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Abstract

This paper examines the irreversible adoption of a technology whose returns are
uncertain, when there is an advantage to being the first adopter, but a network
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1. Introduction

This paper examines the irreversible adoption of a technology whose returns are uncertain,

when there is an advantage to being the first adopter, but a network benefit to adopting

when others also do so. The paper asks: does adoption occur ‘too fast’ or ‘too slow’

in equilibrium? Does the ‘right kind’ of adoption occur? How do the various factors—

network effects, uncertainty and preemption—interact?

These questions can be seen most clearly in a simple location entry model. Consider

a street with three possible locations for shops: two sites at the ends of the street, and

one in the middle. Consumers live all the way (e.g. are uniformly distributed) along the

street. Two entrepreneurs are considering when and where to open a shop. There are

sunk costs (such as fitting) in opening a shop. If both entrepreneurs open a shop, they

compete in prices against each other for custom. There are, however, positive externalities

to being located on the same street; for example, because a common cost can be shared

(such as a fixed cost of delivery of goods), or because aggregate demand is increased by

lowering consumer search costs. Finally, total demand (the mass of consumers) is growing

over time but is uncertain.

Three factors affect the location decision of an entrepreneur who enters before its rival

(the leader): profit before the entry of the rival; profit after the entry of the rival; and

the expected time to entry of the rival. Suppose that the leader decides to locate in the

middle of the street. In doing so, while it has the only shop on the street its profit is

higher than if it had located at one end of the street. Once its rival (the follower) enters,

its profit is lower than if it had located at one end of the street, since price competition is

more intense.
�

But this fact also means that the follower will delay opening its shop until

the level of demand is higher, and so the leader will enjoy monopoly profits for longer.

There are two patterns of entry and location. In the first, the leader locates ‘aggres-

sively’ in the middle of the street and the follower enters (relatively) late. In the second,

�

Its rival will, given standard assumptions, locate as far away as possible to minimise price competition.
The furthest away it can locate from a shop in the middle of the street is half the street length, rather
than the whole street length if the leading entrepreneur locates at one end.
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the leader locates ‘accommodatingly’ at the end of the street and the follower enters (rel-

atively) soon. In fact, in the model that is developed here, this contrast is particularly

stark: when the leader is aggressive, it preempts its rival and entry occurs sequentially;

but when the leader accommodates, entry is simultaneous.

In order to study in detail these economic forces, the continuous time analysis of

Fudenberg and Tirole (1985) is adapted: the firms’ profit functions are modelled in order

to parameterise the first mover advantage and network effects, and to include uncertainty.

Entry is interpreted as adoption of a technology by two firms. Then an aggressive leader

preempts by adopting ‘early’ (i.e., when the level of instantaneous return is low), with

the follower adopting ‘later’ (at a higher level of instantaneous return). Accommodation

means that simultaneous adoption occurs at a point which is after the leader’s adoption

point in the corresponding sequential equilibrium, but before the follower’s. (These facts

will be established during the analysis.)

Two types of externalities arise in the model: a backward externality, since the fol-

lower does not take into account the effect of its adoption on the leader; and a forward

externality, since the leader does not consider its effect on the follower. (The terms ‘back-

ward’ and ‘forward’ externality are borrowed from Choi (1994).) Hence there are two

types of inefficiencies in adoption decisions. First, when the leader adopts aggressively,

the firms adopt at the incorrect times relative to the co-operative solution. Secondly,

the leader acts aggressively too often: adoption may be sequential when the co-operative

solution involves simultaneous adoption. (The analysis will also show that the converse—

simultaneous adoption in equilibrium when co-operation requires it to be sequential—does

not occur.)

The analytical task is to determine the adoption times, patterns and inefficiencies,

and examine their dependence on the factors in the problem: preemption, network effects

and the degree of uncertainty. Simple intuition suggests the following. The first mover

advantage should make preemption more attractive; and preemption should lead to earlier

adoption of the technology by the leader. Network effects should encourage accommoda-

tion, so that when the effects are sufficiently large, preemption does not occur and the

technology is adopted simultaneously. They should also increase inefficiencies in adoption

2



behaviour. Uncertainty should delay adoption, due to the option values that are created

by the irreversibility of the investment.

In fact, the analysis makes several qualifications to this intuition. Preemption does

hasten adoption. Network effects do indeed increase adoption inefficiencies. But they do

so in several ways, through: (i) decreasing (relative to the co-operative benchmark) the

amount of simultaneous adoption that occurs in equilibrium; (ii) changing the follower’s

adoption point when adoption is sequential; and (iii) bringing forward the adoption point

of the preempting firm when adoption is sequential. Uncertainty does not always delay

adoption: for sufficiently large network effects, the introduction of a small amount of

uncertainty into the model decreases the adoption point of the preemptor in an equilibrium

with sequential adoption. Overall, therefore, the effects and interactions of these three

factors are rather subtle and surprising.

There are many cases of technology adoption in which uncertainty, network effects and

first mover advantages are important. Two examples are mentioned briefly (in addition to

the shop location story discussed earlier). The first example concerns two firms deciding

whether to set up sites on the World Wide Web. There is some benefit to having a Web

site; but the exact size of the benefit is uncertain.
�

Sunk costs are incurred in setting up

a site: skilled labour is required to design and write the pages, a domain name must be

purchased, marketing expenditures incurred etc..
�

An increasingly important source of

first mover advantage is the ability of early adopters to buy their preferred domain names

cheaply.
�

Generic Web addresses (such as business.com and internet.com), generally

perceived to be the most valuable, are a limited resource. In 1997, business.com was

�

A recent study found that one-third of the small businesses that use the Internet increased their
revenues by at least 10 per cent over the previous year. However, in the first nine months of 1999,
consumer e-commerce in the U.S. initially fell and then plateaued; participation in online auctions has
followed the same pattern. See InternetNews.Com (1999). Recent bankruptcies have emphasised the high
degree of uncertainty facing internet-based businesses.

�

Estimates of the cost of setting up the most basic web site range between US$225–1050, with an
annual maintenance cost of between US$200–350; the most complex sites may cost several hundreds of
thousands of dollars. See PC World (1999). Since its inception, marketing expenditure has been 25% of
amazon.com’s revenues.

�

Before 1994, Internic, the primary international authority for registration of domain names, did not
charge; after this date, registration fees were instituted (in September 1999, US$70 per address for first
2 years, with a renewal fee thereafter). See Radin and Wagner (1996) for details.
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sold for US$150,000, consumers.com and internet.com both sold for US$100,000.
�

In

the words of one industry newspaper, the “Internet equivalent of an uptown address just

got a little bit pricier” (see CNET News.Com (1997)). A first mover advantage may also

arise because the firm that acts first to set up its Web site may face lower staff costs—site

designers being relatively abundant—than later firms who have to hire when designers

are more scarce. Finally, network effects arise since a firm setting up a Web site benefits

from the efforts of other firms, both directly (e.g. by being able to learn from the design

of other sites) and indirectly (e.g. consumers already being accustomed to buying online).

As a second example, consider competing satellite systems for global communications.

(The following discussion relies on Vu (1996).) Initially, there were two competing types of

system: geosynchronous earth orbit (GEO) satellites and low earth orbit (LEO) satellites.
�

There are large sunk costs to implementing either system: the GEO system was estimated

to cost around US$4 billion, while the cheapest LEO proposal costs US$9 billion. Wireless

communications systems such as satellites use frequencies within the radio spectrum. If

two users employ the same frequency at the same time, interference is created. A broader

range of lower frequencies is more desirable and a first mover advantage arises through the

allocation of these frequencies.
�

Network effects arise naturally, since the availability of

satellite systems stimulates demand for global communications that all system operators

benefit from. Finally, the industry faced considerable uncertainty, about both the cost of

satellite technology and the total demand for wireless communication services.

The paper closest to this one is Choi (1994) who examines a model in which there

are network effects, uncertainty and the possibility of delay. Choi identifies the two

�

It might be argued that the most famous web addresses, such as amazon.com and yahoo.com, are
non-generic. The point is, however, that generic web addresses are advantageous in attracting uninformed
consumers who are unaware of specific brands.

�

The former orbit approximately 35,000 km above the equator, and require between three and fifteen
satellites to deliver worldwide service. LEOs orbit at about 1,350 km above the earth’s surface, and
require a much larger network of satellites to cover the entire world. More recently, a third system—
global stratospheric telecommunications system (GSTS)—has been proposed. GSTS involves floating
communication platforms suspended 12 km above the earth by helium balloons.

�

Two aspects of frequency are important. The first is amount: the bandwidth made available to a
wireless operator determines the total demand that it can serve. Secondly, the range of the frequency has
important consequences for transmission. Very high frequencies can be blocked by tree leaves, windows
and even very heavy rain storms, causing loss of signal.
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externalities mentioned above. In Choi’s model, users are exogenously asymmetric: user

1 is able to choose which of two technologies (with random returns) to adopt in either of

two periods, while user 2 is able to adopt only in the second period. Implicitly, he includes

a first mover advantage—the forward externality creates an early adopter’s commitment

power, similar to that identified by Farrell and Saloner (1985). Choi finds that the forward

externality outweighs the backward, and there is excess momentum: the option to delay

is not held for long enough in equilibrium compared to the social optimum.

This paper departs from Choi’s in several respects. Most importantly, it does not

impose exogenously an asymmetry between players, but rather allows the first mover to

be determined endogenously. To show the consequence of this, two versions of the model

are presented. In the first, the roles of leader and follower are preassigned exogenously,

so that (as in Choi) preemption is not an issue; see section 3.1. In the second version, the

roles are determined endogenously: the leader adopts at the point at which it is indifferent

between leading and following; see section 3.2.
�

The fact that adoption by the leader is

determined by indifference, rather than optimally (for the leader), makes an important

difference to adoption behaviour. As in Choi’s model, there is excess momentum, in

the sense that sequential adoption occurs too often in equilibrium compared to the co-

operative solution. A second aspect of the forward externality is identified: endogenous

determination of the leading firm (i.e., preemption) causes the leader to adopt too early.

This endogenous determination of roles also lies behind the surprising comparative static

result that an increase in uncertainty may cause the first mover to adopt the technology

earlier.
�

Three strands of literature are related to this paper. Real options models have been

used to explain delay and hysteresis arising in a wide range of contexts. McDonald and

Siegel (1986) and Pindyck (1988) consider irreversible investment opportunities avail-

able to a single firm. Dixit (1989) and Dixit (1991) considers product market entry and

exit in monopolistic and perfectly competitive settings respectively. The second strand

of literature concerns timing games of entry or exit in a deterministic setting. Papers

�

This is the rent equalisation principle identified in Fudenberg and Tirole (1985).
�

There are other differences between our model and Choi’s: for example, we choose a continuous time
setting rather than a two period model so that dynamics can be examined in detail.

5



analysing preemption games include Fudenberg, Gilbert, Stiglitz, and Tirole (1983) and

Fudenberg and Tirole (1985), while wars of attrition have been modelled by e.g. Fuden-

berg and Tirole (1986). Finally, technology adoption in the presence of network effects

has been analysed by many papers, including Farrell and Saloner (1986) and Katz and

Shapiro (1986). Existing real option models typically assume a monopolistic or perfectly

competitive framework, and do not include network effects. Preemption models allow

for incomplete information about the types of players, but not for common uncertainty

about payoffs or network benefits. Network papers have not (with the exception reviewed

above) analysed explicitly the effect of ‘option values’—created when there is exogenous

uncertainty, adoption is irreversible, and agents are able to choose the time of adoption.

Three further papers, though less closely related, are also relevant. Smets (1991) ex-

amines irreversible market entry in a duopoly facing stochastic demand. Simultaneous

investment may arise only when the leadership role is exogenously preassigned. Conse-

quently, he does not consider fully forward externalities. Weeds (1999) presents a model

in which two firms may invest in competing research projects with uncertain returns. She

does not impose an asymmetry between the firms, but allows the leader to emerge endoge-

nously. She does not include, however, network effects. Finally, Hoppe (2000) analyses

a timing game of new technology adoption in an uncertain environment. She considers

second, rather than first, mover advantages and models uncertainty in a different way to

this paper.

The rest of the paper is structured as follows. Section 2 presents the set-up. Section

3 analyses the non-co-operative equilibria of two versions of the model—the first where

the roles of leader and follower are exogenously preassigned, the second where they are

endogenous. Section 4 determines the co-operative solution. Various inefficiencies in the

model are analysed in section 5, which also reviews the main results and comparative

statics of the model. Section 6 concludes. The appendix covers certain technical aspects

of the micro-foundation for the reduced-form model and contains lengthier proofs.
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2. The Model

This section develops a simple model to capture the three effects that are the focus of

this paper: (i) uncertainty, irreversibility and the possibility of delay in adoption; (ii)

network effects, where the return to adoption of the technology depends on the number of

other adopters; and (iii) preemption, where early adopters have a first mover advantage.

The purpose is to provide a micro-foundation for the reduced-form instantaneous return

functions that are used for the analysis later in the paper. It should be noted, however,

that the subsequent analysis is not specific to the particular micro-model chosen. A

number of alternative frameworks could have been used as a foundation for the same

reduced-form equations. Section 2.1 develops a spatial model that underlies the reduced

form in section 2.2.

2.1. A Spatial Model of Adoption

The adoption of a new technology by two firms is modelled as Hotelling-style entry into

a horizontally differentiated market. In the spatial model, a first mover advantage arises

because the early adopter can locate so as to attract more demand than the later adopter.

This is intended to capture the possibility that an early adopter can, for example, obtain

better access to scarce resources such as a generic Web site address. The entry game is

treated quite informally in this section; see section 2.2 for a more formal statement of the

firms’ strategies, equilibrium etc.. The purpose of this section is to establish instantaneous

return functions that are amenable to further analysis.

Consumers are uniformly distributed on the unit interval. A consumer located at

x ∈ [0, 1] gains a utility from purchasing a unit of the good located at y ∈ [0, 1] given by

U(x, y) = V − l(|x − y|)
�

− p, where V is a constant that is the same for all consumers,

l > 0 is the transport cost, or measure of horizontal differentiation, and p is the price

that is charged for the good. Each consumer buys one or zero units of any good. It is

assumed that V is ‘sufficiently large’; exactly how large and the role of this assumption

is explained below and in the appendix. Time is continuous and labelled by t ∈ [0,∞).
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The mass of consumers is time-varying and is described further in section 2.2.

Two risk neutral firms, labelled i = 1, 2 can each enter the industry. There is a cost K

to doing so, which is the same for both firms. Entry is irreversible (the cost K is entirely

sunk), and can be delayed indefinitely. Once a firm has entered, it can sell its product at

zero marginal cost. There are three possible locations at which the firms can enter: at

x = 0, x =
�

� and x = 1. The restriction on locations is made to keep the analysis clear.

There are three factors to consider: (i) the timing of entry; (ii) the location of entry;

and (iii) the prices set by the firms. The first question is tackled in later sections; in

this section, flow returns are calculated conditional on entry. Notice that the firms will

not enter at the same location on the line, since Bertrand competition would drive flow

profits to zero; with the sunk cost of entry K, entry would not be profitable in this case.

Two configurations are possible: one of the firms locates at x =
�

� while the other locates

at x = 0 (or, equivalently, x = 1); or both firms locate at the ends of the line, at x = 0

and x = 1. In the static Hotelling model with endogenous locations and a quadratic

transport cost function, there is maximum differentiation. Therefore, when (a) entry is

simultaneous, the firms locate at the ends of the line; (b) entry is sequential, the second

entrant, or follower, locates as far away from the first entrant, or leader, as possible. In

the latter case, there are two possibilities: (i) the leader locates at x =
�

� , or (ii) the leader

locates at one end. In either case, the follower locates at the (other) end. Only the first

possibility is considered in this paper; the conditions required for this to be the optimal

choice of the leader are derived in the appendix. The purpose of this restriction is to

focus attention on the choice of interest: whether a firm considering adoption before its

rival should be aggressive or accommodating. If it is aggressive, by locating in the middle,

then the conditions ensure that the other firm delays adopting. If it is accommodating,

by locating at one end, then the other firm locates at the other end simultaneously.

Consider first the outcome when the firms enter the market sequentially. The extensive

form of the game is as follows: one firm enters and, having entered at its preferred location,

sets its price to maximise profit. The second firm then enters at its preferred location;

once it has entered, the firms compete in prices. Without loss of generality (wlog), let firm

1 be the firm that enters first. Let the mass of consumers in the market at time t in this
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case be θt. Once the firm has entered (at location x =
�

� ) and before firm 2 has entered,

it chooses its price to maximise its profit π � = θp � (1 − 2x∗), where (x∗, 1 − x∗) are the

locations of the marginal consumers who are indifferent between buying and not: i.e., for

whom V − l(
�

� −x∗)
�

−p � = 0, when the firm sets a price p � . A straightforward calculation

shows that, when V is sufficiently large, the firm chooses to sell to all consumers, setting

its price so that the consumers located at x = 0 and 1 are indifferent between buying and

not.
���

Therefore the firm’s profit maximising price and maximum profit are

pI� = V −
l

4
, πI� =

(

V −
l

4

)

θ.

Now consider the outcome once the second firm has entered, wlog at x = 0. The

assumption that V is sufficiently large (greater than
�

� l) ensures that in equilibrium all

consumers buy from one of the firms. The usual calculations show that the Nash equilib-

rium prices are

pII� =
7

12
l, pII� =

5

12
l.

V ≥
�

� l means that these prices are lower than pI� , and so certainly all consumers receive

a greater net surplus in this case.

A positive network effect is introduced by letting the market size at time t when two

firms have adopted be (1+α)θt, where α ≥ 0. There are several ways in which this feature

can be justified. First, with two firms in the industry, competition is more intense and

consumer surplus is greater. Consequently, more consumers will be willing to buy the

firms’ goods. Alternatively, there may be a positive externality arising from the presence

of search costs for consumers that ensures an increase in aggregate demand when two firms

are located on the line.
� �

Finally, it could be that the firms must cover jointly a fixed

���

The alternative is that x∗ > 0. In this case, the firm’s profit maximising price would be p =
�
V

� and

x∗ =
�

� −
√

V�
l
. In order for x∗ > 0, therefore, it must be that V <

�

� l. It is assumed below, however,

that V ≥
�

� l, so this case does not occur.
� �

In this story, there is some ‘outside’ good that consumers can buy when they do not find their
preferred good at a firm on the line. When there is only one firm on the line, expected search costs are
higher and so fewer consumers are willing to buy than when there are two firms on the line.
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cost for delivery of inputs from a perfectly competitive supplier. When there is one firm

in the industry, it pays the entire delivery cost; when there are two firms in the industry,

the fixed cost can be shared. This decrease in fixed cost is represented as a multiplicative

increase in the profit function of the firms. The firms’ instantaneous profits are therefore

πII� =

(

49l

144

)

(1 + α)θt, πII� =

(

25l

144

)

(1 + α)θt.

Finally, consider the outcome when the firms enter simultaneously at either end of

the line. The standard calculation gives the Nash equilibrium prices as pIII� = pIII� = l.

Since V ≥
�

� l, these prices are below pI� , but they are above both pII� and pII� . There

is again a positive network effect, but smaller than previously: it is γ(1 + α)θt where

γ ∈ (0, 1). Depending on which justification is used, this is because price competition

is less fierce in this case, and so consumers are less willing to buy the firms’ goods; or

because consumers’ expected search costs are higher because the firms on the line are

farther apart; or because the fixed cost of delivery to two firms that are further apart is

bigger. The firms’ symmetric profits are then (each)

πIII =
l

2
γ(1 + α)θt.

2.2. A Reduced Form

The micro-model has provided the following expressions for the instantaneous profits

at time t of the ‘leader’ and ‘follower’ when entry—or adoption of the technology—is

sequential, normalised by the leader’s profit before the follower adopts:

πI� = θt, (1)

πII� =

(

49l

36(4V − l)
(1 + α)

)

θt ≡ (1 + δL)θt, (2)

πII� =

(

25l

36(4V − l)
(1 + α)

)

θt ≡ (1 + δF )θt. (3)
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The instantaneous profits of the firms at time t when adoption is simultaneous is

πIII =

(

8l

4V − l
γ(1 + α)

)

θt ≡ (1 + δS)θt, (4)

again normalised by πI� . (Note that these reduced-form expressions are not unique to the

micro-model that has been used—the micro-model is provided to aid interpretation.)

Many configurations of the parameters δL, δF and δS are possible. The following

assumption is made:

Assumption 1:

−

(

β

β + 1

)

≤ δF ≤ 0,

δF ≤ δS ≤ 0,

δF
β
≤ δL ≤ −δF ,

where β ∈ (1,∞) (and will be defined later).

This assumption captures the features of interest in this paper, and in particular a first

mover advantage (δL ≥
δF
β
≥ δF ). The other restrictions are fairly reasonable and simplify

the analysis. The role of particular aspects of assumption 1 will be pointed out as the

analysis progresses.

It is worth contrasting the instantaneous profit functions implied by assumption 1

with those used by Fudenberg and Tirole (1985). There are two key differences. First, we

have introduced more modelling than Fudenberg and Tirole, who use quite general func-

tions. This is deliberate: the interest of this paper is to study in detail how equilibrium

outcomes and inefficiencies depend on certain features of the problem. For this purpose,

parameters have been introduced explicitly to allow comparative static analysis (see sec-

tion 5). Secondly, here the leader receives a higher instantaneous profit than the follower

once the latter has adopted. In contrast, in Fudenberg and Tirole (1985), firms who have

adopted receive the same flow payoff. This emphasises that this paper is concerned with
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situations in which there is a preferred ‘location’, or a persistent first mover advantage.

θt was interpreted in section 2.1 as the mass of consumers in the market; more generally

it is referred to as the stand-alone benefit from adopting the technology (the instantaneous

return received by a firm that is the sole adopter of the technology). This stand-alone

benefit is assumed to be exogenous and stochastic, evolving according to a geometric

Brownian motion (GBM) with drift:

dθt = µθtdt + σθtdWt (5)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate of θ, r is the

continuous time discount rate,
� �

σ > 0 is the instantaneous standard deviation or volatility

parameter, and dW is the increment of a standard Wiener process, dWt ∼ N(0, dt). The

parameters µ, σ and r are common knowledge and constant over time. The choice of

continuous time and this representation of uncertainty is motivated by the analytical

tractability of the value functions that result.

The strategies of the firms in the adoption game are now defined. If firm i has not

adopted the technology at any time τ < t, its action set is Ai
t = {adopt, don’t adopt}. If,

on the other hand, firm i has adopted at some τ < t , then Ai
t is the null action ‘don’t

move’. The firm therefore faces a control problem in which its only choice is when to

choose the action ‘adopt’. After taking this action, the firm can make no further moves.

A strategy for firm i is a mapping from the history of the game Ht (the sample path of

the stochastic variable θ and the actions of both firms up to time t) to the action set Ai
t.

Firms are assumed to use stationary Markovian strategies: actions depend on only the

current state and the strategy formulation itself does not vary with time. Since θ follows a

Markov process, Markovian strategies incorporate all payoff-relevant factors in this game.

Furthermore, if one player uses a Markovian strategy, then its rival has a best response

that is Markovian as well. Hence, a Markovian equilibrium remains an equilibrium when

history-dependent strategies are also permitted, although other non-Markovian equilibria

� �

The restriction that µ < r ensures that there is a positive opportunity cost to holding the ‘option’ to
adopt, so that the option will not be held indefinitely.
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may then also exist. (For further explanation see Maskin and Tirole (1988) and Fudenberg

and Tirole (1991).)

The formulation of the firms’ strategies is complicated by the use of a continuous

time model. Fudenberg and Tirole (1985) point out that there is a loss of information

inherent in representing continuous time equilibria as the limits of discrete time mixed

strategy equilibria. To correct for this, they extend the strategy space to specify not only

the cumulative probability that player i has adopted, but also the ‘intensity’ with which

each player adopts at times ‘just after’ the probability has jumped to one.
� �

Although

this formulation uses mixed strategies, the equilibrium outcomes are equivalent to those

in which firms employ pure strategies. (See section 2 of Fudenberg and Tirole (1985).)

Consequently, the analysis will proceed as if each firm uses a pure Markovian strategy

i.e., a stopping rule specifying a critical value or ‘trigger point’ for the exogenous variable

θ at which the firm adopts. Note, however, that this is for convenience only: underlying

the analysis is an extended space with mixed strategies.

The possible states of each firm are denoted ni ∈ {0, 1} when the firm has not adopted

and has adopted the technology, respectively. The following assumptions are made:

Assumption 2: If ni(τ) = 1, then ni(t) = 1 for all t ≥ τ , i = 1, 2.

Assumption 3: E �
[∫

∞
� exp (−rt)θtdt

]

−K < 0.

Assumption 2 formalises the irreversibility of adoption: if firm i has adopted by date

τ , it then remains active at all dates subsequent to τ . Assumption 3 states that the

initial value of the technology is sufficiently low that the expected return from adoption

is negative, thus ensuring that immediate adoption is not worthwhile. (The operator E �

denotes expectations conditional on information available at time t = 0.)

� �

In Fudenberg and Tirole (1985), a firm’s strategy is a collection of simple strategies satisfying an
intertemporal consistency condition. A simple strategy for firm i in a game starting at a positive level
θ of the state variable is a pair of real-valued functions (Gi(θ), εi(θ)) : (0,∞) × (0,∞) → [0, 1] × [0, 1]
satisfying certain conditions (see definition 1 in their paper) ensuring that Gi is a cumulative distribution
function, and that when εi > 0, Gi = 1 (so that if the intensity of atoms in the interval [θ, θ + dθ] is
positive, the firm is sure to adopt by θ). A collection of simple strategies for firm i, (Gθ

i
(.), εθ

i
(.)), is the

set of simple strategies that satisfy Bayes rule.
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3. Non-Co-operative Equilibrium

Two models are studied. In the first, there are no preemption effects: one firm is assigned

exogenously the role of adopting the technology first. This model is well-suited to cases

in which one firm has a clear advantage in the adoption of the technology—it may be

technically more literate, have a more flexible organisation, or be less dependent on the

existing technology. More importantly, by ignoring the possibility of preemption (the

first mover always moves first), it isolates the option and network effects (and so allows

a comparison with Choi (1994)). In the second model, firms are ex ante symmetric,

but may be ex post asymmetric; which firm adopts first and which second is determined

endogenously.

3.1. Without Preemption

Start by assuming that the preassigned leader and follower adopt at different points. The

possibility of simultaneous adoption is considered below. As usual in dynamic games the

stopping time game is solved backwards. Thus the first step is to consider the optimisation

problem of the follower who adopts strictly later than the leader. Given that the leader

has adopted irreversibly, the follower’s payoff on adopting has two components: the flow

benefit from the technology, (1 + δF )θt; and the cost of adoption, −K. The follower’s

value function at time t given a level θt of the state variable is therefore

F (θt) = max
TF

Et

[
∫

∞

TF

exp (−r(τ − t))(1 + δF )θτdτ −K exp (−r(TF − t))

]

(6)

where TF is the random adoption time for the follower, and the operator Et denotes

expectations conditional on information available at time t. The value function F has

two components, holding over different ranges of θ: one relating to the value of adoption

before the follower has adopted, the other to after adoption. Let these value functions be

denoted F � and F � , respectively.

Prior to adoption, the follower holds an option to adopt but receives no flow payoff.
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In this ‘continuation’ region, in any short time interval dt starting at time t the follower

experiences a capital gain or loss dF � . The Bellman equation for the value of the adoption

opportunity is therefore

F � = exp (−rdt)Et [F � + dF � ] . (7)

Itô’s lemma and the GBM equation (5) gives the ordinary differential equation (ODE)

1

2
σ

�

θ
�

F ′′� (θ) + µθF ′� (θ)− rF � (θ) = 0. (8)

From equation (5), it can be seen that if θ ever goes to zero, then it stays there forever.

Therefore the option to adopt has no value when θ = 0, and must satisfy the boundary

condition F � = 0. Solution of the differential equation subject to this boundary condition

gives F � = bF θβ, where bF is a positive constant and β > 1 is the positive root of the

quadratic equation Q(z) =
�

� σ
�

z(z−1)+µz−r; i.e., β =
�

�

(

1−
�
µ

σ
� +

√

(

1−
�
µ

σ
�

)

�

+
�
r
σ

�

)

.

Now consider the value of the firm in the ‘stopping’ region, in which the value of θ

is such that it is optimal to adopt at once. Since adoption is irreversible, the value of

the firm in the stopping region is given by the expected value alone with no option value

terms: when the level at time t of the state variable is θt, this is

F � (θt) = Et

[∫

∞

t

exp (−r(τ − t))(1 + δF )θτdτ −K

]

.

θ is expected to grow at rate µ, so that

F � (θ) =
(1 + δF )θ

r − µ
−K. (9)

The boundary between the continuation region and the stopping region is given by a

trigger point θF of the stochastic process such that continued delay is optimal for θ < θF

and immediate adoption is optimal for θ ≥ θF . The optimal stopping time TF is then

defined as the first time that the stochastic process θ hits the interval [θF ,∞) from below.
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Putting together the two regions gives the follower’s value function:

F (θ) =

{

bF θβ θ < θF ,� ���
δF � θ

r−µ
−K θ ≥ θF ,

(10)

given that the leader adopts at θL < θF .

By arbitrage, the critical value θF must satisfy a value-matching condition; optimal-

ity requires a second condition, known as ‘smooth-pasting’, to be satisfied. (See Dixit

and Pindyck (1994) for an explanation.) This condition requires the two components of

the follower’s value function to meet smoothly at θF with equal first derivatives, which

together with the value matching condition implies that

θF =
β

β − 1

(

K

1 + δF

)

(r − µ), (11)

bF =
(1 + δF )θ

−

�
β−

� �
F

β(r − µ)
. (12)

Equation (11) for the follower’s trigger point can be interpreted as the effective flow cost of

adoption with an adjustment for uncertainty. The sunk adoption cost is K, but this yields

a flow payoff of (1 + δF )θ; hence the effective sunk cost is K
���
δF

. With an effective interest

rate of r − µ (i.e., the actual interest rate r minus the expected proportional growth in

the flow payoff µ), this gives an instantaneous cost of
(

K
���
δF

)

(r − µ). If a Marshallian

rule were used for the adoption decision, the trigger point would be simply this cost. But

with uncertainty, irreversibility and the option to delay adoption, the Marshallian trigger

point must be adjusted upwards by the factor β

β−
� > 1.

There are three components to the leader’s value function holding over different ranges

of θ. The first L � describes the value of adoption before the leader (and so the follower)

has adopted; the second L � after the leader has adopted, but before the follower has done

so; and the third L � , after the follower has adopted. The first and third components are

equivalent to those of the follower, determined previously. The second component is new,

and so is derived first.

After the leader has adopted, it has no further decision to take and its payoff is given
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by the expected value of its adoption. This payoff is affected, however, by the action of

the follower adopting later at θF . Taking account of subsequent adoption by the follower,

the leader’s post-adoption payoff is given by

L � (θt) = Et

[
∫ TF

t

exp (−r(τ − t))θτdτ +

∫

∞

TF

exp (−r(τ − t))(1 + δL)θτdτ −K

]

. (13)

The Bellman equation for the leader is

L � = θdt + exp (−rdt)Et [L � + dL � ] . (14)

Using Itô’s lemma and equation (5) gives

1

2
σ

�

θ
�

L′′� (θ) + µθL′� (θ)− rL � (θ) + θ = 0. (15)

As before, adoption has no value when θ = 0, and so L � = θ
r−µ

+ bL � θβ, where bL � is a

constant. The first part of the value function L � gives the expected value of adoption

before the follower adopts, while the second is an option-like term reflecting the value

(due to the network benefit α) to the leader of future adoption by the follower.

The other components of the leader’s value function follow immediately from the

calculations of the previous section:

L(θ) =















bL � θβ θ < θL,
θ

r−µ
+ bL � θβ −K θ ∈ [θL, θF ),� ���

δL � θ
r−µ

−K θ ≥ θF ,

(16)

given the leader’s trigger point θL and adoption by the follower at the higher θF .

The value of the unknown constant bL � is found by considering the impact of the

follower’s adoption on the payoff to the leader. When θF is first reached, the follower

adopts and the leader’s expected flow payoff is altered. Since value functions are forward-

looking, L � anticipates the effect of the follower’s action and must therefore meet L � at

θF . Hence, a value-matching condition holds at this point (for further explanation see

Harrison (1985)); however, there is no optimality on the part of the leader, and so no

17



corresponding smooth-pasting condition. This implies that

bL � =
δL

r − µ
θ
−

�
β−

� �
F . (17)

The usual value matching and smooth pasting conditions at the optimally-chosen θL

determine the other unknown variables:

θL =
β

β − 1
K(r − µ), (18)

bL � =
θ
−

�
β−

� �
L

β(r − µ)
+ bL � . (19)

Assumption 1 (specifically δF ≤ 0) ensures that θL ≤ θF , so that the leader does indeed

adopt before the follower. If δF > 0, then adoption would occur as a cascade: the ‘leader’

would adopt at θL, and the ‘follower’ would adopt immediately afterwards.

So, in the model without preemption when equilibrium adoption is sequential, the

leader adopts at θL = β

β−
� K(r − µ) and the follower at θF = β

β−
�

(

K
���
δF

)

(r − µ). Uncer-

tainty and network effects have very simple effects. (Of course, there is no preemption

incentive, since the roles are preassigned.) Uncertainty leads to delay (higher trigger

points for both firms), since β

β−
� is increasing in σ. Network effects decrease the cost of

being the follower, since δF is decreasing in α, but have no effect on the leader’s adoption

point. These findings are discussed further in section 5.

Now consider the alternative case, in which adoption is simultaneous at the trigger

point θS. The previous analysis indicates that the value function of each firm is then

S(θ) =

{

bSθ
β θ < θS,� ���
δS � θ

r−µ
−K θ ≥ θS .

(20)

(This value function can be derived from the appropriate Bellman equation, following the

steps shown above.) There is a continuum of simultaneous solutions; it is straightforward

to show that they can be Pareto ranked, with higher trigger points yielding higher value

functions. In this case, it seems reasonable that the firms will adopt at the Pareto optimal
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point, given by both value matching and smooth pasting. So

θS =
β

β − 1

(

K

1 + δS

)

(r − µ), (21)

bS =
(1 + δS)θ

−

�
β−

� �
S

β(r − µ)
. (22)

Note that θL ≤ θS ≤ θF : when adoption is sequential, the leader adopts earlier and

the follower later than when adoption is simultaneous. This is quite reasonable: when

adoption is viewed within the location entry story, this simply says that aggressive entry

by the leader (θL ≤ θS) deters entry by the follower (θS ≤ θF ).

The following lemma describes when simultaneous adoption is an equilibrium.

Lemma 1: The necessary and sufficient condition for simultaneous adoption to occur in

equilibrium in the model without preemption is

(1 + δS)
β ≥ 1 + βδL(1 + δF )β−

�

. (23)

A necessary condition is δS ≥ δL.

Proof: For equilibrium simultaneous adoption, it must be that S(θ) ≥ L(θ) for θ ∈

[θL, θS]. Due to the convexity of the value functions, this requires that S(θ) ≥ L(θ) for

θ ∈ [0, θL], and so that bS ≥ bL � . Therefore from equations (19) and (22), the necessary

and sufficient condition is

θ−βS

(

(1 + δS)θS
r − µ

−K

)

≥
θ
−

�
β−

� �
L

β(r − µ)
+

δL
r − µ

θ
−

�
β−

� �
F .

When the expressions for θS and θL are substituted, this reduces to equation (23). The

necessary condition follows immediately from rearrangement of equation (23). �

Whether simultaneous adoption occurs in equilibrium is determined by whether the

leader wishes to adopt before the follower, or at the same time (i.e., by the comparison of
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S(θ) and L(θ)). The lemma shows the reasonable condition that, in order for simultaneous

adoption to occur in equilibrium, it must be the case that δS is sufficiently large and/or

δL and δF sufficiently small. In terms of the location entry story in section 2.1, the

first firm to adopt wishes to be accommodating whenever the benefits from the other

firm adopting the technology are sufficiently large relative to the first mover advantage.

Note that the simultaneous adoption equilibrium, when it exists, Pareto dominates the

sequential outcome; this is an immediate consequence of the condition for existence of the

simultaneous adoption equilibrium: S(θ) ≥ L(θ) for θ ∈ [0, θS].

3.2. With Preemption

Instead of preassigning roles to the two firms, suppose that the leader is determined en-

dogenously. This supplements the option and network effects with a preemption incentive

(c.f. Fudenberg and Tirole (1985) and Weeds (1999)). The applied motivation is that

this set-up reflects firms’ concerns with network technologies: they want to wait until the

market is developed, but are concerned that they will be at some disadvantage at that

stage relative to firms that have adopted earlier. Nevertheless, firms are symmetric before

moving—no firm has an intrinsic (dis-)advantage from the start. Analytically, this allows

the preemption incentive to be studied.

As before, start by supposing that one firm (the preemptor) adopts strictly before

the other. The follower’s value function and trigger point is the same as for the model

without preemption; so

θF =
β

β − 1

(

K

1 + δF

)

(r − µ).

The preemptor’s value function is as described in the previous section. As before, value

matching at θF determines the unknown variable bL � = δL
r−µ

θ
−

�
β−

� �
F . But the preemptor

can no longer choose its adoption point optimally, as it could when roles were preassigned.

Instead, the first firm to adopt does so at the point at which it prefers to lead rather than

follow, not the point at which the benefits from leading are largest. Clearly, it cannot be
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that the first firm adopts when the value from following is greater than the value from

leading—if this were the case, the firm would do better by waiting. Likewise, it cannot

be that the first firm adopts when the value from leading is strictly greater than the value

from adopting, since in this case without preassigned roles, the other firm could preempt

it and still gain. Hence the adoption point is defined by indifference between leading

and following. Whereas in the model without preemption, θL was determined by value

matching and smooth pasting, the trigger point θP in the preemption model is given by

indifference: L(θP ) = F (θP ).

The first step is to show that there is such a trigger point.

Lemma 2: There exists a unique θP < θL such that L(θP ) = F (θP ) and L(θ) < F (θ) for

θ < θP , L(θ) > F (θ) for θ > θP .

Proof: See the appendix.

The indifference relation L(θP ) = F (θP ) gives the following non-linear equation for θP

θP
r − µ

−K −
K

β − 1

(

1− βδL + δF
1 + δF

)(

θP
θF

)β

= 0. (24)

The solution for simultaneous adoption in the preemption model is the same as in

the model without preemption: the trigger point is the same, θS, and the necessary and

sufficient condition for simultaneous adoption to occur in equilibrium is given by equation

(23). The conditions of simultaneous adoption are unaltered because the value (function)

from being the first to adopt is the same regardless of whether the roles are preassigned or

determined endogenously. This feature of the model arises because the follower’s trigger

point θF is independent of trigger point of the other firm.

4. Co-operative Solution

This section analyses the co-operative solution, in which the firms’ adoption trigger points

are chosen to maximise the sum of their two value functions. The objective is to pro-
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vide a benchmark to identify inefficiencies in the next section. Notice that there is only

one co-operative solution—the previous distinction between preassigned and endogenous

leader/follower roles is not relevant.

Consider first the co-operative solution when adoption is sequential. Two trigger

points, θ � < θ � , are chosen to maximise the sum of the leader’s and follower’s value

functions. Call the co-operative value function in this case CL
�
F ; using the same steps as

before,

CL
�
F (θ) =















b � θβ + b � θβ θ < θ � ,
θ

r−µ
+ b � θβ −K + b � θβ θ ∈ [θ � , θ � ),� � �

δL
�
δF � θ

r−µ
− 2K θ ≥ θ � ,

(25)

where bi, i = 0, 1, 2, 3 are constants. The co-operative trigger points are determined by

value matching and smooth pasting conditions at both points. Therefore

θ � =

(

β

β − 1

)

K(r − µ) = θL, (26)

θ � =

(

β

β − 1

)(

K

1 + δL + δF

)

(r − µ). (27)

Assumption 1 ensures that θ � > θ � , since δL ≤ −δF .

Now consider the co-operative solution with simultaneous adoption at the trigger point

θ � . The co-operative value function in this case is

CS(θ) =

{

b � θβ θ < θ � ,
� � ���

δS � θ
r−µ

− 2K θ ≥ θ � .
(28)

Again, value matching and smooth pasting determine θ � :

θ � =

(

β

β − 1

)(

K

1 + δS

)

(r − µ) = θS . (29)

A similar analysis to those undertaken with the non-co-operative equilibria shows when

co-operation will involve simultaneous adoption.
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Lemma 3: The necessary and sufficient condition for simultaneous adoption to be a co-

operative solution is

2(1 + δS)
β ≥ 1 + (1 + δL + δF )β. (30)

A necessary condition is δS ≥
δL

�
δF� .

Proof: The necessary and sufficient condition is that the value function for simultaneous

adoption CS(θ) ≥ CL
�
F (θ), for all θ ∈ [θ � , θ � ]. The strict convexity of the value functions

means, however, that this requires that CS(θ) > CL
�
F (θ) for all θ ∈ [0, θ � ] i.e., b � ≥ b � +b � .

From above,

b � + b � =

(

1 + (1 + δL + δF )β

β − 1

)((

β − 1

β

)

1

K(r − µ)

)β

K,

b � =

(

2

β − 1

)((

β − 1

β

)

1 + δS
K(r − µ)

)β

K.

It is immediate that b � ≥ b � + b � iff condition (30) holds, and that a necessary condition

is δS ≥
δL

�
δF� . �

The condition (30) is very similar to condition (23)—accommodation occurs when network

effects are sufficiently large.

5. Inefficiencies and Comparative Statics

The previous two sections have established the conditions under which adoption is sequen-

tial or simultaneous, and the trigger points for adoption, for equilibrium with and without

preemption, and for the co-operative solution. This section first analyses inefficiencies

that arise in the non-co-operative equilibria;
� �

and then assesses how the conditions for

simultaneous adoption and the trigger points vary as the parameters of the model change.

� �

Note that the inefficiencies analysed are relative to the co-operative benchmark. The analysis does
not consider the consumer welfare aspects of the problem.
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5.1. Inefficiencies

The next two propositions compare equilibrium outcomes with the co-operative solution,

identifying two types of inefficiency. First, when both non-co-operative equilibrium and

the co-operative solution involve sequential adoption, the non-co-operative trigger points

differ from the co-operative points (proposition 1). Secondly, the non-co-operative equi-

libria and the co-operative solution involve different amounts of simultaneous adoption

(proposition 2).

Proposition 1: θP < θL = θ � and θF > (<) θ � when δL > (<) 0. In words, conditional

on both equilibrium and the co-operative solution involving sequential adoption, the non-

co-operative leader adopts at the co-operative point when there is no preemption, and too

early if there is preemption. The non-co-operative follower adopts too late (early) when

δL is greater (less) than zero.

Proof: All comparisons are immediate from equations (11), (18), (27) and (26) and

lemma 2. �

Proposition 2: Compared to the co-operative solution, there is insufficient simultaneous

adoption in equilibrium.

Proof: See the appendix.

The backward and forward externalities emphasised by Choi (1994) are in this paper

also, but they take a particular form. A backward externality arises when adoption is

sequential. In the model without preemption, the leader adopts at the correct (i.e., co-

operative) point, but the follower adopts at the wrong point. For the leader, the network

effect causes a constant proportional change (an increase if δL > 0, a decrease otherwise)

to its value function; this change has no marginal effect on the leader, and so its trigger

point is unaffected. (In terms of the calculation, any term in δL or θF drops out of the

24



value matching and smooth pasting conditions that determine θL.) The follower does not

consider the effect on the leader of its adoption, and consequently adopts either too soon

(when δL < 0) or too late (when δL > 0). A forward externality arises through inefficient

simultaneous adoption. In equilibrium, whether adoption is sequential or simultaneous is

determined by the leader’s incentive to adopt. Proposition 2 shows that the leader wishes

to adopt before the follower too often, compared to the co-operative solution. In short:

the leader is too aggressive in equilibrium; and the follower adopts inefficiently when it

has been preempted.

5.2. Comparative Statics I: Factors in Isolation

Preemption causes the leader to adopt earlier, but does not alter the follower’s adoption

behaviour. This can be seen by comparing the trigger points of the non-co-operative equi-

libria in the models with and without preemption when adoption is sequential. Without

preemption, the leader adopts at the point
(

β

β−
�

)

K(r− µ); with preemption, the trigger

point θP is strictly less, from proposition 1. The follower in both cases adopts at the

trigger point
(

β

β−
�

)(

K
���
δF

)

(r − µ).

When adoption is sequential, network effects in isolation affect the follower’s equilib-

rium θF and co-operative θ � trigger points, but not the leader’s.

Proposition 3: θF and θ � are decreasing in α. If δL < (>)0, then the gap between θF

and θ � decreases (increases) as α increases.

Proof: The proposition follows from the facts that ∂θF /∂α ≤ 0, ∂θ � /∂α ≤ 0 and

∂/∂α (θF/θ � ) > 0. �

Differentiation of the conditions (23) and (30) with respect to (wrt) α shows that simulta-

neous adoption is more likely to occur in equilibrium and the co-operative solution when

network effects are larger.
� �

In addition, network effects impact the relative prevalence of

� �

To be precise: if the conditions hold for a value α̂, then they also hold for any α > α̂.
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simultaneous adoption in the co-operative solution compared with equilibrium. The next

proposition shows that network effects exacerbate the forward externality.

Proposition 4: The insufficiency of equilibrium simultaneous adoption increases with

the size of network effects.

Proof: See the appendix.

Although greater network effects cause the leader to act less aggressively, nevertheless it

is still more aggressive than is required by the co-operative solution. This is a result of

the forward externality.

Turning now to the volatility parameter σ, greater uncertainty usually leads to adop-

tion delay (in the sense of higher trigger points). The intuition is that delay allows for the

possibility that the random process (5) will go up; if it goes down, then the firm need not

adopt. The greater the variance of the process, the more valuable is the option created

by this asymmetric situation, and so the more delay occurs. All but one of the trigger

points in the paper have this general feature: θL, θF , θ � , θ � and θ � are all increasing in σ.

The exception, θP , is analysed below.

In addition, greater uncertainty increases the occurrence of simultaneous adoption, in

both equilibria and the co-operative solution. Two observations are relevant. First, the

necessary and sufficient conditions for simultaneous adoption, given in equations (23) and

30, are both easier to satisfy when σ is large. Secondly, simultaneous adoption becomes

more attractive to the leader as uncertainty increases (given that both simultaneous and

sequential adoption are possible). Once the leader has adopted at θL, θP or θ � = θL,

it must wait until θ � = θF before the follower adopts. When network effects are large

relative to the preemption incentive (i.e., δS is large relative to δL, as is necessary for

simultaneous adoption to occur in equilibrium), this delay is costly to the leader. As

uncertainty increases, the follower’s adoption is delayed further (θ � increases), and the

cost to the leader of lost network effects rises. Therefore simultaneous adoption becomes

more attractive.
� �

� �

Unfortunately, there is no counterpart to proposition 4 with respect to uncertainty: the extent of
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5.3. Comparative Statics II: Interactions

There are two interactions between the network and preemption effects. First, proposition

5 shows that (conditional on sequential adoption) the preemptor’s trigger point θP , which

is below the co-operative level due to preemption, is decreasing in the size of the network

effect measured by the parameter α.

Proposition 5: θP is decreasing in α.

Proof: See the appendix.

Proposition 5 shows that the preemptor adopts earlier when network effects are larger.

This result is not immediately obvious: at its trigger point, the preemptor is indifferent

between leading and following; but both the leader’s and follower’s returns increase as α

increases; and so it must be shown that the increase in the leader’s return is the stronger

effect. To gain an intuition for the result, rewrite the preemptor’s indifference condition

as L(θP ; α)− F (θP ; α) = 0. Then

∂θP
∂α

= −

(

∂L
∂α
− ∂F

∂α
∂L
∂θP

− ∂F
∂θP

)

.

Since L < (>)F for θ < (>)θP , it must be that ∂L
∂θP

> ∂F
∂θP

. Hence the sign of ∂θP

∂α
is

determined by whether ∂L
∂α

is greater or less than ∂F
∂α

. (The partial derivatives here hold

θP constant, but allow θF to vary.)

There are two effects as α increases. First, the firms’ flow returns once both firms

have adopted increase. Secondly, the follower adopts earlier (θF decreases); when δL > 0,

this benefits both firms, while when δL < 0, it benefits the follower but not the leader.

For the leader, both effects are important. For the follower, only the first effect is of first-

order significance: since the follower chooses θF optimally, any variation in the trigger

point due to a small change in α induces only a second-order variation in returns. When

insufficient simultaneous adoption in the equilibrium without preemption is a non-monotonic function of
the uncertainty parameter σ.
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δL > 0, this suggests qualitatively that the leader’s return increases more when α rises.

The comparison is more complicated when δL < 0; note, however, that the second effect

for the leader is limited by assumption 1, which requires that δL > −
�

β
� � . In fact,

proposition 5 shows that the first effect dominates for the leader, and to such an extent

that the leader’s value function increases with α by more than does the follower’s.

Secondly, network effects and preemption interact in the way in which uncertainty

affects the preemptor’s trigger point θP , raising the possibility that an increase in uncer-

tainty lowers the trigger point.

Proposition 6: Sufficient conditions for ∂θP

∂σ
> 0 are: either

1. 1− βδL + δF > 0 and φ � ∨ φ � < ε; or

2. 1− βδL + δF < 0 and φ � ∧ φ � > ε.

Sufficient conditions for ∂θP

∂σ
< 0 are: either

1. 1− βδL + δF > 0 and φ � ∧ φ � > ε; or

2. 1− βδL + δF < 0 and φ � ∨ φ � < ε.

φ � ≡ −
(

δL�
−βδL

�
δF

)

, φ � ≡ θP

θF
, and ε is the solution to the equation ε + ln ε = 0 (i.e.,

ε ≈ 0.57).

Proof: See the appendix.

The result therefore raises the unusual possibility that greater uncertainty lowers the

preemptor’s trigger point. This is counter to the usual comparative static. The difference

arises from the lack of optimality in the choice of the preemption trigger point. An optimal

trigger point is such that the marginal benefit from delaying adoption for a period equals

the marginal cost. The marginal benefit is the interest saved on the adoption cost plus

the expected gain from the possibility that the flow payoff increases. The marginal cost is
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the flow payoff foregone by not adopting the technology. In this marginal calculation, the

firm does not consider the effect of its delay on the adoption decision of the other firm,

since in the models considered in this paper, each firm’s trigger point (with the exception

of θP ) does not depend on the other’s. Increased uncertainty raises the expected gain

from delay, causing the (optimally chosen) trigger point to increase. This reasoning does

not apply in the case of θP , however: it is not chosen according to a marginal equality,

but an absolute equality between the value from leading and the value from following.

The proposition shows that this difference in the determination of the trigger point can

lead to θP decreasing as uncertainty increases.

There are two cases in which this can occur. In the first, 1 − βδL + δF > 0 and

φ � ∧ φ � > ε. This sufficient condition requires that δL < 0 and that β <
�

ε
. In the

second case, the sufficient conditions 1 − βδL + δF < 0 and φ � ∨ φ � < ε require that

β <
���
δF
δL

+
�

ε
<

�

ε
if δL < 0, and β >

���
δF
δL

+
�

ε
>

�

ε
if δL > 0. In summary, therefore, there

are two situations that are conducive to a rise in uncertainty increasing the preemptor’s

trigger point (i.e., must obtain for the sufficient conditions to hold): either network effects

are sufficiently small and uncertainty is sufficiently large; or the converse.

In order for this unusual comparative static to hold, it must be that the leader’s value

function increases by more than the follower’s when uncertainty rises, holding constant

the preemptor’s trigger point θP . (This statement follows directly from using the implicit

function theorem on the non-linear equation (24) defining θP .) The leader’s value function

depends on uncertainty due to the option-like term that anticipates adoption by the

follower: bL � θβ, where bL � ≡
δLθ

−

�
β− ���

F

r−µ
. Hence this option-like term is positive if δL is

positive, and negative otherwise. As σ increases, two factors are important. First, holding

the trigger point of the follower constant, there is a change in the value of the option-like

term: if δL < 0, it becomes more negative; if δL > 0, it becomes more positive. Secondly,

the follower’s trigger point θF increases. When δL < 0, this increases the option-like

term (makes it less negative), since adoption by the follower reduces the preemptor’s

instantaneous return; when δL > 0, the option-like term decreases. Hence the first,

direct effect always works in the opposite direction to the second, indirect effect. It is

straightforward to show that the direct effect dominates the indirect effect at low levels of
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uncertainty, but at higher levels of σ, the indirect effect dominates. The follower’s value

function increases with uncertainty since the firm holds a standard (call) option relating

to its future irreversible adoption. The same two factors are relevant, but the effect of a

change in the follower’s trigger point is of second-order, by the envelope theorem, so that

only the direct effect is of first-order significance.

The favourable conditions identified above (δL < 0 and σ large, or δL > 0 and σ small)

arise immediately from these observations. When δL < 0, the direct effect is negative and

the indirect effect positive. When σ is small, the former dominates; and so it is only when

uncertainty is large that the leader’s value function is increasing in σ. In the other case

(δL > 0), the direct effect is positive and the indirect effect negative. When σ is large,

the latter dominates; and so it is only when uncertainty is small that the leader’s value

function is increasing in σ.

The case δL > 0 and σ small is of particular interest, since it implies that for sufficiently

large network effects (such that δL > 0), the introduction of a small amount of uncertainty

into the model increases all trigger points except the preemptor’s, which decreases. More

precisely, large network effects mean that ∂θP

∂σ

∣

∣

σ �
� < 0.

6. Conclusions

This paper has analysed adoption of a technology when adoption is irreversible, the returns

are uncertain, when there is an advantage to being the first adopter, but a network

advantage to adopting when others also adopt. It departs from previous work in this

area by the combination of factors analysed. The combination has proved interesting:

the interaction of preemption with both network effects and uncertainty generates novel

results.

In future work, we hope to examine other types of uncertainty and so make the net-

work effects endogenous. Currently, uncertainty is completely exogenous: the stand-alone

benefit follows a random process whose parameters are common knowledge. In another

setting, it may be that there is uncertainty about the drift of the process (i.e. growth rate
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of the industry). Beliefs about the unknown parameter are then important and would

be updated as industry profitability is observed. If that were the end of the story, there

would be little change from the current analysis: beliefs about the drift could be the state

variable, rather than the level of stand-alone benefit, and much the same analysis would

go through. (Of course, the solutions for value functions and trigger points would be

different.) More interesting questions arise when the act of adoption by one of the firms

reveals information about the unknown parameter. The positive network effect could then

be seen as an informational externality. This possibility of preemption with strategic ex-

perimentation (see e.g. Bergemann and Välimäki (1996) and Bolton and Harris (1999))

raises interesting questions for further research.
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APPENDIX

A.1. The Sequential Location Model

This section derives the conditions for the assumption made in section 2.1 that when entry

is sequential, the leader locates at x =
�

� and the follower locates at the end. Suppose that

the leader locates at the end, x = 0 say. Then before the follower enters, a straightforward

calculation shows that the leader maximises profit by setting a price p � =
�
V� , earning a profit

of π � =
�
V

�

√

V
�
l
θt. Note two things. First, this solution holds while V < 3l; the modification if

V ≥ 3l is straightforward and so omitted. Secondly, the mass of consumers is taken to be θt i.e.,

the same as when the leader locates at x =
�

� . The calculations can easily be revised to alter

this aspect; little would change. Normalising by πI� , this means that

π � = (1 + δ � )θt ≡





8V
√

V
�
l

3(4V − l)



 θt.

If V
l
∈ [0.3196, 6.2180], then δ � < 0. This assumption is maintained in the paper.

Therefore the value function of the leader when it locates at x = 0 and adoption is sequential

is

L(θ) =















b
�

L
� θβ θ < θ � ,� ���
δ � � θ

r−µ
+ b

�

L
� θβ −K θ ∈ [θ � , θ

�

F ),� ���
δS � θ

r−µ
−K θ ≥ θ

�

F ,

given the leader’s trigger point θ � and adoption by the follower at the later point θ
�

F . The value

function of the follower in this case is

F (θ) =

{

b
�

F θ
β θ < θ

�

F ,� ���
δS � θ

r−µ
−K θ ≥ θ

�

F .

Using the techniques of section 3.1, the trigger points when the firms’ roles are preassigned are

θ � =
β

β − 1

(

K

1 + δ �

)

(r − µ) > θL,

θ
�

F = θS < θF .
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It is clear that the leader will prefer to locate at x =
�

� (and hence adopt at θL) rather than at

x = 0 (θ � ) iff bL
� ≥ b

�

L
� i.e., iff δ � ≤ δ � , where

(1 + δ � )β − βδ � (1 + δS)β−
�

= 1 + βδL(1 + δF )β − βδS(1 + δS)β−
�

.

Given that the preemptor’s value function is strictly below the preassigned leader’s, δ � ≤ δ � is

also sufficient to ensure that the preemptor will prefer to locate at x =
�

� .

A.2. Proof of Lemma 2

Define

∆(θ) ≡
θ

r − µ
−K −

(

θ

θF

)β (1− βδL + δF

1 + δF

)

K

β − 1

i.e., L(θ) − F (θ), where L(θ) is conditional on the preemptor having invested, and F (θ) is

conditional on the preemptor having invested but not the follower. Then the following facts can

be shown by straightforward manipulations, using assumption 1 throughout: (i) ∆(0) = −K < 0;

(ii) ∆(θL) = K�
β−

� � � ���
δF �

(

(

θL

θF

)β

βδL + (1−
(

θL

θF

)β

)(1 + δF )

)

> 0; (iii) ∆(θF ) = β
�
δL−δF � K�

β−
� � � ���

δF � >

0; (iv) ∆′(0) =
�

r−µ
> 0; (v) ∆′(θF ) = βδL−δF

r−µ
> 0; (vi) hence there exists a θ̃ < θL such that

∆(θ̃) = 0; (vii) for any θ̂ such that ∆(θ̂) = 0 and ∆′(θ̂) < 0, then it must be that for another

θ > θ̂ such that ∆(θ) = 0, ∆′(θ) < 0; (viii) since ∆(θF ) > 0 (point (iii)), it must be therefore

that there is no θ̂ such that ∆(θ̂) = 0 and ∆′(θ̂) < 0. Hence there is a unique θ̃ = θP < θL such

that ∆(θP ) = 0, and ∆(θ) ≷ 0 as θ ≷ θP .

A.3. Proof of Proposition 2

The proof requires a comparison of the necessary and sufficient conditions (23) and (30).

First note that if δL > δS , then simultaneous adoption cannot occur in the no-preemption

equilibrium but may occur in the co-operative solution. Conditional on δL ≤ δS , let ∆ ≡
[

1 + 2βδL(1 + δF )β−
� ]

−
[

(1 + δL + δF )β
]

. ∆ < 0 iff δF ≥ δ∗F and δL < δ∗L, where δ∗F = (2β)
−

�
β−1

and δ∗L = (2β)
−

�
β . But from assumption 1, βδL > δF ; and so if δF ≥ δ∗F , then δL ≥ δ∗L. Hence

∆ ≥ 0. Consequently, the necessary and sufficient condition for simultaneous adoption is stricter
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in the equilibrium of the model without preemption than in the co-operative solution.

A.4. Proof of Proposition 4

The proof involves a comparison of the necessary and sufficient conditions (23) and (30) as α

increases. Rewriting these conditions,

2(1 + δS)β − 1 ≥ 1 + 2βδL(1 + δF )β−
�

,

2(1 + δS)β − 1 ≥ (1 + δL + δF )β .

Note that a necessary condition for the first inequality to hold is δL ≤ 0. Let the right hand

side of the first equation be NP and the right hand side of the second equation be C. Then

∂NP

∂α
= 2(1 + δF )β−

�

+ 2βδL(1 + δF )β−
�

,

∂C

∂α
= (1 + δL + δF )β + (1 + δL + δF )β−

�

.

The sign of
(

∂NP
∂α

− ∂C
∂α

)

is determined by whether λ � ≡ 2(1 − δF )β−
�

+ 2βδL(1 − δF )β−
�

is

greater or less than λ � ≡ (1 + δL + δF )β + (1 + δL + δF )β−
�

. Note that (i) both λ � and λ �

are increasing in δL, for any given value of δF ; (ii) when δL = 0, λ � = 2(1 + δF )β−
�

and

λ � = (1 + δF )β + (1 + δF )β−
�

< 2(1 + δF )β−
�

; (iii) λ � > λ � for all δL < 0 and δF , for values of

δL and δF that satisfy assumption 1. Therefore when δL < 0, ∂NP
∂α

> ∂C
∂α

> 0.

A.5. Proof of Proposition 5

Rewrite equation (24) as

−ψθβP +
θP

r − µ
−K = 0, (A1)

ψ ≡
K

β − 1

(

1− βδL + δF

1 + δF

)

θ
−β
F . (A2)
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Total differentiation gives

∂θP

∂α
=

(

θ
β
P

�

r−µ
− βψθ

β−
�

P

)

∂ψ

∂α
.

The denominator is positive from equation (A1). Hence Sign ∂θP

∂α
= Sign∂ψ

∂α
. Differentiation gives

∂ψ

∂α
= −

(

β

β − 1

)(

K

1 + α

)(

βδL − δF

1 + δF

)

θ
−β
F < 0,

where the inequality follows from assumption 1.

A.6. Proof of Proposition 6

Differentiation of equation (24) gives

∂θP

∂β
=
ψθ

β
P

(

−
(

δL�
−βδL

�
δF

)

+ ln
(

θP

θF

))

�

r−µ
− βψθ

β−
�

P

, (A3)

where ψ was defined earlier. Hence Sign ∂θP

∂σ
= −Sign

[

ψ
(

−
(

δL�
−βδL

�
δF

)

+ ln
(

θP

θF

))]

. (This

statement uses the fact that ∂β
∂σ

< 0.) Let φ � ≡ −
(

δL�
−βδL

�
δF

)

and φ � ≡ θP

θF
. When 1−βδL+δF >

0, ψ > 0. Hence Sign∂θP

∂σ
= −Sign [φ � + lnφ � ]. A sufficient condition for φ � + lnφ � > 0 is that

φ � ∧φ � > ε. Conversely, a sufficient condition for φ � +lnφ � < 0 is that φ � ∨φ � < ε. An equivalent

argument holds when 1− βδL + δF < 0.
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