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ABSTRACT

A one-shot simultaneous-offers bargaining game is presented in which the unique
pure strategy equilibrium offers are identical to those of the infinite-horizon Rubinstein
alternating-offers game. For each player there is a small probability that his or her pro-
posal will not arrive. A finitely-repeated version of the game with a small amount of
(two-sided) incomplete information about disagreement payoffs is then used to explain
the deadline effect. In any pure strategy equilibrium of this game agreement is reached
only in the final period.
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1 INTRODUCTION

This paper has two purposes. Firstly, it analyzes a bargaining game with complete
information in which the players make simultaneous offers. This game differs in the
following two ways from the simultaneous-offer extensive forms found in the existing
literature. (i) The offer process has a small amount of noise: for each player, there is a
small probability that her demand (or, in an alternative interpretation, her acceptance

of the other’s demand) does not reach the other player. (ii) In the usual formulations of
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simultaneous-offers bargaining agreement is assumed to be reached automatically if the
two players’ demands are jointly feasible and, if not, each receives his disagreement payoff;
in the game considered here, by contrast, each player, simultaneously, has an opportunity
to accept or reject the other’s proposal. The problem with existing simultaneous-offer
models, in general, is their multiplicity of equilibrium outcomes. In the game presented
here, on the other hand, there is a unique pure strategy perfect Bayesian equilibrium
outcome. Although this is a one-shot game the equilibrium offers are identical to those of
the infinite-horizon alternating offers bargaining game of Rubinstein (1982). This analysis
provides a perturbed version of Nash’s demand game (Nash (1953)) to complement those
of Binmore (1987a) and Carlsson (1991) and provides added insight into the interpretation

of the Nash bargaining solution.

The second purpose of the paper is to explain the deadline effect, the often-noticed
phenomenon that when bargainers are subject to a deadline they frequently delay until the
last possible moment before reaching agreement. The explanation given here is based on a
two-sided, two-type incomplete information finitely-repeated version of the simultaneous-
offers game described above. For each player there is an arbitrarily small probability
that her disagreement payoff is high (more than half of, but less than the whole of, the
available surplus). The result is that if the length of the game is not too great then pure
strategy equilibria exist and, in any pure strategy equilibrium, agreement is reached only

in the final period.

The most important non-cooperative bargaining game is the alternating-offers model
analyzed by Rubinstein (1982). In reality there is usually no specific protocol constraining
the identity of the first offeror or the order of moves, so it is natural to ask why, in the
Rubinstein model, the players are treated in an ex ante asymmetric fashion? and what
prevents player 2 from making a proposal in a period in which it is player 1’s turn to

propose. One answer is that, as the time between offers goes to zero, the first and second

2If there is an advantage to be had by making the first offer one would expect there to be a pre-
negotiation over who should have the right to do so. Binmore (1987¢) attributes this argument to Selten.
See Evans (1997) for analysis of a coalitional bargaining game in which the players bid for the right to
make the first offer.



equilibrium offers become close to one another and, in the limit, the ex ante asymmetry
disappears (Binmore (1987b)). Yet, in some applications, it may be that the time between
offers is relatively large because it takes a non-negligible time to formulate an offer and
to consider an offer of the opponent. Furthermore, in some models the time at which a
player makes an offer is chosen strategically by that player. For example, Admati and
Perry (1987), in an incomplete information context, use such a model to explain delay and
Ma and Manove (1993), as discussed more fully below, use one to explain the deadline
effect. In such cases the assumption that a player can wait indefinitely before making
her offer, thus imposing a cost on her opponent, without that opponent being allowed to
make a proposal, is not an innocuous one. More generally, one would like to know if the

standard bargaining results apply when the order of moves is relatively unconstrained.

In a discrete-time context, the most free-form representation of the bargaining process
is one in which the players are allowed to make a proposal in every period. In the
Nash demand game (Nash (1952)) each player makes a demand; if the demands are
compatible, each obtains what he or she has demanded and, otherwise, each gets his or
her disagreement payoff. It is easy to see that there is a Nash equilibrium of this game
corresponding to each feasible, Pareto-efficient pair of utilities which Pareto-dominates
the disagreement point. Nash also suggested a “smoothed” version of this game in which,
after a feasible pair of proposals x and y have been made, the probability that they
are implemented is p(z,y) where p varies smoothly with z and y. Binmore (1987a) and
Carlsson (1991) have analyzed versions of this game. In one version of it, the randomness
arises because there is some uncertainty in the minds of the players about the actual
extent of the feasible set of utilities. In the other, a small error term is added to each
bargainer’s intended demand so that it may be, for example, that the pair of intended
demands (x,y) is feasible but, because of the added noise, the pair of actual demands is
not and the players therefore get their disagreement payoffs. The result is that, in the
Pareto-dominant Nash equilibrium, the payoffs approach the Nash bargaining solution
as the errors go to zero. A drawback of this result is that it depends on fairly special

assumptions about the distribution of the noise and the nature of the convergence of



the distributions (see Carlsson (1991)). Furthermore, some multiplicity of equilibrium
remains: there are trivial equilibria in which no agreement is reached and also, perhaps,
non-trivial ones which do not converge to the Nash bargaining solution (they converge to

trivial equilibria).

The game analyzed here is a different modification of the Nash demand game, the
single-stage version of which is as follows. The players each make a proposal, simulta-
neously. On receiving the other’s proposal, each has to decide, again simultaneously,
whether to accept it. This step embodies the idea that a contract which player ¢ has
proposed to j is not binding unless player j actually signs it. If only one of the proposals
is accepted then that proposal is implemented. If both are accepted then one of them is
chosen at random to be implemented (for most of the paper it is assumed that each is
chosen with probability one half). If each player rejects the other’s proposal then they get
their disagreement payoffs. For each player, there is a small strictly positive probability, ¢,
that her demand does not reach the other player. In an alternative, equivalent, game the
demands arrive with probability one but there is probability € that player ¢’s acceptance
of j’s demand gets lost. There are various possible interpretations of this formulation.
For example, it may be that the two parties are negotiating at a distance, perhaps by
telephone or fax. Alternatively, the bargainers meet face-to-face to present their proposals
but a player cannot accept the other’s proposal until he has consulted a principal who is
not present at the negotiations and this communication introduces a small probability of

error.

This game has a unique pure strategy perfect Bayesian equilibrium (PBE) outcome.
In equilibrium each accepts the other’s proposal and, as € converges to zero, both equi-
librium proposals converge to the Nash bargaining solution. The equilibrium proposals
(x1(€), z2(¢)) (both expressed in terms of the share of the pie going to player 1) have the
property that i (¢ = 1,2), having proposed z;(¢), is indifferent between accepting z;(e)
(j # i) and rejecting it. For example, player 1 is indifferent between accepting xs(e),

which is slightly less than her proposal x;(¢), and, by holding out for z;(¢) (which she



knows will be accepted if it arrives), running the small risk of getting the disagreement
payoff because x1(€) has been lost in the post. Even though this is a single-period game,
the two proposals are the same as the equilibrium proposals of Rubinstein’s infinite-
horizon alternating-offers game with discount factor, or breakdown probability, equal to
(1—¢)/(1+4¢). I also study the finite horizon repeated version of the game. Again there
is a unique pure strategy PBE outcome and in equilibrium both players accept the first

proposal.

The above results are derived in Sections 2. In Section 3 a version of the model
with two-sided incomplete information is used to explain the deadline effect. It often
happens that parties engaged in bargaining have to reach agreement, if at all, before
some exogenously imposed deadline. For example, two litigants may negotiate in advance
of a trial, the date of which is fixed. Or two parties may have a joint project which they
must embark on by a certain date if it is not to be exploited by some third party. For
a third example, a buyer and a seller may be bargaining over the production and sale
of a good which, if they do not agree on terms by a certain date, will become obsolete.
It has often been noted that in such situations there is a pronounced deadline effect: a
deal is often struck only at the last possible moment. Roth, Murnighan and Schoumaker
(1988) report the results of several bargaining experiments in which they found a strong
and robust effect of this kind. There are many explanations of delay in the bargaining
literature® but few explanations of the deadline effect. Fershtman and Seidmann (1993)
derive this effect in a game in which a bargainer is not allowed to accept an offer less
than or equal to an offer which he or she has previously rejected. Spier (1992) analyzes
bargaining between a plaintiff and a defendant in advance of a trial. As she points out,

this differs from other bargaining contexts in that discounting does not imply that delay

3Complete information bargaining games which exhibit delay include Dekel (1990), which employs
forward induction arguments, Fernandez and Glazer (1991), in which the bargainers play a game after
each rejection of an offer, Jehiel and Moldovanu (1995), in which there are several buyers and externalities
between them, and Compte and Jehiel (1998), in which outside options are history-dependent. Incomplete
information models with delay involve screening, signalling or wars of attrition (e.g., Cramton (1984, 1992)
Admati and Perry (1987), Chatterjee and Samuelson (1987)). Kennan and Wilson (1993) provides a good
survey.



destroys surplus. She shows that there is a significant deadline effect when there is a
per-period cost of bargaining, one-sided incomplete information and all offers are made
by the uninformed player. Essentially the player who makes the offers has an incentive
to make a take-it-or-leave-it offer in the last period. Ma and Manove (1993) study an
alternating-offer model in which the player whose turn it is to make an offer is allowed to
delay it for strategic effect and in which a random time elapses between the moment when
an offer is made and the time when it arrives at the respondent. In this model it is optimal
to wait until the deadline is close in order to present the other player with a comparatively
unfavourable offer which he prefers to accept because there is a risk that his counter-offer
would not arrive before the deadline. One problem with this explanation is that it may
depend on an artificial aspect of the bargaining protocol, namely the alternation of offers.
When one player delays making his offer, the other player has an interest in making one

himself.

This paper offers a different explanation, based on a reputation argument. By com-
parison with the papers mentioned above it has the advantages that players are treated
symmetrically and are allowed to make a proposal at any time and to accept any proposal
made by the other player. The two players play the simultaneous-offers game described
above, repeated T times. With probability close to one the disagreement payoffs are zero
but, for each player, there is an arbitrarily small probability n that that player gets payoff
v (3 < v < 1) if there is no agreement by the deadline (7 is the value at the deadline
date, so that, if ¢ is the discount factor, the disagreement payoff evaluated at the start of
the game is 67 1v). For example, there may be a small probability that the seller has an
alternative use for his capital equipment. The result is that, if 7 is low and T is not too
high then pure PBE exist in which no agreement is reached before the very last period.
In such equilibria both parties maintain intransigent positions until period 7', when they
agree on an equal split of the surplus. Although this equilibrium can only exist if 7" is not
too large, delay can be very long and can, through discounting, destroy up to half of the
available surplus. This phenomenon can occur even if it is common knowledge that gains

from immediate trade exist (that is, if 6771y < %) If it is not common knowledge that



gains from trade exist then a stronger result obtains: every pure strategy PBE involves
trade only in the final period. One advantage of this result is that it does not depend on

restrictions on beliefs (only on the restriction to pure strategy equilibria).

These equilibria represent a kind of war of attrition: if a player suggests a compromise
agreement, then it becomes common knowledge that she is not the high type and this
puts her at a disadvantage. Therefore neither will do so, even though, in equilibrium, a
low-type player has no chance of obtaining the same payoff as the high type. In other
papers on bargaining which have a war of attrition character (Perry (1986), Ordover and
Rubinstein (1986), Chatterjee and Samuelson (1987), Compte and Jehiel (1997)) each
party randomizes in each period between playing “weak” and playing “tough”. Eventually,
at some random time, one party concedes and the other “wins”, the result being an
extreme agreement. In the game presented here, by contrast, neither concedes and the
final agreement represents a compromise between the two positions, a result which accords
more closely with empirical and experimental evidence. It is the existence of the deadline

which allows a pure strategy war of attrition to take place.
2 THE COMPLETE INFORMATION BARGAINING GAME

Two players have a joint project which has a surplus of unit size and they bargain
over the division of this surplus. Each simultaneously makes a proposal as to how the
surplus should be distributed. For each player ¢ (i = 1,2) there is a probability ¢ > 0
that i’s proposal does not reach the other player. The event that 1’s proposal fails to
arrive is independent of the event that 2’s proposal fails to arrive. If a player receives the
other player’s proposal then he or she decides either to accept or to reject it. If only one
proposal is accepted then that proposal is implemented while if each accepts the other’s
proposal then one of the two proposals is chosen at random, with equal probabilities, to
be implemented. If neither proposal is accepted then the disagreement outcome results,

giving payoff v; to player i (i = 1,2).

Player i (i = 1,2) has a von Neumann-Morgenstern utility function u;(.) which is

twice differentiable, strictly increasing and concave. These functions are normalized so



that u;(0) = 0 and w;(1) = 1. It is assumed that v; + vy < 1, which ensures that there is
some net value in their relationship. Let 3; be the proposal which gives ¢ her disagreement
payoff: that is, ui (1) = v; and ua(1 — B2) = v. Since u; is concave and satisfies u;(0) = 0
and w;(1) = 1, we have u;(x) > z for all . This implies that v; > 5 and vy > 1 — (s

which in turn means, since v; + v < 1, that §; < (.

Letting the two proposals be z; and x5 (both expressed in terms of player 1’s share),
1’s payoff in the event that both proposals get through and both are accepted is thus
(1/2)us(x1) + (1/2)uy(x2) while 2’s payoff is (1/2)us(1 — z1) + (1/2)us(l — x2). In this
game a pure strategy s; for player i consists of a proposal z(s;) together with, for each
possible pair of proposals (x1,x2), an acceptance rule a;(x; | z;,s;) (j # i). The latter
is a function taking values 0 and 1: if ay(zy | z1,51) = 1 then, conditional on having
proposed z7 (not necessarily the equilibrium proposal), player 1 will accept x5 if it arrives
and if ai(xe | x1,81) = 0 she will reject. Let this game be denoted by G(vi,vz). The
term equilibrium henceforth means perfect Bayesian equilibrium (this is an appropriate
solution concept because at the moment when a player has to decide whether to accept
the other’s proposal he does not know whether his own proposal has arrived). In a pure
strategy perfect Bayesian equilibrium of G(vy, v5) each player’s strategy is a best response
to the other’s, both at the proposal stage and also, after every pair of proposals, at the

acceptance stage.

When player 1 receives the proposal x5 from player 2 she is unsure whether her own
proposal x; has arrived or not. Therefore, even if 2’s strategy, having proposed xs, is to
accept x1, 1 must, in making her acceptance decision, take into account the risk that z;
has not arrived. Given that player 2 plays the pure strategy so, let player 1’s expected
payoff, after she has proposed x; and she has received the proposal x5 from player 2, be

IT; (a | 21,9, s9) if she accepts xo and I1;(r | 1, x2, s9) if she rejects. Then
I (a | 1,29, 89) = (1 — &)as(x1 | T2, 82)(1/2)[ug(x1) + uq(x2)]

+[1 — (1 = e)ag(xy | 2, $2)|us(x2)



and
I (r | 21, 29, 82) = (1 — €)ag(xy | T2, s2)ug (1) + [1 — (1 — €)ag(xy | 22, $2)]v1.
Therefore
I (a | 1, g, 89) — Iy (7 | 21,22, 82) = (1 — €)as(x1 | 2, $2)(1/2)[ur(z2) — ug(x1)]

+[1 — (1 — e)ag(xy | ma, s2)][ur(x2) — v1].

Clearly, if as(z | 22, s2) = 0 then it is weakly better for 1 to accept xs if uy(z2) > vy. If
as(xy | z2,89) = 1, player 1 weakly prefers to accept xs if uy(zs) > aui(x1) + (1 — a)vy,
where @ = (1 —¢)(1+¢)!. This, together with similar reasoning for player 2, establishes

the following lemma.

Lemma 1 Suppose that, in G(v1,vz), the players play the pair of pure strategies

(s1,52). Given any (z1,2),

(i) If as(xq | z2,59) = 1 then 1 weakly (strictly) prefers to accept x5 if and only if

uy(z2) > (>)auy(z1) + (1 — a@)vy.

(7i)If as(xy | T2,52) = 0 then 1 weakly (strictly) prefers to accept xo if and only if

U1 (ZEQ) > (>)Ul .

(7ii) If ay(zo | x1,81) = 1 then 2 weakly (strictly) prefers to accept xy if and only if

ug(l — 1) > (>)aus(l — z2) + (1 — a)vs.

(w)If ay(za | x1,51) = 0 then 2 weakly (strictly) prefers to accept xy if and only if

Ug(l — .I'l) > (>)’02.
Hence, in particular,
(v) If uy(z2) > auy(x1) + (1 — a)vy > vy then player 1 strictly prefers to accept xs.

(vi) If ua(l — 1) > aug(l — x2) + (1 — a)ve > vy then player 2 strictly prefers to

accept x1.

In addition, we have



Lemma 2 In any pure strateqy equilibrium of G(vi,vs) each player’s proposal is

accepted by the other.

The proof of Lemma 2 is in the Appendix. The essential point is that if only one of
the equilibrium proposals were to be accepted, say xy > 1, then player 2 could deviate
and offer very slightly less than x;, which 1 must then accept because of the risk of

not arriving. This would improve 2’s expected payoft.

Suppose that (s7, s3) is a pure strategy equilibrium of G(vy, v5) and that the equilib-
rium proposals are 7 and x3. Then u;(x}) > vy, otherwise 1 can do better by proposing v;
(since, by Lemma 2, z3 will be accepted in equilibrium). Therefore, by Lemma 1(v), hav-
ing made proposal ] and received any proposal x5 such that ui(x2) > auy(23)+ (1 —a)vy,
1 must accept xy. This means that x5 cannot satisfy this inequality: if it did, 2should
make a lower proposal. Hence uy(z5) —v; < afuy(zf) —v1]. Ifuy(zh) —v1 < afug(xf) — 1],
ie., up(z}) < aui(x})+ (1 —a)vy, then, since z7 is accepted, 1 should reject 3 by Lemma

1(i). This contradicts Lemma 2. Therefore

ui(23) — v1 = afui(27) — 1] (1)
By a symmetrical argument,

us(1 — 27) — v2 = afug(l — z3) — vy, (2)
so that the Nash product [u;(z) — v1][us(1 — ) — vo] takes the same value at x7 as at 3.
Furthermore, if (x3, z%) satisfies (1) and (2) there is indeed a pure strategy equilib-
rium in which 1 proposes xj, 2 proposes x5 and both proposals are accepted; one such
equilibrium is described in detail in the proof of Theorem 1 below. The details of the
off-equilibrium-path portions of the equilibrium are complicated but it should be clear
from (1) that if 1 has proposed z} and expects it to be accepted then the lowest proposal

which she will accept is 3 and so it is optimal for 2 to propose x3. Similarly, if 2 has

proposed x} then, from (2), the highest proposal which he will accept is x7.

Although this is a single-period game, it is closely related to the Rubinstein infinite-

horizon alternating-offers game. In fact, if the disagreement payoffs v; and v, are both

10



zero then it is immediate from (1) and (2) that x} is the Rubinstein proposal of player 4
when the discount factor is . Similarly, in the alternating-offers model with exogenous
probability of breakdown p, it is well known that the equilibrium offers z; and x5 have
the property that 1 is indifferent between x, and a lottery giving x; with probability
p and the disagreement outcome with probability (1 — p) and 2 is indifferent between
1 —x; and a lottery giving 1 — x5 with probability p and the disagreement outcome with
probability (1—p). Therefore ¥ is the Rubinstein proposal of player i when the breakdown
probability is «. It follows that Rubinstein’s analysis does not depend on repetition or
on the alternating-offers protocol. It is a standard result that (1) and (2) have a unique
solution and that this converges, as @ — 1, to the Nash bargaining solution. This clearly
follows from the fact that the Nash product F(z) = [u1(z) — v1][us(1 — x) — ve] is strictly
concave and satisfies F'(3;) = F/(f2) = 0 which implies that, given a < 1 (close enough to
1), there is a unique pair (x7, z3) such that F(z}) = F(z}) and uq (z3) —v1 = afui(z3) —v].
As a — 1 z7 converges to the maximum of F.

Theorem 1 If ¢ is sufficiently small then G(vy,vs) has a unique pure strategy equi-
librium proposal pair. This is the unique solution, (x%,x%), to equations (1) and (2). In
equilibrium both proposals are accepted. As e — 0 (o — 1), x7 and % both converge to

the Nash bargaining solution.
Proof. In Appendix.

Applying this to the case in which both players are risk-neutral, i.e., u(z) = = and

us(z) =1 — z: in a pure strategy equilibrium 1 proposes

7t = ()(1+6) ~ (L + ey + (1 - vl
and 2 proposes
75 = ()[(1 =) = (1= oo + (1 + o).

I’s equilibrium expected payoff is (1 —&2)[(1/2)(z} + x%)] + £2v; since her expected payoff
conditional on at least one proposal reaching its destination is (1/2)(z} + z3). This

simplifies to (1 — &2)[(1/2)(1 + v; — v2)] + €*v;. Similarly, 2’s expected payoff is (1 —

11



e2)[(1/2)(1 + vy — vy1)] + €%vy. It follows that, in the limit as e — 0, the two players share
the surplus equally: @ gets v; + (1/2)(1 — v; —v;) (¢ # j).

Remark 1 Suppose that the probability of an offer failing to arrive differs between
the two players. Let the probability that ¢’s offer fails to arrive be £;. Then it is easy to

see that the two equilibrium proposals ] and x5 satisfy the equations
u(z3) — v = ar(u(z]) — v1)

and

ug(1 — x]) — vg = an(ua(l — x3) — v9)
where o; = (1 —¢;)/(1 + ¢;). For example, if utilities are linear and v; = 0 (i = 1,2)
then player 1 proposes (1 — a3)/(1 — cyaz), which is the Rubinstein proposal when the

discount factors are oy and as. A player with a greater value of ¢ is at a disadvantage

because he or she is under more pressure to accept the other player’s proposal.

Remark 2 So far it has been assumed that if both proposals are accepted then each
has probability 1/2 of being implemented. Suppose now that in that event the probability
of player 1’s proposal being implemented is ¢ and for player 2 the probability is 1 — 6,

where 6 € [0,1]. Then the two equilibrium proposals x} and z} satisfy

uy(z3) — v1 = ay(0)(ur(z7) — v1)

and
up(1 = af) — va = aa(0)(ua(1 — 23) — v2)
where
_(1-0)1-¢)
al0) =390 =9
and
01 —¢)
a20) = g

In the linear utility case with v; = vy = 0, 27 therefore equals (1 —a2(6))/(1—ay(8)az(6)),
which reduces to 1 — 0 4 6. x5 equals a;(0)x}, i.e. (1 —6)(1—¢). So, for small €, player
1’s payoff is approximately 1 — 6. If the probability that her own proposal is implemented

12



is very high then she gets a very low payoff. The reason is that in that case player 2
has less incentive to accept player 1’s proposal and so, correspondingly, player 1 has more
incentive to accept 2’s. A similar phenomenon was noted by Carlsson (1991) in connection

with unequal distribution of the surplus.
The finitely repeated game

It is straightforward to generalize the model to a situation in which the game is
repeated finitely many times. Suppose that there are finitely many (7') discrete periods
indexed 1, ....,T. In each period each player makes a proposal as in the single-period game
analyzed above. As before, there is probability 1 — e that a given proposal will arrive in
the current period; if it fails to arrive in the current period then it will never arrive. For
simplicity, it is assumed here that at the start of each period each player knows the whole
history to date (including the size of any offer which failed to arrive). This means that
all information is public at the start of each stage. If either player accepts an offer the
game ends immediately. The players discount future payoffs using a common discount
factor 6 € (0,1]. I confine attention to the case in which the players are risk-neutral.
If no offers have been accepted before time ¢ and at time ¢ player 2 accepts player 1’s
offer of x; € [0,1] while player 1 does not accept player 2’s offer, then the payoffs are
61z, for player 1 and &' (1 — x;) for player 2. If player 1, at time ¢, accepts player
2’s offer of x5 and player 2 does not accept 1’s offer, then 1’s payoff is 6* 'z, and player
2’s is 671 (1 — xy). If both offers, x; and x5, are accepted at time ¢ then player 1 gets
ot (%) and player 2 gets 61 (ﬁﬂ%ﬂ» If no offers are accepted by the end of
time 7T player i’s payoff is 67 1v;, where, as before, v; + vy < 1. Let this repeated game

be called GT (vy,vs).

A pure strategy for player i in the bargaining game G7 (v;, v,) consists of (i) a function
prescribing, for each t = 1,2, ..., T, and for each partial history up to and including ¢ — 1
(if £ = 1 the only partial history is the null history) of proposals which were rejected or did
not arrive, a proposal to be made in the current period ¢ and (ii) a function prescribing,

for each partial history as described above plus i’s t-period offer and j’s t-period offer,

13



whether or not to accept j’s offer. Let SI be the set of pure strategies for 7. As above,

equilibrium refers to perfect Bayesian equilibrium.

Theorem 2 If € is sufficiently small, GT(vy,v2) has a unique pure strateqy equi-

librium sequence of offers. In equilibrium each player accepts the first offer to arrive.

As e — 0, player i’s equilibrium payoff converges to 67 tv; + (1/2)(1 — 67 ty; — 611

(i # j)-

v;)

Proof. The proof is by induction on the number of periods remaining. The induction
hypothesis is that, when there are t < T' periods remaining, there is some ; > 0 such
that, for any ¢ < &;, there is a unique pure strategy equilibrium pair of proposals, both
of which are accepted if they arrive, and that the equilibrium payoffs Vi (vy,v5) (i = 1,2)
are given by

1— (6Bt 811 + &2y B L1 — 2wy

1 12
Vi(on,v2) = (1 6)2(1—552) 2 2

and

1—(6e%)! N S+ ey &1 — M)y
2(1 — 8¢2) 2 2 '
By Theorem 1, this is true for ¢ = 1. Suppose that it is true for ¢t < T. Then, if € < &,

Vi (vg,02) = (1 =€)

in any pure strategy equilibrium of G% (v, v,) the continuation payoffs when there are ¢
periods to go must be V;! (v, v5) and V;2(vy1,v9). Clearly, Vi (v, v2)+V;*(v1, v2) < 1 because
there is strictly positive probability that no proposals will arrive. Therefore, by Theorem
1, there is €441 > 0 such that, if € < e;41, the unique pair of pure strategy equilibrium
proposals when there are ¢ + 1 periods to go, both of which are accepted, gives expected
payoffs Vi, (v1,v5) = (1/2)(1 = &2)[1 + 8V} (01, v5) — §VF (01, 09)] + €26V (v1,02) (i # j)-
Substituting for V;}(vy,v2) and V;?(v1, v) establishes that the induction hypothesis is true
fort+1. 1

As discussed in the Introduction, Ma and Manove (1993) explain the deadline effect
using an alternating-offer model in which the player whose turn it is to make an offer
can choose the moment at which he makes it and there is then a random delay before it

arrives. The deadline effect arises because of the incentive to delay making an offer until
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near the deadline in order to put pressure on the respondent. Theorem 2 suggests that
if players are instead able to offer at any time?, rather than having to wait for the other
player to offer first, randomness in the arrival of offers does not cause delay in agreement,
at least in a complete-information model. The next section demonstrates that a different

conclusion arises in an incomplete-information version of the current model.

3 A BARGAINING GAME WITH INCOMPLETE INFORMATION ABOUT DISAGREEMENT

PAYOFFS

Suppose now that the players play the finitely-repeated game G (v, v;) with the
difference that it is not common knowledge that the disagreement payoffs are v; and v,
respectively for players 1 and 2. Instead, there is probability 1 — n; that player 1 has
disagreement payoff zero and probability 7; that she has disagreement payoff v, where
% < 7 < 1; independently, player 2 has probability 1 — 1y of being the normal type
(disagreement payoff zero) and probability 7, of being the high type (disagreement payoff
v). Here n; and 7y are small but strictly positive. As before, the history of the game is
commonly known at the outset of each stage and payoffs are discounted according to a
common discount factor 6. The low (i.e., normal) type of player i is denoted by L; and

the high type by H;. Let this game of incomplete information be denoted by I'" (1, 72, €).

The set of pure strategies for player i is the same as in the complete information
game. A typical history up to and including stage T — ¢ (i.e., when there are ¢ stages to
go) is denoted by h'~*. A system of beliefs p specifies, for each ¢, hT~, x1 and x5, values
ps(RT) and pi(hT 4 x;) (i = 1,2). p;(hTt) is the probability which j # i assigns after
history h7~* to the event that i is the high type and p;(h’~*, x;) is the corresponding
probability if 7 then receives the proposal x;. A perfect Bayesian equilibrium in pure
strategies (o,p) is a profile of pure strategies (one for each type of each player) and a
system of beliefs such that the beliefs are consistent with the strategies and each strategy

is optimal after every history given the other strategies and the beliefs.

Given a strategy profile o© = (07,07 ,0%,,01,) € (ST)? x (S7)* and a system

4In a discrete-time framework; Ma and Manove’s model is set in continuous time.
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of beliefs p, let W} (W', p;(h'"),07,€) be H;’s expected continuation payoff at the
start of period T — t + 1 if these strategies are played, the history so far is hf =t and H;
has belief p;(h"="). Wi ("7, p;(h"="), 0", €) is defined analogously. W} (n;,0",¢) and
WL (n;,0",€) are the corresponding ex ante expected payoffs. Also, let W}, (p;,0,¢) be
H;’s expected continuation payoff when there are ¢ periods to go if his belief is p; and
the strategy profile o' € (S%)? x (S%)? is played during the remainder of the game (as if
the game were starting at this stage). Given strategy profile o7, (02}, , o) is the strategy

profile in which H; plays strategy o and H;, L; and L; play according to o (similarly for
a deviation by L;).

This section is devoted firstly to constructing a pure strategy equilibrium in which
there is no agreement until the final period and then to showing that all pure strategy
equilibria have this character if it is not common knowledge that there are gains from
trade. The description of the equilibrium is lengthy largely because of the need to show
that the equilibrium strategies are pure off the equilibrium path, in particular after two
simultaneous non-equilibrium proposals have been made. Note also that the non-normal
(i.e., high) types are modelled here as rational players who vary their actions with the
history. In other studies of perturbed bargaining games (e.g., Compte and Jehiel (1997)),
the non-normal type is an obstinate bargainer who always makes the same high demand

and rejects any proposal which gives him less than this.

In the exhibited equilibrium each player ¢ believes that the other player is the high
type with probability 7;, 0 or 1, depending on the history, and once a player’s belief
reaches either 0 or 1 it remains at that value regardless of future events. In Propositions
1-5 I construct the equilibrium continuations for the various subgames which can arise.
Along the equilibrium path neither player makes a serious offer (and high and low types
pool) in periods 1,...T" — 1 so that at the start of the final stage i believes that the other
is the high type with probability n; (i # j). In the final stage they play an equilibrium
(o, pL) of the resulting one-period game of incomplete information which is separating on

both sides. In this equilibrium, which is set out in Proposition 1, the low types simply play
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the pure strategy equilibrium of the complete information game in which it is common
knowledge that both players are the low type. If € is small then the high types can do no

better than make an unacceptable proposal and get their disagreement payoff.

Proposition 1 Let ¢ < 2v — 1. Suppose that n1 and ns are strictly positive and
sufficiently small. Then TY(ny,ne,€) has a pure strateqy equilibrium (ok(€), pk) in which
H, proposes 1, Hy proposes 0, Ly proposes (1/2)(1+¢€) and Ly proposes (1/2)(1 —¢). Ly
and Lo accept each other’s proposals. Hy and Hy’s proposals are rejected by both types.

The equilibrium payoffs are
Wi, (n2,05(),€) = (1 — 1) —5—

Wi, (m,og(e),e) = (1 —n)———
Wi, (12, 05(€),€) =7,
and

Wi, (m, 05(e),€) = 7.

Showing that the stipulated offers are optimal is straightforward (and essentially the
same as the demonstration above for the complete information case); the details are in

the Appendix.

Suppose now that one player, say player 2, has revealed himself as the low type while
the other player has not and that the final stage has been reached without agreement.
Proposition 2 sets out the equilibrium (ok(¢), ph.) which is played in that event. In this
equilibrium the two types of player 1 make a pooling offer Z;(¢) which Ly accepts. Lo’s
proposal is a1 (g), which is accepted by L; but rejected by H; (who would only accept
xy > aZi(e) + (1 — a)y). Z1(e) is the largest proposal which is acceptable to Ly given
that player 1 will accept az;(¢) with probability 1 — 7; conditional on this offer arriving.
Ase — 0, Z1(¢) — 1 and so player 1 is able to extract approximately all the surplus as a

result of the small asymmetry of information.
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Proposition 2 Suppose that n, satisfies 0 < n; < 2y — 1. Given small enough €,
I''(m,0,¢€) has a pure strategy equilibrium (op(€), pp) such that, ase — 0, W} (0,0p(€),e) —
1, W (0,0p(e),e) — 1 and W}, (ni,0p(e),e) — 0. T1(0,ms,€) has an equilibrium sym-

metric to this.
Proof. In Appendix.

The next proposition sets out the continuation equilibrium from the start of any
stage at which one player is believed to be the low type and the other is believed to be
the high type. The beliefs always remain the same subsequently and the strategies are
the same as in the complete information game between a player with disagreement payoff

zero and one with disagreement payoff ~.

Proposition 3 For small e, T%(1,0,¢) (t < T) has a pure strategy equilibrium
(oto(€),ply) in which the equilibrium payoffs are

1— ((552)t 5t—1(1 _ 521‘),)/

WE (1, oto(e). ) = (1= )37~ 1

1— (582)1‘ 61‘—1(1 + 821‘),.)/

Wi, (0,019(¢), ) = (1 - €7)

2(1 — 6e2) > ’
t t TN (6e*)" 81 =€)y
WL1 (07 010(6)76) - (]‘ € )2(1 o 662) + 2

and

Wi, (1,05(e),6) = 8" 1.

In this equilibrium, Hy and Ly each propose approzimately (3)(1 + 6" 1v), giving
approzimate payoffs of (3)(1 + 6'"'y) and (3)(1 — 6"1y). T%(0,1,¢) has an equilibrium

symmetric to this.

Proof. Let (o}y(e),p!,) be the following profile of strategies and beliefs. After any
history, 1 believes that 2 is the low type and 2 believes that 1 is the high type. H;
and Ly play equilibrium pure strategies of G*(v,0), the complete-information game of ¢
periods in which 1 has a disagreement payoff of v and 2 has a disagreement payoff of zero.

In G'(~,0) these are best responses to each other after every history and are therefore
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sequentially optimal for the beliefs specified. L; plays an arbitrary pure sequential best
response to Lo’s strategy and Hy plays an arbitrary pure sequential best response to H;’s
strategy. The expressions for W}_(1,01,(¢),e) and W (0, 010(¢),€) follow from Theorem
2. Since Hy’s proposals are all greater than % and she rejects anything less, Hy can do
no better than wait for his disagreement payoff, hence W, (1,0%(¢),€). If L1 mimics H,
her expected payoff is W}, (0,0%,(¢),€) — €*v because she will then get the same payoff
as H; would unless there is no agreement, which, since the first proposal to arrive will
be accepted, happens with probability 2. Suppose that there is some strategy &; which

gives L; a higher payoff than this, i.e.,
Wil (O’ (Uio,le (6)7 5-1)7 6) > WIt{l (07 050(6)’ 5) - 62t7'

Let ¢ be the probability that, if 1 plays 7, against Ly’s strategy o7, (), there is no

agreement, so that ¢ > 2. Then H,’s expected payoff from playing &1,

Wft’ll (07 (aio,le (5)7 5-1)7 6)7
is equal to
W£1 (O’ (Uio,le (6)7 5-1)7 6) + ¢7

Therefore
WItfl (Oa (Uio,—Hl (5)> &1)> 5) 2 Wil (Oa (Uio,—Ll (5), &1)7 5) + 521:7 > WItfl (0> thLO(E)? 5),

which contradicts the fact that W, (0,014(¢), €) is Hi’s maximal payoff. This shows that
the best that L; can do is mimic H;, hence that L; has the stated payoff. B

The next proposition describes the equilibrium continuation in any subgame in which

each believes the other to be the low type.

Proposition 4 For small e, T%(0,0,¢) (t < T) has a pure strategy equilibrium
(080(€),Ph) in which the equilibrium payoffs are

1— (6e%)t

W£1(0>060(5)75) = (1_52)M7
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1 — (6e2)

W£2(0>060(5)75) = (1_52)M7

Wi, (0,000(¢),€) = &1,

WI{[Q((]’O-SO(&?)’g) = 6t_17-

In this equilibrium, Ly and Ly each offer approzimately 1/2 and each offer is accepted.

Proof. Let (0f,(¢), phy) be the following profile of strategies and beliefs. After any history,
1 believes that 2 is the low type and 2 believes that 1 is the low type. L; and L. play pure
equilibrium strategies of G*(0,0), the complete-information game of ¢ periods in which 1
and 2 each has a disagreement payoff of zero (see Theorem 2). In G*(0,0) these are best
responses to each other after every history and are therefore sequentially optimal for the
beliefs specified. H; plays an arbitrary sequential pure best response to Ly’s strategy and
H; plays an arbitrary sequential pure best response to L;’s strategy. The expressions for
Wi (0,000(¢), ) and W} _(0, 0g4(¢), €) follow from Theorem 2. H; and H, can do no better

than wait for their disagreement payoffs, hence Wy, (0,0¢,(¢),e) and W, (0, 0¢(€),€). B

Next, in Proposition 5, I describe the continuation strategies when there are ¢ periods
to go and one player has been revealed as the low type while the other has not. The
strategies are t-period analogues of the pooling equilibrium of Proposition 2. Both types
of player 1 (in the case in which it is 2 who is believed to be the low type with probability
1) make the same high demand, which Ly accepts; Lo proposes slightly less than this and
both types of player 1 accept. One main difference between this (when ¢ > 1) and the
equilibrium of Proposition 2 is that both types of player 1 accept player 2’s proposal: this
is because 2 will believe that 1 is the high type with probability 1 if she rejects it and
the continuation equilibrium profile will then be o'y(¢) (as described in Proposition 3),

which would be worse for player 1 than accepting the proposal.

Proposition 5 Let 671 (1+7) > 2 and let 0 < g < 2y—1. For small e, T'*(m1,0,¢)

(t > 1) has a pure strategy equilibrium (o%(g),pk) such that

1
lig Wi, (0,0h(e).6) = ()(1+87),
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lim W5, (0,05(e),2) = (2)(1+8"),
liy W, (1, 05(2), ) = &',
ling W, (1, 0b(6).2) = (5)(1 -6
T'*(0,1m2,€) has an equilibrium symmetric to this.
Proof. in Appendix.
Combining the results above, we have:

Theorem 3 Let §"'+£ > 1. Ifni,n2 and e are sufficiently small, T (1,12, €) has
a pure strategy equilibrium (ok(e),pk) in which no proposal is accepted before the final

period and, in the final period, each low type accepts the other’s proposal.
Proof. Let (c%(¢),p%) be the following strategy profile and beliefs.

In period 1 Hy and L; both propose 1 and H, and Ly both propose 0. These offers
are rejected by both types. In subsequent periods, except the final one, the proposals are
the same as in the first period, and these proposals are rejected, as long as neither player
has previously deviated. In the final period, if there has previously been no deviation
by either player, the equilibrium of T'*(n;, 7, €) described in Proposition 1 is played: i.e.,
each low type proposes approximately % and accepts the other’s proposal, while the high
types demand the whole pie and reject the equilibrium proposals of both types of the
other player.

If neither player has deviated from the strategy above then player j (j # i) believes
that ¢ is the high type with probability n;. If, at any stage before T, when there has
previously been no deviation by either player, a player makes a proposal other than
the one specified above (i.e., demands less than the whole pie), then the other player
believes that the deviating player is the low type with probability 1, and continues to
believe so for the rest of the game, for all subsequent histories. Therefore, immediately
after the first deviation (at stage T'— ¢, 1 <t < T — 1), the possible belief states are
(0,0), (11,0) or (0,m7). If the beliefs are (0,0), the continuation strategies are opg’(c),
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the equilibrium of T**1(0,0,¢) described in Proposition 4. If they are (n:,0), (i.e., if 1
has proposed 1 and 2 has proposed x5 # 0), then Hs and Ly both reject 1’s proposal;
if zo < 6W} (0,0%(¢),€), Hy and Ly both reject o and otherwise they both accept. If
zy < 6W} (0,05 (¢), €) and 1 rejects then 2 believes that 1 is the high type with probability
m and the continuation strategies from the next period are o’(e), the equilibrium of
I(n1,0,¢€) described in Proposition 5 (note that 6°~'+£ > 1 implies that 6"~ (1 +~) > 4
since v > 1). If my > WY (0,0%(¢), ) and 1 rejects o then 2 believes that 1 is the high
type with probability 1 and the continuation strategies from the next period are ot,(e), the
equilibrium of T%(1, 0, ¢) described in Proposition 3. If the beliefs are (0,7) the strategies

are symmetrical to the above.

From the first period after a deviation the strategies are in equilibrium by Proposi-
tions 3,4 and 5. In the final period, after no deviations, they are in equilibrium by Propo-
sition 1. Clearly it can never be optimal for either type of player 1 to accept a proposal of
0 or for either type of player 2 to accept a proposal of 1 since the expected continuation
payoff of each player is strictly positive. Suppose that the first deviation is at period T —t,
when there are £+ 1 periods to go. Suppose that player 2 deviates by proposing xo > 0. If
zo < 8W} (0,0p(¢),€), it is optimal for Hy and Ly to reject since the continuation payoffs
from next period are then W} (0,0%(¢),¢) and Wi, (0,0p(e),e) > Wi (0,0p(¢),e). If
xy > 6W} (0,05(€),€) and 1 rejects then the continuation payoff for each type of 1 is, for
small e, approximately %(1 + 6'"1v) by Proposition 3. Since, for small ¢, this is less than
W} (0,0%(e),e) by Proposition 5, it is optimal for both to accept. If player 2 deviates
by proposing x; < 1, the argument is symmetrical. If both simultaneously make deviant

proposals, the continuation strategies are in equilibrium by Proposition 4.

It remains to show that neither player can profit by making a deviant proposal before
period T. By symmetry, it suffices to consider L, and H,. Take L, first and consider a
deviation at T'—t where 1 <t < T — 1. His expected payoff, discounted to this period, if
he conforms to the above strategy is, for small €, approximately (1 — 771)5—;. If he makes

a proposal 3 # 0 which 1 will reject, his expected payoff is approximately g(l — &),
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and if he makes the lowest acceptable proposal (6W} (0,0%(€),€)) his expected payoff is
approximately

L Tim W, (0.0b(c)e) =1 - o4 sy=1-2 2
e—0 Ly P ’ 2 2 2

By assumption, &° + % > 1, which implies that, for small enough 7,

&t 5 &
A=m)g>1-5-5

and
6 0 t—1

Therefore it is not optimal for Ly to make a deviant proposal. If Hs; makes such a proposal

(St

his expected payoff is either §'y by Proposition 5 or 1 — % — %, as above. If he does not

. . . t st Ky st . .
deviate his expected payoff is 6’y > % > 1 — 5 — 5. This establishes that the stated

strategies form an equilibrium. W

For high values of the discount factor this equilibrium can involve very long delay.
The loss of surplus which results (if both players are the normal type) is 1 — é7 1, which
is limited by the condition 67! + % > 1. For 6 close to 1, T' can therefore be long enough
for almost half of the surplus to be lost. Notice also that this equilibrium can exist even

if it is common knowledge that there are gains from trade, i.e., if 67 1y < %

Finally, the next theorem shows that if it is not common knowledge that there are
gains from trade (67 1y > %) then no pure strategy equilibrium exists in which agreement
is reached before the final period. For simplicity, I only consider histories in which every

proposal arrives (which happens, for small e, with probability close to 1).

Theorem 4 Suppose that 671y > % In any pure strategy equilibrium of T'T(ny, ns, €),
with ny,n2 and € all small, there is no agreement before period T in any history in which

all proposals arrive.
Proof. Take a pure strategy equilibrium with strategy profile o = (oy,,01,,0H,,0L,)-

Suppose that, if these strategies are played and if all proposals arrive, L; and Lo will

reach agreement in period t < T'. Suppose that L; were to mimic H;’s strategy from the
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outset. Conditional on 2 being the low type and all offers arriving (which has probability
close to 1 if € and 7 are close to zero), either (a) agreement will be reached before T
and L;’s payoff will be the same as H;’s would be or (b) period T" will be reached with
2 believing that 1 is the high type (since L; would have reached agreement at ¢) and 1
believing that 2 is the low type with probability at least 1 — ny. If (b) obtains, then 1
will (with probability (1 — &?)) reach agreement with Lo (i.e, H; will accept Lo’s offer if
it arrives, or Ly will accept H;’s offer, or both). This is because otherwise Ls’s expected
payoff would be zero, but Ly can get a strictly positive payoff by proposing x5 such that
1> x9 > a+ (1 — a)y, which H; must accept by Lemma 1. Therefore we conclude that
L4’s payoff is approximately the same as H;’s would be. Since this deviation cannot be
profitable, it must be that, for small € and 7, L;’s payoff is bounded below, approximately,
by H;’s payoff. Hence L; in equilibrium gets more than % because H;’s expected payoff is
at least equal to her disagreement payoff 671y > % By symmetry, Lo’s expected payoff is
also greater than % Since this is impossible because the total surplus is 1, the assumption
that L; and L, reach agreement before 7' is contradicted. It is easy to see that H; and

H, will not reach agreement either. B
4 CONCLUSION

The first part of this paper can be thought of as a contribution to the Nash program:
the search for non-cooperative foundations for cooperative solution concepts such as the
Nash bargaining solution. It also gives some additional insight into the interpretation of
the Nash bargaining solution. Aumann and Kurz (1977) show that the Nash outcome is
the point at which each player is equally bold, where a player’s boldness is the maximum
probability which makes him willing to risk losing the whole gain against an additional
gain. The game analyzed here gives a non-cooperative foundation for this idea. In equi-
librium each player is indifferent between accepting and rejecting the other’s proposal.
Therefore, in equilibrium, each is just willing to accept the lottery consisting of his own
proposal with probability 1 — e and the disagreement payoff with probability . Similarly,
Rubinstein, Safra and Thomson (1992) define the (ordinal)-Nash solution in terms of the
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players’ willingness to risk a breakdown of negotiations.

The paper also provides a theoretical explanation of the deadline effect in a context
in which players are free to make offers, and to accept any offer, at any time. The effect
stems from the fact that a small amount of incomplete information has a large impact
on the split negotiated in the final-stage subgame. This has the implication that, even
though there is only a very small prior probability that a given bargainer is strong, he

has to protect that reputation by refusing to compromise until the last possible moment.
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APPENDIX

Proof of Lemma 2 Suppose, to the contrary, that, in some equilibrium (s}, s3), 1’s
equilibrium proposal 7 is rejected by 2. If 2’s equilibrium proposal 3 > (3, then player 1
must accept =3 (since x3 > B, > 1) and so player 2’s expected payoff, (1 —e)uq(1 —z5) +
€vy, is less than 2’s reservation payoff vs. This contradiction establishes that x§ < fs.
Consider in turn the four cases: (a) /) < x5 < (o, (b) 25 = (2, (¢) 25 < [ and (d)
xy = (1. In case (a), 1 accepts x4 after making the proposal x3 by Lemma 1(ii) and has
expected payoff (1 — e)uy(x3) + ev;. Since 25 < [s, we have us(1 — z3) > vy and there
exists 1 > o} such that 1 —25 > 1—27 > 1— s and us(1 — 1) > aug(l—a3) + (1 — a)vs.
If player 1 proposes x; 2 must, having proposed z3%, accept it by Lemma 1(vi). This gives
1 an expected payoff (if she rejects z3) of (1 — e)us(x1) + vy > (1 — €)uy(x}) 4+ vy and
so the deviation is profitable. In case (b), 1’s expected payoff is (1 — e)uy(z3) + ev; =
(1—¢e)u1(Pa) +ev;. Having proposed (32, 2 must accept any proposal 1 such that x; < [s.

If 1 makes such a proposal and accepts 2’s proposal of (35, 1’s expected payoff is
(1= )*(1/2)[ur(21) + ur(Bo)] + e(1 — e)ur(z1) + (1 = e)ur (Ba) + 1.

For z; close to (3, this quantity is approximately (1 —e?)ui(32)+&%v; > (1—¢)uy(Ba) +evy
and so the deviation is profitable. (Note that u;(52) > v, because f; > (31). In case (c),
1’s expected payoff is v; since she will reject x} if x5 < ;. If 1 proposes z; such that
x1 > [ then, by Lemma 1(i), she will strictly prefer to reject x5 if as(zy | 25, s5) = 1. She

will also reject 3 if as(zy | 25, s5) = 0 by Lemma 1(ii). Therefore, if 8, < 1 < fa, 2 must
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accept x; after proposing x3. This implies that 1 has a profitable deviation: propose x;

such that #; < z1 < (2 and reject z5. In case (d), there exists x; > (31 such that
us(1 — 1) > aus(1 — Fy) + (1 — @)us(1 — [a).

If 1 proposes x; then, by Lemma 1(vi), 2 must, having proposed z3 = (31, accept. This

deviation increases 1’s expected payoff.

This establishes that 1’s proposal must be accepted in equilibrium. Symmetrical

arguments show that 2’s proposal must also be accepted. B

Proof of Theorem 1 The argument in the text establishes that (z},z}) must
satisfy equations (1) and (2) and that, given o € (0, 1), there exists a unique solution to

(1) and (2) and that this converges to the Nash bargaining solution as o — 1.

It remains to show that a pure strategy equilibrium exists. Consider the following

strategy pair.
Proposals: 1 proposes =7 and 2 proposes 3.

Acceptance strategies after non-deviant proposals: After proposing x7,1 accepts xs if

and only if zo > x¥; after proposing x5, 2 accepts x; if and only if z; < z7.

Acceptance strategies after deviant proposals: After any proposal z; # x7, 1 accepts
x3. After any proposal x4 # 3, 2 accepts 2. Suppose that x; and x5 have been proposed,

where 71 # 27 and zy # 273.

(a) if uy(z2) > vy and ug(1 — 21) < aua(l — 22) + (1 — a)vg, 1 accepts and 2 rejects;
(b) if ug(x2) > v1,u2(1 — 1) > qua(l —x9) + (1 — a)ve and uy (z2) > aus(z1) + (1 — a)vy,
1 and 2 both accept; (c) if ui(z2) > v1, uz(l — 1) > aus(l — x2) + (1 — a)ve and
u(z2) < aup(x1)+(1—a)vy, 1 rejects and 2 accepts; (d) if ug(z2) < v and ug(1—21) < o,
both 1 and 2 reject; (e) if ui(xg) < vy, ua(1—x1) > vo, and uy(x2) < auy(z1)+(1—a)vy, 1
rejects and 2 accepts; (f) if uq(z2) < vq, us(1—2x1) > vg, and ug(x2) > auq(zq)+ (1 —a)vy,

both 1 and 2 accept.
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Given 2’s strategy, it is optimal for 1 to propose x] because this is the highest proposal

which 2 will accept, and x] > 3 > 3;. Similarly, 2% is optimal for 2.

After making the proposal 27 and receiving any proposal x4, 1 knows that her proposal
will be accepted, if it arrives. Therefore, by Lemma 1(i), it is optimal for her to accept
xg if uy(22) > auy(z}) + (1 — a)vy. Hence, by (1), it is optimal to accept if zo > 3.
A symmetric argument applies to 2. This shows that the acceptance strategies after

non-deviant proposals are optimal.

I show next that the acceptance strategies after deviant proposals are optimal. If 1
proposes x; > x; and 2 proposes x5, 2 rejects and so it is optimal for 1 to accept z5. If
1 proposes 1 < x7 and 2 proposes x5, 2 accepts xy. Since uy(z3) = auy(z}) + (1 — a)v;
and uy(z1) < up(x7), we have uy(z5) > auy(z1) + (1 — a)vy. Therefore, by Lemma 1(i),
it is optimal for 1 to accept x3. Symmetric arguments show that 2 should accept x7.
Now suppose that x; # 2z} and xs # x3. In case (a), 1’s strategy is obviously optimal
and it is optimal for 2 to reject by Lemma 1(iii). In (b), both should accept by Lemma
1(i) and Lemma 1(iii). In (c¢), 1 should reject by Lemma 1(i). Since awu;(z1) + (1 —
a)vy > ui(xe) > vy, we have uj(x2) < wuy(z1) and so us(l — z2) > wua(l — xq). Since
ug(l — x1) > aug(l — x2) + (1 — a)ve, ug(l — x1) > ve. This implies that 2 should
accept. Case (d): obvious. Case (e): 1 should reject by Lemma 1(i) and 2’s acceptance
is clearly optimal. In case (f), 1 should accept by Lemma 1(i). Since u;(zs) < v; and
ur(z2) > auy(zr) + (1 — a)vy, ug(z2) > wy(zr) and so us(l — xz2) < ug(l — z1). Also

ug(1—m1) > ve. Therefore ug(1—x1) > aug(l—x2)+ (1 —a)vs. Now apply Lemma 1(iii).
This completes the proof that the strategies described form an equilibrium. B

Proof of Proposition 1 Let the following define the profile (o(¢), py) of strategies

and beliefs. The proposals are as specified in the statement of the theorem.

Beliefs: After any proposal xo # 0, player 1 (of either type) believes that 2 is the low
type with probability 1; after x5 = 0, she believes that 2 is the high type with probability
1. After any proposal x; # 1, player 2 believes that 1 is the low type with probability 1
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and after x; = 1, he believes that 1 is the high type with probability 1.

Acceptance strategies: for pairs of proposals which include at least one which has pos-
itive probability according to §(e), the following table sets out the acceptance decisions.

A means accept, R reject.

ry=1and z9 > v
ry=1land 0 < 2y <7
r1=1and 25 =0

1 <1—7; and 29 =0
1>x>1—~vand 2y =
z1=(3)(1+¢) and z5 > (1)

= (3)(1+¢) and 0 < 25 < (
azl (3)(1+¢) and 25 = (5)
1>z > (3)(1+¢) and 2o = (

SN T
SV V-V T

RS-V~~~ IS N
oI N S U R S

In particular, (a) (i) After proposing 1, H; accepts z, if and only if 25 > ~. (ii) After
proposing 0, Hy accepts z; if and only if 1 —x; > ~. (iii) After proposing (1/2)(1+¢), Ly
accepts o if and only if xo > (1/2)(1 — ). (iv) After proposing (1/2)(1 — ¢), Ly accepts
zp if and only if z; < (1/2)(1 + ¢€).

After other pairs of proposals:

(b) Suppose that (z1,22) has been proposed, where x; # 1, 1 # (1/2)(1 + ¢),
xo # 0, and xo # (1/2)(1 —¢). (i) If 1 — 27 < a(1l — 25), Ly accepts and Ly rejects. (ii) If
1 —x1 > a(l —x9) and 2 > axq, Ly accepts and Ly accepts. (iii) If 1 —x1 > a(1 — x9)

and zo < axy, Ly rejects and Lo accepts.

(c) Suppose that (z1,x2) has been proposed, where z; # 1 and x2 # 0. (i) H; accepts
x4y if and only if accepting x5 is weakly preferred to rejecting it, on the assumption that
player 2 is the low type and follows the acceptance rules defined above. (ii) Hy accepts
x if and only if accepting z; is weakly preferred to rejecting it, on the assumption that

player 1 is the low type and follows the acceptance rules defined above.

On the positive probability paths induced by ol(g), H; rejects 1’s offer and H; rejects
2’s offer, since (1/2)(1—¢) < vyand (1/2)(14+¢) > 1—~. Hy’s and Hy’s offers are rejected
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with probability 1. Therefore the strategy profile gives expected payoffs as specified.

The beliefs are clearly consistent with the strategies. By (a)(ii) and (a)(iv) any
proposal x; which will be accepted with positive probability is strictly less than ~, since
(1/2)(1+¢) < yand 1 —v < «. Therefore H; cannot do better than propose 1. Similarly,
H, cannot improve on the proposal of 0. L;’s optimal proposal is either (1/2)(1+¢) (the
highest which L, will accept, by (a)(iv)), 1 — v (the highest which H, will accept, by
(a)(ii)), or some z1 which will be rejected by both types. (1/2)(1 + ¢) gives an expected
payoff of V* = (1 — 12)(1/2)(1 — €?); (1 — 7) gives an expected payoff of

V= (1=m){(1/2)[(1 =)+ (1/2)(1 = &)[}(1 = &) + (1 = 7)(1 — )

(Ly; must accept (1/2)(1 — ¢) after proposing (1 — ) since (1/2)(1 —¢) > (1 — )); an
offer which will be rejected gives

Vi=(1-m)1-¢)1/2)(1 —e).
Since 1 — 2 > (1 —€)?, V* > V. Since lim,,_o V* = (1/2)(1 — £?) and

lim V = (1/2)[(1 =) + (1/2)(1 = £)](1 — )

n2—0

and since v > (1/2)(1 — ¢), we have V* > V for small enough 7,. Therefore, for such s,
L4’s specified proposal is optimal. Similarly, Ly’s specified proposal is optimal for small

enough 7.

Using Lemma 1, it is straightforward to verify that the acceptance strategies are

optimal given the beliefs specified. B

Proof of Proposition 2 Let (oh(¢),ph) be the following profile of strategies and
beliefs.

Proposals: Hy and L; both propose Z1(g) = [m1(1 — %) + (1 + &)][m (1 — &) + 2¢] 7.

H, proposes 0. Ly proposes aZi(g).

Beliefs: After any proposal player 1 (of either type) believes that 2 is the low type
with probability 1. After any proposal x; < Z7, player 2 believes that 1 is the low type
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with probability 1 and after xy > 71, he believes that 1 is the high type with probability
m-
Acceptance strategies: for pairs of proposals which include at least one which has pos-

itive probability according to oh(¢), the following table sets out the acceptance decisions

of Hi, L; and Ls.

H, L L,

xlzfl,xQZOzfl—f—(l—a)q/and1—@1Za(l—xg) A A A
xlzfl,mgZo{il—k(l—a)q/andl—fl<a(1—m2) A A R
r1 =721 and aZy < 29 < aZy + (1 — a)y R A A

1 =721 and 0 < 29 < Xy R R A
r1<landzy =0 R R A

z1=1land 25 =0 R R R

I S 1-— CY(]_ — Oéf/E\l), To = o@land i) Z ar) + (1 — CY)’]/ A A A
1 <1l—a(l—aZ),zes=artiand z3 <ax;+(l1—a)y R A A
r1>1—a(l —aZy),r # 7 and 9 = o A A R

In particular: (a) (i) After proposing Z1, H; accepts zy if and only if zo > aZ; +
(1 — a)y. (ii) After proposing Z;, L; accepts xs if and only if 25 > aZ;. (iii) After
proposing a1, Lo accepts Z;. (iv) After proposing aZ;, Lo accepts xp # Z; if and only if

1-— I Z Oé(l — CY.;I?\l).
Acceptance strategies after other pairs of proposals:

(b) Suppose that (z1,z5) has been proposed, where 21 < Z1, xo # 0 and x5 # aZ;.

1 -2 <a(l—x) and 29 > 7
11—z <a(l—z) and 2o < v
11—z > a(l —zy) and z2 > az; + (1 — @)y
1—21 > a(l — ) and axy + (1 — @)y > 2 > axy
1—x1 > a(l —2y) and x5 < axq

5o e T
S e o 5
SR i

(c) Suppose that (x1,z2) has been proposed, where z1 > T, 22 # 0 and =y # aZ;.

H, L Lo

To < QT R R A

e > axy and 1 — 21 < a(l — x9) A A R
xe>axr;+ (1 —a)yand 1 —z; > ol — 23) A A A
ary <zs<ar;+(l—a)yandl—z; >a(l—25) R A A
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Hy’s acceptance strategy:

(d) After any pair of proposals (z1,z2), Hy accepts x; if and only if accepting x;
is weakly preferred to rejecting it, given the beliefs and acceptance strategies specified

above.

Clearly, the beliefs are consistent with the strategies and it is straightforward to verify,
using Lemma 1, that each acceptance rule set out above is optimal given the beliefs and
the other acceptance rules. The only cases which require further argument are lines 3
and 8 of the first table. Consider line 3, i.e., suppose that 2 has proposed x, such that
aZy < x9 < aZi + (1 — a)y and 1 has made the proposal Z1. Ls believes that x will be
accepted (if it arrives) with probability 1 —n; because H; will reject it and Ly will accept.
21 has the property that L, is indifferent between accepting and rejecting it, given that
he has proposed az; and that this will be accepted with probability 1 — n;: if Lo rejects
71 his expected payoff is (1 — €)(1 — m)(1 — aZ1) and, if he accepts,

e(1—2)+ (1 —e)m(l—1) + (1— &)1 —m)(1/2)(1 — Z1 + 1 — ady).

Routine calculation shows that these are equal. Since he is indifferent between accepting
and rejecting 7, after proposing oz, he strictly prefers to accept x; after proposing

Ty > Xy, if it will be accepted with probability 1 — 7.

Now consider line 8 of the first table, i.e., suppose that 2 has proposed az; and 1
has proposed z; # 77 such that z; <1—a(l —az;) and aZ; < ax; + (1 —a)y. Hy’s and

Ly’s strategies are optimal by Lemma 1. Note that if 2; > Z; = (3)(1 +€), then
1—21 < CY(]_ — OéfEl).

This is because 7; is defined by the relation f(Z;) = f(aZ;) where f is the function F'
defined in section 2, specialized to the case of risk-neutral utility and v; = vy, = 0, i.e.,
f(z) = (1 — x). If 21 > &; then, by strict concavity of f, f(x1) < f(ax;). That is,
x1(1 — x1) < ax1(1 — axq). Therefore, since T; > Z; for sufficiently small ¢,

Z/E\l >1-— CY(]_ — Oéf/E\l). (Al)
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(A1) implies that 21 < Z; and so it is optimal for L, having proposed x1, to accept aZ;

by Lemma 1.

For small €, Z; is approximately equal to 1 and so 7; > ~. Also, from (Al), Z; >
1 — a(1 — azy). Therefore it is optimal for H; and L; to propose Z; because this is the
highest proposal which 2 will accept and higher than both « and 2’s expected offer (az;).
Hy’s proposal is optimal because there is no chance of 1 proposing or accepting anything
below 1 — « (for small € both Z; and aZ; are close to 1). In completing the assessment
of Ly’s optimal strategy we need to consider four possible courses of action: (i) propose
something which will be rejected with probability 1 and accept Zy; (ii) propose aZ; and

accept T, giving ex ante expected payoff

Vi, = e(l—e)d—m)[l —odi] +e(l —e)[l — 7]
+(1 =) (1 =m)(1/2)(1 - 21 +1—ady)

+(1 —e)*m[1 — 24).

(proposing aZ; and rejecting Z; would give the same expected payoff, as shown above).
(iii) propose aZj + (1 — )7y, the lowest proposal which will be accepted by both types,

and accept 71, giving expected payoff

Vi, = el—¢)l—az; —(1—-a)]

+e(l—e)1 =2+ (1—e)*(1/2) A -2 + 1 —a; — (1 — a)y);
(iv) propose aZj + (1 — )y and reject Ty, giving expected payoff
Vi, =1 —-¢)l —az; — (1 —-a)yl
(i) is clearly inferior to (ii). Ignoring terms in &2,
(Vi,—Vi,) ~m(l — ) — (%)(2 -5 (1+a)+ (%)(1 —a)y —em(l —21),
and so, since 1 +a=2(1+¢)tand 1 —a=2¢(1+¢)7},

Vi, =V, ~e(l+e) (v —may) —em(l — zy).
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Ase — 0, 2y — 1 and hence e (V, — V/)) — (v — mi), which is strictly positive.

Therefore, for small enough e, (iii) is inferior to (ii). Similarly, ignoring terms in &2,

1+m

(VL2 - VEQ) = ( 2

)Zi(a—1)—em(l—21) +e(l —az;) + (1 —e)(1 — a)y.

Therefore, as e — 0, e }(V, — Vi) — (2y — 1 —m1) so (iv) is inferior to (ii) because

m < 27 — 1. This establishes that Ls’s proposal is optimal for small €.

The equilibrium payoffs of L; and H; converge to 1 as € — 0 because z; — 1 and

ail —1. N

Proof of Proposition 5 The proof is by induction on ¢. Suppose that, for small ¢,
[*1(1m,0,¢) (t > 2) has a pure strategy equilibrium (o5 (g), p> ') in which the payoffs of
Hy, Ly, Hy and Ly are respectively Vg, (), Vi, (€), 82y and Vi, (g), where Vg, (¢) > Vi, (¢)
and, as € — 0, Vi, () — (3)(1+62), V. (e) = (5)(1+6"2) and V() — (3)(1—6"2).
By Proposition 2, this is true for ¢ = 2. We will construct, for each small enough ¢, an
equilibrium for T(n;,0,¢) such that, as ¢ — 0, the payoffs converge to the expressions

given. Let (ob(e), p%) be defined as follows.

Proposals in the first period (i.e., when there are t periods to go)

H; and L; both propose Z1(g) = (3)[(1 +¢&) — (1 +€)éVp,(g) + (1 — €)éVy, (¢)].

Ly proposes Zs(e) = (3)[(1 — &) — (1 — &)V, (g) + (1 +€)6Vi, ()]

(Note that these are the proposals made in the single-period complete information

game between 1 and 2 with v; = 6V, (¢) and ve = 6V, (¢)).
H, proposes 0.
Beliefs after first-period events

(1) 1 believes that 2 is the low type at the start of the second period (i.e., when there
are t — 1 periods to go), no matter what happens in the first period, assuming that the

game continues to the second period.
(2) If 1 proposes x; > T1(g), 2 believes that 1 is the high type, and continues to
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believe this at the start of the second period; if 1 proposes z; < Z;(¢), 2 believes that 1 is
the low type, and continues to believe this at the start of the second period (regardless,
for example, of whether 1 has rejected a high proposal x2); if 1 proposes Z;(g), 2 believes

that 1 is the high type with probability 7.

(3) If 1 has proposed Z;(¢), or if 1’s offer does not arrive, and 1 rejects xo, then (i)
if zo > T9(e), 2 believes that 1 is the high type with probability 1; (ii) if xe < Za(e), 2

believes that 1 is the high type with probability 7;.
Continuation strategies from the start of the second period

If the game does not end in the first period there are three possible belief states at
the start of the second period: (a) 1 is believed to be the high type, in which case the
strategy profile ol () described in Proposition 3 is played; (b) 1 is believed to be the low
type, in which case the strategy profile oiy(¢) described in Proposition 4 is played; (c) 1

t—1

is believed to be the high type with probability n;, in which case o) ~(¢) is played, giving
continuation payoffs Vi, (€), Vi, (€), 6* 2y and Vi, (e) respectively to Hy, Ly, Hy and L.

Acceptance strategies in the first period
(i) If 1 proposes 71 (g) and 2 proposes xs > To(€), Hq, Ly and Ls all accept;
(ii) If 1 proposes T1(€) and 2 proposes x2 < Z2(e), Hy and L; reject and Lo accepts;

(iii) If 1 proposes x1 < Z1(¢) and 2 proposes Zy(¢), H; and Lyaccept and Lo accepts
if and only if accepting x; is weakly preferred to rejecting, on the assumption that 1 will

accept and the continuation, if any, will be ofy*(¢);
(iv) If 1 proposes x; > Z1(¢) and 2 proposes Ts(e), H; and L, accept and Ly rejects;

(v) If 1 proposes x; # T1(e) and 2 proposes xo # Ta(€), then (a) if 27 > T1(e) the
acceptance strategies are as in the first period of the strategy profile o (¢) described in
Proposition 3; and (b) if z; < Z;(¢) the acceptance strategies are as in the first period of

the strategy profile o}, (¢) described in Proposition 4;
(vi) Hy’s acceptance strategy is a pure best response to the acceptance strategies
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above, given the specified beliefs and continuation strategies.

The beliefs are clearly consistent with the strategies and the continuation strategies
are clearly in equilibrium after each possible first-period history. Given the acceptance
strategies, Hy’s and L;’s proposal of Z;(¢) is optimal because Ly will accept this but reject
anything higher while H; and Ly will accept Zs(e), which is less than Z;(¢). Equivalent
reasoning shows that it is optimal for L, to propose Z»(g). Hy’s reservation payoff is 6 1v,
by the induction hypothesis. Therefore he should not propose or accept anything higher
than 1 — "'y, Ase — 0, Z1(e) — (1 +6"") and Z»(e) — 1(1+ 6'7"). By assumption,
875 +7) > 5,80 5(14+6"1) > 1— 61y, which implies that, if € is small enough, H,
should not make an acceptable proposal, or accept 1’s offer. Therefore it is optimal to

propose 0.

Next, we have to check that the acceptance strategies are optimal, given the contin-
uations specified. Note that, if 1’s rejection payoff (i.e., her payoff if she rejects) is either
71(e) (if her offer arrives) or 6V, (e) (if it does not) then, by the complete information
analysis, 1 is indifferent between accepting and rejecting Zo(e). Similarly, if 2’s rejection
payoff is either 1 — Za(e) or 6V, (e) then 2 is indifferent between accepting and rejecting
T1(e). Case (i): Lq’s rejection payoff is either 1 — xo < 1 — Z5(e) (if his proposal arrives)
or 6V, (e) (if it does not); therefore it is optimal to accept Z;(e). H;’s rejection payoff
is either Z;(¢) or approximately (for small €) £(1 + &' %) while L;’s is slightly less than
this, since rejection leads to I'"=*(1,0,¢) if Z;(¢) does not arrive; therefore, by Lemma 1,
it is optimal to accept x5 if 6V, (¢) > £(1+ 6" ?). For small enough ¢, this is guaranteed
if 2(1+6"2%) > 2(14 6 2y). The latter is true since v < 1. Case (ii): Hi’s rejection
payoff is either Z;(g) or 6V, (e) > 6V, (€); Ly’s is either Z1(g) or 6V, (g). Therefore it is
optimal for each to reject zo. Lo’s rejection payoff is 6V, (e) < 1 — Z;(¢g), so it is optimal
to accept T1(g). Case (iii): Lo’s strategy is obviously optimal. If Ly’s strategy is to accept
x1 it is optimal for H; and L; to accept Z»(e) if the rejection payoff (if x; does not arrive)
is less than 6V}, (g). Similarly, if Ls’s strategy is to reject z; it is optimal for Hyand L; to

accept Ta(e) if the rejection payoff is less than V7, (¢) since 6V, (¢) < Za(e). Rejection
pt T(e) ] pay . . ]
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(if 71 does not arrive) leads to I'""1(0,0,¢) and so, for small e, H;’s rejection payoff is

§'='v and L;’s is approximately 2.

lim 6V, (<) = g(l +o2) >

| O

and, since y < 1,

g(l + 5t_2) > 671y,

Therefore, for small enough ¢, it is optimal to accept Z2(e). Case (iv): Ly’s proposal will
be accepted. It is optimal for him to reject x; > Z1(¢) if Lq’s rejection payoff (assuming
2’s offer does not arrive) is at least §V7,(¢). The rejection continuation is I'*"1(1,0, ¢) and
so, by Proposition 3, Lsy’s rejection payoff is approximately %(1 — &'72).

lim 6V, (g) = é(1 —6) < é(1 —672y)

e—0 2 2
and so, for small e, Ly should reject any z; > Z;(¢). Given that z; will be rejected, H;
and Ly should, for small e, accept Z(¢) if Zo(e) > §(1 4 6 27) (this is approximately 1’s
rejection payoff by Proposition 3).
lim 7y (¢) = %[1 — é(1 -8+ g(l + 673 = %[1 +671 > g(l + 6'72y)

e—0 2

since v < 1. This shows that acceptance is optimal for H; and L;. Cases (v) and (vi) are

obvious.

As e — 0, Hy’s and L;’s payoff from this strategy profile converges to
Lo o ~ 1 -1
Sm (@, (e) +2a(e))] = 5L+ 677

Similarly, L,’s payoff converges to 3[1 — &'~!]. This completes the proof. B
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