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Abstract

Well known encompassing tests are usually difficult to implement because it is difficult to

compute the pseudo-true value of the quasi-maximum likelihood estimator. In this paper,

we propose a more operational encompassing test that does not involve such pseudo-true

value. Instead, the proposed test relies on the “pseudo-true score” which is relatively

easier to evaluate. We show that this test is asymptotically equivalent to the Wald

and score encompassing tests and has a wider applicability than the conditional mean

encompassing test of Wooldridge (1990a). Our simulations confirm that the proposed

test compares favorably with the J and JA tests.

JEL Classification: C22, C52

Keywords: conditional mean encompassing test, encompassing principle, non-nested
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1 Introduction

In many econometric applications, there often exist non-nested specifications that can

characterize the same variable of interest. For example, linear regression models with

distinct sets of regressors are non-nested, and so are the logit and probit models for

a binary dependent variable. In the time series context, the autoregressive (AR) and

moving average (MA) models, the logistic and exponential smooth transition AR models,

the bilinear and autoregressive conditional heteroskedasticity (ARCH) models, and the

generalized ARCH (GARCH) and exponential GARCH (EGARCH) models are also pairs

of non-nested models. When non-nested models are available, it is practically important

to test if a postulated model is correctly specified.

The encompassing principle of Hendry and Richard (1982), Mizon (1984), and Mizon

and Richard (1986) is a leading approach to derive non-nested tests under the framework

of quasi-maximum likelihood; see also Gouriéroux, Monfort, and Trognon (1983). This

principle asserts that a correctly specified model should be able to predict or explain

the statistical results of its competitors. Thus, for a statistic of the alternative model,

its probability limit under the null hypothesis should depend on the null model. This

limit is known as the “pseudo-true value” of this statistic. An encompassing test is then

based on the difference between a properly chosen statistic of the alternative model and

the sample counterpart of its pseudo-true value. For example, the celebrated test of

Cox (1961, 1962) is an encompassing test. Smith (1992) also constructed encompassing

tests for models estimated by the generalized method of moments.

As the quasi-maximum likelihood estimate (QMLE) of a nonlinear model does not

have a closed form in general, it is difficult to derive its pseudo-true value and compute

the corresponding sample counterpart. Unfortunately, the well known Wald and score

encompassing tests rely on such pseudo-true values and hence cannot be easily applied

to nonlinear models. In practice, researchers prefer convenient non-nested tests, such as

the J test of Davidson and MacKinnon (1981) and its finite-sample correction, the JA

test of Fisher and McAleer (1981); see McAleer (1995) for a comprehensive review. To

circumvent this difficulty, Wooldridge (1990a) proposed the conditional mean encompass-

ing (CME) test which does not require estimating the pseudo-true value of the QMLE.

The CME test focuses on conditional mean specifications, but it is not applicable to test

non-nested specifications of other conditional moments. On the other hand, Pesaran and

Pesaran (1993) suggested to estimate pseudo-true values by simulations; their approach
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is still cumbersome for practitioners, however.

In this paper we propose a more operational encompassing test that is asymptotically

equivalent to the Wald and score encompassing tests. The proposed test is based on the

sample counterpart of the “pseudo-true score”, i.e., the limit of the expected value of the

score function from the alternative model, where the expectation is taken with respect

to the null model. Similar to the CME test, the proposed test does not depend on

the pseudo-true value of the QMLE from the alternative model. As the score function,

unlike the QMLE, usually has an analytic expression, its expectation is relatively easy

to evaluate. Our test can therefore be implemented quite easily. We also demonstrate

that the proposed test is applicable to censored (truncated) regressions and conditional

variance specifications but the CME test is not. Our simulations indicate that this test

has good finite sample performance and compares favorably with the J and JA tests.

This paper proceeds as follows. In Section 2, we propose the new encompassing test

based on the pseudo-true score. We then discuss various applications of the proposed

test and its relationship with the CME test in Section 3. Some simulation results are

reported in Section 4. Section 5 concludes the paper.

2 The Pseudo-True Score Encompassing Test

Let ηt = (yt, w′t)
′ denote a vector of observations at time t and Ft−1 denote the sigma alge-

bra generated by (wt, ηt−1, . . . , η1). Suppose that there are two competing specifications

for the density of yt conditional on Ft−1:

Mf : ft(yt|Ft−1, α), α ∈ A ⊆ IRp,

Mg : gt(yt|Ft−1, β), β ∈ B ⊆ IRq,

where ft and gt are postulated density functions. We are interested in testing the null

hypothesis that Mf is correctly specified, in the sense that there is an αo ∈ A such that

ft(yt|Ft−1, αo) is the true conditional density of yt for every t, against the alternative

hypothesis of Mg model. If ft and gt are the same conditional density function and

A ⊆ B, then the null hypothesis is said to be nested in the alternative hypothesis (or

equivalently, Mf is nested in Mg). If these two specifications are not nested in each other,

they are said to be non-nested.
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2.1 Notations

Let SfT (α) and SgT (β) denote, respectively, the score functions of Mf and Mg:

SfT (α) :=
1
T

T
∑

t=1

∇α log ft(yt|Ft−1, α),

SgT (β) :=
1
T

T
∑

t=1

∇β log gt(yt|Ft−1, β),

where ∇α log ft is the p × 1 gradient vector of log ft with respect to α, and ∇β log gt

is the q × 1 gradient vector of log gt with respect to β. The resulting QMLEs are α̂T

and β̂T , so that SfT (α̂T ) = 0, and SgT (β̂T ) = 0. Also let HfT (α) = ∇α′SfT (α) and

HgT (β) = ∇β′SgT (β) denote the corresponding Hessian matrices.

In what follows, we will always assume that regularity conditions ensuring the con-

sistency and asymptotic normality of the QMLEs hold and that the information matrix

equality holds under the null hypothesis; see e.g., White (1994) for more detailed dis-

cussion of those conditions. We will denote plimf(α) as the probability limit under Mf .

Similarly, IEf(α), varf(α), and covf(α) are, respectively, the operators of expectation, vari-

ance and covariance, taken with respect to Mf . If an operator is given without subscript,

it is taken with respect to the true data generating process. The limiting expected Hessian

matrices under Mf are:

Hf (α) := lim
T→∞

IEf(α)[HfT (α)],

Hg(α, β) := lim
T→∞

IEf(α)[HgT (β)].

The limiting information matrices under Mf are:

Bf (α) := lim
T→∞

varf(α)[
√

TSfT (α)],

Bg(α, β) := lim
T→∞

varf(α)[
√

TSgT (β)].

Also denote

Kfg(α, β) := lim
T→∞

covf(α)[
√

TSfT (α),
√

TSgT (β)],

and Kgf (α, β) := K ′
fg(α, β).

For the QMLE β̂T of the alternative model Mg, let

β(α) = plimf(α) β̂T .

3



Note that β(α) is the minimizer of the limit of the average Kullback-Leibler information

criterion and therefore solves

lim
T→∞

IEf(α)[SgT (β)] = 0; (1)

see e.g., White (1994). In particular, β(αo) is the probability limit of β̂T under the null

hypothesis of f(αo) and solves (1) when the expectation is taken with respect to f(αo).

As such, β(αo) is known as the pseudo-true value of β̂T and will be referred to as the

“pseudo-true parameter”. When β(αo) is approximated by β(α̂T ), let β̂(α̂T ) denote its

sample counterpart.

Under the null hypothesis, ĤfT = HfT (α̂T ) is consistent for Hfo := Hf (αo), and

ĤgT = HgT (β̂T ) is consistent for

Hgo := Hg(αo, β(αo)).

We also write B̂fT and B̂gT as estimators for Bf and Bg based on the QMLEs α̂T and

β̂T , respectively. Then, under the null hypothesis, B̂fT is consistent for Bfo := Bf (αo),

and B̂gT is consistent for

Bgo := Bg(αo, β(αo)).

Similarly, K̂fg is an estimator based on α̂T and β̂T , and it is consistent for

Kfgo := Kfg(αo, β(αo)),

under the null hypothesis. Consistent estimation of those matrices has been studied by,

e.g., White (1984), Newey and West (1987), and Andrews (1991), among others.

2.2 The Proposed Test

Both the Wald and score encompassing tests depend on β̂(α̂T ), the sample counterpart

of the pseudo-true parameter β(αo). In particular, the Wald encompassing test checks if

ĤgT
√

T (β̂T − β̂(α̂T )) (2)

is sufficiently close to zero. The score encompassing test checks if
√

TSgT (β̂(α̂T )) is suffi-

ciently close to zero. When the alternative model is nonlinear such that β̂T does not have

a closed form, it is typically difficult to evaluate β(αo) and therefore its sample coun-

terpart. This difficulty prevents researchers from applying those encompassing tests to
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nonlinear models and motivates the CME test of Wooldridge (1990a) and the simulation

method of Pesaran and Pesaran (1993).

In contrast with traditional encompassing tests, we now take the score function as

the statistic of interest and consider its pseudo-true value. Let

Ψg(α, β) := lim
T→∞

IEf(α)[SgT (β)].

Then Ψg(αo, β) may be interpreted as the “pseudo-true score” because it is obtained

from the expectation with respect to the true density function f(αo). In view of (1),

Ψg(αo, β(αo)) = 0,

i.e., the pseudo-true score evaluated at β(αo) is zero. It is clear that under the null

hypothesis, Ψg(α̂T , β̂T ) should be close to Ψg(αo, β(αo)). In accordance with the encom-

passing principle, an encompassing test can be constructed by checking if Ψg(α̂T , β̂T ) is

sufficiently close to zero.

It can be shown that under the null hypothesis,

√
TΨg(α̂T , β̂T ) = ĤgT

√
T [β̂T − β(α̂T )] + op(1); (3)

a detailed derivation of this result is given in the Appendix. Note that Ψg is not observable

because it is the limit of the expectation of SgT . Replacing Ψg and β(α̂T ) in (3) by their

finite sample counterparts: Ψ̂g and β̂(α̂T ), we have

√
T Ψ̂g(α̂T , β̂T ) = ĤgT

√
T [β̂T − β̂(α̂T )] + op(1), (4)

where the right-hand side is the basis of the Wald encompassing test (2). It is well known

that

ĤgT
√

T [β̂T − β̂(α̂T )] A∼ N(0, Ωo),

where Ωo = Bgo−KgfoB−1
fo Kfgo; see e.g., Mizon and Richard (1986). It follows that

√
T Ψ̂g(α̂T , β̂T ) is also asymptotically distributed as N(0, Ωo).

The proposed Pseudo-true Score Encompassing (PSE) test statistic is then

ST = T Ψ̂g(α̂T , β̂T )′Ω̂−Ψ̂g(α̂T , β̂T ), (5)
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where Ω̂ is a consistent estimator for Ωo, and Ω̂− is its generalized inverse. Note that for

a matrix A, its generalized inverse satisfies AA−A = A; see e.g., Rao and Mitra (1971).

The asymptotic normality result above implies

ST
A∼ χ2(r),

where r is the rank of Ω̂. In view of (4) and (2), the PSE test is asymptotically equivalent

to the Wald and score encompassing tests. If one is only interested in testing some

partial specification (such as the conditional mean or conditional variance specification),

the proposed test can be implemented using only the corresponding sub-vector of the

pseudo-true score.

Comparing to the score encompassing test which is based on the score evaluated at

the estimated pseudo-true parameter β̂(α̂T ), the proposed test relies on the pseudo-true

score evaluated at α̂T and β̂T . The advantages of our approach are obvious. First, the

score function usually has an analytic form so that its pseudo-true value is relatively easy

to derive. Second, by considering the pseudo-true score function we are able to eliminate

the pseudo-true parameter because Ψg(αo, β(αo)) = 0 in the linear expansion, as shown

in the Appendix. Therefore, there is no need to estimate the pseudo-true parameter, and

the proposed test depends only on the QMLEs from the null and alternative models but

not on β̂(α̂T ). These advantages make the proposed test more operational than existing

encompassing tests, as can be seen in Section 3.

Finally we note that a consistent estimator of Ωo is

Ω̂ = B̂gT−K̂gf B̂−1
fT K̂fg.

This is also the estimator for Ωo in the Wald encompassing test and hence an “uncon-

strained” estimator. More directly, we may estimate Ωo using the sample counterpart

of var(
√

T Ψ̂g(α̂T , β̂T )). Such an estimator usually takes into account the specification of

Mf and can be viewed as a “constrained” estimator for Ωo.

3 Applications

In this section we discuss various applications of the proposed PSE test and its relation-

ship with the CME test. In particular, our examples sequentially show the following:

(1) the PSE test and the CME test are the same in standard nonlinear regressions; (2)
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the PSE test is a natural test for binary choice models and asymptotically equivalent to

a particular CME test; (3) the PSE test is valid in censored and truncated regressions,

but the CME test is not; (4) the PSE test can be applied to test conditional variance

specifications, but the CME test cannot. In what follows, let xt and zt be two distinct

vectors containing elements of (wt, ηt−1, . . . , η1) such that they are not subvectors of each

other.

3.1 Nonlinear Regressions

Suppose that there are two specifications of the conditional distribution of yt:

Mf : yt|Ft−1 ∼ N(mt(xt, γ), σ2
f ),

Mg : yt|Ft−1 ∼ N(µt(zt, δ), σ2
g).

Apart from normality, they are virtually specifications of the conditional mean of yt.

Alternatively, we can write them as nonlinear regressions:

Mf : yt = mt(xt, γ) + εt,

Mg : yt = µt(zt, δ) + νt,
(6)

where the conditional distributions of εt and νt are, respectively, N(0, σ2
f ) and N(0, σ2

g).

The parameter vector of Mf is α = (γ′, σ2
f )′, and the parameter vector of Mg is β =

(δ′, σ2
g)
′. For notational simplicity, we write mt(xt, γ) as mt, mt(xt, γo) as mot, and

m(xt, γ̂T ) as m̂t; µt, µot, and µ̂t are similarly defined.

The score function of Mg with respect to δ is

Sgδ(β) =
1

Tσ2
g

T
∑

t=1

∇δµt[mot + εt − µt].

When Mf is correctly specified, εt is orthogonal to all random variables that are Ft−1-

measurable, so that the PSE test of conditional mean specifications is based on

Ψ̂gδ(α̂T , β̂T ) =
1

T σ̂2
g

T
∑

t=1

∇δµ̂t[m̂t − µ̂t] = − 1
T σ̂2

g

T
∑

t=1

∇δµ̂tε̂t, (7)

where ε̂t = yt − m̂t.

On the other hand, the CME test relies on the nonlinear least squares (NLS) esti-

mators γ̃T and δ̃T . Similar to previous notations, we write m̃t and µ̃t for mt and µt
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evaluated at the NLS estimators. The key ingredient of the CME test is

− 1
T

T
∑

t=1

∇δµ̃tε̃t, (8)

where ε̃t = yt − m̃t. As the NLS estimator γ̃T (δ̃T ) is also the QMLE γ̂T (δ̂T ), (8) differs

from (7) only by the scaling factor 1/σ̂2
g which may be ignored in computing the test

statistic. Thus, the PSE test obtained under conditional normality and homoskedasticity

is the same as the CME test; they are different otherwise.

Instead of directly testing (8), Wooldridge (1990a) further suggests to check if ε̃t are

uncorrelated to the residuals of the multivariate regression that projects ∇δµ̃t onto ∇γm̃t.

The resulting test is robust in the sense that its asymptotic null distribution does not

depend on additional second-moment assumption. That is, the robustified CME test is

valid whether yt are conditionally homoskedastic or not.

In the time series context, for example, one may want to distinguish between the

logistic and exponential smooth transition AR models because both of them are capable

of describing similar nonlinear characteristics. For this purpose, it is straightforward to

derive the PSE (CME) test which can serve as an alternative to the artificial nested test

of Teräsvirta and Anderson (1992).

3.2 Binary Choice Models

Let yt be the indicator variable of the unobservable, endogenous variable y∗t such that

yt = 1 if y∗t > 0 and yt = 0 otherwise. Consider two specifications of the conditional

mean of y∗t :

Mf : y∗t = mt(xt, γ) + εt,

Mg : y∗t = µt(zt, δ) + νt.

where εt and νt have conditional cumulative distribution functions Ft(·; ϑ) and Gt(·; %),

respectively. It is often postulated that Ft and Gt are symmetric about the origin and

do not change with t so that 1− Ft(−mt; ϑ) = F (mt; ϑ). Thus, the conditional mean of

yt under Mf is

IEf(α)[yt|Ft−1] = 1− Ft(−mt; ϑ) = F (mt; ϑ),
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where α = (γ′, ϑ′)′. Similarly, the condition mean under Mg is G(µt; %). We can also

express Mf and Mg as two nonlinear regressions:

Mf : yt = F (mt;ϑ) + ut,

Mg : yt = G(µt; %) + vt.
(9)

Note that ut and vt in (9) cannot be normally distributed and that they have conditional

variances F (1− F ) and G(1−G); cf. (6).

Given the quasi-log-likelihood function of Mg:

LgT (β) =
1
T

T
∑

t=1

yt log[G(µt; %)] +
1
T

T
∑

t=1

(1− yt) log[1−G(µt; %)],

where β = (δ′, %′)′, we have

IEf(αo)[Sgδ(β)] =
1
T

T
∑

t=1

IEf(αo)

[

∇µG(µt; %)∇δµt
F (mot; ϑo)−G(µt; %)
G(µt; %)(1−G(µt; %))

]

,

IEf(αo)[Sg%(β)] =
1
T

T
∑

t=1

IEf(αo)

[

∇%G(µt; %)
F (mot; ϑo)−G(µt; %)
G(µt; %)(1−G(µt; %))

]

.

Similar to previous notations, we write F̂t, Ĝt, ∇µĜt, ∇δµ̂t and ∇%Ĝt when the corre-

sponding functions are evaluated at the QMLEs. The PSE test is then based on

Ψ̂g(α̂T , β̂T ) =

[

1
T

∑T
t=1∇µĜt∇δµ̂t[F̂t − Ĝt]/[Ĝt(1− Ĝt)]

1
T

∑T
t=1∇%Ĝt[F̂t − Ĝt]/[Ĝt(1− Ĝt)].

]

. (10)

Two leading binary choice models are the probit and logit models which correspond to

the standard normal and logistic distribution functions, respectively. For these models,

ϑ and % are known; hence the PSE test involves only the first component of (10).

Let γ̃T and δ̃T be the NLS estimators of (9). The key ingredient of the CME test is

1
T

T
∑

t=1

∇µG̃t∇δµ̃t[F̃t − G̃t], (11)

where F̃t, G̃t, ∇µG̃t, and ∇δµ̃t are the functions evaluated at the NLS estimators. This

differs from the first component of (10) in two respects. First, the NLS estimators are

different from the corresponding QMLEs. Second, (11) does not involve the estimated

conditional variance of yt. As such, the PSE test and the NLS-based CME test need not
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be the same when the conditional distributions of (9) are non-normal or heteroskedastic.

Although NLS estimation here ignores conditional heteroskedasticity of data, the robust

procedure of the CME test still yields a limiting chi-squared null distribution (but is not

asymptotically efficient).

As shown in Wooldridge (1990a), the CME test also admits weighted NLS (WNLS)

estimators whose weight functions do not have to be correctly specified conditional vari-

ance functions. The WNLS-based CME test can also be robustified against potential

misspecifications of the conditional variance function. For binary dependent variables,

their conditional variances have specific forms. With properly estimated conditional

variances as weight functions, the WNLS estimators are asymptotically equivalent to the

QMLEs. Therefore, the CME test based on these particular WNLS estimators and the

PSE test are asymptotically equivalent.

From the examples in these two subsections we can see that the CME test does not

require auxiliary assumptions other than conditional mean specifications. Hence, it is

particularly useful when conditional densities are not (or cannot be) completely specified.

In some cases, data characteristics may have implications on conditional moments. For

example, the specific form of the conditional variance in binary choice models is mainly

an implication of binary data and hence is not an ad hoc assumption. This differs from,

say, Poisson regressions because the specific form of the conditional variance in Poisson

regressions is not necessarily a consequence of count data. In the former case, we can

incorporate data characteristics into the likelihood function, and the resulting PSE test

is a natural choice, even though an asymptotically equivalent CME test is also available.

In the latter case, a WNLS-based CME test may be reasonable if one is reluctant to

believe that the conditional mean and variance are the same.

3.3 Censored and Truncated Regressions

In this subsection we take the Tobit model as an example and derive the PSE test. It is

interesting to note that while the PSE test is still a natural choice for censored and trun-

cated regressions, the CME test is inappropriate because it ignores data characteristics.

Suppose that the endogenous variable y∗t is censored such that the observed variable

yt = y∗t when y∗t > 0 and yt = 0 otherwise. Consider two competing (conditional) mean
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specifications for y∗t :

Mf : y∗t = m(xt, γ) + εt,

Mg : y∗t = µ(zt, δ) + νt,

which can also be expressed as

Mf : yt =

{

m(xt, γ) + εt, if εt > −m(xt, γ),

0, if εt ≤ −m(xt, γ),

Mg : yt =

{

µ(zt, δ) + νt, if νt > −µ(zt, δ),

0, if νt ≤ −µ(zt, δ).

These are two Tobit models when εt and νt are assumed to be i.i.d. N(0, σ2
f ) and N(0, σ2

g),

respectively.

Let φ and Φ be the density and cumulative distribution functions of the standard

normal random variables, respectively. The quasi-likelihood function of Mg is

T
∏

t=1

[

1
σg

φ
(

yt − µ(zt, δ)
σg

)]λt
[

1− Φ
(

µ(zt, δ)
σg

)](1−λt)

,

where λt = 1 when y∗t > 0 and λt = 0 otherwise. The score function of the average

quasi-log-likelihood function is

Sgδ(β) =
1

Tσ2
g

T
∑

t=1

∇δµt

[

λt(yt − µt)− (1− λt)
σgφ(µt/σg)

1− Φ(µt/σg)

]

.

It is shown in the Appendix that the key ingredient of the PSE test is

Ψ̂(α̂T , β̂T ) =
1

T σ̂2
gT

T
∑

t=1

{∇δµ̂t [(m̂t − µ̂t)Φ(m̂t/σ̂fT ) + σ̂fT φ(m̂t/σ̂fT )

− σ̂gT φ(µ̂t/σ̂gT )
1− Φ(m̂t/σ̂fT )
1− Φ(µ̂t/σ̂gT )

]}

.

(12)

By taking mt (µt) as the specification of the conditional mean of yt, we could also

compute a CME test. It is clear that this cannot be the same as the PSE test. In fact,

it is well known that least-squares estimation is not suitable for censored (truncated)

regressions because it ignores data censoring (truncation). Thus, the CME test and its

robustified version, whether it is NLS-based or WNLS-based, is not valid in these cases.
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3.4 Conditional Variance Specifications

In addition to conditional mean functions, econometricians may also be interested in

modelling other aspects of conditional distributions, such as conditional variance and

conditional skewness. While the PSE test for such non-nested specifications can be

easily obtained, the CME test, by construction, cannot be applied.

Consider two general specifications for both conditional mean and conditional vari-

ance:

Mf : yt = mt(xt, γ) + εt, var[εt|Ft−1] = ht(xt, ϑ),

Mg : yt = µt(zt, δ) + νt, var[νt|Ft−1] = kt(zt, %),

where ht(xt, ϑ) and kt(zt, %) are the conditional variance functions of yt under Mf and

Mg, respectively. For example, ht may be a GARCH specification, whereas kt may be an

EGARCH specification.

Suppose that εt|Ft ∼ N(0, ht) and νt|Ft ∼ N(0, kt). Let α = (γ′, ϑ′)′ and β = (δ′, %′)′.

For Mf , we can write

ε2
t = ht(xt, ϑ) + ut.

Note that when Mf with α = αo is correctly specified, IEf(αo)[εt|Ft−1] = 0 and IEf(αo)[ut|Ft−1] =

0. Therefore, we have

IEf(αo)[Sgδ(β)] =
1
T

T
∑

t=1

IEf(αo) [∇δµt[mot − µt]/kt] ,

IEf(αo)[Sg%(β)] =
1
T

T
∑

t=1

IEf(αo)
[

∇%kt
[

(mot − µt)2 + hot − kt
]

/2k2
t
]

,

where hot, kt, and ∇%kt denote, respectively, ht(xt, ϑo), kt(zt, %), and ∇%kt(zt, %). We also

let ĥt, k̂t, and ∇%k̂t be ht(xt, ϑ̂T ), kt(zt, %̂T ), and ∇%kt(zt, %̂T ). The PSE test then depends

on

Ψ̂g(α̂T , β̂T ) =





1
T

∑T
t=1∇δµ̂t [m̂t−µ̂t] /k̂t

1
2T

∑T
t=1∇%k̂t

[

(m̂t−µ̂t)2 + ĥt−k̂t

]

/k̂2
t



 . (13)
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When only the conditional variance specifications concern us, the conditional means

are usually specified as the same function in Mf and Mg. Then, the first component of

(13) becomes zero and is not needed, and the second component simplifies to

Ψ̂g%(α̂T , β̂T ) =
1

2T

T
∑

t=1

∇%k̂t(ĥt−k̂t)/k̂2
t . (14)

The PSE test based on (14) can be applied to distingish between competing ARCH

and GARCH specifications and provides a useful alternative to the test of Engle and

Ng (1993). Moreoever, the term (ĥt−k̂t)/k̂t in (14) can be viewed as a generalized

residual, so that the PSE test can also be robustified along the line in Wooldridge (1990b).

4 Simulations

In this section we report some simulation results for linear regression models and binary

choice models. We consider only the PSE test for conditional mean; the competing tests

are the CME, J , and JA tests. In the experiments below, the sample sizes are T = 50, 100,

the numbers of regressors are p = 3, 5, the number of replications is R = 1000, and the

nominal size is 5%.

We first consider linear regression models with the data generating process (DGP):

yt = wt,1 + · · ·+ wt,p + at, at ∼ i.i.d. N(0, 1),

where wt,i = (1 − λ)xt,i + λzt,i, and xt,i and zt,i are all i.i.d. N(0, 1) random variables.

The non-nested linear models are

Mf : yt =
p

∑

i=1

γixt,i + εt, εt|Ft−1 ∼ N(0, σ2
f ),

Mg : yt =
p

∑

i=1

δizt,i + νt, νt|Ft−1 ∼ N(0, σ2
g).

We then assess the test performance by setting λ = −1,−0.9, . . . , 0.9, 1 (with increments

0.1). When λ = 0, Mf is correctly specified, so that the rejection frequency of a test

is its empirical size. For other values of λ, the rejection frequencies of a test are em-

pirical powers against the alternatives that deviate from the null to certain extent; in

particular, λ = 1 implies Mg is correctly specified. As these models are conditional mean

specifications, the proposed test is essentially the same as the CME test.
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In Figures 1–4 we plot the rejection frequencies against different λ values. In Figures 1

and 2, the numbers of regressors are p = 3 and p = 5, respectively, and the sample size is

T = 50. Figures 3 and 4 also correspond to p = 3 and p = 5, respectively, but are based

on T = 100. We first observe that all but the J test have roughly correct sizes for T = 50

and 100. Hence, the power performance of the J test is exaggerated. Although the JA

test indeed corrects the size problem of the J test, it also loses power as λ deviates from

zero and performs much worse than the PSE test. Comparing to the CME test, the PSE

test performs slightly better when T = 50 but has similar powers when T = 100.

We then consider the probit model (Mf ) vs. the logit model (Mg), as discussed in

Section 3.2. The DGP is

y∗t = wt,1 + . . . + wt,p + at,

where wt,i = (1−λ)xt,i +λzt,i, at = (1−λ)εt +λνt, εt are i.i.d. N(0, 1) random variables

and νt are i.i.d. logistic random variables. The models for y∗t are linear:

Mf : y∗t =
p

∑

i=1

γixt,i + εt,

Mg : y∗t =
p

∑

i=1

δizt,i + νt.

We again consider λ = −1,−0.9, . . . , 0.9, 1. In particular, Mf is correctly specified when

λ = 0.

We also plot rejection frequencies against different λ values in Figures 5 (p = 3, T =

50), 6 (p = 5, T = 50), 7 (p = 3, T = 100), and 8 (p = 5, T = 100). It is easily seen

that the J test again has very serious size distortions; hence its power performance is

also exaggerated. In contrast with the simulations of the linear model, the JA test is still

over-sized, especially for p = 5 and T = 100, but it also has very poor power performance.

The PSE test maintains correct size in all cases, whereas the CME test may be under-

sized when p = 5 and T = 50. In terms of powers, the PSE test performs similarly to

the CME test for p = 3 but performs slightly better for p = 5. This suggests that the

proposed test is relatively more stable for models of different complexity.

From these simulations, we find that the proposed test outperforms the J and JA

tests but performs similarly to the CME test. This similarity is not surprising because

the PSE test for conditional mean specifications and the CME test are quite close, as
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discussed in Sections 3.1 and 3.2. Note again that the CME test is not applicable to

non-nested specifications of other distribution characteristics.

5 Conclusions

In this paper an operational encompassing test based on the pseudo-true score is pro-

posed. An important feature of this test is that it does not involve the pseudo-true

parameter of the alternative model; only the QMLEs of both the null and alternative

models are needed to implement this test. We show that the proposed test can be con-

veniently applied to test various aspects of the postulated conditional distributions and

therefore may be viewed as an extension of the CME test of Wooldridge (1990a). Our

simulations indicate that the proposed test has correct sizes in all cases considered and

compares favorably with other non-nested tests. Thus, the proposed test can serve as a

useful complement to existing non-nested tests.

Finally, we note that, as the score encompassing test relies on the score evaluated at

the estimated pseudo-true parameter, it is actually a parameter encompassing test based

on score. By contrast, the proposed test checks if the pseudo-true score is close to zero

and hence is truly a test of score encompassing.
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Appendix

Proof of Equation (3): Let fT (yT , α) :=
∏T

t=1 ft(yt|Ft−1, α) with yT = (y1, . . . , yT )

and

ψgT (α, β) := IEf(α)[SgT (β)].

The limit of ψgT (α, β) is Ψg(α, β). Taking linear expansion of ψgT about α† and β† yields

ψgT (α, β) = ψgT (α†, β†) +∇α′ψgT (α†, β)(α− α†)

+∇β′ψgT (α, β†)(β − β†) + o(1),

where

∇α′ψgT (α, β) =
∫

SgT (β)[∇α′fT (yT , α)/fT (yT ; α)]fT (yT ;α) dyT

= T
∫

SgT (β)SfT (α)′fT (yT ; α) dyT

= IEf(α)[
√

TSgT (β),
√

TSfT (α)′],

because SfT (α) = T−1[∇α′fT (yT , α)/fT (yT ; α)], and

∇β′ψgT (α, β) =
∫

∇β′SgT (β)fT (yT ; α) dyT = IEf(α)[HgT (β)].

Passing to the limit we have

Ψg(α, β) = Ψg(α†, β†) + Kgf (α†, β)(α− α†) + Hg(α, β†)(β − β†).

Given α = α̂T , β = β̂T , α† = αo, and β† = β(αo),
√

TΨg(α̂T , β̂T ) =
√

TΨg(αo, β(αo)) + Kgf (αo, β̂T )
√

T (α̂T − αo)

+ Hg(α̂T , β(αo))
√

T [β̂T − β(αo)]

= Kgfo
√

T (α̂T − αo) + Hgo
√

T [β̂T − β(αo)] + op(1).

To prove (3), note that

Hgo
√

T [β̂T − β(α̂T )] = Hgo
√

T [β̂T − β(αo)]−Hgo
√

T [β(α̂T )− β(αo)]

= Hgo
√

T [β̂T − β(αo)]−Hgo∇α′β(αo)
√

T (α̂T − αo) + op(1).

The proof is complete if we can show

Kgfo = −Hgo∇α′β(αo) + o(1).
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Consider now the following expansion about α†:

ψgT (α, β(α)) = ψgT (α†, β(α†)) +∇1ψgT (α†, β(α†))(α− α†) +

∇β′ψgT (α†, β(α†))∇α′β(α†)(α− α†) + o(1),

where ∇1ψgT is the gradient of ψgT with respect to the first argument so that, similar to

previous derivations,

∇1ψgT (α†, β(α†)) = IEf(α†)[
√

TSgT (β(α†)),
√

TSfT (α†)′],

and

∇β′ψgT (α†, β(α†)) = IEf(α†)[HgT (β(α†))].

Again passing to the limit and setting α† = αo, we have

Ψg(α, β(α)) = Ψg(αo, β(αo)) + [Kgfo + Hgo∇α′β(αo)](α− αo).

By (1), Ψg(α, β(α)) = 0 and Ψg(αo, β(αo)) = 0. It follows that

Kgfo + Hgo∇α′β(αo) = 0,

a zero matrix. 2

Proof of Equation (12): Let λot denote the indicator variable from Mf with α = αo.

The pseudo-true score function of Mg is

Ψg(αo, β) = lim
T→∞

1
Tσ2

g

[

T
∑

t=1

IEf(αo)[λot∇δµt(mot − µt)]

−IEf(αo)

(

(1− λot)∇δµt
σgφ(µt/σg)

1− Φ(µt/σg)

)

+ IEf(αo)[∇δµtλotεt]
]

.

By the law of iterated expectations,

IEf(αo)[∇δµtλotεt] = IEf(αo)[∇δµtIEf(αo)[λotεt|Ft−1]],

and

IEf(αo)[λotεt|Ft−1] = IEf(αo)[λotIEf(αo)[εt|Ft−1, λot]],

= Pf(αo)(λot = 1)IEf(αo)[εt|Ft−1, λot = 1].
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Note that Pf(αo)(λot = 1) = Φ(mot/σfo) and Pf(αo)(λot = 0) = 1 − Φ(mot/σfo). Given

that the conditional density function of εt is

f(εt = a|Ft−1, λot = 1) =
φ(a/σfo)/σfo

Φ(mot/σfo)
,

we thus have

IEf(αo)[λotεt|Ft−1] =
∫ ∞

−mot

(a/σfo)φ(a/σfo)d a

=
1

2
√

2πσ2
fo

∫ ∞

m2
ot

exp(−v/2σ2
fo)d v (v := a2)

= σfoφ(mot/σfo).

It follows that

IEf(αo)[∇δµtλotεt] = IEf(αo)[∇δµtσfoφ(mot/σfo)].

Similarly, we also have

IEf(αo)[λot∇δµt(mot − µt)] = IEf(αo)[∇δµt(mot − µt)Φ(mot/σfo)],

IEf(αo)

[

(1− λot)∇δµt
σgφ(µt/σg)

1− Φ(µt/σg)

]

= IEf(αo)

[

∇δµtσgφ(µt/σg)
1− Φ(mot/σfo)
1− Φ(µt/σg)

]

.

Thus, after taking into account the censoring scheme under Mf with α = αo, the pseudo-

true score function of Mg is

Ψg(αo, β) = lim
T→∞

1
Tσ2

g

T
∑

t=1

IEf(αo) {∇δµt [(mot − µt)Φ(mot/σfo) + σfoφ(mot/σfo)

− σgφ(µt/σg)
1− Φ(mot/σfo)
1− Φ(µt/σgo)

]}

,

from which we can see that (12) is the key ingredient of the PSE test. 2
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Figure 1: Non-nested regressions: T =

50, p = 3.

Figure 2: Non-nested regressions: T =

50, p = 5.

Figure 3: Non-nested regressions: T =

100, p = 3.

Figure 4: Non-nested regressions: T =

100, p = 5.
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Figure 5: Probit vs. Logit: T = 50,

p = 3.

Figure 6: Probit vs. Logit: T = 50,

p = 5.

Figure 7: Probit vs. Logit: T = 100,

p = 3.

Figure 8: Probit vs. Logit: T = 100,

p = 5.
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