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Abstract

This paper develops new econometric methods to estimate hospital quality and other models with discrete dependent
variables and non-random selection. Mortality rates in patient discharge records are widely used to infer hospital
quality. However, hospital admission is not random and some hospitals may attract patients with greater unobserved
severity of illness than others. In this situation the assumption of random admission leads to spurious inference
about hospital quality. This study controls for hospital selection using a model in which distance between the
patient’s residence and alternative hospitals are key exogenous variables. Bayesian inference in this model is
feasible using a Markov chain Monte Carlo posterior simulator, and attaches posterior probabilities to quality
comparisons between individual hospitals and groups of hospitals. The study uses data on 77.937 Medicare patients
admitted to 117 hospitals in Los Angeles County from 1989 through 1992 with a diagnosis of pneumonia. It finds
higher quality in smaller hospitals than larger, and in private for-profit hospitals than in hospitals in other ownership
categories. Variations in unobserved severity of illness across hospitals is at least a great as variation in hospital
quality. Consequently a conventional probit model leads to inferences about quality markedly different than those in
this study’s selection model.
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1. Introduction

This paper develops new econometric methods to estimate hospital quality and other models

with discrete dependent variables and non-random selection. Assessing the quality of care in

hospitals is an important problem for public policy and a challenge for applied econometrics.1

Policy changes in Medicare reimbursement rates and the rise of managed care as well as

technological innovations have affected hospital incentives, and through that, hospital quality.2

These quality changes have large welfare effects and hence the potential for large deadweight

losses.3

Hospital patient discharge databases provide several indicators plausibly associated with

hospital quality. Since they cover large numbers of patients and hospitals and are much less

expensive to obtain and access than other sources of information, they have been widely used in

comparisons of hospital quality. Mortality has been the most popular indicator of hospital quality

in the literature: it is unambiguously defined and free of measurement error, and its link with

quality of care is so strong as to be tautological.4

In this widely used framework, the conceptual experiment that reveals hospital quality is

hospital-specific mortality rates following random assignment of a population of patients to

hospitals. Patients, however, are not randomly assigned to hospitals. Patients or their physicians

are likely to choose hospitals based on factors such as location, convenience and their severity of

illness. Econometrically, the experiment implicit in the data is not random assignment, and the

corresponding real experiment of random patient assignment cannot be performed. If assignment

were nonrandom, but random conditional on observed characteristics, then conventional

dichotomous outcome models could be used to infer the outcome of the conceptual experiment

from the available data. However, discharge data contain only crude summaries of medically

pertinent information and hence many aspects of the severity of illness are unobserved. Thus, the

                                                
1 "As described by a leading study, “Quality of care is the degree to which health services for individuals and
populations increase the likelihood of desired health outcomes and are consistent with current professional
knowledge…," Lohr (1990, p. 4).
2 See Cutler (1995), Kessler and McClellan (2000), McClellan and Noguchi (1998) for studies on the effects of
Medicare policy, the impact of managed care and the impacts of technological change on medical outcomes,
respectively.
3 For instance, if changes in Medicare policies cause hospitals to reduced their pneumonia mortality rates by one
percent, this would translate to over 6,000 lives saved annually in the U.S.
4 Strictly speaking mortality is an indicator of hospital mediocrity; mortality is an inverse indicator of quality.
Subsequently we provide a precise definition of hospital quality in the context of the model developed in this study.
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assumption of conditional randomness is not tenable and patients with the same observed

characteristics are not equally likely to be admitted to all hospitals. For instance, if patients with

high unobserved severity of illness select high quality hospitals, then observed mortality rates for

high quality hospitals will be inconsistent and upwardly biased measures of mortality from the

conceptual experiment. This will be true even after controlling for observed measures of severity

of illness. Conventional statistical methods that ignore unobserved severity will produce

misleading inferences about hospital quality. This has led prominent medical experts to make a

pessimistic assessment of the usefulness of discharge data in assessing hospital quality.5

Recent work by Gowrisankaran and Town (1999) developed a framework to control for the

non-random assignment of patients. This work modeled mortality as a function of indicator

variables for each hospital and patient discharge information. The authors treat mortality as

continuous, and directly apply linear instrumental variables methods. The identifying assumption

is that unobserved patient severity is identically distributed in the population. Then, distance to a

given hospital is correlated with choice of hospital but uncorrelated with unobserved severity of

illness, making it an appropriate instrument for the endogenous choice of hospital. Conceptually,

the estimator would predict hospital A to be of higher quality than hospital B if patients residing

near hospital A have lower mortality, after controlling for their medical and demographic

characteristics. The size of the quality difference between hospitals A and B would be inversely

related to the distance that patients are willing to travel to seek care.

However, the outcome variable mortality is dichotomous. Thus, any internally consistent

model of hospital quality and choice must be nonlinear. Conventional instrumental variables

methods have heretofore not been applied to nonlinear models with non-random assignment.6

This paper develops a logically coherent model designed to infer the outcome of the conceptual

experiment that randomly assigns patients to hospitals, given data that has non-random patient

assignment. Estimating this model is difficult because the amount of information per observation

is small and the signal to noise ratio is likely to be small as well.7 This paper develops an

approach to inference in this model that is practical with the large data sets required to extract

                                                
5 Leading medical researchers, including Iezzoni et al. (1996)., and government studies (US GAO (1994))  have
both argued that discharge databases are problematic, for this reason.
6 Though the methods of Gowrisankaran and Town (1999) are much simpler than the ones developed in this paper,
there is no formal statistical model that rationalizes their approach.
7 Simple measures of fit always indicate that most variation in mortality cannot be ascribed to covariates. Even if all
the difference in mortality rates were attributable to quality, the variation in these rates is small.
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signal from noise in hospital patient discharge databases. This approach, defined by these two

methodological advances, is potentially applicable to a wide range of policy evaluations of

economic interest where the outcome variable is dichotomous.8

The model developed here incorporates hospital choice and mortality as endogenous

variables, and fixed hospital and patient characteristics as exogenous variables. Hospital choice

is described by a multinomial probit model, and mortality by a binary probit model. The

mortality model includes indicator variables for each hospital to accommodate hospital specific

differences in quality. It is structural, in the sense that it predicts outcomes for any arbitrary

assignment of patients to hospitals, including random assignment. The multinomial probit model

is a reduced form relationship that provides probabilities of hospital choice conditional on

observed covariates that are a function of demographic characteristics and distance of the

hospital from the patient’s home. The random component in the binary probit model includes

unobserved severity of illness, and is permitted to be correlated with the random component in

the multinomial choice model. Thus, the model accommodates the possibility that the greater a

patient’s probability of mortality due to unobserved severity, the more likely it is that the patient

is admitted to some hospitals rather than others.

The methodology developed here exploits the similarity between this model and the

conventional linear simultaneous equation model. Were the latent utility in this model fully

observed, the mortality probit equation would be a linear structural equation, and the hospital

choice multinomial probit equations would be the reduced form of the remainder of the model.

Only the appearance of the discrete hospital choice in the mortality probit equation would depart

from the classical specification that gives rise to instrumental variable methods. The model

handles the unobserved nature of the latent variables through the use of Bayesian simulation

methods. These methods iteratively simulate latent variable values conditional on the data, and

parameters conditional on the latent variables. The discrete hospital choice in the mortality probit

equation does not pose a problem, and hence the second step is computationally similar to

classical instrumental variables. In this way, the simulation methods simultaneously recover the

joint posterior distribution of parameters and latent variables.9 By transforming the problem from

                                                
8 Examples include the effect of school performance based on graduation rates, of prison rehabilitation programs
based on recidivism rates, of job training programs based on the incidence of harassment complaints, and many
medical outcome evaluations.
9 Surveys that discuss convergence include Chib and Greenberg (1996), Geweke (1996) and Geweke (1999).
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an integration problem into a Markov chain Monte Carlo simulation problem, the methodology

developed here can be used to compute estimates orders of magnitude faster than the method of

maximum likelihood.10 This makes it feasible to estimate this type of simultaneous equations

model. Albert and Chib (1993) applied these methods to the binary probit model and Geweke,

Keane and Runkle (1997) extended them to the multinomial probit model. The methods

developed here extend this approach to a new class of models.

In addition to handling the latent variable problem, Bayesian inference makes it possible to

address the motivating policy questions directly, by providing marginal posterior distributions

for any functions of parameters. These functions include the probability of mortality in the

conceptual random assignment experiment, and the posterior probability that this mortality rate

is lower for one hospital than for another.

The data used in this study are taken from the hospital discharge records of 77,937 Medicare

patients admitted to 117 hospitals in Los Angeles County during 1989 through 1992 with a

diagnosis of pneumonia. The discharge records contain demographic information, including

patient addresses, and summary measures of severity of illness at the time of admission. The

address data is used to construct the distance of each patient’s home from each hospital.

Functions of this distance variable, alone and in combination with demographic characteristics,

play a role in the model analogous to that played by the instrumental variables in coping with

endogeneity in linear models. The large size of the data set is essential because of the low signal-

to-noise problem: the ratio of patients to hospitals is roughly 660, but many hospitals treated

fewer than 300 patients, and the overall mortality rate is .095. The number of latent variables is

roughly the product of the number of patients and number of hospitals, on the order of 107 ,

making this one of the largest models of its kind ever applied. This places a premium on issues

of computational efficiency, addressed in this study.

Conditional on this data set, the posterior distribution for the parameters of the model has a

number of interesting substantive implications. There is substantial variance to the posterior

distribution of quality of most individual hospitals: for about 70 percent of the hospitals, there is

a posterior probability of at least 10 percent that the hospital is in one of each of three quartiles

                                                
10 Maximum likelihood evaluation for one parameter vector for one individual would require evaluating the joint
density of the mortality and hospital choice outcome for that individual. Given that the mortality error and hospital
choice error are correlated, this would take several minutes on a fast supercomputer. Multiplied by a data set of
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of the quality distribution. Nonetheless, there appear to be two key relations between hospital

characteristics and quality. Hospitals that are small— fewer than 150 beds—have lower

mortality than larger hospitals, and private for-profit hospitals have lower mortality rates than

public, teaching, and private not-for-profit hospitals. Turning to the process of hospital

admission, there is strong evidence that the level of unobserved severity of illness differs across

hospitals. For some hospitals, a high level of unobserved severity increases the probability that a

patient will be admitted to that hospital, while for others it decreases the probability of

admission.

Unobserved severity of illness is found to be positively correlated with estimated hospital

quality. This variation in selectivity turns out to be at least as important as variation in hospital

quality in explaining variation in mortality rates across hospitals conditional on observed patient

characteristics. The simple probit model attributes all variation in hospital mortality rates,

conditional on observed characteristics, to hospital quality differences, and therefore leads to

strikingly different conclusions about comparative quality. While there is substantial variation in

between the quality, probit quality and severity relationship across hospitals, two generalizations

can be made. First, the simple probit model overstates the variation in quality differences,

because of the large variation in selectivity. Second, unlike the selection model, the simple

model does not reveal any sharp relations between hospital characteristics and quality.

Section 2 provides the specification of the model and methods for inference, with some

details relegated to an appendix. The database is described in Section 3. Section 4 presents

findings on hospital quality and the role of nonrandom admission to hospitals. Section 5

concludes by addressing some of the questions that motivated the work. An Appendix details the

likelihood function, posterior density, Gibbs sampling algorithm and computational time.

                                                                                                                                                            
roughly 80,000 patients (necessary because of the small signal to noise ratio), it would take months to evaluate the
likelihood for a single parameter vector.
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2. The model

The key component of the model is a structural probit equation, in which the probability of

mortality is a function of the hospital to which a patient is admitted, the observed severity of the

patient’s illness, and the observed demographic characteristics of the patient. The objective is to

learn about the way the hospital to which the patient is admitted influences the probability of

mortality in this equation. A multinomial probit model of hospital admission supplements the

mortality model, to permit non-random assignment of patients to hospitals. This section

describes, in turn, the specification of the model, the prior distribution of the model parameters,

and methods to recover the posterior distribution of these parameters.

2.1 Model specification

Let i =1,",n  index the patients in the sample, and let j =1,", J  index hospitals in the

sample. There are three groups of exogenous variables in the model. The k ×1 vector x i  consists

of individual characteristics of patient i that may affect mortality, including indicators for age,

race, sex, and disease stage, and measures of income. The specifics of these variables are

presented in Section 3. The q ×1 vector z ij  consists of characteristics specific to the combination

of individual i and hospital j. The variables in z ij  are the distance between the home of patient

and hospital j, the square of this distance, and the products of distance and age, disease stage, and

income, respectively; q = 5. The r ×1 vector w i  consists of class membership indicators for

hospital i. The first class is universally inclusive, so the first element of w i  is always 1; there are

four classes for hospital size and four for ownership status as detailed in Section 3; and there is a

class specific to each of the J hospitals. Thus r = J + 9 .

There are two sets of endogenous variables in the model. The mortality indicator mi  is 1 if

the patient dies in the hospital within ten days of admission and is 0 otherwise. The J × 1

indicator vector c i  has j’th entry 1 if patient i is admitted to hospital j, and is 0 otherwise.

To present the structural mortality equation, define the J × r  matrix W with i’th row ′ w i ,

and let !!ε i i =1,",n( )  be independent N 0, σ 2( ) random variables conditional on the exogenous

variables. The mortality probit mi
*  is a latent random variable,

(1) mi
* = ′ c i Wβ + ′ x iγ +ε i .
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The mortality indicator mi = 1 if mi
* > 0  and mi = 0 if mi

* ≤ 0 . The structural interpretation of

(1) is that if patient i were randomly assigned to hospital j, then mi
* = ′ w j β + ′ x iγ + ε i  and

consequently P mi = 1( )= Φ ′ w j β + ′ x iγ( ) σ[ ]. Because J > r , β  is not identified in the classical

sense: one could add a constant to β j  for some j ≤ r − J , and subtract the same constant from

βi i > r − J( )  for all those hospitals in the class indicated by element j of w i . The vector β  is not

identified because (1) remains structural given all such changes. We construct W and β  in this

way because it facilitates the development of the prior distribution subsequently in Section 2.2.

The parameters β  and σ  are also jointly unidentified in (1) because they can be scaled by the

same arbitrary positive constant without changing the behavior of mi . In the conventional probit

model this problem is avoided by setting σ = 1. We return to this matter in the context of the

complete model below.

If c i  were in fact independent of ε i  —as it would be if patients were randomly assigned to

hospitals, for example—then ′ c i W  would be exogenous in (1). After resolution of identification

issues this model would conform with the conventional textbook specification of the binary

probit model. However, it is likely that in observed data, c i  depends in part on ε i : the admission

of patient i to hospital j takes into account information that is correlated with ε i . The

conventional probit model is then misspecified.

To develop a more plausible model of hospital choice, we assume that patients become

infected with one of the many bacterial or viral agents that can cause pneumonia and it has been

determined that they are sufficiently ill to benefit from inpatient treatment. At that point the

patient (or the patient’s agent) selects from the set of J hospitals the hospital to which the patient

will be admitted. The actual choice decision will be a complex function of many factors, such as

severity of illness, characteristics of the hospital, the patient’s primary care physician, etc. One

important observable influence on choice is distance: previous research has shown that the

farther a patient is from a hospital, the less likely is the patient to be admitted to that hospital,

other observables constant.11

To present the reduced form model of hospital choice define the J − 1( )× q  matrix Zi ,

′ Z i = zi1 − z iJ , zi 2 − z iJ ," zi ,J −1 − z iJ[ ]. Let the J − 1( )×1 vectors !ηi ~ N 0, Σ( ) i =1,",n( )  be

                                                
11 See Luft et al. (1990) and Burns and Wholey (1992).
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mutually independent conditional on the exogenous variables; let [ ]ijσ=Σ . The hospital choice

multinomial probit c i
* = ci1

* ,",ci, J −1
*( )′  is a J − 1( )×1 latent vector,

(2) c i
* = Ziα + ηi

and ciJ
* = 0 . The choice indicator vector c i = ci1 ,",ciJ( )′  has entry cij = 1 if cij

* ≥ cik
* k = 1,", J( )

and cij = 0  otherwise. Note that scaling α  by any positive constant and Σ  by the square of that

constant leaves the distribution of c i  conditional on Zi  unaffected. This identification problem is

addressed subsequently in Section 2.2.

To permit unobserved severity of illness to affect hospital choice in any way consistent with

this specification, the only restriction we place on the J − 1( )×1 vector π in

(3) var ε i , ′ η i( )=
σ 2 ′ π 
π Σ

 

 
 

 

 
 

is that it be consistent with var ε i , ′ η i( ) being positive definite. Since this implies complicated

restrictions on π, a more graceful treatment is to work with the population regression of the

shock ε i  in (1) on the shock vector ηi  in (2),

(4) ε i = ′ η iδ +ζ i ; cov ηi , ζ i( )= 0 .

In this regression δ ∈ ℜ J −1  and the scale is normalized by var ζ i( )= 1. This specification

simultaneously resolves the identification problem due to the scaling in (2) and incorporates all

permissible values of π = Σδ  in (3). The variance of the shock in the mortality probit equation is

σ 2 = ′ δ Σδ +1, and the correlation between ε i  and ηij  is ρj ≡ δkσ kjk =1

J −1∑( ) σ jj ′ δ Σδ +1( )[ ]1 2
. In

the hypothetical experiment in which patient i is admitted to hospital j by means of a random

assignment c i , P mi = 1xi( ) = Φ ′ w j β + ′ x iγ( ) ′ δ Σδ +1( )1 2[ ].
We shall refer to qj ≡ − ′ w j β ′ δ Σδ + 1( )1 2  as the hospital j quality probit. Differences in

these probits across hospitals may be used to address quality comparisons for individual

hospitals. To compare groups of hospitals, we shall make use of the quantities qG = ω j q jj ∈ G∑ ,

where G is the group of interest and ω j{ } is an appropriate set of weights. In the conventional

probit model with normalization σ = 1, the hospital j quality probit is qj
* = − ′ w j β . We shall refer
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to ρj  as the hospital j severity correlation. These correlations subsequently play an important

role in explaining differences between qj  and qj
* .

2.2 Prior distributions

Given the complexity of the model and the low signal-to-noise ratio in the data, the prior

distribution must be chosen carefully to reflect reasonable beliefs about hospital choice and

mortality. The number of parameters in the variance matrix Σ  in the reduced form multinomial

probit model for hospital choice is J J − 1( ) 2, that is, 6,786 in our sample with J = 117

hospitals. Identifying scale normalization reduces the number by only one. Because of the large

number of parameters, and because the purpose of this study is to model mortality while

permitting non-random hospital admission rather than to study the hospital admission process

per se, we fix Σ = IJ −1 + e J −1 ′ e J −1  (en  denoting an n ×1 vector of units). This is the variance

matrix that would result if the random components of utility associated with hospital admission

were independently and identically distributed across hospitals prior to normalization on the

utility of the last hospital choice by differencing. The prior distribution of α , the coefficient

vector in the multinomial probit model, is N 0, .5I q( ). Distance is measured in hundreds of

kilometers, so that Los Angeles County is (very roughly) one unit square. The other four

variables in the choice equation are normalized similarly. Thus the prior is neutral about the

relation between distance of the patient from the hospital and hospital choice, but at the same

time permits the probability of admission to a hospital on the other side of Los Angeles County

to be very small relative to the probability of admission to a hospital in the patient’s immediate

neighborhood. In fact, the signal-to-noise ratio for the choice equation is high, because there are

only five free parameters. The data turn out to be much more informative than the prior for these

parameters.

The prior distribution for δ , the coefficient vector in the population regression (4) of the

mortality shock on hospital choice shocks, is δ ~ N 0, .5I J −1( ). Since the variance of the

mortality shock is ′ δ Σδ +1, the prior mean of this variance is J. The squared correlation between

the mortality shock and a hospital choice shock ηij  is

(5) ρj
2 = δkσ kjk =1

J −1∑( )2

σ jj ′ δ Σδ +1( ) = δ j + δkk =1

J =1∑( )2

2 ′ δ Σδ + 1( ).
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At the prior mean !!δk = 0 k = 1,", J( ), the correlation is 0. On the other hand, the expectation of

the numerator in (5) is .5J and that of the denominator is 2J, so correlation coefficients of 0.5 are

reasonable under this prior also. Thus the implied prior on π in (3) is not very strong.

The coefficients β j  in the mortality probit equation are independent in the prior. For the

intercept, β1 ~ N −4, 2( ). For the coefficients corresponding to size and ownership categories,

!!βi ~ N 0, 2( ) i = 2,",9( ). For the hospital specific coefficients, βi ~ N 0, .5( ) !!i = 10,", J + 9( ).

These prior distributions resolve the perfect multicollinearity problem in the matrix of indicators

W, in the sense that the posterior distribution is proper.12 Since any hospital belongs to exactly

four classes (the universal class, one size class, one ownership class, and the class unique to the

hospital) the prior distribution of each element of any vector ′ w j β  is N −4, 6.5( ) . The prior places

non-negligible support on values of qj = ′ w jβ ′ δ Σδ +1( )1 2  between 4 − 2 6.5( ) J  and

4 + 2 6.5( ) J , i.e. the interval −0.1, 9.1( ), since J = 117. Roughly speaking, hospital quality

probits implying that a randomly selected patient would have a mortality probability between 0

and .5 are plausible in the prior. In the sample, mortality frequency ranges 0.024 and 0.224

across all 117 hospitals. Thus the prior is uninformative relative to the data regarding the overall

mortality rate.

This prior provides more structure on quality comparisons between hospitals. If hospitals j

and k are in the same size and ownership classes then ′ w j β − ′ w k β ~ N 0, 1( ); if they share one

class in common then ′ w j β − ′ w k β ~ N 0, 5( ); and if they share no classes in common

′ w j β − ′ w k β ~ N 0, 9( ). Keeping in mind that the variance of the mortality probit shock is

′ δ Σδ +1 and recalling that the overall mortality rate for the sample is about .10, the prior

expresses the belief that for hospitals in the same size and ownership classes mortality rates in

the conceptual random assignment experiment should not differ by more than a percentage point

or two. At the same time, differences across size and ownership categories can be much greater.

The prior takes essentially no stance on the actual mortality rate for any given hospital, or on

whether rates are higher or lower for particular classes.

                                                
12 Of course, since it is only the prior distribution that distinguishes among the βi , the posterior variance of no βi

will approach 0 as sample size increases. However for any given hospital j the posterior variance of ′ w j β  will enjoy
this feature (under obvious regularity conditions) and this is the feature that matters for the conceptual random
assignment experiment that motivates this study.
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2.3 Inference

The observed data are W and !!x i ,Zi ,c i ,mi , i = 1,",n( ), which can be abbreviated as y. The

model contains latent variables !!mi
* , ci

* , i = 1,",n( ), which can be abbreviated y * . The parameter

vectors areα , β, γ and δ , which can be collected in the vector θ . The model specified in Section

2.1 provides p y,y* θ( ) and the prior distributions in Section 2.2 provide p θ( ) . Explicit

expressions for these densities are given in the appendix. From Bayes rule, the distribution of the

unobservables y *  and θ  conditional on the data and model specification is

p y* ,θ y( )=
p θ( )p y,y* θ( )

p y( ) ∝ p θ( )p y,y* θ( ).

The objective is to obtain the posterior distribution of functions like the hospital quality

probits qj , and Φ ′ w jβ + ′ x iγ( ) ′ δ Σδ +1( )1 2[ ], the probability of mortality under random hospital

admission of a patient with observed characteristics x i  to hospital j. A closely related quantity of

interest is P qj > qk y( ), the posterior probability that hospital j ranks above hospital k in the

conceptual motivating experiment. This objective requires integrating a highly nonlinear

function over millions of dimensions, most of which correspond to latent variables. It cannot be

achieved through analytical means.

Instead, we take advantage of the fact that the parameter vector and latent variables can be

partitioned into groups, such that the distribution of any one group conditional on all the others is

of a single, easily recognized form that is easy to simulate. Details of the partition are given in

the appendix. The problem is thus well suited to attack by execution of a Gibbs sampling

algorithm (Gelfand and Smith, 1990; Geweke, 1999). In this approach, each group of parameters

and latent variables is simulated conditional on all the others. Following each pass through the

entire vector of latent variables and parameters, all parameter values are recorded in a file.

As detailed in the appendix, the Gibbs sampling algorithm is ergodic and its unique limiting

distribution is the posterior distribution. Therefore, dependent draws from the posterior

distribution of any function of the parameters g θ( ) can be made by computing the value of g

corresponding to the recorded parameter values, after discarding initial iterations of the Gibbs

sampling algorithm to allow for convergence. We used parallel computing methods and a
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supercomputer, exploiting the fact that in each iteration of the Gibbs sampling algorithm the

latent variables mi
* , ci

* , i = 1,",n( ) are conditionally independent across individuals. The

iterations themselves are executed serially. The results reported in Section 4 are based on 38,000

successive iterations, after discarding 15,000 iterations based on convergence diagnostics. For

comparison purposes, the same procedures were applied to a conventional probit model for

mortality, with the variance of ε i  in (1) fixed atσ = 1.0 . This computation, which is much

simpler, is based on 35,000 iterations of the Gibbs sampling algorithm described in Albert and

Chib (1993).

3. The Data

The primary source of data for this study is the Version B Discharge Data from the State of

California Office of Statewide Health Planning and Development. These data provide records for

all patients discharged from any California acute-care hospital during the years 1989 through

1992. We chose to analyze four years because the number of patients per hospital was then large

enough to obtain meaningful inference but small enough to be computable. We did not choose

more recent data, because increased managed care penetration among Medicare enrollees during

the 1990s would add complicating factors to the choice data. We confine our attention to those

patients admitted to a hospital in Los Angeles County. A large metropolitan area is best suited to

our purposes, because it has a large base of patients and contains multiple hospitals in every size

and ownership class. We limit our study to a single disease, because there is evidence that

severity mechanisms work best when they are disease specific.13 We choose pneumonia in

particular for three reasons. First, it is a common disease14 that provides the large sample needed

to draw inferences about hospital quality. Second, in-hospital death is a relatively frequent

outcome for pneumonia patients, which makes it an attractive disease to examine through the

medium of hospital discharge records. Third, there is independent evidence that an appropriately

adjusted in-hospital mortality rate for pneumonia is correlated with the quality of in-hospital

                                                
13 See Wray et al. (1997)
14 Pneumonia and influenza alone constitute the sixth leading cause of death in the US, and the fourth leading cause
of death for those over 65 (National Center for Health Statistics, 1996). Pneumonia is also the leading cause of death
among patients with nosocomial (hospital acquired) infections (Pennington, 1994).
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care.15 We further confine our attention to patients who were over 65 at the time of admission.

Medicare is the common primary source of medical insurance for this group, and in the case of

pneumonia limiting the study to patients over 65 leaves a large patient base.

The secondary source of data is the Annual Survey of Hospitals Database published by the

American Hospital Association (AHA). Among other information, the AHA data contain the

addresses, ownership status, and size of each hospital in our sample.

3.1 Sample construction

The sample was selected through a process of eliminating patients from the 1989-1992

Version B discharge Data. The first qualification for selection is that the patient be admitted to a

Los Angeles County hospital and over 65 at the time of admission.

The second qualification is that one of the five ICD-9-CM disease codes specified in the

discharge data be 48.1, 48.2, 48.5, 48.6, or 48.38. This procedure is suggested by Iezzoni (1996)

to define pneumonia. There is substantial non-random variation across hospitals in the sequence

of ICD-9 diagnoses listed. Thus, choosing the first listed ICD-9 code may induce biases. (Iezzoni

(1997), Chapter 3).

The third qualification is that the source of admission must be either routine, or from the

emergency room. This eliminates patients transferred into the hospital from another medical

facility, or admitted from an intermediate care or skilled nursing facility. To the extent that

placement in these facilities is correlated with unobserved disease severity, and to the extent that

such facilities may be systematically located near higher quality hospitals, the key assumption

that distance from the hospital is exogenous in our model would be violated. This step eliminates

approximately 23 percent of the patients from the sample.

The fourth qualification for inclusion in the sample is that the patient be admitted to a

hospital with at least 80 admissions for pneumonia in our data set. This qualification was

imposed for two reasons. First, the fewer admissions to a hospital in our data the less we can

learn about the quality of that hospital. The hospitals eliminated through this qualification would

have had a very low signal-to-noise ratio. Second, computation time in the Gibbs sampling

algorithm is largely driven by the number of latent variables. To have included the 14 hospitals

eliminated through this qualification would have markedly increased computation costs while

                                                
15 See Keeler et al. (1990) and McGarvey and Harper (1993).
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providing little additional information about the unknown parameters. In principle, this

qualification introduces a problem of choice based sampling, but because only 431 patients were

thereby eliminated we believe that this is a negligible difficulty.

3.2 Variable construction

The covariate vector x i  in the mortality probit equations contains demographic variables

and indicators of disease severity. Most of the demographic variables are constructed from the

discharge records. These are four age indicators (70-74, 75-79, 80-84, and 85 or older), an

indicator for female, and indicators for black, Hispanic, Native American and Asian respectively.

The discharge records contain no information on socioeconomic status. As a proxy for the

patient’s household income, we use the mean 1990 census household income for householders

with the same zip code, race, and age class as the patient.16

Indicators of disease severity in x i  are constructed from the admission disease staging

information contained in the discharge records. Disease staging has been shown to be as good as

some risk adjustment data based on chart review of medical records.17 Since some of the 13

stages have very few patients, we aggregated stages into five groups: stage 1.1, stages 1.3

through 2.3, stages 3.1 through 3.6, stage 3.7, and stage 3.8. Indicator variables for all but stage

1.1 are included in x i .

The indicator for mortality, mi , is set to 1 if the patient died in the hospital within ten days

of admission to the hospital; otherwise it is set to 0. The horizon for mortality is limited to ten

days, because beyond this point hospitals sometimes transfer terminally ill patients to other

facilities, and this decision appears to vary considerably by hospital. To control for differential

patient transfer, Gowrisankaran and Town (1999) used a hazard model as an alternative to the

10-day inpatient mortality, but found little difference between the two specifications. In two

separate studies of heart disease patients, McClellan, McNeil and Newhouse (1994) and

                                                
16 The census provides only two relevant age categories, 65 - 74 and 75+, instead of four. Thus, we aggregated the
discharge data age categories to this level. Additionally, the census provides income only within cells. To find the
mean income, we took the mean value for each cell as the income for each household in that cell. For the highest
cell, $100,000 or more, we assumed a mean income of $140,000.
17 See Thomas and Ashcroft (1991). Iezzoni et al. (1996) showed excellent agreement of disease stage with the
ratings of other systems.
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McClellan and Staiger (1999b), find that there is a very strong correlation between 7-day

mortality and 30-day mortality.18

Table 1 provides a summary of the distribution of demographic characteristics and disease

severity in the sample, together with mortality rates. For each age group the breakdown of the

sample by race and sex closely reflects the demographics of Los Angeles County. Older

individuals enter the sample in greater proportion to their numbers in the population than do

younger ones. In each age group three-quarters of the sample is classified in the least severe

disease stage. Mortality rates increase gradually with age, increase sharply with disease stage, are

about the same for each sex, and are lower for Asians and Hispanics than for whites or blacks.

The covariate matrix Zi  contains variables specific to the combination of patient i and each

hospital. The additional information in Zi  not contained in x i  is the distance of the patient’s

home from each hospital. We obtained patient zip codes from the discharge data and the hospital

zip codes from the AHA data. We then used the Census TIGER database to find the latitude and

longitude of the centroid of each zip code. Given the latitudes and longitudes, we computed the

distance between each patient home and hospital using standard great circle trigonometric

formulas.19 We then constructed the five variables in Zi : distance (always measured in hundreds

of kilometers); distance-squared; the product of distance and an age indicator (1 for 65-69, 2 for

70-74, 3 for 75-79, 4 for 80-84, 5 for 85+); the product of distance and disease stage (1.1, 1.2,

…, 3.8); and the product of distance and income (in units of $100,000).

The hospital characteristic matrix W contains indicator variables described in detail in

Section 2.1. This information was obtained from the AHA survey, and is summarized in Table 2.

Note that we have grouped private teaching hospitals as a separate ownership category from

private not-for-profit hospitals. Most hospitals are private, split about evenly between for-profit

and not-for-profit. Only nine of the 117 hospitals in the sample are teaching or public, but on

average they are larger than private hospitals and together admitted almost 12% of the patients in

the sample. Slightly less than one-quarter of the hospitals are classified in the largest size group

(at least 300 beds) but they account for over 40% of the admissions in our sample.

                                                
18 As caveats, note that heart disease is very different from pneumonia and that these studies examine mortality, not
inpatient mortality.
19 For zip codes that contain more than one hospital, we used address-level latitude and longitude data from the
Census TIGER database, which stores the geographic location of every block corner and will interpolate from that to
find the latitude and longitude of any address.
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Mortality rates differ only slightly by ownership category, with the lowest rates in teaching

hospitals and the highest in private not-for-profit hospitals. Under the naïve interpretation of the

data as having arisen from a randomized experiment, there is little evidence that mortality rates

are higher in any one ownership category than any other. The most informative comparison is of

private not-for-profit hospitals with teaching hospitals: beginning with independent flat priors on

mortality probabilities, the posterior probability that the private not-for-profit mortality rate is

lower than the teaching mortality rate is .07. Similar comparisons for other ownership categories

yield posterior probabilities between .10 and .09. There is greater variation in mortality rates by

hospital size, with the small hospitals having lower rates than the other three categories.

Beginning with the same flat prior, the posterior probability that this is true of population

mortality rates is greater than .950 for all three comparisons. However other such comparisons

across size categories yield posterior probabilities between .15 and .85.

Comparisons of mortality rates between cross-classified cells yields are more complex. The

four private not-for-profit hospitals in the 150-200 bed category have the highest mortality rate,

exceeding that of smaller hospitals in the same ownership category (posterior probability .995),

hospitals with 200-299 beds in the same ownership category (posterior probability .992) and that

of private for-profit hospitals of the same size (posterior probability .984). The single large

private for-profit hospital has a mortality rate that exceeds that of large hospitals in all other

ownership categories, though only the comparison with teaching hospitals yields a posterior

probability above .90. Its rate also exceeds that of all other size categories for private for-profit

hospitals, the comparison with the smallest size category yielding a posterior probability above

.90.

Table 3 summarizes the distribution of severity of illness, as measured by disease stage,

across the different categories of hospitals. Patients in larger hospitals tend to be at a more

advanced disease stage. The differences in the distribution are small, but because of the large

sample size they are highly significant: the test statistic for categorical independence is

( ) ( )92 1011.61.6312 −== xpχ . The distribution of patients by disease stage over hospitals of

different ownership type is yet more uneven: almost 79% of the patients in teaching hospitals are

in the earliest disease stage, whereas at private for-profit hospitals only a little over 74% are at

this stage. The test statistic for categorical independence is ( ) ( )322 1084.60.17912 −== xpχ .

Thus it is the case in this data set, as in similar data sets, that observed severity is not randomly
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distributed across hospitals. This underscores the importance of examining and controlling for

nonrandom assignment by unobserved severity, as well.

The summaries of the data provide no simple interpretation of mortality rates. They indicate

systematic differences in measured disease severity across hospitals by size and ownership

classes. They hint at the possibility of important differences between individual hospitals within

size and ownership classes. Thus we now turn to the application of the model developed in

Section 2 to inform our understanding of the relationship between choice of hospital admission

and mortality.

4. Findings

The model set forth in Section 2 applied to the data described in Section 3 yields evidence

on systematic differences in quality across hospitals, provides insight into the interaction

between hospital choice and hospital quality, and suggests quality orderings among hospitals.

This section summarizes these findings, using the selection  model and the probit model.  The

common center of the two models is the mortality probit equation

(6) mi
* = ′ c i Wβ + ′ x iγ +ε i

discussed in Section 2.1. To recapitulate, each row ′ w j  of W corresponds to a particular hospital,

with w j  containing size and ownership category indicators for hospital j as well as an indicator

specific to hospital j.  The vector c i  has a single non-zero element which indicates the hospital to

which patient i is admitted.

The probit model consists of equation (6), the specification ε i ~
IID

N 0, 1( ) , and the assumption

that the assignment process that generates c i  is independent of unobserved individual specific

influences on mortality ε i .  The hospital j quality probit in the probit model is denoted

(7) qj
* = − ′ w j β .

The methods discussed in Section 2.3 provide a sample from the joint posterior distribution of all

the hospital quality probits qj
* .

The selection model adds to (6) the multinomial model for choice

(8) c i
* = Ziα + ηi ; ηi ~

IID

N 0, Σ( )
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fully discussed in Section 2.1.  In (8) c i
*  is a 117-element vector of choice utilities.  The hospital

chosen is the one with the highest value of cij
* .  The shocks ε i  and ηi  are jointly normally

distributed.  The interaction between ηi  and ε i  is unrestricted and is indicated by the population

regression of ε i  on ηi ,

(9) ε i = ′ η iδ +ζ i ; cov ηi , ζ i( )= 0; ζ i ~
IID

N 0, 1( ).

The variance of the shock to the mortality probit in (6) is therefore ′ δ Σδ +1 in the selection

model. From (9), the hospital j severity correlation is

(10) ρj = corr ε i ,ηij( )= δkσ kjk =1

J −1∑( ) σ jj ′ δ Σδ +1( )[ ]1 2
.

Because the selection model permits correlation between ηi  and ε i , the posterior distribution for

β and γ  in this model is not the same as it is in the probit model.  Inferences about quality

therefore differ as well.  To emphasize this fact while permitting comparisons between the two

models, the hospital quality probit is defined

(11) qj = − ′ w j β ′ δ Σδ +1( )1 2

in the selection model.

In studying systematic differences in hospitals it is useful to use weighted averages of the

quality probits qj  or qj
*  across certain hospitals to form group hospital quality probits qG  or qG

*  in

the respective models.  The weights used are the number of patients admitted to the hospitals.

These are the same weights used to summarize the data in Section 3.

4.1  Parameter estimates

Table 4 presents the posterior means and standard deviations of some parameters and

functions of parameters in the selection and probit models.  In the case of the selection model

Table 4 presents the posterior means and standard deviations of γ j ′ δ Σδ +1( )1 2  or of the

negative of the group hospital quality probit −qG . The normalization facilitates comparison

between models and interpretation of the functions of interest as probits.

The mortality equation has three groups of covariates: demographics, disease severity, and

hospital indicators.  In the case of the demographic and disease severity covariates, coefficient

posterior means in the selection and probit models are similar to each other, and closely reflect

the mortality rates presented in Table 1. Posterior standard deviations indicate substantial
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information about differences in mortality probabilities across demographic groups. This, too, is

not surprising in view of the summary statistics in Table 1.

In the case of the hospital quality probits, there are greater and more interesting differences

between the selection model, the probit model, and Table 2. In all three approaches the smallest

hospitals have lower mortality rates than larger hospitals. The hospital mortality rate is highest

for the largest hospitals in the raw data, whereas it is for 200-299 bed hospitals in the selection

model and for 150-199 bed hospitals in the probit model. The selection model finds more

systematic variation in quality by size, than does the probit model. Table 5 provides explicit

posterior probabilities for hospital group quality comparisons. In the selection model, the

posterior probability that the group hospital quality probit for the smallest-hospital group exceeds

that of the largest-hospital group is 0.889, and the posterior probability that it exceeds that of the

other two size groups exceeds 0.99. The posterior probability that the group hospital quality

probit for the largest-hospital group exceeds that of the 150-199-bed group is 0.956, and the

posterior probability that it exceeds the 200-299-bed group is 0.991. These distinctions are both

different and sharper than those using the raw data (Table 1) which does not control for

demographic characteristics and observed disease severity, and implicitly assumes a random

assignment of patients to hospitals.

We know of only one other study that has specifically studied the relationship between

hospital quality and size for pneumonia. This study, Gowrisankaran and Town (1999), found that

the relationship between quality and size varies by for-profit status. Another related study is a

study by Keeler et al. (1992), that examined the relationship between hospital quality and size

using a very detailed and expensive data set that included pneumonia patients along with patients

with other, more complex diagnoses. They found that hospital quality increases with bed size.

The difference between our results and theirs may be due to the nature of the treatment of

pneumonia versus more complex procedures. Successful pneumonia treatments are linked to

identifying the pathogen responsible for the infection and administering the appropriate

antibacterial agent early in the progression of the disease, and subsequently monitoring and

adjusting the dosage of the drug (Rello and Valles (1998), Pennington (1994), McGarvey and

Harper (1993)). There is evidence that smaller hospitals may be better at the timely

administration of antibiotics (Fine et al. (1998)) which may explain why we observe that they

have better outcomes. Furthermore, since small hospitals are likely to treat a disproportionate
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number of pneumonia patients relative to more technically challenging illnesses20 they may also

develop expertise in this disease. That, in turn, may overcome advantages that large hospitals

may have in other dimensions, such as laboratory facilities.

Contrasts between the respective models and the raw data are even greater for classification

by ownership. The probit model does not distinguish between any of the four types: differences

are small and insignificant. The selection model draws a sharp distinction between private

hospitals: for-profits have a markedly higher quality probit than not-for-profits, and the posterior

probability of this ordering is 0.999. In the raw data teaching hospitals show significantly lower

mortality rates than the other ownership categories. In the selection model the sharpest

distinction that can be drawn for teaching hospitals is that the posterior probability that the

quality probit for this group is lower than that of for-profit private hospitals is 0.95.

There is debate in health policy circles regarding the role that for-profit hospitals should

play in the U.S. health system (Gray (1991)). Some have argued that private, not-for-profit

hospitals may better serve the public interest because they are more likely to provide better care.

Our results unequivocally indicate that for the treatment of pneumonia in older patients and the

hospitals in our sample, the opposite is true. Private, for-profit hospitals provide better care than

private not-for-profit or public hospitals for pneumonia. Keeler et al. (1992) also found that

public hospitals in large cities to be of lower quality, while the difference in quality between for-

profit and not-for-profit hospitals is less pronounced. McClellan and Staiger (1999a) conclude

that the quality difference in for-profit and not-for-profit hospitals is small and if anything for-

profits likely provide better care in the treatment of heart attacks. Teaching hospitals, which are

generally viewed as providing superior care, do not offer significantly higher quality according

to the selection model. Consistent with our finding, Fine et al. (1998) found that major teaching

hospitals were less likely to be timely with administration of antibiotics than non-teaching

hospitals.

The advantage of the probit as the unit of comparison is that it provides differences in

mortality probability beginning from any base level probability: probability differences are

greatest when the base probability is 0.5, and decline monotonically for lower and higher

                                                
20 Performing a simple multinomial logit regression of Southern California  patients, we found that pneumonia
patients were more likely to be admitted to smaller hospitals than were the average hospital patient. In contrast,
acute myocardial infarction (heart attack) patients were more likely to be admitted to larger hospitals than the
average hospital patient. Unlike pneumonia treatments, acute myocardial infarction treatments often include high-
technology surgery such as cardiac catheterization, angioplasty or bypass.
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probabilities. The disadvantage is that the implied probabilities are immediately clear only to the

reader experienced in using probits. Table 6 conveys the comparison information, beginning

from a base mortality probability of 0.10, which is typical for pneumonia in admitted patients

over the age of 65. In the conceptual experiment underlying these tables, a patient is assumed to

be admitted to one type of hospital with a 0.10 mortality probability, and the mortality

probability for that patient in other types of hospitals is then inferred from the data and the

model. The cell entries are posterior means of the latter probabilities, and the corresponding

posterior standard deviations are indicated parenthetically. For changes in hospital size (Panel

A), the range of probability differences is greatest in the comparison of the smallest hospitals

with 200-299-bed hospitals, where the posterior distribution indicates an increase of 20% in

moving from the former to the latter. Other changes are somewhat smaller, but the direction of

change is often clearly indicated by the data and the selection model. In the case of classification

by ownership (Panel B), changes in probability are similar. Consistent with Table 4, contrasts are

most marked in movements to or from private for-profit hospitals. The largest posterior mean is

an increase in mortality probability of 25% associated with a move from a private for-profit

hospital to a public hospital. The model and data are most informative (in the sense that the

direction of change is essentially certain) about a move from a private for-profit hospital to a

private not-for-profit hospital.

The choice of hospital is governed by the multinomial probit model (6). Posterior means

and standard deviations of the covariate coefficient vector α  are presented in Table 7. As

expected, distance is an important factor in describing the hospital of admission. To interpret the

posterior mean of –7.17, recall that the disturbances in (6) all have variance 2, and that all

disturbance covariances are 1. The difference of any two disturbances also has variance 2. Hence

the posterior mean of –7.17 implies that a hospital that is 20 kilometers farther from a patient’s

home than another has a normalized probit that is 7.17 × 0.2 / 2 ≈ 1 unit lower. The quadratic

term in the equation is highly significant, but since distances are at most 100 kilometers within

Los Angeles County, its substantive effect is not great.

Other covariates have important impacts on hospital choice as well. Interactions of distance

with age, and with severity, have negative coefficients with small posterior standard deviations.

Since the age variable is at least 1 and the severity variable is at least 1.1, this lowers the

posterior mean of the distance coefficient downward from –7.17, at least as far as –8.59 for
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everyone in the sample, and to –13.55 for the oldest (85+, coded 5) and most severely ill (disease

stage 3.8) patients in the sample. Older and more severely ill patients clearly have the greatest

propensity to be admitted to hospitals closer to where they live. The reason for this is likely due

to the increased cost and difficulty of transport for severely ill patients. Patients from areas with

higher income also tend to be admitted to hospitals closer to home, but the effect is not well

determined and is small given the limited range of average income by zip code.

4.2 Selection and selection bias

A model that assumes random assignment of patients, like the simple probit model (1) taken

alone, will provide mistaken inferences about hospital quality to the extent that conditional on

covariates assignment is not independent of mortality. Our selection model provides the joint

posterior distribution of hospital quality qj  (defined in expression (11)) and hospital severity

correlation ρj  (defined in expression (10)) across all 117 hospitals in the sample. The relation

between qj  and ρj  provides an interpretation of the role of unobserved severity in hospital

admission, through the lens of our selection model. The relation between hospital quality qj
*

(expression (7)) in the probit model, and qj  and ρj  in the selection model, provides some insight

into the nature of selection bias in the probit model as well.

The inferred relation between qj  and ρj  in the selection model can be examined in several

ways. Figure 1 provides a scatter plot of the posterior means of qj  and ρj  for the 117 hospitals in

the sample. This figure suggests a positive correlation between the posterior means, but not a

strong relationship. This is borne out more formally in Table 8: the correlation between posterior

means is 0.343 (Panel A) and a simple least squares regression of the posterior means of the ρj

on the posterior means of the qj  shows a slope coefficient of 0.181 that is significantly positive

(t > 4 ).

To interpret the relation between qj  and ρj , consider a patient with high unobserved

severity of illness and therefore a large value of ε i  in the mortality equation (6). As ε i  increases,

this patient is increasingly likely to be admitted to hospitals with larger values of ρj  rather than

hospitals with smaller values of ρj  because the shocks ηij  in the choice model (8) are likely to

be higher for these hospitals. Hospitals with high severity correlations ρj  also tend to be



24

hospitals with higher quality qj . Thus, other things equal, patients with greater unobserved

severity of illness are more likely to be admitted to higher quality hospitals.

In contrast, the evidence on the correlation between hospital quality and observed risk

factors is mixed. There is a small but positive correlation of 0.155 between the mean patient

disease stage for a hospital and its mean posterior quality. Moreover, this correlation is

significantly positive, when evaluated as a function of the posterior. However, the correlation

between the mean observed patient severity of a hospital, γjx , and the hospital quality jq  is tiny

(-0.02) and insignificant. There are likely to be two motivating factors for this mixed result, both

related to choice. First, there is some evidence that for-profit hospitals disproportionately locate

in areas with high health status.21 In combination with the fact that for-profit hospitals are

estimated to be of higher quality than average in our data, this suggests that high quality

hospitals may locate in areas with low observed patient severity of illness, and particularly in

areas with a low percentage of very old people. Second, from Table 7, we know that risk factors

such as disease stage and age make a patient less likely to travel to obtain care. This is

particularly true for age. Thus, patients who are very old may value closeness relatively highly

and hence choose to seek care relatively close to home instead of seeking a high quality hospital.

Nonetheless, for a given distance, they may be more likely to choose a high quality hospital.

It is clear from Figure 1 that many hospitals above average in quality have negative severity

correlations, and likewise many hospitals of lesser quality have positive severity correlations.

The first two columns of Table 9 provide more detail for seven hospitals in the sample. The first

two are high in quality and severity correlation, the second two are low in both, and the last three

are high in one and low in the other. Table 9 also indicates the substantial posterior uncertainty

about hospital qualities and severity correlations that is not conveyed by the posterior means

plotted in Figure 1. Hospital by hospital, there is substantial uncertainty about qj  and ρj , but

informative contrasts can still be drawn for many hospitals. For example, from the output of the

posterior simulator the posterior probability that the quality of the first hospital is higher than

that of the third is __. Contrasts among severity correlations are somewhat sharper. The posterior

                                                
21 Norton and Staiger (1994) find location differences between for-profit hospitals and not-for-profit hospitals. In
particular, for-profit hospitals locate in areas with few uninsured patients. These patients are likely to have low
health status.
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probability that the severity correlation coefficient in the first hospital is higher than that in the

third is __.22

The impact of non-random assignment on inferred hospital quality arises hospital by

hospital, and could be present even if there were no systematic relationship between qualities and

severity correlations. In any selection model, for each hospital, conditional on observed

characteristics (including observed severity) the observed mortality rate will be decomposed into

a hospital quality component and an unobserved severity component. This is indicated clearly in

the last column of Table 9, which provides the posterior means and standard deviations of the

hospital quality probits qj
*  in the simple probit model. Starting from quality in the selection

model (first column) a high value of the severity correlation (second column) leads to a lower

value of inferred quality in the probit model (third column). Conversely, a low value of the

severity correlation—i.e., the hospital tends to get patients with low unobserved severity—raises

inferred quality in the probit model relative to the selection model. The differences in qj  and qj
*

are striking. They plainly affect comparisons, a topic addressed in Section 4.3.

Panel C of Table 8 shows that this relationship is regular and not limited to the seven

hospitals studied in Table 9. The posterior means for hospital quality qj
*  in the probit model are

well described as a linear function of hospital quality qj  and severity correlation ρj  in the

selection model. From the sample variation in ρj  apparent in Figure 1, and the regression

relation reported in panel C of Table 8, it is clear that variation in hospital severity correlation

substantially drives variation in inferred hospital quality qj
*  in the probit model. From the

regressions in panels B and C, one can infer the slope coefficient of .926 (= 1.404 – 2.639x.181)

in panel D. In the absence of information about ρj  (Panel D) there is no evidence against

                                                
22 Since results in Table 7 are based on posterior means, they do not take into account dispersion in the posterior,
either.  Within the selection model this can be accommodated by regarding the sample relation between q j  and ρj

as a function of the unknown parameters in the model, and then considering the posterior uncertainty associated with
this relationship.  To make this approach operational, one produces panels A and B of Table 7 for each draw from
the posterior simulator, using the values of q j  and ρj for that simulation instead of the posterior means.  This yields
a posterior mean of ___ and posterior standard deviation of __ for the sample correlation between q j  and ρj  over
the 117 hospitals.  In the regression equation of panel B the posterior mean of the slope coefficient is ___ and its
posterior standard deviation is ___.  The OLS slope coefficient standard error has a posterior mean of ___ and
posterior standard deviation of ___; “t” has a posterior mean of ___ and posterior standard deviation of ___.
Relationships among hospitals are thus not much affected by uncertainty about individual hospitals.  As these results
indicate, hospital-specific parameters are roughly independent in the posterior, and consequently relations between
them are well summarized by relations between their posterior means.
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E qj
* qj( )= qj  in a linear relation. But variation in hospital severity correlation accounts for a

substantial portion of the variation in hospital mortality rates in the selection model, whereas in

the simple probit model this variation must be attributed to quality differences. Consequently the

probit model yields substantially greater variation in quality across hospitals than does the

selection model. As suggested by the posterior standard deviations for the qj  and qj
*  in Table 9,

the probit model provides somewhat less information about qj
*  than does the selection model

about qj . Over all 117 hospitals, the average posterior standard deviation for qj  is .0879 in the

selection model and for qj
*  it is .0902 in the probit model.

4.3 Ordering by quality

The model and approach to inference described in Section 2 provide the complete posterior

distribution of all the parameters in the model, and any functions of these parameters. In

particular, corresponding to the parameter values in any iteration of the Gibbs sampling

algorithm, it is a simple matter to compute the corresponding hospital quality probits qj . The

38,000 successive iterations used to obtain the posterior moments reported in this section

therefore also provide 38,000 draws from the joint distribution of the hospital quality probits qj .

Pairwise comparisons between hospitals are then straightforward. For example, for two hospitals

j and k, the numerical approximation to the posterior probability that qj > qk  is the fraction of

iterations in which qj > qk , and the joint distribution of qj  and qk  could easily be plotted.

Comparing all 117 hospitals simultaneously is more challenging. A formal approach to

ordering hospitals by quality would begin with a loss function for orderings. Suppose the 117-

element vector of quality ranks is r, and the estimated quality rank vector is ˆ r . If the loss

function is ˆ r − r( )′ A r − ˆ r ( ), where A is any positive definite matrix, then ˆ r  should be the

posterior mean of r.23 This estimate, may in turn be approximated numerically by sorting

hospital qualities qj  in each iteration of the Gibbs sampler, sorting ranks, and then averaging

across all iterations. The resulting estimated ranks ˆ r j  are generally not integers.

                                                
23 See, for example, Bernardo and Smith (1996, Section 5.1.5), for this standard result, as well as the one on medians
used in the next paragraph.
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Table 10 provides the results of this approach for the selection model. The hospitals listed in

the table are sorted by the values of the ˆ r j , and the number to the left of each hospital name

indicates its order in this sorting. The ˆ r j  are shown in the second column following the hospital

names. Posterior mean quality is shown in the first column following the names. Ordering by

hospital quality posterior mean does not lead to the same ordering as ordering by ˆ r j , but it is very

close. If the loss function were aj ˆ r j − rjj=1

117∑ , where all aj > 0, then ˆ r j  should be the median of

the posterior distribution of rj , which in turn is an integer (with probability one). Medians are

shown in the third column of Table 10. They provide yet another ordering, but it too is similar to

ordering by mean quality and mean rank. We conclude that choice of loss function is not likely

to affect orderings of point estimates of relative quality very much.

Of much greater significance is posterior uncertainty about comparative quality. Table 10

conveys this in several ways. The last four columns provide the probability of being in each

quality quartile for each hospital. Placement within a quartile is most certain for hospitals of very

high or very low quality. For those hospitals ordered 20 through 102 in Table 10, the posterior

probability is at least .10 that the hospital is in one of each of three quartiles. The uncertainty

conveyed by the posterior distribution is also reflected in the mean and median ranks. If there

were no posterior uncertainty about ranks, the mean and median ranks would be identical to each

other, and to the ordering number to the left of each hospital name. At the other extreme, if

hospital qualities were completely exchangeable in the posterior distribution, the mean and

median ranks would all be 59. Note that the situation in Table 10 is intermediate between these

two extremes, but closer to the former than the latter.

Table 11 provides an alternative expression of the uncertainty conveyed by the posterior

distribution. Nine hospitals, including the first and last, were selected from roughly evenly

spaced points in the ordering in Table 10. Then, pairwise posterior probabilities of orderings

were computed from the iterations of the Gibbs sampler. For the first and last hospitals, fairly

confident conclusions can be draw in comparisons with the other eight, but note that the posterior

probability that the quality of Linda Vista exceeds St. Johns, and that Harbor/UCLA exceeds

Verdugo Hills, are each above .10. For hospitals ordered 15, 30, 45, 60, 75, 90, and 105, only

two orderings that can be made with .90 posterior probability: the quality of Linda Vista (ordered

15) exceeds that of Kaiser (ordered 75) and Verdugo Hills (ordered 105). Table 11 suggests that
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for half the hospitals in the sample (roughly those ordered 30 through 90 in Table 9) one cannot

order quality pairwise with posterior probability that exceeds .80.

The same set of comparisons using the probit model is made in Tables 12 and 13. These

tables reflect the substantially different orderings, and greater range in quality, inferred using this

model that assumes random assignment of patients to hospitals. For some hospitals the

differences are enormous. To continue with two of the hospitals from Table 9, note that Pioneer

Hospital is ordered 18th by the selection model, but 109th by the probit model. San Pedro

Peninsula Hospital is ordered 72nd in the selection model, but 19th in the probit model.

Correspondingly the selection model indicates a high hospital severity correlation in the former

case and a low hospital severity correlation in the latter (Table 9).

While this study has presented arguments and evidence that the premise of conditionally

random hospital admissions in the probit model is incorrect, it is interesting to compare the

degree of confidence about orderings that this model yields with that in the selection model. To a

rough approximation, the same difference between a hospital quality probit and the median

quality probit leads to the same degree of confidence about rankings in each model. For example,

the hospitals with posterior mean quality probit 0.1 below the median posterior mean quality, the

posterior probability of being below the median is about .90 in each model, as read from the

quartile probabilities in the last four columns. But because the qualities are more spread out in

the probit model, sharper conclusions can be drawn about orderings. This overall pattern is

evident in the pairwise comparisons in Tables 11 and 13. Section 4.2 argued that the additional

dispersion in quality in the probit model arises precisely because selection is ignored. From this

perspective, the greater posterior confidence that is seemingly inherent in the probit model is

ironic.

Note that the information in Table 10 cannot be used to address the question of the range of

quality over all 117 hospitals. The posterior mean of the highest quality probit of all hospitals

exceeds that of the highest quality probit of any one hospital. This is reflected in the fact that the

highest posterior mean rank in Table 9 is 4.5, not 1.0. In the selection model highest quality has a

posterior mean of .345 (posterior standard deviation .049), lowest quality has a posterior mean of

-.365 (posterior standard deviation .061), and the range has posterior mean .711 (posterior

standard deviation .082). There is considerable uncertainty about which hospitals have highest

and lowest quality, and that is why the posterior mean range is considerably larger than the
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difference of .598 in posterior mean quality of St. Johns and Harbor/ULCA in Table 9. For the

probit model the numbers are larger: highest quality .705 (.166); lowest quality -.786 (.183); and

range 1.491 (.215).

5. Conclusion

This study has extended existing econometric methods in order to measure hospital quality

using the experience of patients admitted to hospitals in nonrandom fashion. Using discharge

records for over 77,000 older pneumonia patients from 117 hospitals in Los Angeles County, we

find strong evidence of differences in quality between hospitals of different size and ownership

classifications. Smaller hospitals, and private for-profit hospitals, exhibit higher quality. We also

detect substantial differences in quality for a sizable minority of individual hospitals.

As an important by-product, our methods produce information about the hospital admissions

process. Patients with greater unobserved severity of illness tend, overall, to be admitted to

hospitals of higher quality. Consequently more conventional methods that ignore nonrandom

admission, when applied to this data set, tend to lower the inferred quality of good hospitals and

raise that of poor ones, relative to our findings. We find that variation across individual hospitals

in the unobserved severity of illness is at least as great as variation in quality, and that this

variation accounts for most of the large discrepancy between inference about hospital quality in

our model and with more conventional methods.

The procedures used here are at the current frontier of intensive computational methods in

econometrics. A supercomputer and several days of computing were required to obtain the

results reported here. Recent and imminent innovations in numerical methods and computing

technology should sharply reduce the real costs of these procedures in the near term. Given the

policy importance of assessing quality of care in hospitals, we believe there is a significant return

to further investment in these methods and their application to similar questions in health policy

and related fields.
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Table 1

Frequency and Mortality Rates by Age,
Disease Stage, Racial and Sex Categories

Age CategoriesSeverity and
Demographic

Categories
65-69
years

70-74
years

75-79
years

80-84
years

Over 84
years

Row
Totals

Disease
Stage 1.1

8,866
5.04

10,804
5.02

12,030
5.82

11,601
6.93

15,299
10.12

58,600
6.90

Disease
Stage 1.3-

2.3

906
5.74

1061
5.94

1,071
6.63

944
10.17

1,099
10.56

5,081
7.83

Disease
Stage 3.1-

3.6

696
12.78

804
12.81

1,068
15.07

1,005
16.42

1,519
21.92

5,092
16.71

Disease
Stage 3.7

1,411
15.31

1,666
14.89

1,771
17.00

1,413
22.29

1,710
28.12

7,971
19.58

D
is

ea
se

 S
ta

ge

Disease
Stage 3.8

163
44.79

235
42.56

226
44.70

246
56.10

323
53.93

1,193
49.12

White 7,606
7.19

9,900
7.63

11,352
8.76

11,012
10.43

14,734
13.84

54,604
10.04

Black 1,517
9.76

1,413
8.56

1,386
7.86

1,208
10.59

1,446
13.21

6,970
10.00

Hispanic 2,070
6.33

2,079
5.34

2,163
6.98

2,007
7.82

2,752
11.08

11,071
7.72

Asian 825
6.06

1,150
5.91

1,240
6.29

965
8.08

995
11.16

5,175
7.44

R
ac

e

Native
American

24
4.17

28
7.14

25
8.00

17
35.29

23
26.09

117
14.53

Female 6,024
6.57

7,338
6.20

8,424
7.28

8,244
9.27

12,422
13.23

42,452
9.12

Se
x

Male 6,018
7.99

7,232
8.32

7,742
9.31

6,965
10.83

7,528
13.39

35,485
10.05

Column Totals 12,042
7.28

14,570
7.25

16,166
8.25

15,209
9.98

19,950
13.29

77,937
9.54

Note: the cell frequency is the top number and the mortality rate (in percentage terms) is the
second number in each cell.
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Table 2
Hospital Frequency, Patients Treated, and Mortality

By Hospital Classification

Less than
150 Beds

150-200
Beds

200-299
Beds

Over 299
Beds Row Totals

Private, Not-
for-Profit24

9
4,891
9.10

4
2,411
11.03

19
16,241
9.48

19
22,337
9.71

51
45,834
9.64

Private, For-
profit

34
10,693
9.03

15
6,826
9.52

7
4,482
10.46

1
976

10.55

57
22,977
9.52

Teaching25 0 0 0
5

7,046
9.08

5
7,046
9.08

Public 0 0
1

235
8.51

3
1,845
9.49

4
2,080
9.38

Column
Totals

43
15,538
9.06

19
9,237
9.92

27
20,958
9.68

28
32,204
9.58

117
77,937
9.54

Note: The first number in each cell is the number of hospitals in that category, the second
number is the total number of pneumonia patients discharged from hospitals in that cell, and the
third number is the morality rate (patient weighted) for patients where were discharged from
hospitals in that cell.

                                                
24 Includes all private, not-for-profit hospitals not listed under ‘Teaching’.
25 Includes all private Council Of Teaching Hospitals (COTH) members.
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Table 3

Cross-tabulation of Disease Stage By Hospital Classification

Hospital Categories

Severity
Classification

Less
than
150
Beds

150-
200
Beds

200-
299
Beds

Over
299
Beds

Priv.,
Not-
for-

Profit

Priv.,
For-
profit

Teach
-ing Public

Row
Means

Disease
Stage 1.1 0.759* 0.752 0.753 0.747* 0.751 0.741* 0.788* 0.755 0.752

Disease
Stage 1.3-2.3 0.064 0.070 0.063 0.066 0.066 0.068 0.054* 0.052* 0.065

Disease
Stage 3.1-3.6 0.059* 0.064 0.064 0.070* 0.067 0.064 0.056* 0.072 0.065

Disease
Stage 3.7 0.103 0.101 0.104 0.101 0.100 0.111* 0.087* 0.095 0.102

Disease
Stage 3.8 0.014 0.014 0.015 0.016 0.015 0.015 0.014 0.026* 0.015

 *Significantly different from that category mean at the 5% level.
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Table 4a

Mortality equation parameter posterior means and standard deviations

Selection model Probit model

Demographic covariates

Age 70-74 -0.016 (0.024) -0.006 (0.025)
Age 75-79 0.055 (0.024) 0.076 (0.024)
Age 80-84 0.171 (0.024) 0.199 (0.024)
Age > 84 0.351 (0.022) 0.382 (0.023)
Female -0.083 (0.013) -0.084 (0.013)
Black -0.024 (0.027) -0.034 (0.027)
Hispanic -0.124 (0.022) -0.115 (0.023)
Native 0.161 (0.132) 0.210 (0.153)
Asian -0.096 (0.030) -0.100 (0.031)
Income 0.115 (0.158) 0.296 (0.201)
Income^2 -0.018 (0.019) -0.033 (0.023)

Disease severity covariates

Emergency admit 0.019 (0.019) 0.176 (0.016)
Disease stages 1.3-2.3 0.094 (0.028) 0.096 (0.028)
Disease stages 3.1-3.6 0.491 (0.022) 0.507 (0.023)
Disease stage 3.7 0.633 (0.018) 0.654 (0.018)
Disease stage 3.8 1.390 (0.038) 1.453 (0.038)

−qj   (Negative of hospital group quality probits)

Less than 150 beds -0.047 (0.023) -0.014 (0.012)
Between 150 and 199 beds 0.045 (0.031) 0.036 (0.018)
Between 200 and 299 beds 0.063 (0.016) 0.016 (0.013)
300 beds or more -0.002 (0.018) 0.006 (0.012)
Private, not for profit 0.029 (0.012) 0.012 (0.010)
Private, for profit -0.038 (0.012) 0.006 (0.009)
Teaching 0.041 (0.035) -0.011 (0.023)
Public 0.087 (0.079) 0.014 (0.042)

aPosterior means are accompanied by posterior standard deviations in parentheses.  For the
selection model, the function of interest is β j ′ δ Σδ +1( )1 2  and for the probit model it is β j σ .
In the case of the hospital group quality probits, the weights are proportional to the number of
patients in the sample for each hospital.
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Table 5

Posterior Probability Comparisons of Group Hospital Quality Probits, Selection Modela

A. Hospitals grouped by size

      < 150 beds    150-199 beds       200-299 beds

150-199 beds 0.993

200-299 beds 1.00 0.678

≥ 300 beds 0.889 0.044 0.009

B.  Hospitals grouped by ownership classification

Private not for profit         Private for profit Public

Private for profit 0.001

Public 0.756 0.937

Teaching 0.621 0.957 0.315

aEntries indicate the posterior probability that the group quality probit qG  in the column
classification exceeds the group quality probit qG  in the row classification.
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Table 6

Expected Mortality Comparisons, from a base of .10, Selection Modela

A.  Hospitals grouped by size

<150 beds 0.100 0.118 0.121 0.108
(0.010) (0.006) (0.007)

150-159 beds 0.086 0.100 0.104 0.092
(0.007) (0.007) (0.05)

200-299 beds 0.082 0.097 0.100 0.089
(0.004) (0.007) (0.004)

>=300 beds 0.093 0.109 0.112 0.100
(0.006) (0.005) (0.005)

B.  Hospitals grouped by ownership classification

Private not for profit 0.100 0.089 0.112 0.102
(0.004) (0.015) (0.006)

Private for profit 0.113 0.100 0.125 0.115
(0.004) (0.016) (0.007)

Public 0.091 0.089 0.100 0.093
(0.013) (0.0040) (0.015)

Teaching 0.098 0.087 0.109 0.100
(0.006) (0.006) (0.017)

aCells contain expected mortality at hospitals in the column classification, given a patient with an
expected mortality of 0.100 at hospitals in the row classification.



36

Table 7a

Choice equation parameter posterior means and standard deviations

            Covariate

Distance -7.170 (0.13x)

Distance2 0.732 (0.009)

Distance× Age -0.815 (0.024)

Distance× Severity -0.605 (0.035)

10−5 × Distance × Income -0.848 (0.252)

aDistance is measured in hundreds of kilometers. The age variable takes on the value 1 for ages
65-69, 2 for 70-74, 3 for 75-79, 4 for 80-84, and 5 for 85 and above. The severity variable is
disease stage (1.1., 1.2, … 3.8).  Income is in dollars per year.
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Table 8

Relations between hospital quality probits and severity correlations in the sample

A.  Moments of qj , qj
* , ρj

    Posterior mean Posterior standard deviation

qj ? .105
qj

* ? .178
ρj ? .055

Posterior variances and correlations

qj .0109 .343 .543
qj

* .0020 .0031 -.537
ρj .0101 -.0053 .0318

(Correlations shown above the main diagonal)

B.  OLS regression of ρj  (posterior means) on qj  (posterior means)

ρj  = -.004  +  .181 qj ;   R2 = .117,  s = .052
          (.005)   (.046)

C.  OLS regression of qj
*  (posterior means) on qj  and ρj  (posterior means)

qj
*  = -.011  +  1.404 qj  - 2.639 ρj  ;   R2 = .886,  s = .061

                       (.057)         (.108)

D.  OLS regression of ρj  (posterior means) on qj  (posterior means)

qj
*  = .000  +  .926 qj ;   R2 = .295,  s = .151

                     (.133)
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Table 9

Hospital quality probits and severity correlations for seven hospitals

                Posterior means (standard deviations)
Hospital       qj     ρj               qj

*

Community Hospital of Gardena .124 (.094) .124 (.052) -.126 (.148)

Pioneer Hospital .113 (.075) .137 (.040) -.221 (.077)

Beverly Hospital -.014 (.065) -.100 (.040) .012 (.055)

San Pedro Peninsula Hospital -.033 (.065) -.117 (.035) .140 (.067)

Westlake Medical Center .123 (.094) -.132 (.051) .319 (.151)

City of Hope National Medical -.172 (.115) .122 (.050) -.777 (.142)

Linda Vista Community Hospital .127 (.110) -.102 (.063) .528 (.215)
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Table 10
Posterior Distribution of Hospital Quality Probits, Selection model

           qj               Rank           Quartile probabilities
    (Mean)  (Mean)(Med)

  1 ST. JOHNS HOSPITAL AND HEALTH   0.278    4.5    3 0.995 0.005 0.000 0.000
  2 QUEEN OF ANGELS/HOLLYWOOD PRES  0.221    8.7    6 0.972 0.028 0.000 0.000
  3 SAN DIMAS COMMUNITY HOSPITAL    0.212   12.2    8 0.903 0.094 0.004 0.000
  4 MONTEREY PARK HOSPITAL          0.166   18.0   14 0.811 0.169 0.020 0.000
  5 GREATER EL MONTE COMMUNITY HOS  0.158   18.9   15 0.796 0.185 0.019 0.000
  6 WOODRUFF COMMUNITY HOSPITAL     0.160   21.1   15 0.734 0.209 0.055 0.003
  7 KAISER FOUNDATION HOSPITAL - L  0.144   21.1   18 0.777 0.195 0.027 0.002
  8 TERRACE PLAZA MEDICAL CENTER    0.158   21.4   16 0.729 0.214 0.053 0.005
  9 NU MED REGIONAL MED CENTER WES  0.144   21.5   18 0.753 0.223 0.021 0.003
 10 NEWHALL COMMUNITY HOSPITAL      0.146   24.0   18 0.677 0.244 0.070 0.009
 11 HOLLYWOOD COMMUNITY HOSPITAL    0.134   25.3   20 0.664 0.257 0.074 0.006
 12 BELLWOOD GENERAL HOSPITAL       0.128   26.1   20 0.665 0.248 0.072 0.015
 13 WESTLAKE MEDICAL CENTER         0.129   26.1   20 0.647 0.268 0.075 0.010
 14 MISSION HOSPITAL                0.129   26.7   21 0.643 0.259 0.086 0.012
 15 LINDA VISTA COMMUNITY HOSPITAL  0.133   26.7   20 0.642 0.246 0.089 0.023
 16 COMMUNITY HOSPITAL OF GARDENA   0.122   27.6   23 0.619 0.290 0.082 0.009
 17 HAWTHORNE HOSPITAL              0.121   27.8   23 0.614 0.290 0.084 0.012
 18 PIONEER HOSPITAL                0.111   28.5   26 0.573 0.365 0.061 0.001
 19 LANCASTER COMMUNITY HOSPITAL    0.111   28.8   26 0.579 0.327 0.091 0.003
 20 EAST LOS ANGELES DOCTORS HOSPI  0.120   28.9   23 0.591 0.288 0.105 0.016
 21 WESTSIDE HOSPITAL               0.100   32.2   28 0.525 0.332 0.128 0.015
 22 COMMUNITY HOSPITAL OF HUNTINGT  0.102   32.7   27 0.536 0.303 0.136 0.025
 23 DOCTORS HOSPITAL OF LAKEWOOD -  0.094   32.9   29 0.512 0.354 0.124 0.010
 24 COVINA VALLEY COMMUNITY HOSPIT  0.091   34.3   31 0.483 0.349 0.156 0.012
 25 MIDWAY HOSPITAL MEDICAL CENTER  0.084   34.6   32 0.449 0.433 0.116 0.002
 26 SANTA MARTA HOSPITAL            0.089   35.4   30 0.498 0.305 0.165 0.031
 27 ALHAMBRA COMMUNITY HOSPITAL     0.080   36.8   32 0.455 0.352 0.163 0.031
 28 LOS ANGELES COMMUNITY HOSPITAL  0.074   40.4   37 0.406 0.340 0.200 0.054
 29 LONG BEACH DOCTORS HOSPITAL     0.075   40.5   34 0.452 0.269 0.189 0.091
 30 NORWALK COMMUNITY HOSPITAL      0.068   40.6   36 0.411 0.339 0.194 0.056
 31 PANORAMA COMMUNITY HOSPITAL     0.066   40.8   37 0.392 0.369 0.193 0.046
 32 AMI TARZANA REGIONAL MEDICAL C  0.063   41.4   38 0.364 0.392 0.207 0.037
 33 MONROVIA COMMUNITY HOSPITAL     0.061   41.8   39 0.363 0.397 0.195 0.044
 34 PICO RIVERA COMMUNITY HOSPITAL  0.063   42.0   38 0.383 0.355 0.204 0.058
 35 CIGNA HOSPITAL OF LOS ANGELES,  0.062   42.7   38 0.393 0.318 0.217 0.072
 36 SOUTH BAY HOSPITAL              0.062   42.8   39 0.364 0.358 0.220 0.058
 37 CHARTER SUBURBAN HOSPITAL       0.054   44.0   41 0.324 0.394 0.239 0.042
 38 METHODIST HOSPITAL OF SOUTHERN  0.059   44.1   45 0.366 0.304 0.275 0.055
 39 MOTION PICTURE & TELEVISION HO  0.049   45.9   41 0.343 0.341 0.218 0.097
 40 ENCINO HOSPITAL                 0.044   46.1   44 0.251 0.475 0.233 0.040
 41 WHITE MEMORIAL MEDICAL CENTER   0.039   47.7   45 0.251 0.448 0.232 0.069
 42 CEDARS SINAI MEDICAL CENTER     0.038   48.5   48 0.230 0.432 0.290 0.048
 43 GLENDALE ADVENTIST MED CENTER   0.038   48.8   48 0.266 0.357 0.342 0.035
 44 ANTELOPE VALLEY HOSPITAL MEDIC  0.025   51.3   51 0.173 0.454 0.336 0.038
 45 HENRY MAYO NEWHALL MEMORIAL HO  0.025   51.5   49 0.215 0.406 0.299 0.080
 46 SHERMAN OAKS COMMUNITY HOSPITA  0.027   51.6   50 0.238 0.365 0.283 0.113
 47 HUMANA HOSPITAL WEST HILLS      0.023   52.2   51 0.189 0.412 0.317 0.081
 48 LOS ANGELES CO. USC MEDICAL CE  0.022   53.0   46 0.334 0.257 0.191 0.218
 49 MEDICAL CENTER OF LA MIRADA     0.021   53.2   51 0.213 0.370 0.295 0.122
 50 SANTA MONICA HOSPITAL MEDICAL   0.018   53.3   53 0.158 0.432 0.354 0.056
 51 BELLFLOWER DOCTORS HOSPITAL     0.020   54.1   52 0.235 0.334 0.286 0.144
 52 BEVERLY HILLS MEDICAL CENTER    0.017   54.4   52 0.220 0.352 0.294 0.134
 53 BROTMAN MEDICAL CENTER          0.012   55.9   54 0.218 0.329 0.301 0.153
 54 BURBANK COMMUNITY HOSPITAL      0.008   56.3   57 0.149 0.379 0.376 0.095
 55 ST. VINCENT MEDICAL CENTER      0.009   56.5   57 0.213 0.302 0.318 0.168
 56 CALIFORNIA MEDICAL CENTER - LO  0.006   57.3   56 0.170 0.357 0.303 0.170
 57 WASHINGTON MEDICAL CENTER       0.006   57.5   58 0.152 0.358 0.369 0.121
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Table 10 (continued)

           qj               Rank           Quartile probabilities
    (Mean)  (Mean)(Med)

 58 LOS ANGELES DOCTORS HOSPITAL    0.006   57.5   56 0.201 0.330 0.287 0.181
 59 PACIFIC ALLIANCE MEDICAL CENTE  0.002   58.6   58 0.186 0.323 0.304 0.187
 60 PALMDALE HOSPITAL MEDICAL CENT -0.005   60.8   60 0.092 0.392 0.368 0.147
 61 VALLEY PRESBYTERIAN HOSPITAL   -0.005   61.1   63 0.152 0.299 0.363 0.186
 62 LOS ANGELES CO. MARTIN L. KING -0.010   61.8   62 0.136 0.332 0.327 0.205
 63 NORTHRIDGE HOSPITAL MEDICAL CE -0.012   62.0   59 0.127 0.366 0.285 0.222
 64 BAY HARBOR HOSPITAL            -0.012   62.5   61 0.049 0.407 0.409 0.135
 65 CENTURY CITY HOSPITAL          -0.012   62.6   63 0.130 0.309 0.367 0.194
 66 RIO HONDO MEMORIAL HOSPITAL    -0.015   62.8   63 0.121 0.316 0.381 0.182
 67 AMI GLENDORA COMMUNITY HOSPITA -0.024   65.7   67 0.095 0.289 0.398 0.217
 68 ST. LUKE MEDICAL CENTER        -0.026   66.8   67 0.066 0.320 0.401 0.214
 69 ST. FRANCIS MEDICAL CENTER     -0.027   67.0   70 0.077 0.278 0.425 0.221
 70 VALLEY HOSPITAL MEDICAL CENTER -0.031   67.6   65 0.082 0.326 0.321 0.271
 71 TEMPLE COMMUNITY HOSPITAL      -0.031   67.8   69 0.080 0.281 0.395 0.243
 72 SAN PEDRO PENINSULA HOSPITAL   -0.032   68.6   69 0.026 0.289 0.494 0.190
 73 SAN FERNANDO COMMUNITY HOSPITA -0.039   69.3   72 0.098 0.260 0.331 0.312
 74 COAST PLAZA MEDICAL CENTER     -0.040   70.0   72 0.080 0.254 0.381 0.285
 75 KAISER FOUNDATION HOSPITAL - H -0.041   70.1   70 0.044 0.307 0.365 0.285
 76 GARFIELD MEDICAL CENTER        -0.050   71.5   74 0.106 0.232 0.317 0.345
 77 ST. MARY MEDICAL CENTER        -0.042   71.6   73 0.023 0.243 0.507 0.227
 78 KAISER FOUNDATION HOSPITAL - W -0.047   72.4   75 0.058 0.234 0.402 0.306
 79 ST. JOSEPH MEDICAL CENTER      -0.048   73.0   74 0.009 0.246 0.488 0.257
 80 CENTINELA HOSPITAL MEDICAL CEN -0.054   73.0   75 0.075 0.235 0.361 0.330
 81 QUEEN OF THE VALLEY HOSPITAL - -0.052   74.0   74 0.011 0.207 0.545 0.237
 82 DANIEL FREEMAN MARINA HOSPITAL -0.054   74.1   76 0.051 0.219 0.400 0.330
 83 PACIFICA HOSPITAL OF THE VALLE -0.055   74.7   77 0.033 0.217 0.426 0.324
 84 UCLA MEDICAL CENTER            -0.058   75.2   80 0.050 0.198 0.404 0.348
 85 CHARTER COMMUNITY HOSPITAL     -0.063   75.3   79 0.047 0.225 0.355 0.373
 86 LONG BEACH COMMUNITY HOSPITAL  -0.056   75.8   79 0.025 0.179 0.479 0.316
 87 WHITTIER HOSPITAL MEDICAL CENT -0.061   76.0   79 0.042 0.210 0.381 0.367
 88 KAISER FOUNDATION HOSPITAL - B -0.061   76.3   80 0.030 0.215 0.399 0.357
 89 TORRANCE MEMORIAL HOSPITAL MED -0.064   77.0   79 0.032 0.216 0.373 0.379
 90 GLENDALE MEMORIAL HOSPITAL & H -0.059   77.2   80 0.013 0.177 0.458 0.352
 91 DOMINGUEZ MEDICAL CENTER       -0.073   78.2   83 0.046 0.201 0.318 0.435
 92 CANOGA PARK HOSPITAL           -0.074   78.4   83 0.047 0.195 0.339 0.419
 93 INTER COMMUNITY MEDICAL CENTER -0.065   78.8   82 0.021 0.146 0.459 0.374
 94 MEMORIAL MEDICAL CENTER OF LON -0.071   79.2   81 0.010 0.166 0.453 0.371
 95 PRESBYTERIAN INTERCOMMUNITY HO -0.076   79.4   80 0.013 0.183 0.430 0.375
 96 THE HOSPITAL OF THE GOOD SAMAR -0.081   81.0   86 0.031 0.180 0.332 0.458
 97 KAISER FOUNDATION HOSPITAL - P -0.080   82.3   86 0.016 0.128 0.405 0.452
 98 LITTLE COMPANY OF MARY HOSPITA -0.087   82.3   84 0.003 0.153 0.407 0.437
 99 POMONA VALLEY HOSPITAL MEDICAL -0.084   84.3   86 0.000 0.042 0.525 0.432
100 BEVERLY HOSPITAL               -0.091   84.8   89 0.004 0.122 0.362 0.513
101 GRANADA HILLS COMMUNITY HOSPIT -0.096   84.9   89 0.015 0.110 0.374 0.501
102 HUNTINGTON MEMORIAL HOSPITAL   -0.105   86.3   95 0.027 0.141 0.245 0.587
103 MEDICAL CENTER OF NORTH HOLLYW -0.113   89.6   94 0.003 0.079 0.342 0.576
104 ROBERT F. KENNEDY MEDICAL CENT -0.112   90.0   94 0.000 0.058 0.342 0.601
105 VERDUGO HILLS HOSPITAL         -0.140   94.9  101 0.004 0.059 0.253 0.684
106 DOWNEY COMMUNITY HOSPITAL      -0.147   96.3  103 0.014 0.059 0.154 0.773
107 LOS ANGELES CO. OLIVE VIEW MED -0.172   97.2  105 0.011 0.061 0.181 0.747
108 CITY OF HOPE NATIONAL MEDICAL  -0.171   97.8  105 0.011 0.060 0.172 0.757
109 FOOTHILL PRESBYTERIAN HOSPITAL -0.176   98.1  105 0.001 0.040 0.228 0.731
110 SANTA TERESITA HOSPITAL        -0.167   99.3  104 0.000 0.024 0.184 0.792
111 HOLY CROSS MEDICAL CENTER      -0.171  100.6  106 0.000 0.024 0.169 0.807
112 DANIEL FREEMAN MEMORIAL HOSPIT -0.172  101.7  105 0.000 0.003 0.142 0.855
113 SAN GABRIEL VALLEY MEDICAL CEN -0.173  103.4  106 0.000 0.003 0.077 0.921
114 PACIFIC HOSPITAL OF LONG BEACH -0.197  105.4  108 0.000 0.003 0.076 0.921
115 KAISER FOUNDATION HOSPITAL - W -0.205  107.1  109 0.000 0.001 0.042 0.958
116 MEMORIAL HOSPITAL OF GARDENA   -0.225  108.3  112 0.000 0.002 0.051 0.948
117 LOS ANGELES CO. HARBOR/UCLA ME -0.320  114.7  116 0.000 0.000 0.003 0.997
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Table 11
Comparison of Selected Hospital Quality Probits, Selection Model

    1   ST. JOHNS HOSPITAL AND HEALTH
   15   LINDA VISTA COMMUNITY HOSPITAL
   30   NORWALK COMMUNITY HOSPITAL
   45   HENRY MAYO NEWHALL MEMORIAL HO
   60   PALMDALE HOSPITAL MEDICAL CENT
   75   KAISER FOUNDATION HOSPITAL - H
   90   GLENDALE MEMORIAL HOSPITAL & H
  105   VERDUGO HILLS HOSPITAL
  117   LOS ANGELES CO. HARBOR/UCLA ME

 Posterior probability that hospital with rank in row ranks below hospital with rank in
column

         1      15      30      45      60      75      90     105
  15   0.885
  30   0.978   0.675
  45   1.000   0.801   0.623
  60   0.993   0.822   0.695   0.557
  75   0.999   0.903   0.791   0.714   0.623
  90   0.997   0.894   0.807   0.696   0.722   0.566
 105   1.000   0.950   0.896   0.862   0.842   0.799   0.814
 117   1.000   0.999   1.000   1.000   0.997   0.986   0.990   0.881
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Table 12
Posterior Distribution of Hospital Quality Probits, Probit model

           qj               Rank           Quartile probabilities
    (Mean)  (Mean)(Med)

  1 LINDA VISTA COMMUNITY HOSPITAL  0.528    4.8    2 0.981 0.014 0.004 0.001
  2 SANTA MARTA HOSPITAL            0.413    5.0    4 0.999 0.001 0.000 0.000
  3 WOODRUFF COMMUNITY HOSPITAL     0.340    9.6    7 0.957 0.037 0.007 0.000
  4 MOTION PICTURE & TELEVISION HO  0.425   10.9    4 0.900 0.061 0.028 0.011
  5 COMMUNITY HOSPITAL OF HUNTINGT  0.337   10.9    7 0.925 0.057 0.018 0.001
  6 WESTLAKE MEDICAL CENTER         0.319   11.4    7 0.918 0.066 0.014 0.002
  7 TERRACE PLAZA MEDICAL CENTER    0.324   11.9    7 0.914 0.065 0.018 0.003
  8 ST. JOHNS HOSPITAL AND HEALTH   0.225   13.6   13 0.986 0.014 0.000 0.000
  9 NEWHALL COMMUNITY HOSPITAL      0.388   14.8    5 0.849 0.079 0.051 0.021
 10 BELLFLOWER DOCTORS HOSPITAL     0.228   17.0   12 0.847 0.135 0.017 0.001
 11 MONTEREY PARK HOSPITAL          0.210   17.5   14 0.859 0.133 0.008 0.000
 12 SAN DIMAS COMMUNITY HOSPITAL    0.206   18.3   15 0.854 0.126 0.017 0.003
 13 WHITE MEMORIAL MEDICAL CENTER   0.160   21.9   20 0.801 0.194 0.006 0.000
 14 SOUTH BAY HOSPITAL              0.188   22.0   17 0.754 0.199 0.041 0.005
 15 QUEEN OF ANGELS/HOLLYWOOD PRES  0.147   23.0   22 0.817 0.183 0.000 0.000
 16 HENRY MAYO NEWHALL MEMORIAL HO  0.149   23.8   21 0.739 0.254 0.007 0.000
 17 DANIEL FREEMAN MARINA HOSPITAL  0.153   24.7   21 0.699 0.270 0.029 0.002
 18 LOS ANGELES COMMUNITY HOSPITAL  0.201   25.2   15 0.706 0.168 0.094 0.031
 19 SAN PEDRO PENINSULA HOSPITAL    0.140   25.4   23 0.696 0.289 0.015 0.000
 20 CHARTER SUBURBAN HOSPITAL       0.147   25.4   22 0.683 0.287 0.029 0.001
 21 HUMANA HOSPITAL WEST HILLS      0.116   31.1   27 0.542 0.379 0.076 0.003
 22 LOS ANGELES CO. USC MEDICAL CE  0.109   31.3   29 0.528 0.421 0.051 0.001
 23 BEVERLY HOSPITAL                0.102   32.0   30 0.465 0.510 0.025 0.000
 24 HOLLYWOOD COMMUNITY HOSPITAL    0.116   33.4   27 0.536 0.313 0.121 0.031
 25 HAWTHORNE HOSPITAL              0.126   33.7   26 0.554 0.258 0.141 0.047
 26 COVINA VALLEY COMMUNITY HOSPIT  0.115   33.8   28 0.525 0.321 0.131 0.024
 27 CENTURY CITY HOSPITAL           0.100   35.3   31 0.479 0.369 0.138 0.015
 28 AMI TARZANA REGIONAL MEDICAL C  0.092   35.5   33 0.427 0.466 0.103 0.004
 29 CEDARS SINAI MEDICAL CENTER     0.082   35.5   35 0.293 0.693 0.015 0.000
 30 ST. MARY MEDICAL CENTER         0.087   35.9   34 0.389 0.517 0.092 0.002
 31 MISSION HOSPITAL                0.120   36.2   28 0.518 0.259 0.149 0.074
 32 PACIFIC ALLIANCE MEDICAL CENTE  0.082   38.1   35 0.378 0.468 0.142 0.012
 33 INTER COMMUNITY MEDICAL CENTER  0.075   38.3   37 0.308 0.606 0.086 0.000
 34 CIGNA HOSPITAL OF LOS ANGELES,  0.082   40.6   35 0.421 0.328 0.200 0.051
 35 SANTA MONICA HOSPITAL MEDICAL   0.062   40.9   40 0.205 0.685 0.111 0.000
 36 UCLA MEDICAL CENTER             0.065   41.0   40 0.281 0.568 0.148 0.003
 37 GREATER EL MONTE COMMUNITY HOS  0.064   41.5   40 0.287 0.533 0.170 0.010
 38 SAN FERNANDO COMMUNITY HOSPITA  0.084   42.2   35 0.431 0.273 0.195 0.101
 39 GLENDALE MEMORIAL HOSPITAL & H  0.055   42.4   42 0.122 0.793 0.085 0.000
 40 PRESBYTERIAN INTERCOMMUNITY HO  0.050   44.0   42 0.171 0.655 0.170 0.003
 41 KAISER FOUNDATION HOSPITAL - L  0.049   44.2   43 0.160 0.671 0.167 0.002
 42 BEVERLY HILLS MEDICAL CENTER    0.069   45.6   40 0.393 0.265 0.210 0.131
 43 EAST LOS ANGELES DOCTORS HOSPI  0.041   47.5   46 0.218 0.487 0.261 0.034
 44 KAISER FOUNDATION HOSPITAL - P  0.038   47.6   46 0.165 0.569 0.252 0.014
 45 ANTELOPE VALLEY HOSPITAL MEDIC  0.036   48.1   47 0.169 0.539 0.278 0.014
 46 LANCASTER COMMUNITY HOSPITAL    0.035   48.5   47 0.157 0.549 0.276 0.018
 47 ALHAMBRA COMMUNITY HOSPITAL     0.036   48.7   47 0.218 0.463 0.273 0.046
 48 NORWALK COMMUNITY HOSPITAL      0.034   50.2   49 0.258 0.361 0.291 0.090
 49 ST. LUKE MEDICAL CENTER         0.026   50.8   51 0.139 0.530 0.303 0.027
 50 NORTHRIDGE HOSPITAL MEDICAL CE  0.024   50.9   51 0.106 0.567 0.310 0.017
 51 GRANADA HILLS COMMUNITY HOSPIT  0.026   51.0   49 0.171 0.473 0.303 0.053
 52 BELLWOOD GENERAL HOSPITAL       0.028   51.1   49 0.219 0.404 0.295 0.082
 53 LITTLE COMPANY OF MARY HOSPITA  0.011   54.2   54 0.071 0.538 0.370 0.021
 54 WHITTIER HOSPITAL MEDICAL CENT  0.013   54.5   53 0.145 0.439 0.336 0.079
 55 ST. VINCENT MEDICAL CENTER      0.010   54.7   55 0.078 0.506 0.385 0.031
 56 BROTMAN MEDICAL CENTER          0.007   55.2   55 0.041 0.551 0.392 0.015
 57 LOS ANGELES DOCTORS HOSPITAL    0.020   55.8   55 0.318 0.205 0.225 0.251
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Table 12 (continued)

           qj               Rank           Quartile probabilities
    (Mean)  (Mean)(Med)

 58 KAISER FOUNDATION HOSPITAL - B  0.002   56.8   56 0.058 0.489 0.411 0.042
 59 KAISER FOUNDATION HOSPITAL - H  0.001   57.3   57 0.078 0.460 0.411 0.051
 60 ST. JOSEPH MEDICAL CENTER      -0.001   57.6   58 0.008 0.521 0.467 0.004
 61 THE HOSPITAL OF THE GOOD SAMAR -0.004   58.2   58 0.023 0.480 0.474 0.022
 62 LOS ANGELES CO. MARTIN L. KING -0.006   59.2   59 0.103 0.393 0.394 0.111
 63 TORRANCE MEMORIAL HOSPITAL MED -0.008   59.2   59 0.037 0.450 0.465 0.049
 64 MEMORIAL MEDICAL CENTER OF LON -0.008   59.5   60 0.024 0.449 0.497 0.030
 65 ROBERT F. KENNEDY MEDICAL CENT -0.020   62.5   63 0.039 0.365 0.521 0.075
 66 NU MED REGIONAL MED CENTER WES -0.024   63.7   63 0.038 0.367 0.486 0.110
 67 LOS ANGELES CO. OLIVE VIEW MED -0.027   64.1   65 0.144 0.285 0.334 0.237
 68 SAN GABRIEL VALLEY MEDICAL CEN -0.026   64.2   65 0.006 0.319 0.644 0.030
 69 DOCTORS HOSPITAL OF LAKEWOOD - -0.029   64.9   65 0.017 0.327 0.583 0.074
 70 AMI GLENDORA COMMUNITY HOSPITA -0.033   65.8   68 0.120 0.282 0.345 0.253
 71 LONG BEACH DOCTORS HOSPITAL    -0.051   69.9   73 0.093 0.247 0.361 0.298
 72 SHERMAN OAKS COMMUNITY HOSPITA -0.055   70.9   73 0.066 0.246 0.398 0.291
 73 GLENDALE ADVENTIST MED CENTER  -0.052   71.6   72 0.000 0.130 0.809 0.061
 74 HOLY CROSS MEDICAL CENTER      -0.055   71.9   73 0.004 0.214 0.623 0.159
 75 GARFIELD MEDICAL CENTER        -0.054   72.0   73 0.002 0.167 0.718 0.114
 76 ENCINO HOSPITAL                -0.062   72.9   75 0.037 0.222 0.478 0.263
 77 METHODIST HOSPITAL OF SOUTHERN -0.063   74.3   75 0.000 0.105 0.760 0.135
 78 BURBANK COMMUNITY HOSPITAL     -0.073   75.4   78 0.029 0.206 0.436 0.329
 79 KAISER FOUNDATION HOSPITAL - W -0.074   76.3   78 0.013 0.175 0.514 0.298
 80 CENTINELA HOSPITAL MEDICAL CEN -0.075   76.6   78 0.007 0.160 0.551 0.281
 81 WESTSIDE HOSPITAL              -0.079   77.3   80 0.014 0.173 0.484 0.329
 82 PALMDALE HOSPITAL MEDICAL CENT -0.086   78.1   82 0.022 0.181 0.417 0.380
 83 VALLEY PRESBYTERIAN HOSPITAL   -0.079   78.4   79 0.000 0.093 0.653 0.255
 84 MONROVIA COMMUNITY HOSPITAL    -0.088   78.4   83 0.034 0.179 0.389 0.399
 85 MEDICAL CENTER OF LA MIRADA    -0.109   82.0   88 0.042 0.150 0.317 0.491
 86 PACIFIC HOSPITAL OF LONG BEACH -0.098   82.3   84 0.003 0.100 0.492 0.405
 87 PICO RIVERA COMMUNITY HOSPITAL -0.129   82.8   92 0.073 0.150 0.232 0.545
 88 WASHINGTON MEDICAL CENTER      -0.105   83.2   86 0.011 0.095 0.440 0.453
 89 COMMUNITY HOSPITAL OF GARDENA  -0.126   83.4   91 0.064 0.139 0.270 0.527
 90 HUNTINGTON MEMORIAL HOSPITAL   -0.099   83.8   85 0.000 0.018 0.626 0.356
 91 FOOTHILL PRESBYTERIAN HOSPITAL -0.107   84.6   86 0.000 0.071 0.474 0.455
 92 MEDICAL CENTER OF NORTH HOLLYW -0.109   85.5   87 0.001 0.034 0.518 0.447
 93 SANTA TERESITA HOSPITAL        -0.113   86.1   88 0.001 0.045 0.470 0.485
 94 DOWNEY COMMUNITY HOSPITAL      -0.112   86.6   88 0.000 0.022 0.486 0.491
 95 TEMPLE COMMUNITY HOSPITAL      -0.131   87.3   92 0.012 0.101 0.330 0.558
 96 VALLEY HOSPITAL MEDICAL CENTER -0.124   88.3   90 0.000 0.037 0.415 0.548
 97 BAY HARBOR HOSPITAL            -0.126   89.7   91 0.000 0.010 0.405 0.585
 98 MIDWAY HOSPITAL MEDICAL CENTER -0.125   89.8   91 0.000 0.003 0.410 0.586
 99 QUEEN OF THE VALLEY HOSPITAL - -0.128   89.9   92 0.000 0.014 0.395 0.591
100 CHARTER COMMUNITY HOSPITAL     -0.135   91.5   93 0.000 0.010 0.339 0.650
101 PACIFICA HOSPITAL OF THE VALLE -0.147   91.6   96 0.002 0.059 0.303 0.637
102 LONG BEACH COMMUNITY HOSPITAL  -0.142   92.8   95 0.000 0.009 0.309 0.683
103 VERDUGO HILLS HOSPITAL         -0.149   93.9   97 0.000 0.012 0.275 0.713
104 DANIEL FREEMAN MEMORIAL HOSPIT -0.147   93.9   96 0.000 0.006 0.272 0.722
105 POMONA VALLEY HOSPITAL MEDICAL -0.144   94.2   95 0.000 0.001 0.237 0.762
106 PANORAMA COMMUNITY HOSPITAL    -0.173   95.5  101 0.003 0.039 0.229 0.729
107 RIO HONDO MEMORIAL HOSPITAL    -0.209  102.0  105 0.000 0.006 0.113 0.881
108 KAISER FOUNDATION HOSPITAL - W -0.213  103.9  106 0.000 0.001 0.054 0.945
109 PIONEER HOSPITAL               -0.221  103.9  107 0.000 0.004 0.074 0.922
110 COAST PLAZA MEDICAL CENTER     -0.256  105.4  110 0.001 0.010 0.076 0.914
111 ST. FRANCIS MEDICAL CENTER     -0.221  105.7  107 0.000 0.000 0.015 0.985
112 LOS ANGELES CO. HARBOR/UCLA ME -0.243  106.3  109 0.000 0.003 0.038 0.959
113 MEMORIAL HOSPITAL OF GARDENA   -0.250  106.6  109 0.000 0.001 0.043 0.956
114 DOMINGUEZ MEDICAL CENTER       -0.348  110.1  114 0.000 0.006 0.038 0.957
115 CALIFORNIA MEDICAL CENTER - LO -0.366  113.8  114 0.000 0.000 0.000 1.000
116 CANOGA PARK HOSPITAL           -0.504  114.6  116 0.000 0.001 0.006 0.993
117 CITY OF HOPE NATIONAL MEDICAL  -0.777  116.9  117 0.000 0.000 0.000 1.000
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Table 13

Comparison of Selected Hospital Quality Probits, Selection Model

Probit Model:  Posterior probabilities of selected rankings

  Rank    Hospital

    1     LINDA VISTA COMMUNITY HOSPITAL
   15     QUEEN OF ANGELS/HOLLYWOOD PRES
   30     ST. MARY MEDICAL CENTER
   45     ANTELOPE VALLEY HOSPITAL MEDIC
   60     ST. JOSEPH MEDICAL CENTER
   75     GARFIELD MEDICAL CENTER
   90     HUNTINGTON MEMORIAL HOSPITAL
  105     POMONA VALLEY HOSPITAL MEDICAL
  117     CITY OF HOPE NATIONAL MEDICAL

 Posterior probability that hospital with rank in row ranks below hospital with rank in column

         1      15      30      45      60      75      90      105
  15   0.963
  30   0.979   0.768
  45   0.990   0.914   0.703
  60   0.995   0.990   0.860   0.665
  75   0.996   0.998   0.954   0.856   0.786
  90   0.998   1.000   0.985   0.946   0.945   0.755
 105   0.999   1.000   0.997   0.987   0.995   0.920   0.775
 117   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000
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Figure 1
Scatterplot of Hospital Quality, jq , versus Hospital Severity, jρ
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Appendix: Likelihood function, posterior density, Gibbs sampling algorithm and computation.

Notation. The notation in this appendix is the same as in the paper. We collect all the
definitions here for reference, and introduce some additional useful notation.
   Indexing:

!!i =1,",n Patients in sample

!!j =1,", J Hospitals in California
   Observed variables:

mi Mortality indicator, 1 if patient dies, else 0
c i : J ×1 Hospital choice indicator, cij = 1 if i chooses j, else 0
x i :k ×1 Individual characteristics affecting mortality
Zi : J −1( )× q Individual characteristics affecting hospital choice
W : J × r Matrix of hospital characteristics r ≥ J( )

′ u i ≡ ′ c iW, ′ x i( )
   Latent variables

mi
* Mortality probit

c i
* : J −1( )×1 Hospital choice probit

   Miscellaneous:
χ S z( ) Indicator function, χ S z( ) =1 if z ∈ S , else 0
en :n ×1 ′ e n = 1,". ,1( )

Model. The model for the latent variables and observables is
c i

* = Ziα + ηi , ciJ
* ≡ 0

cij = χ 0 ,∞[ ) cij
* − ci#

*( )
#=1

J∏
mi

* = ′ c i Wβ + ′ x iγ + ′ η iδ +ζ i

mi = χ 0 ,∞[ ) mi
*( )

ηi

ζ i

 
 
  

 
~
IID

N 0,
Σ 0
′ 0 1

 
  

 
  

  
 
   

  
 ; Σ = IJ −1 + e J −1( ) ′ e J −1( )

′ λ ≡ ′ β , ′ γ ( ) , ′ ν ≡ ′ λ , ′ δ ( )

Prior distribution. As motivated in the text the prior distribution consists of three,
independent components: λ ~ N λ , Hλ

−1( ); δ ~ N δ, Hδ
−1( ); α ~ N α , Hα

−1( ). Hence the prior

density is
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p λ ,δ,α( ) = 2π( )− r +k + J + q −1( ) 2 Hλ
1 2 Hδ

1 2 Hα
1 2

⋅exp −.5 λ − λ( )′ Hλ λ − λ( ) + δ −δ( )′ Hδ δ − δ( )+ α −α( )′ Hα α −α( ) 
 

 
 

 
 
 

 
 
 
.

Distribution of observables and latent variables. To derive the joint density of the
observable data and latent variables for individual I, let Φi ≡ Z i ,W,α ,λ ,δ ,Σ{ } . Then

p ci
* ,ci , mi

*,mi Φi( )= p c i
* Φi( )p c i c i

*,Φi( )p mi
* c i ,ci

*, Φi( )p mi mi
*,c ic i

*,Φi( )
= p c i

* Zi ,α ,Σ( )p c i c i
*( )p mi

* c i ,c i
*,Zi ,W,α ,λ ,δ,Σ( )p mi mi

*( )

= 2π( )− J 2 Σ −1 2 exp −.5 ci
* − Ziα( )′ Σ−1 ci

* − Ziα( ) 
  

 
  

⋅ cij χ 0,∞[ ) cij
* − ci#

*( )
#=1

J∏j =1

J∑[ ]
⋅exp −.5 mi

* − ′ u iλ − c i
* − Ziα( )′δ 

  
 
  

2 
 
 

  

 
 
 

  
⋅ mi χ 0,∞[ ) mi

*( )+ 1 − mi( )χ −∞,0( ) mi
*( )[ ].

Since individuals are independent, the joint distribution of observables and latent variables
for all individuals is the product of this expression over !i =1,",n .

Gibbs sampling algorithm.
The posterior density is proportional to the product of the prior density (1) and the

distribution of observables and latent variables (2) over !i =1,",n , taking the observables as
fixed and the unobserved latent variables and parameters as the arguments of the posterior
density. In a Gibbs sampling algorithm (Gelfand and Smith, 1990; Geweke, 1996) the
unobservables are grouped and successive drawings are made for each group. Given weak
regularity conditions, the unique stationary distribution of these repeated drawings is the
posterior distribution. In the algorithm described here there are 2n + 2  groups: !!c i

* i = 1,",n( ) ,

!!mi
* i =1,",n( ), α , and ν . In each case the conditional distribution may be determined by

examining the kernel of the posterior density in the vector being drawn.
The latent vectors !!c i

* i = 1,",n( )  are conditionally independent, with c i
* ~ N c i , H i

−1( ) where
H i = Σ−1 + δ ′ δ , c i = H i

−1 Σ−1Ziα +δ mi
* − ′ u i λ + ′ δ Ziα( )[ ],

and subject to !!cij
* − ci#

* ≥ 0  where j : cij = 1. While the elements of c i
*  can be drawn in succession

using the generic algorithm in Geweke (1991), the fixed structure of Σ  permits a more efficient
procedure. Specifically, it can be shown that conditional on all the other parameters and latent
variables, the j’th element of c i

* , denoted cij
* , is

cij
* ~ N c ij + 1 − J−1 +δ j

2( )−1
J−1 − δ jδ#( )ci#

* − c i#( )
#≠ j∑[ ], 1− J −1 + δj

2( )−1{ },
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truncated to the interval 0,∞( )∩ max#≠ j ci#
* , ∞( ) if j is the observed choice; truncated to the

interval −∞, cik
*( ) if k ≠ j,J( ) is the observed choice; and to −∞,0( ) if k = J  is the observed

choice.
The latent vectors !!mi

* i =1,",n( ) are conditionally independent, with
mi

* ~ N ′ u iλ + ′ δ ci
* − Z iα( ), 1[ ] subject to 2mi −1( )mi

* ≥ 0 .

The conditional distribution of α  is α ~ N α , H α
−1( ) where

H α = Hα + ′ Z i Σ−1 + δ ′ δ ( )Zii=1

n∑
α = Hα

−1 Hα α + ′ Z i Σ−1c i
* + δ ′ δ ci

* − mi
* + ′ u i λ( )[ ]i =1

n∑{ }.

Let ν ′ = λ ′ , δ′ 
 

  
  . The conditional distribution of ν  is ν ~ N ν ,H ν

−1( ) where

H ν =
Hλ 0
0 Hδ

 
 
 

 
 
 +

ui

c i
* − Ziα

 
 
 

 
 
 ′ u i c i

* − Ziα( )′ 
  

 
  i =1

n∑ ,

ν = H ν
−1 Hν ν +

ui

c i
* − Ziα

 
  

 
  
mi

*

i =1

n∑
 

 
 

 

 
 .

Convergence of the algorithm. The conditions set for by Roberts and Smith (1994) for the
posterior distribution to be the unique stationary distribution for a Gibbs sampling algorithm,
described as Gibbs sampler convergence condition 2 in Geweke (1996) are satisfied. The key
technical condition is that the support of the posterior distribution in latent variables and
parameters is connected and upper semicontinuous.

Performance of the Gibbs sampling algorithm in practice. Collect the parameter vectors in
the single vector ′ θ = ′ α , ′ β , ′ γ , ′ δ ( )  and the data in the single vector y. A posterior moment can
then be expressed E g θ( )y[ ]  for the appropriate function of interest g. The Gibbs sampling

algorithm produces serially correlated draws !θ
1( ),",θ M( )  from the posterior distribution. Hence

g θ 1( )( ),",g θ M( )( ) is a sequence of draws from the posterior distribution of g θ( ). The numerical

approximation of g = E g θ( )y[ ]  is g M = M−1 g θ m( )( )
m =1

M∑ . Standard methods for serially

correlated time series (Geweke (1999), Section 3.7) then produce a consistent (in M)
approximation of ˜ σ 2 = limM → ∞ M E g M( ) − g ( )2

. [Expectation in the latter expression is with

respect to the Markov chain that defines the Gibbs sampling algorithm.]
The efficiency of any Markov chain Monte Carlo (MCMC) algorithm can be evaluated by

comparing ˜ σ 2  with the posterior variance of g θ( ), σ 2 = E g θ( )− g [ ]2
y{ }. If the algorithm

produced i.i.d. draws from the posterior distribution, then ˜ σ 2 = σ 2 . More generally, the relative
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numerical efficiency of any MCMC algorithm is RNE = σ 2 ˜ σ 2 . Numerical approximations of
g based on M iterations of the algorithm will have the same accuracy as RNE ⋅ M  iterations from
a hypothetical algorithm that made i.i.d. drawings directly from the posterior distribution. The
ratio of the standard error of approximation ˜ σ 2 M( )1 2

, to the posterior standard deviation σ , is
RNE ⋅ M( )1 2 . For any given posterior distribution and MCMC algorithm, RNE will be different

for different functions of interest.
In the selection model in this study, the most important functions of interest are the hospital

quality probits qj  and hospital severity correlations ρj . In the probit model the most important
functions of interest or the hospital quality probits qj

* . The Gibbs sampling algorithm exhibits

strong serial correlation, and for this reason little is lost by using every 20’th draw (after
discarding the first 15,000). This leaves 1900 draws for the selection model and 1750 draws for
the probit model.

Table A-1 provides some information on the relative numerical efficiency of these draws.
Efficiency in the selection model Gibbs sampling algorithm is much lower than that of the probit
model Gibbs sampling algorithm. This is due mainly to the fact that there are 117 latent variables
corresponding to each observation in the selection model, whereas the probit model has only one.
The median RNE of 1.39 for the probit model qj

*  implies an accuracy of approximation the same

as if 1750 x 1.39 = 2432 draws had been made directly from the posterior distribution. The
median RNE of .0112 for the selection model qj  implies an accuracy of approximation the same
as if 22.1 draws had been made from the posterior. For the ρj  in the selection model the

accuracy is equivalent to that of only 8.1 independent draws from the posterior distribution.
To put these assessments in further context, note that there are two sources of uncertainty

about any function of interest: that contained in the posterior distribution, and that arising from
the finite number of iterations of the MCMC algorithm. The fraction of variance due to the latter
is 1 + RNE ⋅ M( )−1 . At the median, this fraction is 0.04% for the qj

* , 4.5% for the qj , and 11.0%
for the ρj .

Computational time. Using an IBM 332Mhz 604e processor and ESSL matrix computation
routines, the computational time per iteration was approximately 6 minutes. This processor is
comparable to a Pentium III 600. We then used an IBM SP supercomputer with Silver nodes,
each of which has the 604e processor as its base, in order to compute each iteration in parallel.
Two steps were very parallelizable: the *

ijc  can be computed in parallel for each individual, and

the matrix multiplications necessary to compute the conditional posterior of α  can also be
broken up by individual. We were able to reduce the computation time close to proportionally to
the number of processors that we used. For instance, the algorithm took 100 seconds per iteration
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with 4 processors, 60 seconds per iteration with 8 processors ad 33 second per iteration with 20
processors. Thus, computation time for 50,000 iterations with 20 processors is roughly 19 days.
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Table A-1
Some relative numerical efficiencies of the algorithm for various parameters

       Parameters: qj  (117 parameters) ρj  (116 parameters) qj
*  (117 parameters)

Average .0259 .0046 1.75
Lowest .0041 .0028 0.32
Third quartile .0073 .0034 1.03
Median .0112 .0041 1.39
First quartile .0189 .0051 2.05
Highest .5422 .0153 5.47


