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1 Introduction

Bank runs have always been of great public concern. During a bank run, depositors rush

to withdraw their deposits forcing banks to fail even when they would otherwise be solvent.

Because banks issue liquid liabilities but invest in illiquid assets, they have always been

vulnerable to panics. In the 1980s and 1990s, 73% of the IMF's member countries su�ered

some form of banking crisis (see Lindgren, Garcia & Saal 1996). Recently, this phenomenon

has attracted more attention because it is thought to have played an important role in the

balance-of-payment (BOP) crises that hit Mexico and Argentina in 1994, Southeast Asia in

1997, Russia in 1998, and more recently Brazil and Ecuador. Kaminsky and Reinhart (1996),

in fact, refer to the occurrence of both banking crises and BOP crises as the \twin crises"

phenomenon. In their study, they �nd that 56 percent of banking crises were followed by a

BOP crises within three years during the 1980s and 1990s. This evidence suggests, therefore,

that a good understanding of the determinants of bank runs is not only important for bank

management, but also crucial for explaining the twin crises phenomenon.

It is important to distinguish between two types of bank runs. A type-I bank run occurs

when a solvent bank is forced to go into bankruptcy due to liquidity reasons. A type-II bank

run, on the contrary, happens when a bank is insolvent. There are two di�erences between

these two types of bank runs. First, in a type-I bank run the �nancial intermediaries are

solvent but illiquid, while in a type-II bank run, we observe both illiquidity and insolvency.

Thus, in a type-I bank run, there is no fundamental problem, the depositors rush to withdraw

their money for non-economic reasons, such as pessimistic expectations or herd behavior.

Second, a type-I bank run is a suboptimal phenomenon, while a type-II bank run is an

e�cient outcome in a market economy. This paper provides a framework in which both

types of bank runs are possible when all agents rationally choose their behaviors.

Our starting point is the framework developed in the insightful paper of Diamond and

Dybvig (1983). They present a benchmark model in which bank runs are self-ful�lling

prophecies. Demand deposit contracts o�ered by banks provide a risk-sharing mechanism

to risk-averse agents. In their simultaneous game there exist multiple-equilibria due to the

2



illiquidity problem of banks. On the one hand, if no one expects that bank runs will happen,

only \impatient" agents will withdraw their deposits. On the other hand, if all depositors

anticipate a bank run, then they all have the incentive to withdraw immediately. Which one

of these two equilibria occurs is determined exogenously, say, by the \sunspot."

The Diamond-Dybvig (D-D) model is very attractive in that it can explain both types of

bank runs in a simple way; however, there are two major problems. First, the property that

banking crises are self-ful�lling is quite controversial. Gorton (1988), Calomiris and Gorton

(1991), Corsetti, Pesenti & Roubini (1998) conduct a broad range of empirical studies and

conclude that the data do not support the \sunspot" view that banking crises are random

events; instead, the empirical evidence suggests that bank runs are intimately related to the

state of the business cycle. Second, the D-D framework is only a partial equilibrium analysis

in that it does not study the impact of bank runs on the behavior of banks, either in terms

of the optimal deposit contracts or their investment portfolios. It is unclear why banks are

willing to o�er the demand deposit contract from the beginning if bank runs could happen.

Under a general equilibrium framework, it is important to consider how banks will redesign

their deposit contracts and liquidity structure in response to the possibility of bank runs.

Accordingly, numerous papers tried to resolve these two problems.

Most of the literature that follows the D-D study aims to unveil the \fundamentals"

that trigger bank runs. Chari and Jagannathan (1988) provide a signal-extracting story. In

their model, liquidity needs are uncertain and agents have asymmetric information on asset

returns. Uninformed agents observe total early withdrawal and try to �gure out what infor-

mation the informed agents have. Chari and Jagannathan show that bank runs can happen

even when no one has adverse information because uninformed agents will incorrectly infer

that the future return is low when liquidity-based withdrawals turn out to be unusually high.

Jacklin and Bhattacharya (1988), and Alonso (1996) study the socially optimal allocation

when agents get asymmetric information on future returns in the interim period. They �nd

that when future returns are too volatile, the social planner may choose a bank-run contract

over a run-proof alternative, in which bank runs happen when the informed agents receive

a bad interim signal. Allen and Gale (1998) develop a model that is consistent with the
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business cycle view of the origins of banking panics. In their model, they assume that bank

runs occur only when they are unavoidable.1 As a result, a bank panic occurs only when the

returns of bank assets are going to be low. Bank runs are inevitable results of the standard

deposit contract and can be �rst-best e�cient in a world with aggregate uncertainty.

The other branch of research tries to combine the Diamond-Dybvig analysis with optimal

contract theory. Cooper and Ross (1991, 1998) consider how banks respond to the possibility

of runs in their investment decisions, particularly through the holding of excess liquidity.

They prove that whether banks choose a run-preventing or bank-run allocation depends

on the probability of bank runs. Chang and Velasco (1998, 1999) develop a simple model

in which banks take the possibility of self-ful�lling runs into account when choosing their

external debt structure and interest rates. They also show that if the probability of a run is

su�ciently small, banks can deliberately choose an illiquid asset-liability position and expose

themselves to a run. However, in all these papers, a bank run features to be one of the many

possible equilibria. Since there is no good model available to resolve the equilibrium-selection

problem, the probability of the bank-run equilibrium, which is crucial to each study, has to

be assumed to be exogenously given | a sunspot equilibrium.

This paper extends the existing literature and resolves both problems. By assuming

that agents sequentially choose their withdrawal decisions, this model avoids the equilibrium

selection problem and yields a unique Subgame Perfect Nash Equilibrium (SPNE). Based on

this result, a general equilibrium study explains how banks strategically choose their demand

deposit contracts and investment decisions in a decentralized economy. In equilibrium, bank

runs are only possible when agents receive a bad signal on the future returns of bank assets.

When the signal is imperfect, both types of bank run are possible.

Another contribution of this paper is that it o�ers explanations of why high-risk invest-

ment projects are chosen in favor of low-risk alternatives.2 The most widely cited reason is

the moral hazard problem caused by a deposit insurance program (Cooper and Ross 1988,

1There still exists the multiple-equilibrium phenomenon in Allen and Gale's model, but they assume that
if there are multiple equilibria, the equilibrium without runs will always be chosen. This assumption is
the only reason why type-I bank runs are impossible in their model. In contrast, this paper eliminates the
possibility of multiple-equilibria.

2This phenomenon is sometimes referred to as \over-investment."
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Krugman 1998). Deposit insurance reduces investors' incentives to monitor banks' behavior,

thus encouraging the bankers to \bet" more aggressively. Over-investment in this situation is

suboptimal. In this paper, we show that the over-investment phenomenon can happen when

there is no deposit insurance. When banks do not commit to their investment decisions,3

banks always have incentive to over-invest as a result of the principal-agent problem. Even

when a commitment mechanism exists, over-investment is still possible. The reason is as

follows: Because banks are liquidated when the future return is low, the actual return of the

asset follows a truncated distribution. Since a more volatile asset has a \fatter" tail in the

high-return region, it has a higher actual return and can bring a higher payo� for depositors.

Therefore, the high-risk investment can be a more e�cient choice for the economy.

The paper is organized as follows. Section 2 describes the setup of the model. Section

3 analyzes the equilibrium withdrawal decisions for agents under a given demand deposit

contract. Section 4 studies how banks respond to the possibility of bank runs in their choice

of deposit contracts and investment structure. Section 5 discusses the properties of the

equilibrium contract under a decentralized economy. Section 6 shows how banks choose

from di�erent risky projects, and section 7 provides concluding remarks.

2 Model setup

The basic framework is the Diamond and Dybvig (1983) model with aggregate uncertainty,

but our model di�ers in that withdrawal decisions are made sequentially, and the banks play

an active role by choosing their interest rate structures and investment portfolios. Under

these assumptions, it can be shown that bank runs are possible in the unique equilibrium.

The model has three periods (T = 0; 1; 2), two types of assets, and two kinds of players:

private agents and banks.

� Investment technologies

There are two available investment technologies. One is storage technology, which

3Or if depositors are not able to monitor banks' investment behavior.
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produces a certain return of 1 in period 1 or 2. The other is risky investment,4 which

provides a random return of ~R in period 2. For simplicity, we assume ~R follows a

binomial distribution:

~R =

8<
:

RH with probability �

RL with probability 1� �

where RL < RH and 0 < � < 1.

The risky investment is more e�cient in the long run5 but less preferable in the short

run because it is illiquid. In particular, the liquidation value in period 1 is 1�� , where

� is the liquidation cost.6;7

Following the D-D model, I also assume that only �nancial intermediary (banks) can

invest in the risky technology, but both banks and individual agents have access to the

storage technology. This assumption allows a patient agent to withdraw his deposit

earlier and carry it through for future consumption.

� Banks

This paper extends the standard D-D model by allowing the banks to behave strategi-

cally in choosing their deposit contracts and investment portfolios. In period 0, banks

compete with each other by o�ering demand deposit contracts which specify a short-run

interest rate, r1, and a long-run interest rate, r2. After receiving deposits, each bank

chooses its optimal portfolio structure (allocation between liquid and illiquid assets).

4Throughout this paper, the storage technology is equivalent to riskless or liquid asset, while risky

technology is the same as illiquid asset. Unless speci�ed, return refers to the long-run return for risky
technology.

5That is, a representative agent prefers ~R to a certain income of 1. Obviously, a necessary condition is
E( ~R) > 1 if agents are risk-averse.

6The liquidation cost was �rst introduced by Cooper and Ross (1991). In the D-D model, there is no
liquidation cost (� = 0); therefore, the risky asset strictly dominates the riskless asset. At the other extreme,
Jacklin and Bhattacharya (1988) assume � = 1.

7There are several papers discussing how the liquidation value is determined when a �nancial crisis
happens. One story is provided by Krugman (1998): when a self-ful�lling crisis happens, the �rms are forced
to liquidate their assets early and only get a proportion of the real value. Another is developed in a more
recent paper by Backus, Foresi and Wu (1999): due to a liquidity crunch and imperfect information, an
idiosyncratic bank run might be contagious and banks' assets have to be liquidated at a very high cost.
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The deposit contract in this paper di�ers from those in the existing literature in that it

speci�es the long-run interest rate. Most existing models assume that the long run rate

is determined by evenly distributing the remaining resources among the late consumers.

This assumption is innocuous if banks make zero pro�t in every state; however, as we

see below, this is not necessarily true.8

As in the D-D model, I assume that the banks pay the depositors according to a \�rst

come, �rst served" rule. The di�erence is that I assume that the sequential service

rule should be observed in all periods, while in D-D model it is only valid in period 1.

This di�erence is the main reason that banks earn positive pro�ts in equilibrium (see

section 5).

� Agents

There are N agents in the economy, where N is large but �nite.9 Each agent is endowed

with one unit of good at the beginning and must decide how much to deposit in the

banks after the announcement of interest rates.

Following the standard D-D framework, I assume there are two types of agents: impa-

tient agents and patients agents. Their utility functions are given respectively by

u1(c1; c2) = u(c1) (1)

and

u2(c1; c2) = u(c2); (2)

where u(�) satis�es u0(�) > 0 and u00(�) < 0. That is, all agents are risk-averse and

impatient agents derive utility only from period 1 consumption while patient agents

only care about period 2 consumption.

8This problem is more serious when a capital requirement is imposed. Under a capital requirement, banks
have to earn pro�ts in \good" states to compensate for their capital losses in \bad" states; therefore the
choice of the long-run interest rate will be more important.

9The �niteness of N is necessary to derive the uniqueness of the SPNE in section 3.
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The type of each agent is unknown in period 0. In period 1, the type for each agent

is realized. Each agent only knows his own type; however, everyone knows that a

constant fraction � of individuals are impatient.

� Information

In period 1, all agents receive a public signal, s, which correctly indicates the outcome

of asset returns with a certain probability. More speci�cally,

Prfs = RH j ~R = RHg = Prfs = RLj ~R = RLg = p (3)

The signal is perfect when p = 1 and imperfect when 0 < p < 1.

� Timing

In the beginning period, banks compete for deposits by announcing their short-term

interest rates and long-term interest rates. Individual agents decide how much endow-

ment to put in the banks. Then banks choose their investment portfolio to maximize

their expected pro�ts.

In period 1, the type for each agent is realized and the public signal s is revealed.

The decision each agent makes is simple: either to wait or to withdraw immediately.

I assume agents make withdrawal decisions according to a given sequence: impatient

agents make their decisions �rst, then patient agents make their withdrawal decisions

sequentially. Each agent has complete information on the decisions made by those in

front of him.10 This procedure is shown as �gure 1: after the public signal is revealed,

agent 1 makes his decision whether to \wait" or to \withdraw." Agent 2, after observing

the decision of agent 1, chooses his strategy. Agent 3 observes the decisions by both

agent 1 and agent 2, and makes his decision accordingly. This process continues for all

agents.

In period 2, banks repay the late consumers until their assets run out. The sequence

of payment is randomly determined.

10In fact, it is su�cient to assume that each agent observes the amount of withdrawal by those agents in
front of him.
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3 Optimal decisions of depositors

This section analyzes how individual agents choose their optimal withdrawal decisions given

a certain demand deposit contract (interest rates r1 and r2) and banks' investment portfolios

(banks invest 1 � i in the liquid asset and i in the illiquid asset). For simplicity, I assume

agents put all their endowment in banks in period 0.

Two important features of this model are worth noting. First, since there is no asym-

metric information among agents and the proportion of impatient agents is constant, there

is no signal-extracting story as in Chari & Jagannathan (1988), nor information cascade or

herd behavior phenomenon. Each agent's decision solely depends on the public signal s and

the withdrawal history he observes. Second, the assumptions of sequential decisions and

complete information on withdrawal history rule out the usual multiple equilibria result in

the D-D model. It will be shown that there is a unique SPNE outcome, and bank runs are

possible in some states.

Each agent tries to maximize his expected utility based on his own type and his infor-

mation set. For an impatient agent, the decision is trivial: always withdraw immediately in

period 1. A patient agent's decision rule is more complex. It depends on his belief about

future returns and the withdrawal history information he observes.11 Given the sequential

decision rule, each agent takes into account how his choice will a�ect the followers' with-

drawal decisions. We analyze it in the following steps.

� Belief about future returns

Under imperfect information, each agent adjusts his belief about the distribution of

future returns based on the public signal s. De�ne pH as the subjective probability of a

high future return when a good signal is observed, and pL as the subjective probability

of a high future return when a bad signal is observed. Using Bayesian rule,

pH � Prf ~R = RH js = RHg =
p�

p� + (1� p)(1 � �)
(4)

11As in the standard D-D model, this paper do not consider mixed strategies.
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and

pL � Prf ~R = RH js = RLg =
(1� p)�

(1 � p)� + p(1 � �)
: (5)

� Payo� function

The payo� function is endogenously determined. If an agent chooses to withdraw early,

he will get r1 as long as the bank is still solvent.12 If the agent chooses to wait, in

period 2 he will get full payment of r2 with a certain probability, �. The probability is

determined by the asset return ~R and the aggregate early withdrawals, L:

�( ~R;L) = max[0;min(�( ~R;L); 1)]; (6)

where �( ~R;L) is given by

�( ~R;L) =

8>>><
>>>:

1�i+i ~R�r1L
r2(1�L)

when r1L � 1� i

[1�i��r1L] ~R
r2(1�L)(1��)

when r1L > 1 � i

(7)

Here, 1 � i represents the proportion of assets invested in liquid technology by the

bank. The �rst equation describes the probability that the agent is fully paid in period

2 when the liquid assets 1 � i are su�cient to meet early withdrawals r1L. In the

second equation, short-term liquidity is insu�cient to meet early withdrawals and the

bank has to liquidate part of its illiquid assets, leaving only i + 1�i�r1L
1�� = 1�i��r1L

1�� of

the risky asset for long-term repayment.

There are four possible cases for the �( ~R;L) curve as shown in �gure 2:

{ case 1: 1 � i� < r1 and 1 � i+ i ~R < r1.

{ case 2: 1 � i� < r1 and 1 � i+ i ~R > r1.

{ case 3: 1 � i� > r1 and 1 � i+ i ~R < r1.

{ case 4: 1 � i� > r1 and 1 � i+ i ~R > r1.

12If the bank is insolvent, the agent always gets nothing no matter what decision he makes. I assume the
patient agent will wait when he is indi�erent between waiting and withdrawing.
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Note 1 � i� is the total liquidity available to the bank in period 1, and 1 � i + iR is

the total wealth to the bank in period 2. Figure 2 shows us that: (1) when the bank

needs to liquidate its assets (r1L > 1 � i), �( ~R;L) is increasing in L if 1 � i� > r1

and is decreasing in L otherwise; and (2) when the bank does not need to liquidate its

assets (r1L < 1 � i), �( ~R;L) is increasing in L if 1 � i+ iR > r1 and is decreasing in

L otherwise.

The economic intuition behind the upward-slope of �(�; L) is as follows. Consider the

case where r1L > 1 � i. 1 � i� is the total liquidity available to the bank, which is

also the \share" of wealth each agent will get if the bank assets are evenly distributed

among all agents. If more agents withdraw their deposits when r1 > 1 � i� , they are

taking more than their share from the bank, which leaves less wealth for each late

consumer. On the other hand, if r1 < 1 � i� , the early-withdrawal agents are in fact

sacri�cing part of their share of wealth to the late consumers. Therefore, when more

agents withdraw in period 1, it is more likely that late consumers get a full repayment.

The subjective probability of full repayment when agents observe a signal s is written

as:

�(s; L) = ps�(RH ; L) + (1 � ps)�(RL; L); s = H;L: (8)

� Strategies for patient agents in period 1

Given the assumptions that patient agents make withdrawal decisions sequentially and

each agent has complete information of withdrawal history, the equilibrium strategy

for patient agents can be derived by using backward induction.

Let us �rst consider the last patient agent. When he observes an aggregate earlier

withdrawal of LN , his choice between waiting and withdrawing solely depends on which

action leads to a higher expected utility. Obviously, when u(r1) > �(s; LN)u(r2), he

will withdraw his deposit; otherwise, he will choose to wait.

Now consider the second-to-the-last patient agent. Being a rational agent, he knows

the strategy the last agent will adopt. Accordingly, his strategy should be: withdraw
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if u(r1) > �(s; LN�1)U(r2) and wait otherwise.13

Using backward induction, it is straightforward that the patient agent i chooses the

following strategy in equilibrium:

Ai(s; Li) =

8<
:

withdraw if u(r1) > �(s; Li)u(r2)

wait otherwise

Notice that the equilibrium strategy for a patient agent depends on the withdrawal

amount upon his decision (Li) and has nothing to do with the aggregate withdrawal

in period 1 (L). This result di�ers from the existing literature. Since the classical D-D

model (1983), most economists have assumed that agents simultaneously make their

withdrawal decisions in period 1, and the rational expectations equilibrium turns out

to be a natural solution. As a result, each agent's decision depends on his expectation

of aggregate early withdrawal. In this model, due to the assumptions of sequential

decisions and complete information, a Subgame Perfect Nash Equilibrium (SPNE) is

more appropriate to de�ne the equilibrium outcome. The equilibrium strategy no

longer depends on the aggregate withdrawal (L) because each agent has taken into

account how his decision will a�ect the decision of followers. In fact, the �rst patient

agent has the power to choose the aggregate early withdrawal.

Proposition 1 (uniqueness of equilibrium outcome) Under the given conditions, there is a

unique SPNE in period 1.14 For di�erent parameters, there are three possible equilibrium

outcomes: no panic (only impatient agents withdraw early), a complete panic (all agents

withdraw early), or a partial panic (impatient agents and some patient agents withdraw early).

Proof: given the above equilibrium strategy for each agent, it is straightforward to �nd

the unique SPNE. For a patient agent i, there exists a critical �� such that he chooses to

13When U (r1) > �(s; LN�1)U (r2), we use the assumption that N is a large number, therefore U (r1) �
�(s; LN )U (r2), where LN = LN�1 +

1
N
. Considering the strategy for the last agent, \withdraw" is at least

as good as \wait."
14More strictly, there is a unique SPNE outcome. It is possible to have multiple SPNEs but the equilibrium

outcomes (aggregate early withdrawal, expected utility for each agent) are exactly the same. The uniqueness
is a simple result of Zermelo's Theorem. See Mas-Coleu, Whinston and Green (1995), page 272.
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withdraw if �(s; Li) < �� and to wait otherwise.15 The unique SPNE has three possible

outcomes (see �gure 3):

� case 1: �(s; �) � ��.

All patient agents will choose to wait under this circumstance. The �rst patient agent

will not withdraw his deposit because he knows that if he chooses to wait, the other

patient agents will also wait. In this way he will have the probability of �(s; �) to

get full payment in period 2, which is better than getting the short-term interest rate.

Similarly, the other patient agents will adopt the same strategy. In this case, no bank

run happens.

� case 2: �(s; �) < �� and there is no L � � such that �(s; L) = ��.

All patient agents will choose to withdraw and force the bank into bankruptcy because

withdrawing strictly dominates waiting in this case. A bank run is inevitable.

� case 3: �(s; �) < �� and there exist L� 2 (�; 1) such that �(s; L�) = ��.

In this case, some patient agents choose to withdraw and the others choose to wait.

The equilibrium aggregate withdrawal in period 1 is L�.16 A partial bank run happens.

Proposition 2 1�i� > r1 is a su�cient condition for a run-proof equilibrium when r1 � r2.

Proof: A complete bank run happens only when there is no L � � such that �(s; L) � ��.

When 1 � i� > r1, �(s; L) is as shown in cases (3) and (4) in �gure 2. It is obvious that

�(s; L) is 1 when L is close to 1. The only possible results are no bank run or a partial bank

run.

3.1 Numerical example

Here I use an example to illustrate how individual agents make their withdrawal decisions

in the SPNE and discuss the feasibility of the socially optimal contract in a decentralized

15�� is de�ned by �� = u(r1)
u(r2)

. A more general de�nition is u[x+(1�x)�r1] = ��u[x+(1�x)r2]+(1��
�)u(x),

where 1� x is the amount of deposits.
16When there are several Ls that satisfy the condition, L� refers to the smallest one.
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economy.

� Parameters

{ Return distribution for risky investment: RH = 1:3, RL = 0:9, � = Prf ~R =

RHg = 0:5.

{ Liquidation cost: � = 0:5.

{ Utility function: u(c) = ln(c + 1), which has the property of u(0)=0, u0(�) > 0,

u00(�) < 0.

{ Proportion of impatient agents: � = 0:4.

{ Signal quality: for simplicity, I assume everyone receives perfect interim informa-

tion (p = 1).

� Optimal allocation without intermediaries

For comparison, I �rst study the case in which there are no �nancial intermediaries in

the economy and individual agents allocate their endowments between the two types

of investment technologies. Let i be the amount of endowment placed in the illiquid

investment. Agents choose i to solve:

maxi �u(1� i� ) + (1 � �)�u(1� i+ iRH) (9)

+(1� �)(1 � �)u(1� i+ iRL);

s:t: 0 � i � 1:

The choice of i has two opposite welfare e�ects. More liquidity holdings (smaller i)

reduces the liquidation cost when the agent turns out to be an impatient consumer,

but hurts the investor when the agent is a patient consumer because more endowment

is placed in the less productive investment. This tradeo� cannot be resolved due to

the absence of an ex ante risk-sharing instrument.
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In this example, the optimal decision can be easily solved: i�=0. That is, individual

agents will invest all endowments in the liquid asset and get a maximum expected

utility of U1 = 0:6931. The high liquidation cost prevents the agents from utilizing the

more productive technology in the no-intermediary economy.

� Socially optimal allocation with intermediaries

Financial intermediaries provide an ex ante insurance arrangement for the economy.

By solving the social planner's problem, we can �nd out the most e�cient allocation

of endowments. In the planning period, the social planner chooses how to allocate

the endowments across the two technologies; in period 1, the planner determines the

consumption levels for each type of agent subject to the resource constraint. Let i

represent the investment in the illiquid asset, the planner solves the following problem:

max
i

�u(r1) + (1� �)u(r2); (10)

s:t:

r1 =
1�i
�

(1� �)r2 = i � E( ~R)

0 � i � 1:

The �rst order condition is

u0(r1) = E( ~R)u0(r2): (11)

In this example, the optimal solution is: io = 0:62. Accordingly, the short-run interest

rate is ro1 = 0:95, the long-run interest rate is ro2 = 1:1367, and expected utility is

Uo = 0:7227.17

� Feasibility of the socially optimal solution in a decentralized economy

17Diamond and Dybvig (1983) proved that a su�cient condition for ro1 > 1 when CRRA utility function
is used is that the relative risk aversion coe�cient is greater than 1.
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In a decentralized economy, the socially optimal allocation cannot be sustained in the

unique SPNE. Under the optimal contract, only impatient agents get repaid in the �rst

period, that is, Lo(R = RH) = Lo(R = RL) = 0:4. However, using equation (7),

�� =
u(ro

1
)

u(ro
2
) = 0:8796

�(RH ; 0:4) = 1; �(RL; 0:4) = 0:8182

�(RL; L) =
1:8(0:69�0:95L)
1:1367(1�L)

< �� when L > 0:4:

That means, when the economy is in a good state, all patient agents are willing to wait

and the socially optimal outcome is realized (case 1 in �gure 3); but when the economy

is in a bad state, all agents choose to withdraw their deposits and a bank run happens

(case 2 in �gure 3), which violates the socially optimal contract requirement. Therefore,

the socially optimal outcome cannot be supported by the withdrawal decisions in the

decentralized economy when the future return is low.

The underlying reason for the welfare loss is the negative externality (more liquidation

costs) caused by early withdrawal. When the social planner makes his decision, he

takes into account this externality and will ask the patient agents to wait to minimize

the liquidation costs. While in a decentralized economy, each agent maximizes only his

own welfare and neglects the negative externality he will bring to the whole economy.

As a result, those depositors who make decisions �rst have the incentive to withdraw

early to beat the followers, forcing the banks to su�er huge liquidation costs and go

into bankruptcy.

In the next section, I will discuss how the interest rates and portfolio structure are

determined in the decentralized economy when banks respond to the possibility of

bank runs.

4 Equilibrium in decentralized economy

Up to now, I have taken the banks' interest rates and investment portfolios as given. In a

general equilibrium framework, I need to extend the partial equilibrium results and analyze
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how banks design their contracts accordingly. Using the same notation as in section 2 and 3,

and de�ne 1 � x as the amount of bank deposit for each individual agent. The equilibrium

should satisfy the following conditions:

� Banks' portfolio choice

Banks choose the optimal portfolio structure to maximize their expected pro�ts. In

period 1, each patient agent makes his withdrawal decision based on his individual

information set. Proposition 1 states that the aggregate early withdrawal depends on

the public signal and other contract variables (interest rates and investment portfolio).

Assume in the SPNE, the aggregate early withdrawal is LH(r1; r2; x; i) when the signal

is \good" and LL(r1; r2; x; i) when the signal is \bad." Since the signal is imperfect,

there are four possible cases:

{ Real return is high, and signal is good;

{ Real return is high, but signal is bad;

{ Real return is low, but signal is good;

{ Real return is low, and signal is bad.

The expected pro�t for the bank is:

E(�) = (1� x)fp��(RH; LH) + (1� p)(1 � �)�(RL; LH) (12)

+�(1� p)�(RH; LL) + (1 � �)p�(RL; LL)g;

where the pro�t function � is de�ned as

�(R;L) =

8>><
>>:

max(0; 1 � i� r1L+ iR � r2(1� L)); if 1 � i � r1L.

max(0; (1�i��r1L)R
1�� � r2(1� L)); if 1 � i < r1L.

(13)

The optimal portfolio choice i� = i(r1; r2; x) for banks is the solution to this maximiza-

tion problem.
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� How agents allocate their endowments

This paper di�ers from the existing bank-run models in that investors are allowed to

deposit only part of their endowment in banks.18

The problem to be solved is

max
x2[0;1]

E[U(r1; r2; x; i
�(r1; r2; x))] (14)

=
X

i=H;L

X
j=H;L

pr( ~R = Ri; L = Lj)U(Ri; Lj);

where

U( ~R;L) =

8>><
>>:

Lu(c1) + (1� L)[�( ~R;L)u(c2) + (1� �( ~R;L))u(x)]; if 1 � i� � r1L

L� u(c1) + (1� L�)u(x); if 1 � i� < r1L

where c1 = x+(1�x)r1 and c2 = x+(1�x)r2 are agents' consumption in period 1 and

period 2, respectively, when they get full interest payment, and � = 1�i�
r1L

represents the

proportion of early consumers who can get full payment. The two equations refer to

three possible cases: (1) banks have no liquidity problem in either period (if �(R;L) = 1

in the �rst equation); (2) banks do not have enough liquidity in period 2 (�(R;L) < 1

in the �rst equation); (3) banks are out of liquidity in the interim period (second

equation).

The optimal deposit amount is determined by the deposit contract: x� = x�(r1; r2).

Accordingly, i� = i(r1; r2; x�(r1; r2)) = i�(r1; r2).

� Equilibrium interest rate structure

Banks make their interest rate o�er based on two considerations. First, banks maximize

their expected pro�ts. Second, because the market is competitive, each bank o�ers the

18It will simplify the problem if I assume that agents only have two choices: either put all their endowment
in the banks or make no deposit. But using our method might lead to more fruitful results in the future
research when we study the amount of capital 
ow and how it changes with respect to di�erent policies.
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interest rates that maximizes the expected utility for a representative agent to attract

more deposits.

The banks' problem is to solve:

max
r1;r2

E[U(r1; r2; x
�(r1; r2); i

�(r1; r2))]; (15)

subject to

E[�(r1; r2; x
�(r1; r2); i

�(r1; r2))] � 0: (16)

De�nition 1 In a decentralized economy, the equilibrium contract (r�1; r
�

2; x
�; i�) should solve

the above maximization problems (12)-(16).

Unfortunately, this is a very complicated non-linear optimization problem and an ana-

lytical solution is beyond our ability. In the next section, I will discuss some properties of

the equilibrium contract (r�1, r
�

2, x
�, i�). Also, some numerical examples are provided to help

in understanding these properties.

5 Properties of the equilibrium

In a decentralized economy, the equilibrium contract (r�1, r
�

2, x
�, i�) should have the following

properties.

Lemma 1 in equilibrium, r�1 � r�2.

Proof: This is the familiar incentive compatibility constraint (see Jacklin and Bhat-

tacharya 1988 and Alonso 1996). Suppose r�1 > r�2 in equilibrium, then in period 1 all

individual agents will have the incentive to withdraw early because it strictly dominates the

waiting strategy. Therefore, bank runs always happen no matter whether the future return

is high or low. Banks have to invest all deposits in the liquid asset to minimize the liqui-

dation cost. Obviously, the best interest rates banks can o�er are r�1 = 1, r2 < 1, which is

no better than the no-intermediary case. Under such a situation, there is no need for the

intermediaries to exist.
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Lemma 2 in equilibrium, LH � LL. More generally, if Pr[ ~R = RH js = s1] > Pr[ ~R =

RH js = s2] for two signals s1, s2, then L(s1) � L(s2);

Proof: First, given a certain contract (r1; r2; x; i), te function �(R;L) is nondecreasing in

R. From equation (7), I get

@�( ~R;L)

@ ~R
=

8>>><
>>>:

i

r2(1�L)
> 0 when L � 1�i

r1

1�i��r1L
r2(1�L)(1��)

when L > 1�i
r1
.

(17)

� is increasing in ~R unless 1� i� � r1L � 0. But if 1� i� � r1L � 0, the banks have already

gone into bankruptcy and � = 0 for all Rs. Therefore, �( ~R;L) is always nondecreasing in

~R. From equation (8), �(s1; L) � �(s2; L) for all L because signal s1 corresponds to a higher

probability of a high return.

Second, from the proof of proposition 1, we know the aggregate early withdrawal L is

determined by L�

s = minfL 2 [�; 1] : �(s; L) � ��g. Since the critical value �� remains the

same and �(s1; L) � �(s2; L), it is obvious that L(s1) � L(s2).

Lemma 3 The optimal liquidity 1 � i� 2 [r1L�

H ; r1L
�

L].

Proof: this conclusion is quite intuitive. First, the liquidity cannot be less than r1L
�

H

because otherwise in period 1 the banks always have to liquidate part of their illiquid assets.

By increasing the liquid asset holdings, the banks can reduce the liquidation costs. Second,

when L�

H < L�

L, the banks may have incentive to hold extra liquidity (an amount above

r1L
�

H). Holding extra liquidity has two e�ects. (1) When the signal is bad, it can reduce the

liquidation costs; and (2) when the signal is good, the banks su�er a loss because the liquid

asset is less productive than th illiquid asset in the long run. How much extra liquidity

the banks are willing to hold depends on which e�ect plays a dominant role. Third, the

maximum liquidity holding is the maximum interim repayment r1L�

L. More liquid assets

are undesirable because they have to be carried over to the last period and they are less

productive than illiquid assets in the long run.
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5.1 Equilibrium properties under perfect information (p = 1)

As a benchmark, I �rst discuss the equilibrium properties when the public signal is perfect

(p = 1).

Lemma 4 Under perfect information, banks can earn positive pro�ts only when there is no

bank run.

Proof: The property is obvious from the proof in proposition 1 (�gure 3). In the three cases,

the pro�t and utility are:

� Case 1: L = �.

� = max(0; 1 � i� r1�+ iR � r2(1 � �))

U = �u(c1) + (1 � �)[�(R;�)u(c2) + (1� �(R;�))u(x)]

� Case 2: L = 1.

� = 0

U =
1 � i�

r1
u(c1) + (1�

1� i�

r1
)u(x)

� Case 3: � < L < 1.

At L, patient agents are indi�erent between early withdrawal and late withdrawal.

� = 0

U = u(c1)

Combining all these results, banks can earn positive pro�ts only when no bank runs

happen.

Proposition 3 Under perfect information (p = 1), we have the equilibrium property L�

H = �

in the decentralized economy. That is, bank runs can happen only when the economy is in a

bad state.
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Proof: See Appendix A.

Proposition 3 implies that a type-I bank run is impossible under a perfect information

world. When the economy is healthy, no patient agent has the incentive to misreport his type

and withdraw his deposit early because he can gain from earning the long term interest rate.

The only reason for a bank run is because there are fundamental problems in the economy

which makes bank deposits an unattractive investment tool.

Proposition 4 In equilibrium it is possible that banks can earn positive pro�ts when the

economy is in the good state. Under perfect information, the necessary condition for E(�) >

0 is that there is no bank run at all in equilibrium (L�

H = L�

L = �).

Proof: Appendix B shows that it is impossible for banks to earn positive pro�ts when

there exist partial or complete bank runs in equilibrium, but in a no bank-run equilibrium,

banks can earn positive pro�ts when the economy is in the good state. This seems quite

counter-intuitive since the banking sector is competitive. The underlying reason is that

withdrawal decisions are endogenously determined in this model and a small change in the

contract might lead to dramatic changes in depositors' withdrawal decisions. Therefore there

are two important properties for the expected utility and expected pro�t functions: (1) they

are not continuous in contract variables (r1; r2; x; i): a small change in the contract might

lead to huge jumps in banks' expected pro�ts and a representative agent's expected utility;

and (2) The two functions may not be inversely related. More speci�cally, higher interest

rates reduce banks' pro�ts but do not necessarily increase individual agents' expected utility.

It is possible that the best contract which maximizes a representative agent's expected utility

can bring the banks some positive pro�ts. We provide two possible cases below.

� Consider case 1 in �gure 4, where LH = LL = �, �( ~R = RL; L = �) = �( ~R = RL; L =

�) = 1 and �( ~R = RH ; L = �) > 1 = �( ~R = RH ; L = �). Obviously, there is no bank

run in equilibrium, banks' pro�ts are positive when the return is high and zero when

the return is low.

Now consider an increase in the long run interest rate r2. There will be two e�ects.

First, if the return is high, then every late consumer is better o�. However, if the return
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is low, the remaining resources will be less evenly distributed among late consumers and

it hurts them. Whether the new interest rate can lead to a higher expected utility for

agents depends on which e�ect dominates. If the second e�ect dominates, the higher

interest rate reduces both banks' pro�ts and the representative agent's expected utility.

Under these conditions the initial contract with positive pro�ts is chosen.

� Another possibility of positive pro�ts in equilibrium is shown in case 2 in �gure 4,

where �( ~R = RL; L = �) = �� and �( ~R = RH ; L = �) > 1 = �( ~R = RH ; L = �).

There are also two e�ects when the interest rate r2 is increased. First, if the return

is high, the depositors are better o� because some of banks' pro�ts are transferred

to them. Second, if the return is low, individual agents will change their withdrawal

decisions to L0

L = 1 because �0( ~R;L = �) < ��0 (as shown in Appendix A, �( ~R;L=�)
��

is

decreasing in r2). The risky assets are liquidated at a high cost and the representative

agent su�ers a huge welfare loss. If the second e�ect dominates, banks will stick to the

initial contract which brings positive pro�ts.19

5.2 Properties under imperfect information (0 < p < 1)

Under imperfect information, there are similar propositions.

Proposition 5 When information is imperfect (0 < p < 1), we still have the equilibrium

property L�

H = � in a decentralized economy, but the economic implications are di�erent:

both type-I and type-II bank runs are possible under imperfect information.

Proof: This proposition can be proved following the same steps as under perfect infor-

mation.

Although the conclusions are the same, they have di�erent economic meanings. As I point

out earlier, under perfect information, it implies that only type-II bank runs are possible in

19The result, in fact, comes from our assumption that in period 2 all late consumers should get their
repayment according to a \�rst come, �rst served" rule. If I assume that in period 2 the remaining assets
are evenly distributed among late consumers (as in the existing literature), the second e�ect no longer exists
in both cases and the initial contract cannot be optimal. In fact, in another paper, I show that the expected
pro�t is zero under the new assumption.
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the equilibrium. Yet under imperfect information, both type-I bank runs and type-II bank

runs are possible.

Suppose in equilibrium a complete bank run happens when the market receives a bad

signal. Because the information is imperfect, it includes two possible cases. (1) The signal

correctly re
ects the bad economic state. In this case the bank run is the second type. (2)

The economy is in fact in a good state but everyone receives a bad signal and a bank run

happens based on the pessimistic expectation. Under this situation it is a type-I bank run

because banks are de facto solvent.

Combining the results, it is obvious that:

Proposition 6 A type-I bank run happens only when the market information is imperfect.

Proposition 7 Under imperfect information, banks can earn positive pro�ts in equilibrium.

Proof: The economic intuition why positive pro�ts are possible under imperfect infor-

mation is the same as the explanation under perfect information. In a competitive market,

each bank tries to o�er the contract that maximizes depositors' expected utility subject to

a non-negative-pro�t constraint. When the banks can make pro�ts in an initial contract,

they might have incentive to increase the interest rates, sacri�cing part or all of their pro�ts

to o�er a better contract to investors, but increasing interest rates has two opposite e�ects.

On the one hand, it gives the investors a higher payment in some situations; on the other

hand, a higher interest rate might lead to less even distribution of assets among depositors,

or it might lead to a bank run which initially does not happen. When the second e�ect

dominates, increasing the interest rate is not a wise decision for the banks because it reduces

their pro�ts yet does not bene�t the investors.

Notice that under imperfect information, lemma 4 is no longer valid. Banks might be

able to make pro�ts when a partial bank run happens. Suppose a partial bank run happens

when the market observes a public signal s (Ls 2 (�; 1)). From proposition 1, we know that

E(�(R;Lsjs)) = ��. It is possible that �(RH; Ls) > 1 = �(RH ; Ls) > �� > �(RL; Ls). Under

this situation, the banks can earn positive pro�ts because

E(�) = pr( ~R = RHjs) � r2[�(RH; Ls)� 1](1� �) > 0:
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As a result, the necessary condition for positive pro�ts in Proposition 4 is no longer valid

under imperfect information.

5.3 Numerical example

Although an analytical solution is beyond our ability, I can use some numerical methods

to get the solutions and illustrate the equilibrum properties. Because none of the func-

tions (withdrawal decision, pro�t function, and expected utility function) are continuous

in contract variables, I use the grid-searching method to �nd out the best contract in the

decentralized economy. The method is as follows:

(1) divide the range of r1 into a large number of small segments with a step of 0:01;

(2) divide the range of r2: (r1; (1� r1�)RH) into M segments (M = 50);

(3) divide the range of x into 100 segments with a step of 0:01;

(4) for given r1, r2, and x, �nd the pro�t-maximization investment structure i�(r1; r2; x);

(5) �nd optimal x� for given r1, r2;

(6) choose the interest rates (r1, r2) which maximize a representative agent's expected

utility.20

Table 1 shows the equilibrium contracts under four di�erent situations. In all four ex-

amples, I assume � = 0:4, � = 0:5, and u(c) = ln(1 + c).

5.3.1 Example 1: benchmark

I �rst study the example in section 3.1, in which RH = 1:3, RL = 0:9, � = 0:5, and signal

quality p = 1. It is easy to calculate that E( ~R) = 1:1, Var( ~R) = �(1� �)(RH �RL) = 0:22.

Using the grid-searching method, I can �nd the equilibrium contract in a decentralized

economy is as follows:

� interest rate structure: r1 = 0:89, r2 = 1:3953;

� deposit amount: each agent puts 62% of his endowment into the banks;

20I do not impose the non-negative-pro�t constraint here. Banks always make non-negative pro�ts because
there is no capital requirement in this model.
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� banks' portfolio structure: banks invest 35:6% of the deposits in the liquid asset, which

is just enough for their interim liability payment;

� agents' withdrawal decision: no bank run happens;

� payo�: E(U)=0.7037; E(�) = 0.

As pointed out in section 3.1, the socially optimal contract cannot be supported in

a decentralized economy. Therefore, the banks have to �nd a new contract to maximize

agents' welfare. In this example, banks choose a run-proof contract and earn zero pro�t

in equilibrium. Not surprisingly, the equilibrium outcome in the decentralized economy is

better than the no-intermediary case but less e�cient than the socially optimal contract

(0:6931 < 0:7037 < 0:7227).

5.3.2 Example 2

The second example has the same signal quality (p = 1) and expected return (E( ~R) = 1:1),

but is more risky (Var( ~R) = 0:62 > 0:22).

The equilibrium outcome has di�erent properties from the benchmark example. Because

the future return is more volatile, the cost to maintain a no-run equilibrium is very high.

It turns out that banks �nally deliberately choose a bank-run contract, in which bank runs

happen when the economy is in a bad state. Despite the existence of bank runs, all agents will

gain from the intermediaries' risk-sharing role when the economy is in the good state. The

gain is high enough to compensate the losses and induce the banks to choose the bank-run

contract in equilibrium.

As proposition 3 states, only type-II bank runs are possible under perfect information.

5.3.3 example 3

Example 3 illustrates that banks can earn positive pro�ts in equilibrium.21 The return pro�le

has the same mean as examples 1 and 2, but has a di�erent distribution. While examples

21Although earning positive pro�ts is possible, it turns out that in most cases banks earn zero pro�t in
equilibrium.
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1 and 2 each have a symmetric return distribution, this example has a highly asymmetric

distribution. The return is most likely to be at near its mean level ( ~R = RL � E( ~R) with

probability 90%), and is very high in some cases ( ~R = RH � E( ~R) with probability 10%).

In the equilibrium contract, banks can earn positive pro�ts (E(�) = 0:0123) and no bank

runs happen. The reason banks cannot o�er a better contract by sacri�cing their pro�ts is

stated in section 5.1.22 If banks o�er a higher interest rate, the investors will bene�t when

the return is high, but su�er a welfare loss when the return is low. In the speci�c example,

the return is highly asymmetrically distributed and R = RH is only an occasional case.

Therefore the second e�ect plays a dominant role in banks' contract choice.

Comparing examples 1 and 3, in which banks both choose a no-run contract, it is not

surprising that the less risky (case 3) project yields a higher expected return to investors.

The reason is simple. When no bank run happens, banks only pay back impatient agents

in the interim period and invest the rest of deposits in the risky asset. Since both projects

have the same expected return, the low-risk technology must be superior.

5.3.4 example 4

Example 4 is the same as example 2 except the signal is imperfect. The public signal

only correctly reveals the future return with a probability of 99%. For similar reasons,

banks choose a bank-run contract in equilibrium, but the economic implications are di�erent.

Because the information is imperfect, the bank run can be either a type-I run or a type-II

run. Speci�cally, the probability that a type-II bank run happens is 0:5� 0:99 = 0:495, and

the probability of type-I bank run is 0:5 � 0:01 = 0:005. One percent of bank runs are a

suboptimal outcome due to imperfect information.

6 Response to the return volatility

Another interesting question is when there are several risky investment technologies, how

will the banks choose among them? Krugman (1998) suggests that one possible reason for

22Draw the �( ~R;L) function for equilibrium contract, it is the same type as case 1 in �gure 4.
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the 1997 Asian crisis is that banks over-invest or invest in the high-risk project due to the

moral hazard problem caused by implicit deposit insurance.

This paper provides two explanations for the \over-investment" phenomenon when no

deposit insurance exists. I still use numerical examples to illustrate the underlying reasoning.

First, using the grid searching method, I study the change in equilibrium contracts when the

return becomes more volatile. Using the parameters in the benchmark example: � = 0:4,

� = 0:5, p = 1. There are a lot of risky assets which have the same expected return but have

di�erent variance. More speci�cally, RH = 1:1 + d, RL = 1:1� d, and � = 0:5, where d = 0,

0.02, 0.04, � � �, 1.08, 1.1. It is obvious that E( ~R) = 1:1 and Var( ~R) = d2.

Figure 5 illustrates how the equilibrium contracts (r�1; r
�

2; x
�; i�) change when the illiquid

technology becomes more risky. First, banks prefer a no-run equilibrium for low-risk projects;

but when the investment becomes too risky (d � 0:52), banks will switch to a bank-run

contract to take advantage of the high return in good state. Second, the variance of future

returns a�ects the equilibrium interest rate structure. When the return is more volatile,

banks will o�er a lower short-term interest rate and a higher long-term interest rate. Third,

a representative agent's expected utility is inversely related with volatility of returns when

banks choose a no-bank-run contract. In contrast, if banks choose a bank run contract, the

expected utility increases when banks invest in a more risky project. This is the \U-shaped"

utility response function we observed, and the expected utility when banks invest in the

most risky asset (d=1.1) is even higher than when banks invest in a riskless asset (d = 0).

Accordingly, the bank deposit is characterized by a \U-shaped" curve because the more an

agent can gain from putting money in the bank, the more endowment he is willing to deposit.

Based on these results, I can discuss how the banks will choose between a high-risk project

and a low-risk project. Suppose banks announce their choice of investment technology at

the same time they announce the interest rates. There are two possible cases: (1) the

announcement of investment technology is not a binding commitment; therefore, banks are

free to choose the investment projects and investment portfolios after receiving deposits; (2)

the banks make a commitment that they will not use the deposits for other projects. In both

cases, banks may have incentives to choose the high-risk investment over the low-risk one.
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� If there is no binding commitment for banks' investment choice, banks will always

choose the high-risk project after they receive the deposits. This is a result of so-

called \time-inconsistency" problem. Suppose banks can invest in either of two illiquid

investments which have standard deviation of return of d1 = 0:08 and d2 = 0:2, re-

spectively. The equilibrium contract for the two projects are: (1) d1 = 0:08: r1 = 0:97,

r2 = 1:2036, x = 0, i = 0:612, LH = LL = 0:4, E(U) = 0:7131, E(�) = 0; (2) for

d2 = 0:2: E(U) = 0:7037. The low-risk project leads to a higher expected utility

in equilibrium and should be chosen to improve investors' welfare, but are the banks

willing to do this?

Suppose banks announced that they will invest in the low-risk project and accordingly

o�er the interest rates r1 = 0:97 and r2 = 1:2036 at the beginning. After they receive

the money, will they still keep the promise? The answer is no. Given the interest rates,

the banks will switch to the high-risk project because they lose nothing when the return

is low but gain some positive pro�ts when the return is good. Taking this into account,

agents will not put their money in the bank. The only equilibrium that can avoid the

\time-inconsistency" problem is the equilibrium contract under the high-risk project;

therefore, the high-risk project is always chosen under the no-commitment case.

� It is welfare improving if banks make binding commitments to which project they will

choose before they receive deposits, but even under this situation, banks might still

want to choose the high-risk project due to the \U-shaped" expected utility function.

For example, consider two projects that have return variance of d21 = 0:42 and d22 =

0:722, respectively. Figure 7 indicates that the high-risk project leads to a higher

expected utility in equilibrium and therefore should be chosen.

Although in both cases banks choose the high-risk project, their underlying reasons are

distinct. In the �rst case, the underlying reason lies in the con
ict of interests between banks

an depositors: Banks want to maximize their own pro�ts after they receive the deposits,

which contradict with the interests of depositors. This phenomenon is also widely cited as

the \principal-agent" problem or \moral hazard" problem. In the second case, the high-risk
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asset is chosen because it bene�ts both the banks and the depositors and, therefore, is an

e�cient result.

7 Conclusion and extensions

In this paper I analyze the general equilibrium when agents sequentially make their with-

drawal decisions and banks strategically choose their interest rate structure and investment

portfolios. In equilibrium, banks may choose a bank-run contract. I show that imperfect

information is the only reason that type-I bank runs occur in this model. Banks can earn

positive pro�ts in equilibrium due to the \sequential service" constraint.

Another contribution of this paper is that it o�ers a possible explanation for why banks

sometimes choose a high-risk project over a low-risk alternative. Besides the moral hazard

problem that is widely cited in existing literature, I put forward another explanation that

it might be an e�cient choice for the economy. When a bank-run equilibrium is chosen, a

more volatile return can lead to higher expected utility for two reasons. First, when the

return is low, banks are liquidated and the low return is never realized. The low return is,

in fact, truncated to its liquidation value. However, the high-risk asset has a fatter tail in

high return region and therefore is a more e�cient investment tool. As a result, a high-risk

investment can be a socially e�cient choice in this model.

We see the basis for further work on this problem in several directions. In this paper I

make a simplifying assumption that agents make their decisions according to an exogenously

determined sequence. This assumption simpli�es the problem but is not necessary. In

Appendix C, I show that proposition 1 is still valid when the withdrawal sequence is random,

or when the withdrawal sequence is endogenously determined.

A second extension, which is more interesting, can be made on the information set. In

this paper, everyone observes the same public signal. This is a very strong assumption and

is only reasonable under certain situations. A more reasonable assumption is that individual

agents have di�erent information sets regarding the future return. Each agent can choose

whether and when to withdraw his deposit. Under the new setting, \information cascade" or
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\herd behavior" phenomena arise naturally. Banerjee (1992) provides a modern framework

for this kind of problem. More recent works by Gul and Lundholm (1995), Zhang (1997),

Chari and Kehoe (1999), and Calvo (1999) shed more light on the future research along this

direction.

Finally, this model provides a framework for the future study of policy implications. After

the 1997 East Asian crisis, the deposit insurance policy was severely attacked for causing

a moral hazard problem. Is this the only demon, or are there any other problems in the

bank sector? The other controversial topic is the role of the IMF. Some economists (Sachs

1998, Radelet and Sachs 1998) argue that a lender-of-last-resort is an e�cient way to prevent

self-ful�lling �nancial panics; therefore the IMF should be expanded and a larger amount of

funds should be provided more quickly when �nancial crises occur. At the other extreme,

Schwartz (1998) and Calomiris (1998) criticize the IMF acting as lender-of-last-resort as

causing a serious moral hazard problem and increasing the fragility of the world �nancial

system in the long run. They suggest that the IMF should be banished. In my second paper,

I will extend this model and discuss how deposit insurance and capital requirement policies

may a�ect the bank sector's behavior and what is the e�cient policy to prevent a bank run.
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Table 1: Four Numerical Examples:
Equilibrium Contracts Under Di�erent Situations

Input Variables:

� = 0:4; � = 0:5; u(c) = log(c + 1)

Case 1 case 2 Case 3 case 4

RH 1.3 1.7 1.28 1.7

RL 0.9 0.5 1.08 0.5

� 0.5 0.5 0.1 0.5

E( ~R) 1.1 1.1 1.1 1.1

V ar( ~R) 0:22 0:62 0:062 0:62

p 1 1 1 0.9

Equilibrium Contract:

Case 1 Case 2 case 3 case 4

r�1 0.89 0.74 0.96 0.84

r�2 1.3953 1.9947 1.1088 1.8607

x� 0.38 0.62 0 0.66

i� 0.644 0.704 0.616 0.664

L(s = RH) 0.4 0.4 0.4 0.4

L(s = RL) 0.4 1 0.4 1

E(U) 0.7037 0.6997 0.7168 0.6979

E(�) 0 0 0.0123 0.0021

Prob(Type I
bank run)

0 0 0 0:5%

Prob(Type II
bank run)

0 50% 0 49:5%

Notations:

�: prob(R = RH); p: signal quality;
r1: short-term interest rate; r2: long-term interest rate;
1 � x: deposit amount; i: banks' holding of illiquid assets;
L: aggregate early withdrawal; U : agents' utility;
�: banks' pro�ts.
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Appendix

A Proof for Proposition 3

Proof: de�ne Li = L(s = Ri), i = H;L. If LH 6= �, then there are two other possibilities:
either LH = 1 or 0 < LH < 1. In the following steps I show neither of them is possible in
equilibrium.

1. LH = 1 is impossible.

If LH = 1, then LL = 1 from Lemma 2. Bank runs happen in both states. The optimal
investment strategy for banks is to invest everything in the safe asset to minimize
liquidation costs. It is straightforward that r1 = 1 and E(U) = u(1) for individual
agents. This result is attainable under the no-intermediary case. Therefore there is no
need for the bank sector to exist. There is a contradiction.

2. LH 2 (�; 1), LL = 1 is impossible.

If LH 2 (�; 1) and LL = 1, then E(U) < u(c1). Because E(U) � 1 must be satis�ed in
equilibrium, c1 must be no less than 1. Therefore, r1 � 1 and 1� i� < r1.

There are two possible cases as shown in �gure 6: (1) �(s = RH ; L = 1�i
r1
) > ��; (2)

�(s = RH; L = 1�i
r1
) = ��.

Step 1: case 1 is not an optimal result.

Consider a new portfolio structure i0 = i � �. When � is small enough, it is easy to
verify that the new contract will have the same property: a partial bank run happens
when the return is good and a complete bank run happens when the return is bad.
Banks still get zero pro�t. Under the new scheme, however, U 0( ~R = RH) = u(c1) =
U( ~R = RH), U 0( ~R = RL) =

1�i0

r1
u(c1) + (1 � 1�i0

r1
)u(x) > 1�i

r1
u(c1) + (1 � 1�i

r1
)u(x) =

U( ~R = RL). Therefore a representative agent can get a higher expected utility under
the new contract.

Step 2: case 2 is not an optimal result.

First, I prove that for r02 = r2 � �, the bank will still be subject to a partial bank run
when the signal is good and a complete bank run when the signal is bad. Besides,
�0(s = RH ; L = 1�i

r1
) > ��0.23

When � is small enough, it is trivial that LL = 1 and �(s = RH ; L = �) < �� can still
be satis�ed. I only need to prove that �0(s = RH ; L = 1�i

r1
) > ��0 when r20 = r2 � �.

For simplicity, I write �(r2) to represent �(s = RH ; L = 1�i
r1
; r1; r2; x; i) =

iRH

r2(1�L)
. From

the assumption, �(r2)
��

= 1.

23The change in r2 a�ects agents' withdrawal decision in two ways. First, when r2 decreases, a late
consumer is more likely to get full repayment in period 2. Second, the threshold value (��) at which an
individual agent is willing to wait is higher. We need to determine which e�ect dominates in this case.
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@ �(r2)
��

@r2
=

@
iRH [u(c2)�u(x)]

r2(1�L)[u(c1)�u(x)]

@r2

= A
(1� x)u0(c2)r2 � u(c2) + u(x)

r22

Where A = iRH

(1�L)[u(c1)�u(x)]
is positive. De�ne F (r2; x) � (1�x)u0(c2)r2�u(c2)+u(x),

it is easy to show that F (r2; x) < 0 for 0 � x < 1 by using the following properties:

i) F (r2; 0) = u0(r2)r2 � u(r2) < 0;

ii) F (r2; 1) = u(1)� u(1) = 0;

iii) @F (r2;x)
@x

= u00(c2)(1�r2)r2(1�x)�u
0(c2)+u

0(x) > 0 because u00(�) < 0, u0(x) > u0(c2)
and r2 � r1 � 1.

Combining these results, when r02 = r2� �, the new contract leads to the same type of
equilibrium outcome as in case 1.

Second, when r02 = r2 � �, it is obvious that the new contract will lead to the same
expected utility as the original contract because under both cases, U( ~R = RH) = u(c1)
and U( ~R = RL) =

1�i�
r1

u(c1) + (1� 1�i�
r1

)u(x).

But I have already shown in step 1 that there exists another contract that yields a
higher expected utility than the new contract; therefore, the initial contract is not an
equilibrium contract.

3. � < LH � LL < 1 is impossible. (See �gure 7.)

Step 1: Using the same argument as before, r1 � 1 must be satis�ed.

Step 2: i0 = 1 � r1� is a better contract.

Because �( ~R;L = 1�i
r1
) = i ~R

r2(1�
1�i

r1
)
= i ~Rr1

r2(r1�1+i) is increasing in i when r1 � 1. For i0 =

1 � r1� > i, �0( ~R;L = �) = �( ~R;L = 1�i0

r1
) > �( ~R;L = 1�i

r1
) � ��. Therefore, no bank

runs happen under the new contract, U 0(RH; �) > ��u(c2) = u(c1) and U 0(RL; �) >
u(c1). The new contract yields a higher expected utility.

Combining all of the above arguments, under perfect information bank runs can only
happen when the economy is in a bad state. This conclusion is important because
it implies that when the information is perfect and banks are allowed to choose their
interest rates and portfolio structure strategically, only type-II banks runs are possible.

B Proof for Proposition 4

Proof: In this part I only show that banks cannot make positive pro�ts when bank runs
happen (LL > �). For the possibility of positive pro�ts in equilibrium, both theoretical
analysis and numerical examples are provided in the text.
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Step 1: if E(�) > 0, then i = 1� r1�.
This conclusion comes from lemma 4 and the fact that i should be chosen to maximize

the banks' expected pro�ts. If E(� > 0) and i < 1 � r1�, then banks can get more pro�ts
by increasing their holding of risky assets.

� If �( ~R = RH) > 0 and �( ~R = RL) = 0, by increasing i, banks can earn more pro�ts
when ~R = RH and are at least as good as before when R = RL.

� If �( ~R = RH) > 0 and �( ~R = RL) > 0, then LH = LL = � (from lemma 4),
E(�) = 1 � i + iE( ~R) � r1� � r2(1 � �), which is increasing in i because E( ~R) > 1.
Banks should hold as much of the risky asset as possible.

Step 2: (�; 1), (+; 0)24 is impossible in equilibrium.

Consider r02 =
(1�r1�)RH

1�� . It is easy to prove i = 1� r1� still maximizes the banks' pro�ts
(in fact, any i will lead to zero pro�t). Under the new contract, the withdrawal and pro�t
pro�le should be (�; 1) and (0; 0), and the expected utility E(U 0) = �[�u(c1)+(1��)u(c02)]+
(1 � �)[1�i�

r1
u(c1) + (1 � 1�i�

r1
)u(x)] > E(U). Banks will have the incentive to use the new

contract to attract more deposits.
Step 3: (�;�1), (+; 0), where � < �1 < 1, is impossible.
Because E(�) > 0, we know from step 1 that i = 1�r1�. For � < LL < 1 to be satis�ed,

it must be a run-proof contract (1 � i� > r1). Now consider a new contract r02 =
(1�r1�)RH

1�� .
It is easy to show that the new contract leads to a higher expected utility for investors and
reduces the banks' pro�ts to zero.

C Loosening Assumption on Decision Sequence

In this paper, I assume that agents make their withdrawal decisions according to an exoge-
nously given sequence: impatient agents �rst, then patient agents make decisions one after
another. This assumption is not necessary. In this part I show that Proposition 1 is still
valid when this assumption is relaxed.

C.1 Random decision sequence

If the withdrawal sequence is randomly determined, the Subgame Perfect Nash Equilibrium is
still unique, and the equilibrium outcome is the same as under the pre-determined sequence.
I still use �gure 3 for illustration.

� Case 1 contract: Using backward induction, it is trivial that each impatient agent will
choose to withdraw, and each patient agent will choose to stay because they know all
other patient agents will also choose the same strategy. There is no bank run.

24The �rst pair of numbers represent the aggregate early withdrawal in equilibrium, and the second pair
of signs represent the amount of bank pro�ts when the return is high and low, respectively.
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� Case 2 contract: in this situation, each agent knows withdraw is a better strategy than
wait, therefore he will take his opportunity whenever it is his turn to make his decision.
A complete bank run happens. The only di�erence is that some patient agents might
get repayment before some of the impatient agents.

� Case 3 contract: the equilibrium strategy for patient agents is a little di�erent in this
case. They will choose to wait if they observe that less than 1 � L� agents did not
withdraw their deposits, and choose to withdraw otherwise. However, the same partial
bank run happens under the new assumption.

C.2 Endogenized Decision Sequence

Even if all agents are allowed to choose their decision timings, the property still does not
change. Following the same methodology, it is not di�cult to show that in all three cases,
the equilibrium outcomes are the same as in the benchmark model.

The above proof still use the assumption that each agent has complete information on
withdrawal history. If this assumption is relaxed and withdrawal sequence is random, how-
ever, the problem will become much more complicated and the conclusion might no longer
be valid. Intuitively, each agent's decision should depend on the return signal and his ex-
pectation on the types of the following agents. A Bayesian Nash Equilibrium might be an
insightful tool for the study in this direction. See Banerjee (1992) for related discussion.
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Figure 5: optimal contract vs. return volatility
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