
An Empirical Model of Entry across Airline Routes

with

Incomplete Information and Demand Synergies.

Olivier Armantier¤and Oliver Richardy

January 2000

Preliminary; please do not quote

Abstract

We propose a model of simultaneous entry decisions for N symmetric �rms

across M markets with demand synergies and incomplete information on marginal

costs of production.

We develop an algorithm, based upon Monte Carlo simulations, to determine

numerically the Nash Equilibrium. We also apply the inference method proposed

by Florens, Protopopescu and Richard (1997) to estimate the distribution of costs.

Results provide threshold cost values for entry decisions, probabilities of entry,

expected quantities and prices as well as estimated costs for each of the M markets.

Keywords: Entry, Incomplete Information, Structural Estimation, Network,

Airline Industry

JEL Classi�cations : L11, D82, C15, C51, L93, R41

¤ Dept of Economics, S621 SBS Building, SUNY Stony Brook, Stony Brook NY, 11794. E-mail:

olivier.armantier@sunysb.edu.
y University of Rochester, Rochester, NY 14627; E-mail: richard@ssb.rochester.edu



1. Introduction

The few existing competitive models of entry for multimarket industries (i.e., Berry

(1992), Gelfand and Spiller (1987), Reiss and Spiller (1989)) make (at least one of) two

fundamental hypotheses. First, they consider settings of perfect and complete informa-

tion. Second, they consider entry decisions on a partial equilibrium basis. Namely, even

if they happen to account for externalities across markets, they model the entry decisions

of �rms on a market conditional to the �rms� entry decisions across the other markets in

the industry (unless they happen to consider a simple two-market setting). Both these

hypotheses are empirically questionable. Firms rarely know, or observe accurately, some

of their rivals� costs or demand parameters. Besides, in multimarket settings, entry

or production decisions on a single market typically a¤ect the state of the other mar-

kets within the industry. Namely, these settings require models of simultaneous, global

decision-making across markets. It is at these two levels (i.e., incomplete information

and global decision-making) that lies the contribution of our article to the empirical

literature on entry.

We propose a model of simultaneous entry decisions for N symmetric �rms across M

heterogenous markets. There are externalities across markets in that a �rm�s revenues on

a market are a function of entry decisions across the M-1 other markets. In this model,

each �rm is endowed with a vector of private marginal cost signals. Namely, a �rm

does not observe its competitors� costs at the time it selects its entry strategies across

the M markets. Cost signals are drawn independently and identically across �rms and

markets from a joint probability density function which is common knowledged among

�rms. Hence, a �rm decides simultaneously whether or not to enter and, if it enters,

how much to produce on each market based upon its costs vector and the distribution

of its rival costs.

This model de�nes a complex optimization problem since a �rm�s optimal strategy

depends need not only upon the characteristics of the M markets, but also upon the

uncertainty regarding its rivals� costs. Firms have to commit to quantity choices on a
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market without knowing ex-ante how many �rms will compete on that market. The

model is, in fact, analytically untractable and we propose an algorithm based upon

Monte Carlo simulations to determine numerically the Nash Equilibrium solution.

We �rst solve the �rst-order conditions to determine systems of equations de�ning a

treshold cost value above which a �rm does not to enter a market and, pending entry, the

optimal quantity to produce on that market. We then proceed to simulate repeatedly

the game in order to approximate the expected quantity produced by a �rm on each

market. This numerical algorithm provides the estimated probability of entry on each

market. Finally, we apply the inference method recently proposed by Florens et al.

(1997) to endogenously estimate the parameter µ of the cost density function.

As an application, we consider the entry decisions of American Airlines and United

Airlines at their Chicago O�Hare hub airport. These two airlines not only share similar

cost structures at the network level, but they have similar brand images and market

structures at O�Hare. They also dominate the Chicago O�Hare market. Both airlines

are taken to simultaneously select their seat capacity (on nonstop �ights) across a sample

of airport-pair markets from Chicago O�Hare. The sample data, from the third quarter

of 1993, consists in 85 markets with �ight service from at least one of American Airlines

or United Airlines, and in 15 markets with no nonstop �ight service.

The results yield expected seat capacity and revenue levels on a market. These closely

match observed mean values on the sample markets. We also estimate a mean value

for the cost per available seat mile (CASM) of $0.127 for American Airlines and United

Airlines at Chicago O�Hare. CASM�s are the standard measure of costs in the airline

industry and trade publications provide mean values, at the network level, ranging from

$0.10 to $0.13 for both airlines.

We further determine treshold marginal cost values above which an airline does not

enter on a market. From these tresholds, we obtain the estimated probability that an

airline o¤ers �ights on a market. A panel data comparison of entry decisions and seat

capacity levels for each sample market reveals that markets with the lowest estimated

probability of entry have, in fact, experienced greater relative �uctuations in the number
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of entrants and in seat capacity levels over time.

The structure of the paper is as follows. Section 2 presents the theoretical model and

section 3 proposes a numerical algorithm to determine its Nash Equilibrium solution.

Section 4 discusses the application to the airline industry while section 5 outlines the

estimation of revenue schedules for airline markets. The details on the econometric

method to estimate games of incomplete information are in section 6. Section 7 describes

the sample data and the estimation results. We conclude in section 8.

2. The Theoretical Model

We consider a Cournot model with M markets (m = 1; :::;M) and N symmetric �rms

(i = 1; :::;N). Firms are endowed with a vector of private signals ci = (ci1; :::; ciM) ;

where cim represents �rm i�s constant marginal cost on market m. The signals cim are

drawn independently and identically across �rms and markets from a probability density

function (hereafter p.d.f.) f (cim=µ) ; where µ denotes a vector of parameters: The p.d.f.

f (:) and the parameter µ are common knowledge to the �rms. Rival �rms private signals

c¡i are not observed at the time �rm i selects its strategy. The economist observes only

the density function f (:) :

The inverse demand speci�cation for �rm i on market m is linear, symmetric across

both �rms, and it allows for externalities in demand across markets. Namely, �rm i�s

price on market m, Pim, is a function of �rm i�s quantity choices across all M markets:1

Pim = ®m + ¯m

MX

m0 6=m

qim0 ¡ °m

NX

j 6=i

qjm ¡ ±mqim (2.1)

where qim is the quantity produced by �rm i on marketm and the values of the parameter

vector (®m; ¯m; °; ±) are common knowledge. Setting �xed costs at zero, the pro�t of

1
From a conceptual point of view, we could have allowed for externalities in the cost function as

well. The demand approach is more appropriate to an airline setting.
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�rm i on market m is:

¼im = [Pim ¡ cim] qimIfqim>0g (2.2)

where Ifqim>0g is the indicator function de�ned as

Ifx>0g =

(
1 when x > 0

0 otherwise

)
(2.3)

Given their private cost ci, �rms simultaneously select a vector of non negative quan-

tities q¤i = (q¤i1; ::; q
¤
iM) (8i = 1; :::; N) as to maximize total expected pro�ts over the

network of M markets:

q¤i = ' (ci; µ) = Argmax
fqimgm=1;:::M

MX
m=1

Ec¡i [¼im=µ] (2.4)

subject to qim ¸ 0 8m = 1; :::;M

where ' (ci; µ) is the equilibrium strategy function. Since �rms are ex-ante symmetric

we have 8j 6= i

Ec¡i [qjm=µ] = Ec
¡i0

[qj0m=µ] = E [qm=µ] 8i 6= i0 or 8j 6= j0 (2.5)

The optimization problem can then be written as:

q¤i = ' (ci; µ) = Argmax
fqimgm=1;:::M

PM
m=1 [®m + ¯m

MX

m0 6=m

qim0

¡ (N ¡ 1) °mE [qm=µ]¡ ±mqimqimIfqim>0g (2.6)

subject to qim ¸ 0 8m = 1; :::;M

Equilibrium strategies ' (ci; µ) are, therefore, symmetric across �rms.
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3. Computing the Nash Equilibrium solution

The theoretical model presents three key characteristics. First, it is a game of incom-

plete information since rivals marginal costs are unknown at the time of decision. Second,

�rms decide simultaneously whether to enter and how much to produce on each market.

Third, the quantity produced on market m creates an externality a¤ecting pro�ts, and

consequently entry and quantity decisions, on all other markets m0 6= m: To determine

the Nash Equilibrium strategy a �rm must consider jointly all markets and the uncer-

tainty on its rivals costs. Such strategy cannot be determined analytically. Instead we

propose an algorithm to calculate the Nash Equilibrium solution numerically.

First, we remark that the constraint qim ¸ 0 8m = 1; :::;M can be rede�ned equiva-

lently by

qim ¸ 0 , cim · cim 8m = 1; :::;M (3.1)

where cim is a treshold cost de�ned such that �rm i decides to enter market m only

when its marginal cost is su¢ciently low (cim · cim). Note that cim is determined only

at the equilibrium and it is a function of �rm i marginal costs on every market (ci).

The �rst-order conditions of the optimization model (2.6) can be written 8m =

1; :::M ,

qimIfcim·cimg =
1

2±m

2
4®m + 2¯

m

MX
m0 6=m

qim0Ifc
im0·cim0g ¡ (N ¡ 1) °mE [qm=µ]¡ cim

3
5 Ifcim·cimg

(3.2)

When cim = cim we have qim = 0 and the previous equation becomes

0 = ®m + 2¯m

MX
m0 6=m

qim0Ifc
im0·cim0g ¡ (N ¡ 1) °mE [qm=µ]¡ cim 8m = 1; :::M (3.3)

or equivalently,

MX
m0 6=m

qim0Ifc
im0·cim0g =

¡®m + (N ¡ 1) °mE [qm=µ] + cim
2¯m

8m = 1; :::M (3.4)
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If we insert equation (3.4) in equation (3.2) we get

qimIfcim·cimg =
cim ¡ cim

2±m
Ifcim·cimg 8m = 1; :::M (3.5)

Finally let us insert equation (3.5) into equation (3.3):

0 = ®m + ¯m

MX
m0 6=m

(cim0 ¡ cim0)

±m0

Ifc
im0·cim0g ¡ (N ¡ 1) °mE [qm=µ]¡ cim 8m = 1; :::M

(3.6)

If the expected quantity produced by a �rm on each market E [qm=µ] (8m = 1; :::M)

were known and provided a vector of costs fcimgm=1;:::M we could solve the system of

equations (3.6) to obtain the vector fcimgm=1;:::M . Then, using the set of equations

(3.5), we could calculate the equilibrium strategies fq¤imgm=1;:::M . However, there is no

analytically tractable way to calculate E [qm=µ]. We propose to replace E [qm=µ] by a

Monte Carlo approximation bE [qm=µ] :

The idea of the algorithm is to consider a value for E [qm=µ] ; say "m; then for a given

set of simulated costs we can solve the systems of equations (3.5) and (3.6) to obtain

some simulated quantities for player i. Finally, we take advantage of the symmetry of

the model to compare the empirical mean of the simulated quantities of player i and "m.

If "m is a reasonable approximation of the expected quantity E [qm=µ] then it should be

close to the average simulated quantity. The approximation bE [qm=µ] is then de�ned as

bE [qm=µ] =Argmin
"m

"
"m ¡ 1

MC

MCX
l=1

ql
im

³ecl
im
; cl
im
; "m

´#2
8m = 1; :::M (3.7)

where eclim (8m = 1; :::M and 8l = 1; :::;MC) is a Monte Carlo simulated cost drawn

from f (:=µ) ; MC is the size of the Monte Carlo simulation, and, cl
im

(respectively

qlim
³eclim; clim; "m´) is solution of the system of equations (3.6) (respectively (3.5)), pro-

vided
necl

im

o
m=1;:::M

and E [qm=µ] = "m.

The determination of bE [qm=µ] may be time consuming but it is not computationally

challenging. Indeed, the algorithm requires to estimate bE [qm=µ] for any value of µ which
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requires to solve numerically the system of equations 3.6 for each of the N Monte Carlo

simulations. However, these equations are linear up to an indicator function and there

exist numerous numerical procedures to solve these systems in a matter of seconds.

Once bE [qm=µ] has been determined we can calculate fq¤im; cimgm=1;:::M for a given cost

vector fcimgm=1;:::M ; or symmetrically we can invert the strategy function '¡1 (q¤im; µ)

and calculate fcim; cimgm=1;:::M for a vector of observed optimal quantities fq¤imgm=1;:::M :

As we shall see in the next section, the econometric technique subsequently used in the

empirical application to the airline industry, requires the inversion of the equilibrium

strategy.

4. An Airline Application: American and United at Chicago

O�Hare

This section details the application of the theoretical model to an airline environment.

We describe, the airline setting of interest, and provide an empirical basis for the main-

tained hypotheses of the theoretical model.

4.1. Firms, Markets

American Airlines and United Airlines are two major US carriers, with similar cost

structure (see table 1), sharing a primary hub airport at Chicago O�Hare. They not

only have similar brand images in Chicago, but also serve a similar route structure

from that airport. For example, United has nonstop �ights on all seventy-two Chicago-

markets with (nonstop) �ights from two or more airlines, American on 69. Based upon

the Databank DS T-100 data, they control 89.55% of passenger enplanements at O�Hare.

As a comparison, Delta Airlines, the third largest carrier at O�Hare, has only 3.3% of

passenger enplanements and o¤ers �ights on just 8 of the 124 Chicago-markets. The

market structure at Chicago is also very stable over time. Over a period stretching from

the third quarter of 1992 to the fourth quarter of 1993, there is little new entry/exit

on Chicago-markets and almost all of them are the result of decisions from either of

8



American and United.

Therefore, following Brander and Zhang (1990, 1992), we assume that American

Airlines and United Airlines are two symmetric �rms in duopoly competition at Chicago

O�Hare.

4.2. Decision Variables

We model entry decisions of American Airlines and United Airlines on markets from

Chicago O�Hare airport. The decision variables are the seat capacity on (nonstop) �ights;

qim; each of these airlines o¤ers on Chicago markets. The choice of seat capacity, over

price or passenger volume, is prompted by the nature of the industry. Flight schedules,

which detail departure times and aircraft type, change little over time once published

and, if anything, at a much slower rate than prices. The preference of seat capacity over

passenger volume relates to the cost structure at the market level. Modeling passenger

choice would demand, in this entry model, a representation of �ight frequency choices

in order to properly characterize the �xed costs of entry since these would include both

aircraft and airport-speci�c �xed costs. This would require a model with two-decision

variables and greatly complicate the current structure of the model.

4.3. Marginal Costs

Our model calls for a representation of costs at the market level. The standard char-

acterization of market-speci�c costs in the airline literature is one of a �xed cost per

�ight plus a constant marginal cost per passenger (references). This implicitly de�nes,

graphically, a step function between the total aircraft costs and the seat capacity on a

market. A linear approximation to this step function seems reasonable since seat capac-

ity are modelled quarterly. This leads us to assume, at the market-level, a linear relation

between total aircraft costs and seat capacity.

Fixed costs then represent the airport-speci�c �xed costs of o¤ering �ights on a mar-

ket. At Chicago O�Hare, the number of markets with �ights from American Airlines

and United Airlines varies little around the period of our sample data (table). In ad-
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dition, both airlines have dedicated airport facilities at O�Hare, allocated under 30-year

leases, which underwent major updates in the early 1990�s. This leads us to treat all

airport-speci�c �xed costs as being sunked prior to our sample period.

We need a representation of an airline i�s marginal cost per available seat on a market.

Following Brander and Zhang (1990) and Morrison and Winston (1995), we propose the

following speci�cation for airline i�s marginal cost per available seat on a Chicago market

m:

marginal cost per available seatim

= CASMi £
p
AV GLGHTCHI £

q
MILESm

where CASMi is the marginal cost per available seat-mile for airline i on Chicago mar-

kets, AV GLGHTCHI is the average mileage length of a Chicago-market, andMILESm

is the mileage of market m: CASM �s are the standard measure of costs for airlines and

they are only reported on a network-wide or aircraft-type basis. For American Airlines

and United Airlines in the third quarter of 1993, we �nd, across publications, CASM

�gures ranging from 10 cents to 13 cents depending upon which particular categories of

costs are accounted for.

Our article di¤ers from existing airline studies, such as the aforementioned, in that we

endogenously estimate mean CASM values. Namely, we have that airline i on market m

draws a private marginal cost signal cim = CASMim from a p.d.f. f (:jµ) where values for
the parameter vector µ are estimated endogenously. The marginal cost signals are drawn

independently and identically across airlines and markets from the pd.f. f (:jµ) : We feel

comfortable with the assumption of an identical distribution for American Airlines and

United Airlines at Chicago O�Hare airport. Chicago is a major hub in each airline�s

network and, as Brander and Zhang (1990) note, it plays a similar role in each airline�s

network. The airline trade literature also reports similar CASM �gures for both airlines

(table). We will look to relax the independence hypothesis in later work.
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In summary, the total cost of qim seats for airline i on market m is written as:

Cost (qim) = CASMi £
p
AVGLGHTCHI £

q
MILESm £ qim

5. Estimation of Revenue Schedules

5.1. Local and Connecting Passengers

Airline customers are identi�ed by an origin and destination airport. For example,

B-D customers have airport B for origin and airport D for destination. A local B-D

passenger is a B-D customer who takes a (nonstop) �ight on market B-D. A connecting

B-D passenger is a B-D customer who travels on an indirect route from airport B to

airport D. An indirect route is a path made up of �ights which links two airports and

requires at least one stop at an intermediate airport.

An airline o¤ers �ights across a network of markets. It can therefore include a �ight

on a market B-D into the path of indirect routes between some airports Ai and Ej,

with Ai 6= B and/or Ej 6= D (see �gure 1 for an illustration). For example, airport

Ai (Ei) may be any origin (destination) airport on a market to airport B (from airport

D) where the airline has �ights. This means that an airline may sell seats on market

B-D to both local B-D and connecting Ai-Ej passengers. It is the presence of these

connecting Ai-Ej passengers which leads to demand synergies across entry decisions on

connected markets. Connecting Ai-Ej passengers account for, on average, 58% of an

airline�s passenger volume on a B-D market in the third quarter of 1993.

5.2. An Aggregated Speci�cation

We are looking for an aggregated representation of revenues per seat at the market-level;

i.e., a revenue schedule function for seat capacity. There are few, if any, references in

the literature. Both Reiss and Spiller (1989) and Richard (1999) estimate aggregated

market-level demand functions but the context of their analyses bears little comparisons

with the present article. Berry (1992), meanwhile, speci�es revenues on an airline market
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only in terms of market characteristics and the number of competitors.

We could model demand on an origin and destination basis and model a passenger�s

choice of an itinerary between two airports B and D through a logit speci�cation (not

unlike Lederer). There are two main problems with this approach. First, while logit

models make for a rich demand speci�cation, such speci�cations are not analytically

tractable within this paper�s framework. Second, the presence of connecting passengers

means that, in our analysis of entry across M markets, we would have to account for

demand across all pairwise combinations of M cities. To provide some measure of scale,

we note that, in the third quarter of 1993, an airline on market B-D draws, on average,

connecting Ai-Ej passengers from 57 indirect routes with one intermediate stop and 54

indirect routes with two stops.

We propose, rather, to talk of a revenue schedule for airline i�s seat capacity on a

market m. This schedule describes revenues per seat for airline i on market m as a

function of seat capacity choices across connected markets. It is de�ned as the sum of

two revenue schedule functions, one for each of local and connecting passengers, since

both local and connecting passengers contribute to revenues at the market-level2.

This approach requires, however, to assume an allocation rule for connecting ticket

prices. Indeed, a connecting Ai-Ej passenger for a market B-D pays one ticket price for

the indirect Ai-Ej route. To determine revenues from connecting passengers Ai-Ej on

a market B-D requires allocating the price paid by these passengers among the various

�ights on their indirect routes. While a choice of allocation rule has some arbitrariness,

mileage is not only the variable most highly correlated with airline prices, but also the

primary cost variable. Hence, we allocate the ticket price of a connecting passenger to

the various �ights on a mileage basis.

Finally, unlike traditional models where demand and price are jointly determined,

�rms, in our framework, select their seat capacity, then subsequently observe the actual

realization of revenues. Hence, estimation of the revenue schedules is by ordinary least-

2Cargo shipments can be a source of revenues for airlines on some markets. We unfortunately have

no data on cargo shipments or value.
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squares.

5.3. Sample Data for the Estimation of the Revenue Schedules

The data are compiled from three databases for the third quarter of 19933. All three

databases report data on a per airline, per airport-pair market basis (i.e., unit of ob-

servation is airline i on a market from airport B to airport D). Databank 1A, from the

Department of Transportation (DOT), is a 10% random sample of all airline tickets sold

each quarter. It yields, for this analysis, the data on ticket prices and on the number of

local and connecting passengers. Databank DS T-100, another DOT database, provides

monthly data on seat capacity and passenger volumes. Only the major U.S. airlines and

their (directly-owned) subsidiaries (e.g., shuttle, commuter airlines) report to Databank

DS T-100. We turn to the OAG North American editions for a complete listing of all

scheduled �ight operations for the third quarter of 1993. Given Databank 1A data are

quarterly data, revenues and seat capacities are, for this paper, de�ned on a quarterly

basis. Exogenous market characteristics are obtained from Census data.

For the estimation of the revenue schedules, we consider a sample of 919 airport-pair

markets for the third quarter of 1993. The sample consists in all markets for which

we have a complete set of third quarter of 1993 Databank 1A and Databank DS T-100

data (see appendix B for ampler details). Airport-pair markets in the sample are non-

directional in that we have averaged the data for each market across both directional

�ows. Namely, the unit of observations is a market B-D rather than a market from B to

D or from D to B.

5.4. A Revenue Schedule for Local Passengers

Sample markets have from one to four airlines with �ights. An airline�s share of passenger

enplanements at the origin airport on a directional market has been argued to signi�-

cantly determine the distribution of local passengers across competitors on that market

3Ampler details on the data, and construction of the variables, are provided in appendix A.
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(Borenstein (1990)). In our sample, 84% of markets with two or more airlines include at

least one hub airport for each competitor. By looking at markets on a non-directional

basis, we are, therefore, evening out most of the discrepancies in airport presence on

a market. This leads us to treat products (seats) on a market as homogenous across

airlines with regards to local passengers4.

For a market m with N airlines with �ights, the revenue schedule speci�cation is

linear5:

REV l

m
=

"
NX
i=1

REV l

im

#
=

"
NX
i=1

qim

#
= ®0 + ®1MILESm + ®2POPULm + ®3INCOMEm

+®4 ln(INCOMEm) + ®5AREAm ¡ ±l
X
i

qim

= ®¤

m
¡ ±l

X
i

qim

where REV l

im
is airline i�s revenues from local passengers (across coach and �rst class)

on market m and qim is airline i�s seat capacity (on nonstop �ights) on market m:

The explanatory variables are the mileage of market m (MILESm), the population

(POPULm), income level (INCm), and square miles area (AREAm) for both cities

including the airports on the market.

Estimation results are provided in table 16.

4
While we have data on an airline�s airport presence, we have no data on airline-speci�c exogenous

variables which could measure the demand from local passengers for a particular airline.
5The speci�cation does not account for connecting B-D passengers. We do not have data on the

number of seats allocated to connecting B-D passengers across the various �ights on these passengers�
indirect paths. We only observe the number of connecting B-D passengers per market which makes it
di¢cult to incorporate these passengers in our speci�cation. Richard (1999) also provides some evidence
that local and connecting passengers may su¢ciently di¤er in their �ight frequency valuation, hence
valuation of time, that we could consider the number of connecting B-D passengers on a market to be
exogenous.

6With regards to these results, we note that the high implied (from estimated value of ±l) elasticity
of seat capacity with regard to revenues per seat from local passengers can be explained. One of the
primary sources of dispersion in seat capacity across markets are varying levels of connecting passengers.
Connecting passengers account, on average, for 58% of the passenger volume on a �ight. In fact,
connecting passenger volumes have higher correlation with seat capacity levels than local passenger
volumes.
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Table 1.

Estimated mean parameter values (standard deviations) for the revenue schedule function for local passengers

Dependent variable is REV l
m

Cst POPULm MILESm INCm ln(INCm) AREAm ±l slope

986.44 0.1463 0.0186 0.1268 -159.94 0.2556 -1.1£10¡4

(179.39) (0.030) (0.0011) (0.0168) (27.98) (0.0594) (1.1£10¡5)

5.5. Connecting demand

The fact that an airline may sell seats on market B-D to connecting Ai-Ej passengers

creates demand synergies between entry decisions across markets. In essence, the greater

the number of markets with �ights at each of airports B and D, the greater the scope of

Ai-Ej markets an airline may draw passengers from for travel on B-D.

In our framework, we determine, for each airline i on a market m, that airline�s

total seat capacity across all markets j, j 6= m, at each of airport B and D; that

is,
P
j 6=m qBij at airport B and

P
j 6=m qDij at airport D. The size of the revenue schedule

for that airline�s connecting passengers is then assumed proportional to
P
j 6=m qij =

max
nP

j 6=m qBij ;
P
j 6=m qDij

o
: This restriction to one of airports B or D is necessary to

limit the scope of our analysis to entry decisions at a particular airport. It remains

that on the 84% of sample markets where an airline has a single hub airport, the chosen

airport (B or D) is always the hub airport. On these markets, almost all of an airline�s

connecting Ai-Ej passengers happen to transit through that hub airport.

An examination of the data also reveals that an airline draws rather similar numbers

of connecting passengers from each Ai-Ej market since each such market contributes, on

average, 1.68% (median is 0.89) of the airline�s total connecting A-E passenger volume.

Hence, we assume that any increase in capacity across markets j, j6=m, generates a

constant increase in the number of connecting passengers on a market m. We do allow,

nevertheless, for that increase to vary with market m�s mileage.

Finally, if a connecting passenger switches airlines on an indirect route, that passenger
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is said to interline. Morrison and Winston (1995) document that, by 1994, fewer than

1% of all connecting passengers interline. We thus specify that the scope of synergies

for an airline on market B-D is only a function of its own seat capacity choices and not

its competitors�.

We have this linear speci�cation for revenues per mile from connecting Ai-Ej pas-

sengers for airline i on market m:

REV c
im

MILESm
= ±0 + ±1 ln(MILESm) + ±2MILESm + ±3HU1Bim

+±4HU2Bim + ±5MAJHUBm + ¯
MX
j=1
j 6=m

qij ¡ ±c
qim

MILESm

= ±¤im + ¯
MX
j=1
j 6=m

qij ¡ ±c
qim

MILESm

where
REV c

im

MILES
are airline i�s revenues per mile from connecting Ai-Ej passengers; HU1Bim

is a dummy variable equal to 1 if airline i has one hub airport on market m; HU2Bim

is a dummy variable equal to 1 if airline i has two hub airports on market m; and

MAJHUBm is a dummy variable equal to 1 if at least one of the airports on market

m is one of Atlanta, Dallas Forth-Worth, Houston IAH, Los Angeles LAX, Miami, New

York JFK, and Chicago O�Hare.

Estimation results are provided in table 27.

7A comment is warranted with regards to the low estimated value for the slope coe¢cient ±
c

: Airlines

draw connecting passengers from a wide range of markets. For example, in the third quarter of 1993,

an airline on market B-D draws, on average, connecting Ai-Ej passengers from 57 indirect routes with

one intermediate stop and 54 indirect routes with two stops. As mentioned in the text, they also draw

similar numbers from each market. Hence, we do not expect the revenues per seat from connecting

passengers to vary much with total seat capacity levels.
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Table 2.
Estimated mean parameter values (standard deviations) for the revenue schedule function for connecting passengers

Dependent variable is REV c

im
=MILESm

Cst ln(MILESm) MILESm HU1Bim HU2Bim MAJHUBm
PM

j 6=m qij ±c slope

0.303 -0.0446 0.0234 0.0259 0.0278 -0.0106 0.4350 -4.3£10¡5

(0.017) (0.0028) (0.0031) (0.0021) (0.0038) (0.0013) (0.0420) (0.9£10¡5)

5.6. The Revenue Schedule for Seat Capacity

The revenue schedule for airline i�s seat capacity on a market m is de�ned as the sum

of the revenue schedules for each of local and connecting passengers:

REV l
m +REV c

im = ®¤m + ±¤imMILESm + ¯MILESm
MX

j=1
j 6=m

qij ¡
³
±c + ±l

´
qim

6. Inference in Game Theoretic Models

The estimation of the private signals distribution necessitates non standard economet-

ric techniques. Indeed, a key component of any game theoretic model with incomplete

information is that unobserved private signals are transformed into observed actions

(qi = ' (ci; µ)). Besides, the strategic nature of games of incomplete information trans-

lates into the fundamental property that these strategies depend upon the underlying

probability distribution of types. Consequently, one cannot estimate jointly the func-

tional form of players� strategies and the distribution of types from the sole observation

of actions, and one cannot directly estimates the distribution of unobserved types. The

speci�cation problem is traditionally solved by imposing that strategies are Nash Equilib-

rium solutions of the game. To estimate the distribution of unobserved types, we adopt

the generic estimation principle recently proposed by Florens et al. (1997). Within this

estimation framework, one initially selects an �unfeasible� estimator eµ (c), whereby one

could estimate µ if the cost of all �rms on every markets (c = (c1; :::; cN )) were known.

The corresponding �feasible� estimator
³bµ (q) ; bc (q)´ (q = (q1; :::; qN )) of (µ; c) is de�ned
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as the �xed point solution8

bµ (q) = eµ (bc (q)) ; (6.1)

bc (q) = '¡1
³
q; bµ (q)´ ; i : 1 ! N : (6.2)

where '¡1
³
q; bµ (q)´ is the inverse strategy function calculated with the algorithm intro-

duced in section 3. In practice, the computation of such a �xed point solution necessitates

iterating between equations (6) and (7) until convergence obtains. See Armantier and

Richard (1998) for additional numerical considerations.

Private signals are assumed to have a truncated normal distribution on ]0;1[

f (cim j ¹; ¾) = 1

1¡ F (0 j ¹; ¾)
1

¾
p
2¼

exp

"
¡(cim ¡ ¹)2

2¾2

#
(6.3)

where F (0 j ¹; ¾) is the cumulative distribution function of a normal distributionN (¹; ¾) :

We estimate µ0 = (¹; ¾) 2 <£ ]0;1[ with the inference method developed by Florens

and al. (1997). The unfeasible estimator is given by the censored Maximum Likelihood

estimator:

L (¹; ¾=bc (q)) =Y
i;m

Ã
1¡ F (bcim (q) j ¹; ¾)

1¡ F (0 j ¹; ¾)

!Ifqim=0g

[f (bcim (q) j ¹; ¾)]Ifqim>0g : (6.4)

Computing is of the order of 285 minutes of CPU time on a 7 years old DEC work-

station, for a Monte Carlo simulation size of MC = 1000.

8Conditions for the local identi�cation of µ from the sole observation of q and for the existence and
(local) unicity of a �xed joint solution are found in Florens et al. (1997), together with characterizations

of the asymptotic distributions of bµ and bc.
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7. Structural Estimation of the Airline Model

7.1. The Sample Data

We are now in a position to de�ne the sample data for our analyses. There are, in the

third quarter of 1993, 124 Chicago markets with �ights. For six of these markets, no

data are reported in Databank DS T-100. For 33 of these markets, there are either

asymmetries in the number of hub airports (i.e., in the values for TWOHUBim in the

revenue schedule speci�cation) between American Airlines and United Airlines, or there

is another airline (i.e., Delta, etc.) with �ights. On the remaining 85 Chicago markets,

American Airlines and/or United Airlines are the only airlines with �ights. In fact,

we do not observe any other airline with �ights on these markets over a time period

stretching from the third quarter of 1992 to the fourth quarter of 1993. We include

these 85 markets in our sample.

To this sample of 85 markets, we add 15 markets with no �ights from any airline (e.g.,

the 15 markets with highest estimated value for the intercept of the revenue schedule

function, ®¤
m + ±¤imMILESm): Hence, our sample includes markets with zero, one, or

two airlines and contains, overall, 100 di¤erent Chicago markets.

The six markets with missing data link Chicago to a small city and have, at best,

minimal passenger volumes. These markets are ignored. For the 33 markets with asym-

metries and/or additional competition, we take the seat capacities for American Airlines

and United Airlines on these routes as a given. Given the stable environment at Chicago

O�Hare in terms of entry/exit decisions, these seat capacities vary little over a time pe-

riod stretching from the third quarter of 1992 to the fourth quarter of 1993 (see table).

In the third quarter of 1993, American Airlines� seat capacity across these 33 markets

amounts to 2,396,654, while United Airlines� is 2,705,356. To maintain the symmetry of

the model, we average these capacities across both airlines and use this average value,

2,551,005, as the starting value for
PM
j 6=m qij in the revenue schedule speci�cation.
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7.2. Estimation Results

Note to the reader: We are in the �nal stages of estimating our model over our full

sample of 100 Chicago markets. This means that our �nal results are not yet available.

Nevertheless, before proceeding with a full sample estimation, we isolated a sample of

15 markets: two randomly selected monopoly markets and 13 randomly selected duopoly

ones.

Here are the data (table 1) and primary results (table 2) for these 15 markets:

Market 3-letter airport code miles Observed q1m Observed q2m
1 ABQ 1118 0 46122
2 BMI 116 0 35210
3 CMI 135 39734 45300
4 DBQ 147 47984 21066
5 ELP 1236 18618 28064
6 EVV 273 64500 82716
7 FAR 557 65850 56704
8 FNT 223 21248 50537
9 ISP 776 50356 68884
10 LAF 119 15924 12624
11 LSE 215 44370 54612
12 MKG 118 117896 208482
13 RFD 63 35989 67297
14 RST 268 17848 19838
15 TOL 214 21850 24386

Average 305.2 37477.8 54789.46
Standard Deviation 319.63 30302.87 47133.63

Table 7.1: Data

Tables 1 indicates that these routes o¤er a large variation of miles per routes, and a

large variation of quantities across routes and across companies.

The estimated parameters are (b¹; b¾) = (0:126; 7:167E ¡ 04) with a standard devia-

tion calculated with a Monte Carlo simulation of (0:011; 1:125E ¡ 05) : This corresponds

to an estimated mean and standard deviation for the marginal cost of (0:127; 2:661E ¡ 02) :

In other words, the marginal cost of a seat per miles is in average 0.127$. This com-
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pares with CASM �gures ranging, across trade publications, from 10 cents to 13 cents

depending upon which particular categories of costs these are accounted for. The main

estimation results are summarized in Table 2.

Market bE
i
(qim) bE

i
(cim) Expected Cost Percentage

(in $) per passenger(in $) of Entry
1 37337.24 (11765.37) 43.58 (17.5) 36.20 (12.6) 64.0
2 32452.48 (25545.56) 59.18 (35.2) 60.13 (31.8) 43.2
3 42427.88 (21879.61) 84.81 (29.0) 91.53 (30.7) 65.4
4 34040.28 (23600.15) 101.79 (59.6) 123.05 (58.4) 49.7
5 24326.44 (12338.51) 24.49 (10.2) 15.44 (8.7) 92.8
6 78751.27 (31673.43) 97.73 (29.7) 99.12 (26.1) 85.6
7 62512.71 (36195.88) 64.93 (33.7) 59.87 (28.6) 63.2
8 34333.99 (11341.31) 31.36 (17.4) 24.81 (12.9) 89.0
9 66938.26 (19676.40) 48.41 (21.3) 37.47 (19.4) 91.4
10 15222.85 (9711.07) 30.68 (17.5) 26.96 (14.4) 70.2
11 44641.60 (17491.55) 40.44 (22.4) 30.38 (17.0) 93.2
12 21266.98 (16777.48) 95.20 (31.8) 77.47 (26.5) 86.0
13 43446.38 (26510.79) 43.57 (26.6) 37.85 (22.1) 75.8
14 18042.52 (17743.24 53.33 (40.1) 58.48 (39.5) 35.9
15 24522.82 (13289.84) 27.23 (9.6) 19.87 (8.3) 95.6

Estimated parameter values with standard deviations in parentheses.

Table 7.2: Estimated Model

Overall the observed quantities (Table 1) are close to the expected quantities esti-

mated by the econometric model (Table 2) and well within one standard deviation. We

are also able to estimate the average treshold cost bE
i
(cim) above which a company do

not enter the market, the average total cost and the percentage of entry per period on

a given route.

8. Conclusion

[to be completed]
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