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Abstract

Exact inference on a single coef�cient in a linear regression model, as introduced by Bekker

(1997), is elaborated for the case of normally distributed heteroscedastic disturbances. In-

stead of approximate inference based on feasible generalized least squares, exact con�dence

sets are formulated based on partial rotational invariance of the distribution of the vector of

disturbances. The approach is applied to the random-effects and �xed-effects models for

panel data.
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1 Introduction

In this paper we will elaborate a nonparametric approach for exact inference in the linear

model for normally distributed heteroskedastic disturbances. Bekker (1997) describes exact

inference for the linear model for cases where the distribution of the vector of disturbances

is invariant under a group of linear transformations. For disturbances with spherical distri-

butions (cf. Chmielewski, 1981), which are invariant under rotations, this approach results

in classical exact inference with con�dence intervals based on t-distributions. Here, we will

apply this approach in a context of groupwise heteroscedasticity. We derive a family of ex-

act inferences for cases where the disturbance vector shows a WLS-structure, such that its

distribution is invariant under groupwise rotations. Optimal inference is then based on an

intuitively appealing criterion. Thus, we provide exact inference as an alternative to approx-

imate inference based on the asymptotics related to feasible WLS.

Although it is closely related to Bekker (1997), this paper is self-contained. First we

describe, similar to the earlier paper, exact inference for the case where the disturbance

vector has a spherical distribution. For cases where the disturbances are assumed to be

independent, this would amount to Gaussianity. Consequently, Gaussian distributions are

the most interesting spherical distributions in practice. However, in the derivation we do not

need this additional assumption. For example, we will not assume the existence of moments.

Our aim is to derive exact inference on a single parameter. The inference will take the

form of a random function F.�/, of a scalar �, which is uniformly distributed when evaluated

at the true value �0, say, of the regression coef�cient of interest. Exact con�dence sets can

then easily be formulated as sets f� j F.�/ 2 Sg, where the Lebesgue measure of S equals

2



the probability of coverage �0 2 f� j F.�/ 2 Sg. In case of a spherical distribution of the

disturbance vector, F.�/ will be nondecreasing and ranging from 0 to 1.

Next, we will describe a similar approach in a WLS-context. Here we consider subgroups

of the rotation group, or the orthonormal group, in order to describe partially spherical or el-

liptical distributions. This approach leads to many possibilities for functions F.�/. Based

on a minimum (conditional) variance argument we formulate a random function F.�/ that

ranges from 0, as � ! �1, to 1, as � ! 1, but does not necessarily increase monotoni-

cally with probability 1. Thus, two-sided con�dence sets will be bounded, but they need not

be convex.

Finally, this approach will be applied to the �xed effects and random effects panel mod-

els. In particular, the results allow for exact inference on a coef�cient in an error-components

or random-effects model, an issue which has not yet been resolved satisfactorily (cf. Tay-

lor (1977), Park and Simar (1994)). The results also allow for new insight in the relation

between the random-effects and �xed-effects model (cf. Mundlak (1978)).

We use the following notation. A vector of n ones will be indicated by �n, the symbol In

is used for the n�n identity matrix. Let A be an n�mmatrix of rankm. Then PA indicates

the projection matrixA.A0A/�1A0 and LA is an n�.n�m/matrix indicating an orthonormal

complement of A, i.e. A0LA D 0 and L0ALA D In�m. Notice that LAL0A D In � PA. For

square orthonormal matrices we use the symbol R, i.e. R0 D R�1.
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2 Exact inference based on rotational invariance

To introduce our contributions in the following sections, consider, similar to Bekker (1997),

a regression model

y D x� CX2� C u:

Here, y; x; and u are n-vectors and X2 is an n�m matrix such that .x;X2/ has full column

rank. Conditional on .x;X2/ the distribution of u is assumed to be spherical: u can be

rotated without affecting its distribution, i.e. the distribution depends only on u0u, and if R

is an orthonormal matrix, u and Ru have the same distribution: u � Ru.

Let

� D X2� C u;

and consider orthonormal matrices R that affect the u part of �, not the X2 part, i.e. R� D
RX2�CRu D X2�CRu. That is, let PX2 and LX2 be the projection matrix and the orthonor-

mal complement, respectively, related to X2, as de�ned in Section 1, and consider the group

of linear transformations

R D fR j R D PX2 C LX2
QRL0X2I QR0 QR D In�mg: (1)

For an n-vector ��, the vector R��, with R 2 R, will be located on the sphere in IRn with

radius k��k, and the set of vectors L0X2
R�� form the sphere in IRn�m with squared radius

equal to ��0.In � PX2/�
�. Thus we �nd, conditional on .x;X2/ and R 2 R, that � and R�

have identical distributions:

� � R�:
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Let fR1; � � � ; RN g be a random sample, independent of �, drawn from R and let R0 D
In. That is, the elements of fL0X2

R1��; � � � ; L0X2
RN��g are assumed to be independently

uniformly distributed over the sphere with squared radius ��0.In�PX2/�
�. Thus, the vectors

Ri�; i D 0; � � � ; N , have identical distributions, but they need not be independent since their

shared length may be random.

To achieve independence, consider a set

C�� D fR�� j R 2 Rg;

which describes an equivalence class related to the groupR. Notice that � 2 C�� amounts to

PX2� D PX2�
� and �0.In � PX2/� D ��0.In � PX2/�

�. Consequently, conditional on .x;X2/

and � 2 C�� , the vectors Ri�, i D 0; � � � ; N are independent and identically distributed

(i.i.d.) with a uniform distribution over the equivalence class on which we condition.

Now consider a possibly random n-vector z that is a function of .x;X2/ and C� so that,

conditional on .x;X2/ and C� , the scalars z0Ri�, i D 0; � � � ; N , will be i.i.d. For example

this holds for z D x. Based on this conditioning we �nd that

#fi j z0� < z0Ri�g=N

will be uniformly distributed over f0; 1=N; 2=N; � � � ; 1g. If z also satis�es the condition

z0.In � Ri/x > 0; (2)
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for almost all Ri 2 R, we �nd, similar to Bekker (1997), that

F.�; z/ D #fi j z0.In � Ri/y
z0.In � Ri/x < �g=N

is uniformly distributed over f0; 1=N; 2=N; � � � ; 1g. This distribution does not depend on

.x;X2/ or C�� , so it also holds unconditionally.

The con�dence limits,

ci.z/ D z0.In � Ri/y
z0.In � Ri/x ; i D 1; � � � ; N; (3)

describe the boundaries of N C 1 elementary 100
NC1 %�con�dence sets that can be combined

to form relevant con�dence sets. The number N does not depend on the sample size n, and

can be increased at will.

For the present group of transformationsR, as given in (1), we �nd that for R 2 R

.In � R/ D LX2.In�m � QR/L0X2 :

Consequently, a necessary and suf�cient condition for (2) to hold is that L0X2
z is a scalar

multiple of L0X2
x, with positive inner product. That is, if the vectors are not scalar multiples,

we could �nd, on the sphere in IRn�m with squared radius x 0.In � PX2/x, a set of vectors

QRL0X2
x, with positive Lebesgue measure, that are closer, in the Eucledian metric, to L0X2

z

than L0X2
x is, so that condition (2) would not be satis�ed. On the other hand, for L0X2

x 6D
0 and almost all orthonormal QR it holds that x 0LX2

QRL0X2
x < x 0LX2L

0
X2
x by the Cauchy-

6



Schwarz inequality. So the con�dence limits are in fact given by

ci.x/ D x 0.In � Ri/y
x 0.In � Ri/x ; i D 1; � � � ; N:

However, in the next section we will consider subgroups of R for which the distinction

between z and x becomes relevant. Such vectors z, which are �xed conditional on � 2 C�� ,
will be referred to as instruments and, similar to Bekker (1997), as monotonic instruments

if they satisfy condition (2) as well. The computation of the con�dence limits is brie�y

discussed in the Appendix.

Bekker shows that inference about � based on the N C 1 elementary con�dence sets,

converges to classical inference based on the tn�m�1-distribution if N ! 1. This is in

agreement with Efron (1969) who shows that Student's t distribution remains unchanged if

we assume a spherical distribution rather than a Gaussian distribution. Thus, the median of

the N con�dence limits ci.x/ converges to the OLS-estimator of �.

In the next section we will show that the present approach of exact inference can be

generalized to a heteroscedastic context. The usual asymptotic approach in this generalized

context provides only approximate con�dence sets.
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3 Exact inference based on partial rotational invari-

ance

Consider the regression model of Section 2 while the distribution of u is not assumed to be

invariant under general rotations. Instead, let

u D
kX
jD1

Ajvj ;

where the Aj are known n � nj -matrices, where nj > m C 1 and
Pk

jD1 nj D n. We will

assume that the distribution of the n-vector v D .v01; � � � ; v0k/0 is invariant under rotations of

its subvectors vj ; j D 1; � � � ; k.

We consider cases where A D .A1; � � � ; Ak/ is nonsingular. Hence,

A�1y D A�1x� C A�1�;

A�1� D A�1X2� C v:

So, without loss of generality, A can be assumed to equal the identity matrix. However, for

the sake of later applications, we will assume that A is orthonormal: A0A D In. Thus, we

�nd

A0jy D A0jx� C A0j�;
A0j� D A0jX2� C vj :

The distribution of u is, therefore, assumed to be invariant under transformations taken
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from

Ru D fR j R D
kX
jD1

AjR�jA0j I R�0jR�j D Inj ; j D 1; � � � ; kg:

In that case, � � R� if R 2 R� , where

R� D fR j R D
kX
jD1

AjR�jA0j I
R�j D PA0jX2 C LA0jX2

QRjL0A0jX2
;

QR0j QRj D Inj�m; j D 1; � � � ; kg:

Notice thatR� is a subgroup ofR, as given in (1). That is, if R 2 R� , then R is orthonormal

and RX2 D X2, since A0iAj D 0 if i 6D j and A0iAj D Inj if i D j . Furthermore,Pk
jD1AjA

0
j D In. Intuitively, the matrices R only rotate �within� the groups.

For a random sample fR1; � � � ; RN g taken fromR� we �nd con�dence limits

ci.z/ D z0.In � Ri/y
z0.In � Ri/x ; i D 1; � � � ; N;

as in (3), where now condition (2) should be satis�ed with respect to R� . However, we can

now also consider instruments where the con�dence limits ci.z/ are different from ci.x/.

That is, for R 2 R� we �nd

.In � R/ D
kX
jD1

AjLA0jX2.Inj�m � QRj /L0A0jX2
A0j :
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Consequently, condition (2) is satis�ed if and only if

zAjLA0jX2.Inj�m � QRj /L0A0jX2
A0jx > 0

for almost all QRj , and j D 1; � � � ; k. That is, L0A0jX2
A0jz and L0A0jX2

A0jx should be scalar

multiples, with nonnegative inner-product, for j D 1; � � � ; k. Consequently, all con�dence

limits different from ci.x/ can be generated by choosing monotonic instruments of the form

z.�/ D
kX
jD1

�jAjA0jx; (4)

where � D .�1; � � � ; �k/0 6D 0 and �j � 0; j D 1; � � � ; k.

For any such choice of �, con�dence limits are given by

ci.z.�// D
Pk

jD1 �jx
0Aj .Inj � R�ij /A0jyPk

jD1 �jx 0Aj .Inj � R�ij /A0jx ; (5)

and

F.�; z.�// D #fi j ci.z.�// < �g=N (6)

will be uniformly distributed over f0; 1=N; 2=N; � � � ; 1g.
Would there be an `optimal' choice for the vector �? In order to answer this question

af�rmatively, let the equivalence class C�� now be de�ned with respect to the groupR� ,

C�� D fR�� j R 2 R�g;

and consider the following result.
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Lemma 1 Let, conditional on .x;X2/, � � R� for R 2 R� , then, conditional on � 2 C�� ,
the expectation and covariance matrix of � are given by

E.� j .x;X2/; � 2 C��/ D
kX
jD1

AjPA0jX2A
0
j�
�;

Var.� j .x;X2/; � 2 C��/ D
kX
jD1

� �j 2Aj .Inj � PA0jX2/A
0
j ;

where

� �j 2 D .nj �m/�1��0Aj .Inj � PA0jX2/A
0
j�
�:

The proof is given in the Appendix.

The optimal choice for � can now be based on the following result.

Theorem 1 Let, conditional on .x;X2/, � � R� for R 2 R� , then

E.ci.z.�// j Ri; .x;X2/; � 2 C��/ D �

and the minimum of

Var.ci.z.�// j Ri; .x;X2/; � 2 C��/

is found for �j D 1=� �j 2; j D 1; � � � ; k, which does not depend on Ri .

The proof is given in the Appendix.

Let ��j D 1=� �j 2, and �� D .��1; � � � ; ��k/0. An optimal choice for the weights �j would

be given by ��j ; j D 1; � � � ; k, and F.�; z.��//, as de�ned in (6), would provide optimal

inference about the true value of �. However, �� is unknown.

The solution to this problem will be based on a vector of weights �.�/ as a function of �,
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which will coincide with the optimal weight �� for the true value of �. Notice that the value

of � �j 2, as de�ned in the lemma, does not depend on the choice of element �� from C�� . That

is, if � 2 C�� then C�� D C� and

� �j 2 D �0Aj .Inj � PA0jX2/A
0
j�

nj �m :

Therefore, we consider weights

�j .�/ D nj �m
.y � x�/0Aj .Inj � PA0jX2/A

0
j .y � x�/ : (7)

These weights depend on the unknown true value of �, but they are constant, for the true

value, over an equivalence class. So, using (4), z.�.�// provides a legitimate, albeit un-

known, monotonic instrument. Notice that replacing � by an estimate O� would make z.�. O�//
vary as � varies within an equivalence class C�� . This would violate an essential requirement

for our exact inference procedure.

If we let �0 denote the true value, optimal, but unknown, inference would be described

by the function F.�; z.�.�0/// D F.�; z.��//. Our computable exact inference is described

by the function F.�; z.�.�//, which will simply be indicated by

F.�/ D #fi j
Pk

jD1 �j .�/x
0Aj .Inj � R�ij /A0jyPk

jD1 �j .�/x 0Aj .Inj � R�ij /A0jx < �g=N; (8)

where �j .�/; j D 1; � � � ; k, is de�ned in (7). When evaluated at �0, F.�/ will be uniformly

distributed over f0; 1=N; 2=N; � � � ; 1g.
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Notice that if

rankf.y; x/0.Inj � PA0jX2/.y; x/g D 2; j D 1; � � � ; k;

almost surely, which is possible since nj > mC 1, then

.y � x�/0Aj .Inj � PA0jX2/A
0
j .y � x�/

.y � x�/0A1.In1 � PA01X2/A
0
1.y � x�/

has a minimum and a maximum a.s. Consequently, F.�1/ D 0 and F.1/ D 1. However,

contrary to the case k D 1, the function F.�/ may also decrease. Therefore, two-sided

con�dence sets

S1�� D f� j F.�/ 2 T�=2; 1� �=2Ug;

evaluated for suf�ciently large N , will be bounded, but they may be non-convex.

Another difference relates to the computation of the inference. For k D 1 the con�dence

limits can easily be computed since they do not depend on �. For the present case k > 1,

the function F.�/ can only be computed based on a grid for �. That is, for j D 1; � � � ; k we

need to compute, as described in Section 2, N points given by

..x 0Aj .Inj � R�ij /A0jy/; .x 0Aj .Inj � R�ij /A0jx//;

for i D 1; � � � ; N . Subsequently, we need to compute for each grid-point �l; l D 1; � � � ; L,

and for j D 1; � � � ; k, the values

.y � x�l/0Aj .Inj � PA0jX2/A
0
j .y � x�l/:
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Thus we can compute F.�/ for L values �l .

4 An application in a panel context

Now, consider a panel data model where subjects s D 1; � � � ; S are observed at times t D
1; � � � ; T :

yst D xst� C �st ;
�st D Qx 02st� C ust :

The scalar � is the parameter of interest and the explanatory variables are given by the vectors

.xst ; Qx 02st/. In many panel data applications a one-way error components model is used for

the disturbances with

ust D �s C wst ;

where �s denotes the unobservable subject effect andwst denotes the remainder disturbance,

see Baltagi (1995).

Let ys D .ys1; � � � ; ysT /0 and y D .y 01; � � � ; y 0S/ with similar de�nitions for x; QX2 and w.

Then, in matrix notation the model can be formulated as

y D x� C QX2� C .IS 
 �T /�C w:

For the �xed effects model the S-vector � is assumed to be nonrandom. If we assume that
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w � N .0; � 2
wIST /, then the analysis of Section 2 applies where

X2 D . QX2; IS 
 �T /;
u D w:

In that case exact inference on � amounts to the classical inference based on t-distributions.

For the random effects model � is assumed to be random. In addition to the assumption

on w, we assume that � � N .0; � 2
u IS/ and that � and w are independent. Then

y D x� C QX2� C .IS 
 �T /.�C T �1.IS 
 �0T /w/
C .IS 
 L�T /.IS 
 L0�T /w:

As .IS 
 �0T /w and .IS 
 L0�T /w are independent, this model �ts within the framework of

Section 3. We �nd

y D x� C �;

where the number of observations equals n D ST ,

� D X2� C u;

where X2 D QX2 is an n�m-matrix, and

u D
kX
jD1

Ajvj ;

with k D 2, A1 D IS 
 T �1=2�T , of order n� n1 with n1 D S, and A2 D IS 
 L�T , which is
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of order n � n2 with n2 D S.T � 1/. Furthermore, v1 D �T 1=2 C .IS 
 T �1=2�0T /w, which

can be rotated independently of the rotations of v2 D .IS 
 L0�T /w. Exact inference on �,

based on the uniform distribution of F.�/, as given in (8), now immediately applies.

The orthonormal subgroupR� , as de�ned in section 3, is given here by

R� D fR j R D .R�1 
 P�T /C .IS 
 L�T /R�2.IS 
 L0�T /
R�j D PA0jX2 C LA0jX2

QRjL0A0jX2
;

QR0j QRj D Inj�m; j D 1; 2g:

Interestingly, the orthonormal subgroup R� for the �xed effects model is simply found by

�xing QR1 to the identity matrix, which is also a group, so that R�1 D IS . Consequently, we

�nd that the function F.�/, which has been used to describe exact inference for the random

effects model, also applies to the �xed effects model, if we �x the matrices R�i1 D IS .
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Appendix

1. The computation of the con�dence limits

The actual computation of the con�dence limits, as discussed in Section 2, may take place

as follows. Let wi D QR0iL0X2
x, then

ci.x/ D x 0.In � Ri/y
x 0.In � Ri/x D

x 0LX2.In�m � QRi/L0X2
y

x 0LX2.In�m � QRi/L0X2
x

D x 0.In � PX2/y � w0iL0X2
y

x 0.In � PX2/x � w0iL0X2
x
:

As wi is uniformly distributed over the sphere in IRn�m with squared radius x 0.In �
PX2/x, it can be generated by a random drawing vi � N .0; In�m/ which is subsequently

renormalized:

wi D
�
x 0.In � PX2/x

v0ivi

�1=2
vi :

Furthermore, for the distribution ofw0iL0X2
y andw0iL0X2

x the only relevant aspects are the

lengths of the vectors L0X2
y and L0X2

x, and the angle between them. To reduce the dimension

of the problem, let

. Qy; Qx/ D f.y; x/0.In � PX2/.y; x/g1=2;

and let Qwi consist of the �rst two elements of wi , then the con�dence limits can be generated

by

ci.x/ D . Qx � Qwi/0 Qy
. Qx � Qwi/0 Qx :
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2. The proof of Lemma 1

Proof: We use the fact that E.v/ D 0 and Var.v/ D .v0v=l/Il if the l-vector v is uniformly

distributed over the sphere in IRl with �xed radius .v0v/1=2. Therefore,

E. QRjL0A0jX2
/Aj�� j .x;X2// D 0;

Var. QRjL0A0jX2
/Aj�� j .x;X2// D � �j 2Inj�m:

For a random drawing R�� from C�� we �nd

R�� D
kX
jD1

AjR�jA0j��

D
kX
jD1

Aj .PA0jX2 C LA0jX2
QRjL0A0jX2

/Aj��;

so that

E.� j .x;X2/; � 2 C��/ D E.R�� j .x;X2//;

Var.� j .x;X2/; � 2 C��/ D Var.R�� j .x;X2//;

equal the expressions as given in the lemma. 2

3. The proof of Theorem 1

Proof: From (5), we �nd

ci.z.�// D � C
Pk

jD1 �jx
0Aj .Inj � R�ij /A0j�Pk

jD1 �jx 0Aj .Inj � R�ij /A0jx :
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Using the lemma, we have

E.ci.z.�// j Ri; .x;X2/; � 2 C��/ D

� C .
Pk

jD1 �jx
0Aj .Inj � R�ij /A0j /.Pk

jD1AjPA0jX2A
0
j�
�/Pk

jD1 �jx 0Aj .Inj � R�ij /A0jx :

Furthermore,

.
kX
jD1

�jx 0Aj .Inj � R�ij /A0j /.
kX
jD1

AjPA0jX2A
0
j�
�/ D

kX
jD1

�jx 0Aj .Inj � R�ij /A0jAjPA0jX2A
0
j�
� D

kX
jD1

�jx 0AjLA0jX2.Inj�m � QRij /L0A0jX2
PA0jX2A

0
j�
� D 0;

since

L0A0jX2
PA0jX2 D 0;

so

E.ci.z.�// j Ri; .x;X2/; � 2 C��/ D �:

Similarly,

Var.ci.z.�// j Ri; .x;X2/; � 2 C��/ D

Pk
jD1 �

2
j�
�
j

2x 0Aj .Inj � R�ij /.Inj � R�ij /0A0jx
.
Pk

jD1 �jx 0Aj .Inj � R�ij /A0jx/2 D
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2
Pk

jD1 �
2
j�
�
j

2x 0Aj .Inj � R�ij /A0jx
.
Pk

jD1 �jx 0Aj .Inj � R�ij /A0jx/2 ;

whose minimum is found for �j D 1=� �j 2. 2
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