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Abstract

Two extensions of a model in the presence of an alternative model are proposed.

The extensions are based on the score function of the alternative model. It is

shown that the encompassing hypothesis is equivalent to standard conditions on

the score of each of the extended models. The condition on the �rst extension gives

rise to the standard score encompassing test, while the condition on the second

extension induces a so-called reversed score encompassing test. A similar logic is

applied to the likelihood ratio, thus generating a likelihood ratio and a reversed

likelihood ratio encompassing test. The ensued test statistics can be based on

simulations if certain calculations are to di�cult to carry out analytically. We

study the �rst-order asymptotic properties of the proposed test statistics under

general conditions.
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1 Introduction

Model speci�cation tests are a central theme in the econometric literature. The ma-

jority of the approaches fall into two categories. In the �rst approach the model under

test is confronted with another, often non-nested, model (see Gouri�eroux and Mon-

fort [1994] for a review), and therefore the tests are oriented towards this particular

alternative model. The constraint underlying most of these tests is in fact the en-

compassing condition (see e.g. Mizon and Richard [1986], Hendry and Richard

[1990], Gouri�eroux and Monfort [1995], Dhaene [1997], Dhaene, Gouri�eroux

and Scaillet [1998]), but not always (see Vuong [1989]). The second approach exploits

orthogonality conditions implied by the model under test without having a speci�c al-

ternative model in mind (see Bierens [1994] for a review), and is known as conditional

moment testing (Newey [1985], Tauchen [1985], Bierens [1991]).

The approach taken in this paper falls into the �rst category, where an arbitrary

conditional parametric model is tested against another arbitrary, possibly non-nested,

conditional parametric model. We expand on results reported in Gouri�eroux and

Monfort [1995] and Dhaene [1997], where score and likelihood ratio encompassing

tests were proposed. These tests, and the new tests we propose, are generated by expo-

nentially tilting the model under test in two alternative directions, each one involving

the score function of the alternative model. Intuitively, the new tests we propose are

obtained from reversing the roles of the true distribution generating the data and the

pseudo-true distribution of the model under test. This leads to what we call reversed

score and likelihood ratio tests. The tests rely on simulations in order to avoid the need

for analytic calculations of certain expectations in any particular application.

The framework is briey presented in Section 2. Section 3 introduces two extensions

of the model under test, obtained by exponential tilting. It also restates the encom-

passing condition in terms of these extensions and gives the intuition underlying the

reversed score and likelihood ratio tests. The basic test statistics are presented in Sec-

tion 4. Their �rst-order asymptotic properties are studied in Section 5, in descending

order of generality. Section 6 concludes.

2 Framework

We consider an arbitrary pair of conditional, possibly non-nested, possibly misspeci�ed,

parametric models for independent and identically distributed data.

Let X and Y be random vectors taking values x and y in IRk and IRl, respective-

ly, and let PX be the true marginal distribution of X and PY jX the true conditional

distribution of Y , given X. Assume that the available data are T independent draw-

ings (xt; yt), t = 1; : : : ; T from PX and PY jX . Let G = fFG(�) j� 2 
� � IRmg and

H = fFH(�) j � 2 
� � IRng be parametric models of PY jX . It is assumed that the
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distributions FG(�), FH(�) and PY jX admit conditional density functions fG(yjx;�),
fH(yjx; �) and p0(yjx), respectively, relative to some measure � not depending on x,

� and �. It is also assumed that the expectations of the log density functions exist

whenever they are taken.

Accounting for the possibility that G is misspeci�ed, i.e. PY jX 62 G, and likewise for

H, it is also of interest to de�ne the pseudo-true values of � and � with respect to PX
and PY jX (see e.g. Sawa [1978]):

�0 = arg max
�2
�

EXE0 log fG(Y jX;�)

�0 = argmax
�2
�

EXE0 log fH(Y jX; �);

where the mathematical expectations EX and E0 are taken with respect to PX and

PY jX , respectively. We assume that �0 and �0 exist, are unique and interior to 
� and


�, respectively.

We shall be interested in testing G against H. Therefore, we also de�ne the pseudo-
true value of � with respect to PX and FG(�),

�� = argmax
�2
�

EXE� log fH(Y jX; �);

where the mathematical expectation E� is taken with respect to FG(�). We assume that

�� exists, is unique and interior to 
� and is continuously di�erentiable with respect to

�. By de�nition, G encompasses H, written G E H, if �0 = ��0 . It is well known that the

implicit null hypothesis of many tests of G against H is characterized by the condition

that G E H. See e.g.Mizon and Richard [1986], Gouri�eroux andMonfort [1995],

and Dhaene [1997]. Note that the underlying distributions PX and PY jX are crucial

in determining whether or not G E H. The score functions of G and H are de�ned as

sG(yjx;�) =
@

@�
log fG(yjx;�)

and

sH(yjx; �) = @

@�
log fH(yjx; �);

respectively. It is assumed that the score functions are continuously di�erentiable in

the parameters, that their expectations exist whenever they are taken, that

EXE0sG(Y jX;�) = 0 only if � = �0;

EXE0sH(Y jX; �) = 0 only if � = �0;

EXE�sH(Y jX; �) = 0 only if � = ��;

and that the matrices EXE0[sG(Y jX;�0)s
0
G(Y jX;�0)], EXE0[sH(Y jX; �0)s

0
H(Y jX; �0])

and EXE�[sH(Y jX; ��)s
0
H(Y jX; ��]) exist and are positive de�nite. Then, de�ning the

score quantity

s1 = EXE0sH(Y jX; ��0)
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and the likelihood ratio (LR) quantity

l1 = EXE0[log fH(Y jX; ��0)� log fH(Y jX; �0)];

it is obvious that G E H is equivalent to s1 = 0 and also to l1 = 0. This property has led

to the development of score encompassing tests, based on estimates of s1 (Gouri�eroux

and Monfort [1995]), and LR encompassing tests, based on estimates of l1 (Smith

[1994] and Dhaene [1997]). The purpose of this paper is to introduce tests that are

based on quantities similar to s1 and l1, in particular the quantities obtained from s1
and l1 by reversing the roles of PY jX and FG(�0). A heuristic argument for doing so is

presented in the next section.

3 Model extensions

Consider the following extension of G:
G1 = fF 1

G(�; �1) j (�; �1) 2 
� � IRng;
where the distribution F 1

G(�; �1) has the following density function relative to �:

f 1G(yjx;�; �1) =
fG(yjx;�) exp(�01sH(yjx; ��0))

E� exp(�
0
1sH(yjx; ��0))

:

The density f 1G(yjx;�; �1) is obtained from fG(yjx;�) by exponential tilting (Barn-

dorff-Nielsen and Cox [1989]). Observe that G � G1 and that the parameter

vector (�; �1) need not be identi�ed. Instead of putting � = ��0 in the random vector

sH(Y jX; �), one may alternatively put � = �0, leading to another extension of G:
G2 = fF 2

G(�; �2) j (�; �2) 2 
� � IRng;
where the distribution F 2

G(�; �2) has the following density function relative to �:

f 2G(yjx;�; �2) =
fG(yjx;�) exp(�02sH(yjx; �0))

E�0 exp(�
0
2sH(yjx; �0))

:

The density f 2G(yjx;�; �2) is also obtained from fG(yjx;�) by exponential tilting, but

in a di�erent direction. As before, G � G2 and (�; �2) need not be identi�ed. The

motivation for considering the extended models G1 and G2 comes from the following

proposition.

Proposition 1 The following equivalences hold:

G E H () EXE0 log f
1

G(Y jX;�; �1) has a local maximum at (�; �1) = (�0; 0)

() EXE0sH(Y jX; ��0) = 0;

G E H () EXE0 log f
2

G(Y jX;�; �2) has a local maximum at (�; �2) = (�0; 0)

() EXE�0sH(Y jX; �0) = 0:
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Proof. The score functions associated with G1 and G2 are

s1G(yjx;�; �1) =

0
BBBB@

sG(yjx;�)�
E�[sG(Y jx;�) exp(�01sH(Y jx; ��0))]

E� exp(�
0
1sH(Y jx; ��0))

sH(yjx; ��0)�
E�[sH(Y jx; ��0) exp(�01sH(Y jx; ��0))]

E� exp(�
0
1sH(Y jx; ��0))

1
CCCCA

and

s2G(yjx;�; �2) =

0
BBBB@

sG(yjx;�)� E�[sG(Y jx;�) exp(�02sH(Y jx; �0))]
E� exp(�

0
2sH(Y jx; �0))

sH(yjx; �0)�
E�[sH(Y jx; �0) exp(�02sH(Y jx; �0))]

E� exp(�
0
2sH(Y jx; �0))

1
CCCCA ;

respectively. Putting (�; �1) = (�; �2) = (�0; 0) and taking expectations yields

EXE0s
1

G(Y jX;�0; 0) =

 
EXE0sG(Y jX;�0)� EXE�0sG(Y jX;�0)

EXE0sH(Y jX; ��0)� EXE�0sH(Y jX; ��0)

!

=

 
0

EXE0sH(Y jX; ��0)

!

and

EXE0s
2

G(Y jX;�0; 0) =

 
EXE0sG(Y jX;�0)� EXE�0sG(Y jX;�0)

EXE0sH(Y jX; �0)� EXE�0sH(Y jX; �0)

!

=

 
0

EXE�0sH(Y jX; �0)

!
:

Given the assumptions made earlier, it follows that G E H if and only if the func-

tions EXE0 log f
1
G(Y jX;�; �1) and EXE0 log f

2
G(Y jX;�; �2) have a stationary point at

(�; �1) = (�0; 0) and (�; �2) = (�0; 0), respectively. Now we need to show that, if

�0 = ��0 , the stationary point (�0; 0) is indeed a local maximum of the functions

involved. First, �xing �1 = 0, EXE0 log f
1
G(Y jX;�; 0) attains a global maximum at

� = �0, by de�nition. Secondly, �xing � = �0, we �nd, if �0 = ��0 ,"
@2

@�1@�
0
1

EXE0 log f
1

G(Y jX;�0; �1)

#
�1=0

= �EXE0[sH(Y jX; �0)s
0
H(Y jX; �0)]:

The latter matrix is negative de�nite by assumption, hence EXE0 log f
1
G(Y jX;�0; �1)

attains a local maximum at �1 = 0. The proof is complete by noting that the functions

f 1G and f 2G are identical when �0 = ��0 . (Q.E.D.)

The proposition shows that G E H if and only if the extensions of G using the score

function of H do not alter the pseudo-true value associated with G, at least not locally.
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In a sense, the extensions are thus ine�ective in bringing G closer to PY jX , according to

the Kullback-Leibler (1951) Information Criterion. Further, the condition G E H is

restated in terms of properties of the score function sH in relation to the distributions

PY jX and FG(�0). Interestingly, the two properties mirror each other in the sense that

each one, compared to the other, reverses the roles of PY jX and FG(�0). After all, this

should not come as a surprise since, for given �0, the distributions PY jX and FG(�0)

play a symmetric role in the de�nition of encompassing. Thus, we are led to de�ne the

reversed score quantity

s2 = EXE�0sH(Y jX; �0);

and, applying the same logic, the reversed LR quantity

l2 = EXE�0 [log fH(Y jX; �0)� log fH(Y jX; ��0)]:

The quantities s2 and l2 share the property with s1 and l1 that G E H is equivalent

to s2 = 0 and also to l2 = 0. This property enables us to develop reversed score

encompassing tests, based on estimates of s2, and reversed LR encompassing tests,

based on estimates of l2.

One may wonder whether the same reasoning of reversing the roles of PY jX and

FG(�0) can also be applied to the Wald encompassing test to yield something interest-

ing. The Wald encompassing test (Gouri�eroux and Monfort [1995]) is based on

estimates of the Wald quantity, de�ned as w1 = �0 � ��0 . The reversed Wald quantity

would then be w2 = ��0 � �0 = �w1, which obviously does not lead to an interesting

new test. The reason for this �nding is that PY jX and FG(�0) play similar roles in w1,

apart from the sign. Hence, reversing their roles doesn't lead to anything new. Looking

back now at s1 and l1, we clearly see that PY jX and FG(�0) play essentially di�erent

roles. This is why reversing them happens to be fruitful.

4 Test statistics

Given the sample (xt; yt), t = 1; : : : ; T , of independent observations from PX and PY jX ,

we seek to develop tests of the hypothesis that G E H. It follows from the properties

derived in the previous section that estimates of the quantities s1, l1, s2 and l2 and of

their covariance matrices naturally lead to tests of G E H. Note that this hypothesis is
weaker than the hypothesis that G is correctly speci�ed, i.e. PY jX 2 G. Hence estimates

of the same quantities are also suited for testing the hypothesis that G is correctly

speci�ed. A distinguishing feature between tests of G E H and tests of PY jX 2 G is that,

for the latter tests the distribution theory is usually based on the assumption that G is

correctly speci�ed, whereas for the former tests the distribution theory can at most be

based on the assumption that G E H. The distribution theory presented in this paper

considers the most general case, i.e. where G possibly does not encompass H.

5



The pseudo-maximum likelihood estimators �̂ and �̂ solve

max
�2
�

1

T

TX
t=1

log fG(ytjxt;�)

and

max
�2
�

1

T

TX
t=1

log fH(ytjxt; �);

respectively. Under regularity conditions such as given in White [1982], �̂
a:s:! �0 and

�̂
a:s:! �0. For any � 2 
�, let y

h
t (�), t = 1; : : : ; T and h = 1; : : : ; H, be independent

drawings from FG(�), given xt. For any h = 1; : : : ; H, the simulated pseudo-maximum

likelihood estimator �̂h� is de�ned to solve

max
�2
�

1

T

TX
t=1

log fH(y
h
t (�)jxt; �):

Under similar regularity conditions, �̂h�
a:s:! �� and �̂h�̂

a:s:! ��0 . Here and in the sequel,

stochastic limits are taken as T ! 1, with H �xed, possibly at 1. Then, de�ne the

simulated score and reversed score statistics as

ŝ1 =
1

TH

HX
h=1

TX
t=1

sH(ytjxt; �̂h�̂);

ŝ2 =
1

TH

HX
h=1

TX
t=1

sH(y
h
t (�̂)jxt; �̂);

respectively, and the simulated LR and reversed LR statistics as

l̂1 =
1

TH

HX
h=1

TX
t=1

h
log fH(ytjxt; �̂h�̂)� log fH(ytjxt; �̂)

i
;

l̂2 =
1

TH

HX
h=1

TX
t=1

h
log fH(y

h
t (�̂)jxt; �̂)� log fH(y

h
t (�̂)jxt; �̂h�̂)

i
;

respectively. We have ŝ1
a:s:! s1, ŝ2

a:s:! s2, l̂1
a:s:! l1 and l̂2

a:s:! l2. The �rst-order limit

distributions of ŝ1, ŝ2, l̂1 and l̂2 are investigated in the next section.

5 Limit distributions

We need to introduce some additional notation. Let

lG(�) =
1

T

TX
t=1

log fG(ytjxt;�)
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and

lH(�) =
1

T

TX
t=1

log fH(ytjxt; �)

be the normalized log likelihood functions of G and H based on the observed data

(xt; yt), t = 1; : : : ; T , and let

lhH(�;�) =
1

T

TX
t=1

log fH(y
h
t (�)jxt; �)

be the normalized log likelihood function of H based on the simulated data (xt; y
h
t (�)),

t = 1; : : : ; T . Correspondingly, de�ne the normalized score functions

sG(�) =
@

@�
lG(�);

sH(�) =
@

@�
lH(�);

and

shH(�;�) =
@

@�
lhH(�;�):

5.1 Limit distributions under general conditions

For su�ciently large T , �̂ satis�es the �rst-order condition sG(�̂) = 0. Expanding sG(�̂)

in a Taylor series around sG(�0), taking the probability limit of [@sG(�)=@�
0]�=�0 and

rearranging yields the well known result (White [1982])

p
T (�̂� �0) =

p
TK�1

G sG(�0) + op(1);

where

KG = �EXE0

"
@

@�0
sG(�)

#
�=�0

:

Similarly, p
T (�̂ � �0) =

p
TK�1

H sH(�0) + op(1);

where

KH = �EXE0

"
@

@� 0
sH(�)

#
�=�0

;

and p
T (�̂h�0 � ��0) =

p
T ~K�1

�H
shH(��0 ;�0) + op(1);

where

~K �H = �EXE�0

"
@

@� 0
shH(�;�)

#
�=�0;�=��0

:
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Further, expanding �̂h�̂ around �̂h�0 yields

p
T (�̂h�̂ � ��0) =

p
T (�̂ha0 � ��0) +

p
TB(�̂� �0) + op(1)

=
p
T ~K�1

�H
shH(��0 ;�0) +BK�1

G sG(�0) + op(1);

where (see Dhaene [1997])

B =

"
@��

@�0

#
�=�0

= ~K�1
�H
~J �HG;

with

~J �HG = EXE�0

"
@

@�
log fH(Y jX; �)

@

@�0
log fG(Y jX;�)

#
�=�0;�=��0

:

Now, expanding sH(�̂
h
�̂) around sH(��0) gives

p
T (ŝ1 � s1) =

p
T (sH(��0)� s1)�

p
T

H

HX
h=1

K �H(�̂
h
�̂ � ��0) + op(1)

=
p
T (sH(��0)� s1)�

p
TK �HBK

�1
G sG(�0)

�
p
TK �H

~K�1
�H

1

H

HX
h=1

shH(��0 ;�0) + op(1);

where

K �H = �EXE0

"
@

@� 0
sH(�)

#
�=��0

:

Expanding shH(�̂; �̂) around s
h
H(�0;�0) gives

p
T (ŝ2 � s2) =

p
T

H

HX
h=1

(shH(�0;�0)� s2)�
p
T ~KH(�̂ � �0)

p
T ~JHG(�̂� �0) + op(1)

=

p
T

H

HX
h=1

(shH(�0;�0)� s2)�
p
T ~KHK

�1
H sH(�0)

+
p
T ~JHGK

�1
G sG(�0) + op(1);

where

~JHG = EXE�0

"
@

@�
log fH(Y jX; �)

@

@�0
log fG(Y jX;�)

#
�=�0;�=�0

= ~J 0GH

~KH = �EXE�0

"
@

@� 0
shH(�;�)

#
�=�0;�=�0

:
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This completes the asymptotic expansions for ŝ1 and ŝ2. Turning to l̂1, expanding

lH(�̂
h
�̂) around lH(��0) gives

p
T (l̂1 � l1) =

p
T (lH(��0)� lH(�0)� l1) +

p
T

H

HX
h=1

sH(��0)
0(�̂h�̂ � ��0)

�
p
TsH(�0)

0(�̂ � �0) + op(1)

=
p
T (lH(��0)� lH(�0)� l1) +

p
Ts01BK

�1
G sG(�0)

+
p
Ts01

~K�1
�H

1

H

HX
h=1

shH(��0 ;�0) + op(1);

where it was used that sH(�0)
a:s:! 0. Finally, for l̂2,

p
T (l̂2 � l2) =

p
T

H

HX
h=1

(lhH(�0;�0)� lhH(��0 ;�0)� l2) +

p
T

H

HX
h=1

shH(�0;�0)
0(�̂ � �0)

�
p
T

H

HX
h=1

shH(��0 ;�0)
0(�̂h�̂ � ��0) +

p
T (~!GH � ~!G �H)

0(�̂� �0) + op(1)

=

p
T

H

HX
h=1

(lhH(�0;�0)� lhH(��0 ;�0)� l2) +
p
Ts02K

�1
H sH(�0)

+
p
T (~!GH � ~!G �H)

0K�1
G sG(�0) + op(1);

using shH(��0 ;�0)
a:s:! 0, with

~!GH = EXE�0

"
@

@�
log fG(Y jX;�) log fH(Y jX; �0)

#
�=�0

;

~!G �H = EXE�0

"
@

@�
log fG(Y jX;�) log fH(Y jX; ��0)

#
�=�0

:

To summarize the expansions, let

d̂ =

0
BBBB@
ŝ1
ŝ2

l̂1
l̂2

1
CCCCA ; d =

0
BBB@
s1
s2
l1
l2

1
CCCA ;
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wt =

0
BBBBBBBBBBBBBBBB@

sG(ytjxt;�0)
sH(ytjxt; �0)

sH(ytjxt; ��0)� s1
1

H

PH
h=1 sH(y

h
t (�0)jxt; �0)� s2

1

H

PH
h=1 sH(y

h
t (�0)jxt; ��0)

log fH(ytjxt; ��0)� log fH(ytjxt; �0)� l1
1

H

PH
h=1 log fH(y

h
t (�0)jxt; �0)� 1

H

PH
h=1 log fH(y

h
t (�0)jxt; ��0)� l2

1
CCCCCCCCCCCCCCCCA

;

and

A =

0
BBBBBBB@

�K �HBK
�1
G 0 I 0 �K �H

~K�1
�H 0 0

~JHGK
�1
G � ~KHK

�1
H 0 I 0 0 0

s01BK
�1
G 0 0 0 s01

~K�1
�H

1 0

(~!GH � ~!G �H)
0K�1

G s02K
�1
H 0 0 0 0 1

1
CCCCCCCA
:

Then,
p
T (d̂� d) =

1p
T

TX
t=1

Awt + op(1):

Observe that EXE0wt = 0. Assuming the existence of V = EXE0(wtw
0
t),

p
T (d̂� d)

d! N(0; AV A0);

by the central limit theorem. Note that all the submatrices in A can be consistently

estimated, and hence A itself, by replacing EXE0 by 1

T

PT
t=1, EX by 1

T

PT
t=1, E�0 by

E�̂ or by 1

H

PH
h=1 and using yht (�̂) in place of yt, �0 by �̂, �0 by �̂, ��0 by

1

H

PH
h=1 �̂

h
�̂,

and (ŝ1; ŝ2; l̂1; l̂2) by (s1; s2; l1; l2), successively. Similar replacements in wt yield ŵt and

V̂ = 1

T

PT
t=1 ŵtŵ

0
t as a consistent estimator of V . A consistent estimator of AV A0

follows.

Inspection of Awt reveals that no general asymptotic equivalences hold between

subvectors of d̂. More precisely, there does not exist in general a �xed non-zero matrix

C such that
p
TC(d̂�d) = op(1), because V is not of reduced rank in general and A has

not reduced row rank in general. This implies, in particular, that no general asymptotic

equivalences exist between ŝ1, ŝ2, l̂1 and l̂2. This �nding, and the full characterization

of the joint �rst-order limit distribution of ŝ1, ŝ2, l̂1 and l̂2 opens perspectives for jointly

exploiting the evidence contained in these statistics against any of the hypotheses G E H
and PY jX 2 G, thereby gaining in power compared to the standard score or LR test.

The unresolved problem for doing this is to control the (asymptotic) size of the joint
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test. A fully joint test would typically take a quadratic form in
p
T d̂, weighted by

a consistent estimate of (AV A0)+, and refer to the �2 distribution with appropriate

degrees of freedom. As we show below, asymptotic equivalences do appear when G E H
(a fortiori when PY jX 2 G), making AV A0 a singular matrix. In many cases of interest,

consistent estimates of AV A0 have an asymptotic rank that exceeds the rank of AV A0,

which makes consistent estimation of (AV A0)+ a di�cult task (see also Andrews [1989]).

In other words, the main di�culty for building a test on the full vector d̂ is that the

rank of his covariance matrix depends on whether or not G E H, which is precisely the

hypothesis being tested.

5.2 Limit distributions under the condition G E H

The �rst-order limit distribution of d̂ when G E H is easily obtained using the results of

the previous subsection. We then have d = 0 and

wt =

0
BBBBBBBBBBBBBBBB@

sG(ytjxt;�0)
sH(ytjxt; �0)
sH(ytjxt; �0)

1

H

PH
h=1 sH(y

h
t (�0)jxt; �0)

1

H

PH
h=1 sH(y

h
t (�0)jxt; �0)
0

0

1
CCCCCCCCCCCCCCCCA

:

Further, KH = K �H, ~KH = ~K �H, ~!GH = ~!G �H, B = ~K�1
H

~JHG and

A =

0
BBBBBB@

�KH
~K�1
H

~JHGK
�1
G 0 I 0 �KH

~K�1
�H

0 0

~JHGK
�1
G � ~KHK

�1
H 0 I 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1
CCCCCCA
;

from which we obtain
p
T l̂1 = op(1) =

p
T l̂2 and the asymptotic equivalence

p
T ŝ1 = �KH

~K�1
H

p
T ŝ2 + op(1):

We can be more precise about the limiting behaviour of l̂1 and l̂2 by considering the

expansions

T lH(�̂
h
�̂) = T lH(�̂)� T

2
(�̂h�̂ � �̂)0KH(�̂

h
�̂ � �̂) + op(1);

T lhH(�̂; �̂) = T lhH(�̂
h
�̂; �̂)�

T

2
(�̂h�̂ � �̂)0 ~KH(�̂

h
�̂ � �̂) + op(1);

11



wherefrom

�2T l̂1 =
T

H

HX
h=1

(�̂h�̂ � �̂)0KH(�̂
h
�̂ � �̂) + op(1);

�2T l̂2 =
T

H

HX
h=1

(�̂h�̂ � �̂)0 ~KH(�̂
h
�̂ � �̂) + op(1):

Upon gathering previous results,

p
T (�̂h�̂ � �̂) =

p
T ~K�1

H shH(�0;�0) +
p
T ~K�1

H
~JHGK

�1
G sG(�0)�

p
TK�1

H sH(�0)

= �
p
TK�1

H ŝ1 + op(1)

= �
p
T ~K�1

H ŝ2 + op(1);

yielding the asymptotic equivalences

�2T l̂1 = T ŝ01K
�1
H ŝ1 + op(1)

= T ŝ02
~K�1
H KH

~K�1
H ŝ2 + op(1);

�2T l̂2 = T ŝ02
~K�1
H ŝ2 + op(1)

= T ŝ01K
�1
H

~KHK
�1
H ŝ1 + op(1):

Note that �2T l̂1 and �2T l̂2 are not in general asymptotically equivalent. The limit

distributions can be summarized as follows. Let

vt =

0
BBB@

sG(ytjxt;�0)
sH(ytjxt; �0)

1

H

PH
h=1 sH(y

h
t (�0)jxt; �0)

1
CCCA

and

D =
�

~JHGK
�1
G � ~KHK

�1
H I

�
:

Now Evt = 0, and letting � = E(vtv
0
t) we have

p
T ŝ1

d! N(0; KH
~K�1
H D�D0 ~K�1

H KH);p
T ŝ2

d! N(0; D�D0);

�2T l̂1 d! M(�( ~K�1
H KH

~K�1
H D�D0));

�2T l̂2 d! M(�( ~K�1
H D�D0));

where M(�(W )) is the distribution of a weighted sum of independent �2 variates with

weights equal to the eigenvalues of W . The matrices D and � and the necessary

eigenvalues can be consistently estimated by the procedure outlined in the previous

12



subsection. If we can determine the rank of the asymptotic covariance matrices ofp
T ŝ1 and

p
T ŝ2, asymptotic score and reversed score encompassing tests follow read-

ily. Asymptotic LR and reversed LR encompassing tests follow also from the limit

distribution given above. They require the calculation of critical values of weighted

sum of chi-squares distributions, which can easily be obtained by simulation. Note that

LR and reversed LR tests do not require the determination of the rank of a matrix.

5.3 Limit distributions under the condition PY jX 2 G

Further simpli�cations occur when PY jX 2 G. We have FG(�0) = PY jX , wherefrom
~KH = KH, yielding

p
T ŝ1 = �

p
T ~JHGK

�1
G sG(�0) +

p
T

 
sH(�0)� 1

H

HX
h=1

shH(�0;�0)

!
+ op(1)

p
T ŝ2 =

p
T ~JHGK

�1
G sG(�0)�

p
T

 
sH(�0)�

1

H

HX
h=1

shH(�0;�0)

!
+ op(1)

and the asymptotic equivalences

p
T ŝ1 = �

p
T ŝ2 + op(1)

and

�2T l̂1 = T ŝ01K
�1
H ŝ1 + op(1)

= T ŝ02K
�1
H ŝ2 + op(1);

= �2T l̂2 + op(1):

Note also that sH(�0) and s
h
H(�0;�0), h = 1; : : : ; H, are conditionally independent and

identically distributed, given xt, t = 1; : : : ; T . Asymptotic score and reversed score tests

and asymptotic LR and reversed LR tests of PY jX 2 G can be constructed along the

same lines as given in the previous subsection, taking advantage of the simpli�cations

just mentioned.

6 Conclusion

We have outlined two alternative procedures to the standard score and LR encompassing

tests, respectively. They follow from restating the encompassing condition in terms of a

property regarding exponentially tilted models. Intuitively, the alternative procedures

are obtained from reversing the roles of the true distribution generating the data and

the pseudo-true distribution of the model under test. Application requires the models

13



to be estimable by the method of maximum likelihood. No analytic calculations are

needed beyond the analytic �rst and second derivatives of the log likelihood functions.

The need calculate mathematical expectations analytically is avoided by the use of any

�nite number of simulations from the model under test.
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