measure for

each s 2 S. This shows that A1 holds.
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Consider now A2. The di�erence between
Q(�js;�)�Q(�js;0)

�
and Q�(� j s; 0)

is a �nite signed measure for each s 2 S and � 2 (0; 1], and it can be written

as

�(C j s; �) =
Z
C

f(y j s; �)�(dy)

for every C 2 BY , where

�(� j s; �) = Q(� j s; �)�Q(� j s; 0)
�

�Q�(� j s; 0);

and

f(y j s; �) = q(y j s; �)� q(y j s; 0)
�

� q�(y j s; 0):

The total variation of �(� j s; �) is given by the following measure (Halmos

(1950), pp.123)

j � j (C j s; �) =
Z
C

j f(y j s; �) j �(dy):

Notice that j f(y j s; �) j vanishes as � goes to zero for each (y; s); since the

convergence is dominated by 2z(y; s), by the LDCT j � j (C j s; �) converges
to zero for every C 2 BY . In particular,

lim
�!0+

j � j (Y j s; �) = lim
�!0+

kQ(� j s; �)�Q(� j s; 0)
�

�Q�(� j s; 0)k = 0:

and therefore A2 holds.

Finally, notice that

kQ(� j s; �)�Q(� j s; 0)
�

k =

Z
Y

j q(y j s; �)� q(y j s; 0)
�

j �(dy)

�
Z
Y

z(y; s)�(dy):

By Fubini's Theorem, M(s) =
R
Y
z(y; s)�(dy) is �-integrable, and the proof

is complete.

Condition b) may be diÆcult to verify in practice, especially in problems

where the densities have unbounded support. The next result can be useful

in these situations.
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Corollary 2 Assume that

a) A0 holds;

b') q(y j s; �) is di�erentiable in �, and either q�(y j s; �) is � � �-

integrable, or there is a ���-integrable z(y; s) such that j q�(y j s; �) j� z(y; s)

for every (y; s) and � in a neighborhood of 0.

Then V 0(0+) exists and it is equal to zero.

Proof: A straightforward application of the Mean Value Theorem shows

that b0) implies b). Then the result follows from Corollary 1.

The following example illustrates the use of condition b0):

Example 3: Consider the information structures of the linear prediction

example in Radner and Stiglitz (1984). Suppose that Y = S = R, q(� j s; �)
is N(s�; 1 � �2), � is the Lebesgue measure on R, and �(B) =

R
B
p(s)ds,

where p(�) is N(0; 1). A little manipulation reveals that

q�(y j s; �) = q(y j s; �)(s(y � �s)

(1� �2)
� (y � �s)2�

(1� �2)2
+

�

(1� �2)2
):

Therefore,
Z +1

�1

Z +1

�1

q�(y j s; �)p(s)dyds =

Z +1

�1

(

Z +1

�1

q�(y j s; �)dy)p(s)ds

=

Z +1

�1

�3

(1� �2)2
p(s)ds

=
�3

(1� �2)2
;

and this is �nite for � 2 [0; 1). Thus, q�(y j s; �) is integrable, and condition

b0) is satis�ed.

Another important case commonly found in applications is the one where

signals take values on R and the information structure is represented by the

cumulative distribution function associated with the stochastic kernel. For

tractability, we focus on the case where S is any complete separable metric

space but Y = [y; y].

For each (s; �) 2 S � �, let F (� j s; �) : R ! [0; 1] be the distribution

function associated with Q(� j s; �); i.e., F (t j s; �) = Q(fy � tg j s; �) for
every t 2 R. The derivative of F with respect to � will be denoted by F�.
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LetBV r([y; y]) be the space of right-continuous functions of bounded vari-

ation f : [y; y] ! R with f(y) = 0, endowed with the total variation norm

kfk = V y
y (f). Given any f 2 BV r([y; y]), there exists a unique signed mea-

sure �f 2 ca[y; y] (the space of signed measures de�ned on the Borel sets of

[y; y]) such that �f([a; b]) = f(b)�f(a). Actually, the spaces BV r([y; y]) and

ca[y; y] are isometric, so metric relations between the elements of one space

are the same as those between the corresponding elements of the other.11

Corollary 3 (C.D.F. Case) Assume that

a) A0 holds;

b) There exists a �-integrable function M : S ! R such that, for every

� 2 (0; 1] and s,

kF (� j s; �)� F (� j s; 0)
�

k �M(s);

c) The following two conditions hold. For each s 2 S and y 2 Y , F has

a right-hand derivative at � = 0; i.e.,

lim
�!0+

F (y j s; �)� F (y j s; 0)
�

= F�(y j s; 0); (F1)

and, for each s 2 S,

lim
�!0+

kF (� j s; �)� F (� j s; 0)
�

� F�(� j s; 0)k = 0: (F2)

Then V 0(0+) exists and it is equal to zero.

Proof: We need to show that the conditions of Theorem 1 are satis�ed.

Conditions b) and F1 imply that F� 2 BV r([y; y]); since BV r([y; y]) and

ca[y; y] are isometric spaces, A2 and the integrability condition of Theorem

1 are obviously satis�ed in the present case (they are equivalent to b) and

F2). That A1 is also satis�ed can be proven as follows. Let C be a Borel set

of [y; y], and let � > 0; given any f�ng that converges to zero, we must �nd

an N such that for all n � N , then

j
Z
C

d(
F (y j s; �n)� F (y j s; 0)

�n
)�

Z
C

dF�(y j s; 0) j< �:

11See Aliprantis and Border (1999), pp.364.
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The left side is equal to

j
Z

IC(y)d(
F (y j s; �n)� F (y j s; 0)

�n
� F�(y j s; 0)) j;

where IC is the indicator function of C. But this expression is less than or

equal to

kF (� j s; �n)� F (� j s; 0)
�n

� F�(� j s; 0)k

and this converges to zero as n!1 by F2. Since C was an arbitrary Borel

set of [y; y], A1 holds and the proof is complete.

In order to illustrate the role played by condition A2 (F2), we present an

example where all of the conditions in Theorem 1 and Corollary 3 are met ex-

cept for the convergence in total variation assumption, and the nonconcavity

result fails:

Example 4 (Uniform Signals): Consider the following version of the

linear predictor problem: u(a; s) = �(a � s)2, S = fsL; sHg, q(y j sL; �) =
I[0;1], q(y j sH ; �) = I[�;�+1] (see Figure 1). It is straightforward to show that

A0, and conditions b) and F1 in Corollary 3 hold in this case; a bit of work

also reveals that A1 holds. However, condition A2 (or F2) fails since the

total variation is equal to 2 for every �. The right derivative of the value

function at � = 0 is V 0(0+) = �sH(1 � �sH) > 0. Indeed, V (�) is globally
concave in this case.

In this example, the support of the information structure is not the same

for every � 2 �. However, this is not enough reason to make the nonconcavity

disappear, as the following example reveals:

Example 5 (The Nonconcavity withMoving Supports): Let u(a; s) =

�(a � s)2, S = fsL; sHg, q(y j sL; �) = maxf0; 6y(1 � y)g, q(y j sH ; �) =
maxf0; 6(y � �)(1 � y + �)g (see Figure 2). Tedious algebra shows that the

conditions of Corollary 3 are satis�ed, and V 0(0+) = 0.

4.2 The Single Valued Case: A0 from Primitives

In this section we investigate conditions under which A0 can be obtained

from assumptions on the primitives of the decision problem.
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We will �nd it convenient to work with the extensive form representation

of the problem; i.e., given an information structure Q(� j �; �) and prior beliefs
�, then, after observing y, the agent solves

max
a2A

Z
S

u(a; s)P (ds j y; �): (8)

where P (� j y; �) is a version of the posterior beliefs of the decision maker.

In order to prove the result, it will be assumed that S is a compact metric

space. Let P(S) be the set of probability measures on (S;BS) endowed with

the topology of weak convergence, and assume that P (� j y; �) is continuous
in � at zero for each y 2 Y (i.e., given any sequence �n ! 0, then

P (� j y; �n) w! P (� j y; 0)). Finally, it will be assumed that A is compact and

convex and u(�; s) : A! R is strictly concave for each s 2 S.

The following proposition de�nes a class of decision problems in which

A0 is satis�ed:

Proposition 3 Let A be a compact and convex metric space, S a compact

metric space, and u(�; s) a strictly concave function on A for each s 2 S.

If there is a version of the posterior kernel such that P (� j y; �n) w! �(�)
for each y and for any sequence f�ng that converges to zero, then there is a

unique decision function d�(y; �) that solves (8); this function is (BY ;BA)-
measurable and continuous in �; moreover, d�(y; 0) = a�0 for every y. Hence,

A0 is satis�ed.

Proof: For notational simplicity, let g(a; �; y) =
R
S
u(a; s)P (ds j y; �). Since

u(�; s) is strictly concave in a for each s, g(�; �; y) is strictly concave in a

for each (�; y). Moreover, g(�; �; y) is continuous on A � f0g: for given any
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sequence (an; �n)! (a; 0), we have

j g(an; �n; y) � g(a; 0; y) j

= j
Z
S

u(an; s)P (ds j y; �n)�
Z
S

u(a; s)P (ds j y; 0) j

� j
Z
S

u(an; s)P (ds j y; �n)�
Z
S

u(a; s)P (ds j y; �n) j

+ j
Z
S

u(a; s)P (ds j y; �n)�
Z
S

u(a; s)P (ds j y; 0) j

�
Z
S

j u(an; s)� u(a; s) j P (ds j y; �n)

+ j
Z
S

u(a; s)P (ds j y; �n)�
Z
S

u(a; s)P (ds j y; 0) j : (9)

Since S and A are compact metric spaces and u : A� S ! R is continuous,

u(an; s)! u(a; s) uniformly (Dixmier (1984), Theorem 6.1.13) and therefore,

given any � > 0, there is always an N� suÆciently large such that for all

n � N�Z
S

j u(an; s)� u(a; s) j P (ds j y; �n) < �

Z
S

P (ds j y; �n) = �:

Hence, the �rst term in the last inequality in (9) converges to zero, while the

second vanishes by weak convergence. This shows that g(�; �; y) is continuous
at every point in A � f0g. That g(a; �; �) is BY -measurable for each (a; �)

follows directly from the continuity of u : A� S ! R and the measurability

of P (B j �; �) for each B 2 BS.
Now, since A is convex and compact and g(�; �) is strictly concave, we

have that for each y there is a unique solution d�(y; �) to problem (8). To

prove continuity at � = 0; suppose to the contrary that, for some y 2 Y ,

d�(y; �) is not continuous at � = 0: Let � denote the metric on the space

A. Then, for some sequence f�ng tending to 0, there is an " > 0 such that

�(d�(y; �n); d
�(y; 0)) > " for all n. Since A is compact, there is a subsequence

of fd�(y; �n
k
)g with limit d 2 A and d 6= d�(y; 0). Fix a 2 A. For every k, we

must of course have g(d�(y; �n
k
); �n

k
) � g(a; �n

k
). By the continuity of g on

A� f0g, we have g(d; 0) � g(a; 0). Since a 2 A was arbitrary, d must solve

(8) for � = 0; contradicting uniqueness.

The (BY ;BA)-measurability of d�(y; �) follows from the fact that, for each

�, the conditions of the Measurable Maximum Theorem (Aliprantis and Bor-

der (1999), Theorem 17.18) are satis�ed.
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Finally, since P (� j y; �n) w! �(�) for any sequence �n ! 0, we have that

d�(y; �) = argmax
a2A

Z
S

u(a; s)P (ds j y; �);

converges to

d�(y; 0) = argmax
a2A

Z
S

u(a; s)�(ds);

and the last expression is independent of y. This completes the proof of the

proposition.

The proposition provides a set of conditions under which `continuity and


atness' of the optimal policy at � = 0 are satis�ed. Among them, weak

convergence of the posterior to the prior as � goes to zero plays a prominent

role. For some special cases commonly found in applications, it is straight-

forward to impose assumptions on the information structure and the decision

maker's prior beliefs such that the weak convergence condition is satis�ed.

For each (s; �) 2 S � �, let Y (s; �) = fy : q(y j s; �) > 0g 2 BY be the

support of q(� j s; �); obviously, at � = 0 we have that Y (s; 0) = Y (s0; 0) =

Y0 � Y for all s; s0 2 S.

Corollary 4 Let A be a compact and convex metric space, S a compact

metric space, and u(�; s) a strictly concave function on A for each s 2 S.

Suppose that Q(� j s; �) has a density q(� j s; �) with respect to a �-�nite

measure � : BY ! [0;1] for every (s; �) 2 S � �, such that

(i) q(y j �; �) is BS-measurable and bounded for every (y; �) 2 Y � �;

(ii) For �-almost every y 2 Y0, there exists a �y such that, for all � < �y
and for every s 2 S, y 2 Y (s; �); and

(iii) q(y j s; �) is continuous in � at � = 0 for every (y; s) 2 Y � S.

Then Proposition 3 holds.

Proof: We only need to show that the weak convergence condition is satis-

�ed. For any y 2 Y0 that satis�es (ii) and given any set B 2 BS, the posterior
kernel after observing y 2 Y is, for � < �y, given by

P (B j y; �) =
R
B
q(y j s; �)�(ds)R

S
q(y j s; �)�(ds) :
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where the integral is well-de�ned by (i). For the �-measure zero set that

violates (ii) and for every y 2 Y � Y0, set P (B j y; �) = �(B) for all � 2 �.

This de�nes a version of the posterior for every y 2 Y0.

Take any �n ! 0: (i)-(iii) yield (for �-almost every y 2 Y0)

P (B j y; �n) =
R
B
q(y j s; �n)�(ds)R

S
q(y j s; �n)�(ds)

!
R
B
q(y j s; 0)�(ds)R

S
q(y j s; 0)�(ds) = �(B);

where the application of the LDCT is justi�ed by (i), and the last equality

follows from the fact that q(y j; s; 0) is independent of s. Since the posterior
converges to the prior for each Borel set B when � goes to zero, it also con-

verges weakly. This completes the proof.

Notice that this result includes as special case the `common support as-

sumption' which is often used in applications; i.e., Y = fy : q(y j s; �) > 0g
for every (s; �) 2 S � �. It also includes the `moving support' example

presented in Example 5.

Using this corollary, it is easy to construct examples where the assump-

tions underlying Proposition 3 hold except for the weak convergence condi-

tion, and the value of a small amount of information is positive.

Example 6 (Failure of Weak Convergence): Let u(a; s) = �(a�s)2,
S = fsL; sHg, Y = fy1; y2g, q(y1 j sL; �) = 1, q(y2 j sH ; �) = g(�), 0 � g(�) �
1 for every � 2 [0; 1], g(0) = 0, g(1) = 1, g0(�) > 0, and 0 < �sL < 1. It

is easy to show that the right derivative of the value function at � = 0 is

V 0(0+) = �2
sL
(1� �sL)g

0(0)(sL � sH)
2 > 0.

In this example, d�(y2; �) = sH for every � > 0, so a small amount of in-

formation reveals the true state with certainty when y2 is observed. Although

it is possible to �nd a continuous selection (in �) from the correspondence

of maximizers, one cannot �nd one that will also be `
at' in y at � = 0. In

terms of Proposition 3, notice that the posterior belief that the state is sH
after observing y2 is equal to one for every � > 0, so weak convergence to

the prior as � goes to zero fails in this case; a small amount of information

starting from � = 0 has a substantial e�ect on beliefs.

We next present an example where all the assumptions of Proposition 3

are met except for the strict concavity of u(�; s), and the nonconcavity result

fails.
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Example 7 (Failure of Single-Valued Choice): Let u(a; s) = as,

A = [0; 1], S = f�1; 1g, Y = fy1; y2g, �(1) = 1
2
, and the information

structure is given by q(y1 j �1; �) = 1
2
and q(y1 j 1; �) = 1

2
� �. In this case,

it is easy to show that V (�) = � and thus V 0(0+) = 1.

Again, this is a case where A0 fails; although any action is optimal when

� = 0, the optimal decision for any � > 0 is d�(y1; �) = 0 and d�(y2; �) = 1,

which reveals that `continuity and 
atness' are incompatible in this case.

As a �nal example illustrating Proposition 3, we consder a noiseless infor-

mation structure: all the state-contingent signal distributions are degenerate.

Noiseless structures are often used to study optimal learning.12

Example 8 (Noiseless Information): Let S = [0; 1]; Y = f0; 1g; and
let Q(f1g j s; �) = 1 if and only if s > � (see Figure 3). One may verify that

this information structure satis�es A1, A2 and our integrability condition

b) in Theorem 1. If, however, the prior has full support on [0; 1], then no

version of the posterior converges weakly to the prior for y = 0. Note that

P (B j y; �) =
�(B\[0;�])

�([0;�])
. Let B 2 BS and " > 0 satisfy �(B) > 0 and

B \ [0; ") = ;. Then P (B j 0; �) = 0 for all � < ", so that P (B j 0; �)
does not converge to �(B), and the conditions of Proposition 3 fail. We

now illustrate with two utility functions that the nonconcavity may fail or

hold with this family of information structures. In each example the prior

belief �(�) is the Lesbesgue measure on [0; 1]. First consider the predictor

problem of Example 4, with u(a; s) = �(a � s)2 and A = [0; 1]. In this

case one may verify that V 0(0) = 1
4
, so that the marginal value of a little

information is positive.13 Second, consider the utility function u(a; s) = a if

s � a and u(a; s) = 0 if s < a. This utility function describes a �rm who sets

a price not knowing the valuation s of a single consumer who buys at most

one unit of the good (as in Aghion et al. (1991), Section 6). In this case

V (�) = �2

4
+ maxf1

2
; �g(1 � maxf1

2
; �g). Thus, V 0(0) = 0 but V 0(1) = �1

2
.

That is, the marginal value of a little information is zero at � = 0; however,

the marginal value of lowering � from the null information structure at � = 1

is positive.

12See e.g. Aghion, et. al. (1991) and the references contained therein.
13One may verify nonetheless that V (�) is convex over an interval containing 0.
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5 Remarks on the Demand for Information

As Radner and Stiglitz (1984) emphasized, the nonconcavity result has im-

portant e�ects on the demand for information; for example, it will not be a

continuous function of its price, and �rst order conditions need not pin down

the circumstances under which information demand arises.

Since there are well-known papers in the literature that study the demand

for information in static and dynamic contexts and do not su�er from these

complications, it is important to understand why this is the case.

Kihlstrom (1974) develops a static theory of the demand for information

about product quality.14 He analyzes a consumer's problem in which the

quality of one of the goods she consumes is unknown, and she can purchase

di�erent `amounts' of information at a constant marginal cost before making

her consumption decisions. In his model the demand for information is well-

behaved: the marginal value of a small amount of information is positive,

the quantity of information demanded is a continuous function of its price,

and it is straightforward to characterize with the �rst order conditions of the

problem the parameter values under which information demand arises. Two

other papers on information demand have found the value of information to

be globally concave: Freixas and Kihlstrom (1984) analyzed a speci�c model

of demand for information about the quality of medical care; and Arrow

(1985) examined the demand for information in the linear predictor model

of Example 4 (u(a; s) = �(a � s)2). All of these papers assumed that the

decision maker has a normal prior and observes a signal that is normally

distributed with mean s and variance 1
�
, i.e. N(s; 1

�
), where � > 0.15 The

rationale for this information structure is based on the familar facts that

the sample mean of n i.i.d. normal random variables with mean s and unit

variance is N(s; 1
n
); and that in this case the sample mean is a suÆcient

statistic for s. Thus the parameter � represents the continuum analog of the

sample size for conditionally independent normal signals with mean equal

to the true state s. That the value of information can be concave for this

way of indexing information structures does not contradict our theorem: the

state-contingent cumulative distribution functions for the signals are not dif-

ferentiable at � = 0, so that our di�erentiability assumption A1 (or F1 in

14See also Kihlstrom (1973), and Freixas and Kihlstrom (1984).
15For � = 0, any null information structure can be choosen. Kihlstrom (1974) shows

that the value of information in his problem converges to the value under null information

as � tends to zero.
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Corollary 3) fails.

An interesting recent paper by Moscarini and Smith (1999) presents a

dynamic theory of information demand, in which an individual can sample

costly information about the state of the world in continuous time before

stopping and taking an action. The information demand they derive is well-

behaved, and the nonconcavity problem does not arise.

To be sure, their model di�ers in more than one way from the class of

decision problems we consider, but it is instructive to explore whether the ab-

sence of the nonconcavity issue might be due to intertemporal considerations

or to the information structures they considered.

Barring notational di�erences, Moscarini and Smith (1999) assume that

the agent controls the instantaneous variance of an observation process given

by the following stochastic di�erential equation:

dyt = sdt+
�p
�t
dWt

where fWtg is a standard Brownian motion. At each instant before the

stopping time, the agent chooses the `amount of information' �t that she

wants to purchase.

For large intervals of time, the di�ussion fytg is not a Gaussian process;

however, if we consider a small interval �, then yt is approximately Gaussian,

with yt � N(s�; �
2�
�
).16 This reveals that, just as with Kihlstrom (1974),

the static version of the model violates A1, suggesting that the nonconcavity

need not arise in its dynamic version either.17

The preceding papers show that we can sometimes avoid the nonconcavity

by using the `number of observations' to measure the amount of information.

This case therefore calls for closer analysis. Observing a random variable that

is normally distributed with mean s and variance 1
�
, is of course equivalent

to observing a signal y given by

y = s
p
� + "; (10)

16Klebaner (1998) pp.119.
17Moscarini and Smith (1999) also considered an alternative observation process that

yields the same results:

dyt = s�tdt+ �
p
�tdWt:

In this case, for a small �, yt � N(s��; �2��), which also violates A1.
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where " isN(0; 1). It is intuitively clear why the nonconcavity might fail here:

the Inada condition on the conditional density of the signal y at � = 0 implies

that an increase in � from 0 spreads the signal distributions for di�erent states

apart very quickly; hence a small increase in � from 0 is very informative.

Contrast the information structure given in (10) to the oft-analyzed linear

regression model,

y = s� + ": (11)

The optimal experimentation literature has used this model to study a �rm

learning about demand (e.g. Mirman, Samuelson and Urbano (1993) and

Harrington (1995)), a consumer learning about product quality (e.g. Gross-

man, Kihlstrom and Mirman (1977)), or simply as a convenient functional

form to study the long run properties of optimal learning (Kiefer and Nyarko

(1989)). If " � N(0; 1), then the conditions of Theorem 1 are met, and

the nonconcavity holds (under A0). Thus the choice of (10) vs. (11) as

the observation process has potentially dramatic consequences for analyzing

the demand for information and experimentation. Unfortunately, we know

precious little about how to choose functional forms for the production of

information. Tentatively, however, (10) seems quite reasonable in a model

of consumer learning about product quality; but it seems less plausible in a

model of a �rm learning about demand.

One might conjecture that the information structure given by (10) could

be used to show that the value of information is concave in the number

of observations for a wide class of decision problems. The next example,

however, uses a simple quadratic utility function to show that the value of

information can be globally convex in � in this case.

Example 9 (A Convex Value of Information with Normal Sam-

pling): Let u(a; s) = 2a � sa2, S = f0; 1g, Y = R, A = R+ and, for

s 2 f0; 1g, let q(� j s; �) be the normal density function with mean s
p
� and

unit variance. Using the extensive form of our problem, the interim value

function U : Y ��! R is given by U(y; �) = 1
P (f1gjy;�)

(the optimal decision

is also given by d�(y; �) = 1
P (f1gjy;�)

). Straightforward calculations reveal that

V (�) = e�, which is globally convex.

Note that V 0(0) = 1, so that the Radner-Stiglitz form of the nonconcavity

fails here. The convexity of the value of information in � is clearly related

to the curvature of U , when viewed as a function of the posterior belief
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P (f1g j y; �). In particular, U becomes in�nitely convex (in the Arrow-

Pratt sense) as the posterior approaches 0. Recall that an improvement in

information makes the distribution of posterior beliefs riskier. Thus each

additional observation puts more weight in the tails of the distribution of

posterior beliefs, including the left tail where U is becoming unboundedly

convex.

It is important to notice that this example does not contradict the re-

sults of Moscarini and Smith (2000) mentioned in the introduction: they

proved that the marginal value of information is eventually decreasing for a

suÆciently large number of observations (which allows them to show that a

well-behaved demand for information emerges for `large quantities' or `low

prices'). They assume that both the number of actions and states are �-

nite. Those assumptions imply in our notation that u is bounded on A� S

and hence V (�) is bounded (even if we take its domain to be all of R+). A

bounded, increasing function on R+ cannot of course be globally convex. In

Example 9, u is unbounded, which permits V (�) to be unbounded.

6 Conclusion

We have reexamined the classic Radner and Stiglitz (1984) nonconcavity in

the value of information using a general Bayesian decision framework that

covers most economic applications with costly information acquisition. We

have provided suÆcient conditions for the existence of this nonconcavity, and

they include the �nite case studied by Radner and Stiglitz as a special case.

We illustrated the intuition and importance of these conditions using several

examples, including a discussion of some important papers on the demand

for information in static and dynamic settings.

Our suÆcient conditions are quite strong; yet, although they are not

necessary, we have shown by examples that weakening them will not be

easy. One message of the paper is thus that the Radner-Stiglitz nonconcavity

emerges in a general setup only by severely constraining the set of information

structures available to decision makers. Nevertheless, the smoothness and

continuity conditions we use are actually weaker than those typically imposed

in models of information acquisition. Moreover, as our last section suggested,

even if the Radner-Stiglitz version of the nonconcavity fails, a general theorem

on a globally concave value of information may yet prove elusive. As we

continue to develop models of endogenous information acquisition, it seems
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that we will continue to confront nonconcavities in the value of information.

As a �nal note, we have restricted attention to single agent problems.

The nonconcavity issue of course also arises in games (e.g., strategic exper-

imentation and principal-agent models). A cursory inspection reveals that

our argument directly exploits our single agent assumption (the envelope the-

orem explanation we give at the beginning of Section 4 is suggestive here).

Hence the extension to games is not only natural but also apt to be nontrivial.
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Appendix

Proof of Lemma 1: Given � > 0, we need to show that there exists an

N� such that for every n � N�

j
Z

fnd�n �
Z

fd� j< �:

By adding and subtracting
R
fnd�, the left side can be written and manipu-

lated as follows

j
Z

fnd(�n � �) +

Z
(fn � f)d�) j � j

Z
fnd(�n � �) j + j

Z
(fn � f)d� j

� Kk�n � �k+ j
Z
(fn � f)d� j; (12)

where K is an upper bound of that j fn j, and the inequality follows since

the absolute value of the integral of a bounded measurable function with

respect to a �nite signed measure is less than or equal to the product of an

upper bound of the integrand and the total variation of the signed measure

(Royden (1988), pp.275).

Consider the �rst term of (12). Since �n converges to � in the total

variation norm, it follows that there is an N1 such that for every n � N1,

k�n � �k < �
2K

.

Consider now the second term. Since � = �+ � ��, where �+ and �� are

the positive and negative variation of �, it follows that

j
Z
(fn � f)d� j = j

Z
(fn � f)d�+ �

Z
(fn � f)d�� j

� j
Z
(fn � f)d�+ j + j

Z
(fn � f)d�� j :

The integrand fn � f is bounded by 2K and converges to zero pointwise.

Thus, by the Lebesgue Dominated Convergence Theorem there exists an N2

such that for every n � N2,

j
Z
(fn � f)d�+ j< �

4
:

Similarly, there is an N3 such that for every n � N3,

j
Z
(fn � f)d�� j< �

4
:
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If we set N� = N1 _N2 _N3, then

j
Z

fnd�n �
Z

fd� j< �

2
+
�

4
+
�

4
= �:

This completes the proof of the lemma.
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