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number of approximate types of players and the size of the approximation and
(b) the size of nearly e®ective groups of players and their distance from exact
e®ectiveness. The theorems are based on a new notion of partition-balanced
pro¯les and approximately partition-balanced pro¯les. The results are applied
to a new model of an economy with clubs. In contrast to the extant literature,
our approach allows both widespread externalities and uniform results.

1 Introduction.
We introduce the notion of parameterized collections of games and show that, under
apparently mild conditions, approximate cores of all su±ciently large games without
side payments are nonempty. A collection of games is parameterized by (a) the num-
ber of approximate types of players and the goodness of the approximation and (b) the
size of nearly e®ective groups of players and their distance from exact e®ectiveness.
All games described by the same parameters are members of the same collection. The
conditions required on a parameterized collection of games to ensure nonemptiness
of approximate cores are merely that most players have many close substitutes, per
capita payo®s are bounded (per capita boundedness), and all or almost all gains to
collective activities can be realized by groups bounded in size (small group e®ective-
ness). Per capita boundedness simply rules out arbitrarily large average payo®. The
¯nal condition, small group e®ectiveness, may appear to be restrictive, but, in fact,
in the context of a \pregame," if there are su±ciently many players of each type,
then per capita boundedness and small group e®ectiveness are equivalent (Wooders
1994b).1

As an application of our research, we develop a new model of an economy with
clubs and obtain analogues of our non-emptiness results for games. Following Buchanan
(1962), Shubik and Wooders (1982) and other recent papers, we allow individuals to
belong to multiple clubs. In contrast to prior research in this area, our model allows
utilities from forming a club to be a®ected by the size and composition of the economy
containing the club. For example, there may be widespread externalities.

To position our model and results in the literature, recall that Shapley and Shu-
bik (1966) showed that large replica exchange economies with quasi-linear preferences
have nonempty approximate cores. Under the assumption of per capita boundedness
{ ¯niteness of the supremum of average payo® { Wooders (1980,1983) demonstrated
nonemptiness of approximate cores of large games with and without side payments.
Since then, there have been a number of advances in this literature, including Shubik
and Wooders (1983), Kaneko and Wooders (1982), and Wooders and Zame (1984).
The prior literature on approximate cores of large games all uses the framework of
a pregame. A pregame consists of a compact metric space of player types, possi-

1For related results for games without side payments seeWooders (1991)..
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bly ¯nite, and a worth function ascribing a payo® possibilities set to every possible
group of players. The worth function depends continuously on the types of players
in a coalition. The pregame framework treats collections of games that can all be
described by a single worth function. This has hidden consequences; for example, as
we will illustrate, the equivalence between small group e®ectiveness and per capita
boundedness noted above depends on the structure of a pregame. Moreover, the
pregame framework dictates that the payo® set of a coalition cannot depend on the
total player set of the game in which it is embedded; widespread externalities are
ruled out.2

To illustrate how parameterized collections can treat a broader class of situations
than pregames, consider, for example, a sequence of economies where the nth economy
has n identical players. Due to widespread negative externalities, in the nth economy
each agent can realize a payo® of 1 + 1=n. Also suppose, for simplicity, that in the
nth economy, a coalition containing m · n can realize the total payo® of m(1+ 1=n)
{ within each economy there are no gains to coalition formation. (It is easy to modify
the example to allow such gains.) The pregame framework rules out such sequences
of games. In contrast, parameterized collections of games incorporate games with
widespread externalities and our results apply.3 This example also illustrates that
our club-theoretic results cannot be obtained in the pregame context.

Turning to the motivation for our research, it is well understood that except in
highly idealized situations cores of games may be empty and competitive equilibrium
of economies may not exist. For example, within the context of an exchange econ-
omy, the conditions required for existence of equilibrium typically include convexity,
implying in¯nite divisibility of commodities, and also nonsatiation. Even these two
conditions may well not be satis¯ed; goods are usually sold in pre-speci¯ed units
and there are some commodities that many individuals prefer not to consume. In
economies with congestion, even if preferences and production technologies are con-
vex, the core of the economy may be empty.4 In the context of economies with
coalition structures, such as economies with clubs and/or local public goods, the
added di±culties of endogenous group formation compound the problem; even if,
given club memberships, all conditions for existence of equilibrium and nonemptiness
of the core are satis¯ed in each club, the core may be empty. One possible approach
to the problem of existence of equilibrium is to restrict attention to models where
equilibria exist, for example, economies with continuums of agents. But a model with
a continuum of agents can only be an approximation to a ¯nite economy. Another
approach is to consider solution concepts for which existence is more robust, for ex-

2An exception is Wooders (1983), which allows positive externalities.
3In spirit, the pregame framework is similar to the economic frameworks of Kannai (1970) and

Hildenbrand (1974), for example, while our approach is more in the spirit of the economic models
of Anderson (1978) and Manelli (1991a,b).

4An example making this point appears in Shubik and Wooders (1983).
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ample, approximate equilibria and cores. It seems reasonable to suppose that there
are typically frictions that prevent attainment of an exact competitive equilibrium.
At any time, most markets may have some unsatis¯ed demand or supply and most
purchases might be made at prices that are only close to equilibrium prices. It also
seems reasonable to suppose that there are typically costs of forming coalitions. These
sorts of observations motivate the study of existence of approximate equilibria and
nonemptiness of approximate cores.

Besides assumptions on the structure of the economies or games considered, so-
lution theory also requires behavioral assumptions { the competitive equilibrium re-
quires that individuals take prices as given (by some unknown source) and optimize
while the core is based on the idea that if a group of individuals can be better o®
by forming a coalition and reallocating resources and activities within that coalition,
then they will do so. These behavioral assumptions are problematic, those of the core
perhaps no more so than those of the competitive equilibrium. An alternative to the
behavioral assumption of the core that may be easier for economists to swallow is that
entrepreneurs form coalitions whenever there exists an opportunity to pro¯t from do-
ing so; there are a number of papers in the literature taking this approach or closely
related approaches, for example, Pauly (1967), Shapley and Shubik (1969), Wooders
(1979) and Bennett and Wooders (1979).5 The literature on contestable markets, for
example, Baumol, Panzer and Willig (1982) takes a similar approach; roughly this
literature suggests that the presence of entrepreneurs who are ever-ready to enter a
market if there is an opportunity to pro¯t ensures that prevailing prices are perfectly
competitive. Thus, there is some motivation for both the core and the competitive
equilibrium in the idea that if prices/payo®s are not competitive, pro¯t maximizing
¯rms will enter. From the viewpoint of the behavioral assumptions required, there is
no apparent compelling reason to favor either the core or the competitive equilibrium.

Since the seminal papers of Shubik (1959), Debreu and Scarf (1963) and Aumann
(1964), equivalence of the core and price-taking equilibrium and approximate equiv-
alence has been shown in a variety of contexts, including in economies with coalition
production (Hildenbrand (1974) and BÄohm (1974) for example), in economies with
public goods (Conley (1994) and Vasil'ev, Weber and Wiesmeth (1995) for exam-
ple), economies with local public goods or clubs (several papers referenced herein
{ see Wooders (1999) for further references) and in economies with ¯nite coalitions
and widespread externalities (Hammond, Kaneko and Wooders (1989) and Hammond
(1999) for example). Indeed, with quasi-linear utilitities, large economies, including

5Pauly treats the case of identical players and economies with quasi-transferable utilities. Wood-
ers (1979) treats multiple types; her results are applied in Bennett and Wooders (1979) to problems
of ¯rm formation. For NTU games, it is easy to show that under certain conditions, the core is
equivalent to a \no-entry" equilibrium; such results were obtained in Wooders (1982).

Shapley and Shubik (1969) made the connection between games with side payments and markets,
de¯ned as economies with quasi-linear preferences and concave utlity functions.
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those with nonconvexities, indivisibilities, coalition production, public projects and
clubs are equivalent to markets if and only if small groups are e®ective for the real-
ization of all or almost all gains to coalition formation (Wooders 1994b). All these
results suggest that in diverse large economies, approximate cores are nonempty and
close to competitive outcomes. They also all depend on structures of speci¯c eco-
nomic models. The study of cores of general large games allows us to demonstrate
that certain properties of economies depend only on a few features of the model, most
notably, small group e®ectiveness.6

Finally, the game theoretic environment we consider may be especially well suited
to the core. Since the games treated have many players of each of a relatively few
approximate types, informally, we might expect that some random sorting process
and bargaining may lead to optimal outcomes. In the context of an exchange economy,
results in this spirit have been obtained by a number of authors, most recently Dagan,
Serrano and Volij (1996).

In the remainder of this introduction, we ¯rst discuss our game-theoretic frame-
work and results in more detail and then discuss economies with clubs. Related
literature is discussed in the body of the paper.

1.1 The game-theoretic model and results.
We provide three theorems showing non-emptiness of approximate cores of arbitrary
games. Given the speci¯cation of an approximate core { the particular approximate
core notion and the parameters describing the closeness of the approximation { we
obtain a lower bound ´ on the number of players so that any game in the class
of games described by the speci¯ed parameters with at least ´ players has a non-
empty approximate core. While our three theorems each use di®erent notions of
approximate cores, both the notions of approximate cores and the theorems build
on each other. Our framework encompasses games derived from pregames with or
without side payments and our results encompass, as special cases, a number of non-
emptiness of approximate core results in the literature. In the concluding section
of the current paper we remark on other applications of the notion of parametrized
collections of games.

Our ¯rst result, for the "-remainder core, requires a ¯nite integer number T of
types of players and a bound B on e®ective group sizes. Roughly, a payo® vector is
in the "-remainder core if it is in the core of a subgame containing all but a fraction
" of the players. The result provides a lower bound, depending on T;B; and ", on
the number of players required to ensure nonemptiness of the "-remainder core for
all games with T types and bound B on e®ective group sizes: An important aspect
of this result, like the result of Kaneko and Wooders (1982), is that the conclusion

6This has been the motivation of a continuing line of research on large games. See, for example,
the discussions in Wooders (1979,1983,1994a,b,1999).
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is independent of the payo® sets for the games. The result is eminently applicable
to models with bounded coalition sizes, such as marriage and matching games (cf.,
Kelso and Crawford (1982) or Roth and Sotomayor (1992)).

The "-core of a game is the set of feasible payo® vectors that cannot be improved
upon by any coalition of players by at least " for each member of the coalition. A
payo® vectors is in the "1-remainder "2-core if it induces a payo® vectors in the "2-
core of a subgame containing all but a fraction "1 of the players. Our non-emptiness
theorem for the "1-remainder "2-core requires only that groups bounded in size are
e®ective for the realization of almost all gains to cooperation. Instead of the assump-
tion of a ¯nite number of types, to show non-emptiness of the "1-remainder "2-core
we require only that there be a partition of the set of players into a ¯nite number of
approximate types. Such an assumption would be satis¯ed by games derived from a
pregame with a compact metric space of player types, for example.

Under two additional restrictions on the class of games, we obtain a nonemptiness
result for "-cores. The restrictions are that: (a) per capita payo®s are bounded; and
(b) the games are strongly comprehensive (that is, the boundaries of the total payo®
set are bounded away from being \°at"). A corollary relaxes assumption (b).

1.2 Economies with clubs.
There are now numerous papers in the literature studying cores and equilibria of
economies with local public goods, where a feasible state of the economy includes
a partition of the set of agents into disjoint jurisdictions or clubs for the purposes
of collective consumption of public goods within each club or jurisdiction.7 There
have been far fewer works on economies where an agent can belong to multiple clubs.
In this paper we develop a model of an economy with clubs where: (a) an agent
may belong to multiple clubs { indeed, as many clubs as there are groups containing
that agent; (b) all agents may di®er from each other; (c) each club may provide a
unique bundle of goods and/or services, including private goods, public goods subject
to exclusion, and conviviality; and (d) the payo® set of a club may depend on the
economy in which it is embedded { widespread externalities are permitted.

A club is a group of people who collectively consume and/or produce a bundle of
goods and/or services for the members of the club. Often clubs have been treated
as synonymous with coalitions of agents providing congestable and excludable public
goods for their members. We observe, however, that clubs engage in a variety of
activities. These activities may or may not require input of private goods. The goods
provided by the club may include the enjoyment of the company of the other club
members. In clubs of intellectuals, the exchange of ideas may be the aspect of the
club that brings enjoyment to its members. Clubs may provide only private goods;

7Some early papers include, for example, Wooders (1978) and Greenberg and Weber (1986). See
Conley and Wooders (1995) and Konishi, Le Breton, and Weber (1998) for more recent references.
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for example, many academic departments have co®ee clubs. Other clubs o®er some
goods and/or services to the general public. Some sorts of clubs o®er private goods
and/or services to their members in addition to public goods. There is frequently
no requirement that members of the same club consume the same bundles of goods.
Thus, in this paper for each club we assume that there is an abstract set of feasible
club activities.8

It may be the case that some sorts of clubs are ruled out for legal, technical, or
social reasons. For example, a marriage may be viewed as a club, and polyandrous
marriages may be illegal. Thus, for each coalition of agents in the economy there is an
admissible club structure of that coalition. Admissible club structures are required
to satisfy certain natural properties. In addition our model is required to satisfy the
conditions that: (a) average utilities are bounded independently of the size of the
economy; and (b) as the economy grows large, there is a limit to increasing returns
to club size.

Although the conditions on our model are remarkably non-restrictive, by appli-
cation of our game-theoretic results we are able to show several forms of the result
that approximate cores of large economies { with su±ciently many players { are non-
empty. Our result applies simultaneously to all games in a parameterized collection.

1.3 Organization of the paper.
The paper is organized as follows. The next section introduces the basic de¯nitions,
including the notion of parametrized collections of games. Section 3 presents our
three theorems on non-emptiness of approximate cores in the order presented above.
Section 4 consists of our club model and results. Section 5 presents the mathematical
foundation and a new mathematical result on approximate balancedness of large
pro¯les of player sets. Section 6 concludes the body of the paper. Appendix 1
contains the proofs and Appendix 2 presents some additional examples, illuminating
the mathematics of our results.

2 De¯nitions.

2.1 Cooperative games: description and notation.
Let N = f1; :::; ng denote a set of players. A non-empty subset of N is called a
coalition. For any coalition S let RS denote the jSj-dimensional Euclidean space
with coordinates indexed by elements of S. For x 2 RN ; xS will denote its restriction
to RS. To order vectors in RS we use the symbols >>; > and ¸ with their usual
interpretations. The non-negative orthant of RS is denoted by RS+ and the strictly

8The notion of public projects, introduced in Mas-Colell (1980) and extended to local public
projects in Manning (1992) and a number of subsequent papers, is related.
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positive orthant by RS++. We denote by ~1S the vector of ones in RS, that is, ~1S
= (1; :::; 1) 2 RS. Each coalition S has a feasible set of payo® or utility vectors
denoted by VS ½ RS. By agreement, V; = f0g and Vfig is non-empty, closed and
bounded from above for any i. In addition, we will assume that

max
n
x : x 2 Vfig

o
= 0 for any i 2 N ;

this is by no means restrictive since it can always be achieved by a normalization.
It is convenient to describe the feasible payo® vectors of a coalition as a subset of

RN . For each coalition S let V (S), called the payo® set for S, be de¯ned by

V (S) :=
n
x 2 RN : xS 2 VS and xa = 0 for a =2 S

o
:

A game without side payments (called also an NTU game or simply a game)
is a pair (N; V ) where the correspondence V : 2N ¡! RN is such that V (S) ½n
x 2 RN : xa = 0 for a =2 S

o
for any S ½ N and satis¯es the following properties :

(2.1) V (S) is non-empty and closed for all S ½ N .

(2.2) V (S) \ RN+ is bounded for all S ½ N , in the sense that there is a real number
K > 0 such that if x 2 V (S) \RN+ ; then xi · K for all i 2 S.
(2.3) V (S1

S
S2) ¾ V (S1) + V (S2) for any disjoint S1; S2 ½ N (superadditivity).

We next introduce the uniform version of strong comprehensiveness assumed for
our third approximate core result. Roughly, this notion dictates that payo® sets are
both comprehensive and uniformly bounded away from having level segments in their
boundaries. Consider a set W ½ RS. We say that W is comprehensive if x 2W and
y · x implies y 2 W . The set W is strongly comprehensive if it is comprehensive,
and whenever x 2W; y 2W; and x < y there exists z 2W such that x << z:9Given
(i) x 2 RS, (ii) i; j 2 S, (iii) 0 · q · 1 and (iv) " ¸ 0; de¯ne a vector xqi;j(") 2 RS;
where

(xqi;j("))i = xi ¡ ";
(xqi;j("))j = xj + q"; and
(xqi;j("))k = xk for k 2 Sn fi; jg :

The set W is q-comprehensive if W is comprehensive and if, for any x 2 W , it holds
that (xqi;j(")) 2W for any i; j 2 S and any " ¸ 0.10 This condition for q > 0 uniformly

9Informally, if one person can be made better o® (while all the others remain at least as well o®),
then all persons can be made better o®. This property has also been called \nonleveledness."

10The notion of q-comprehensiveness can be found in Kaneko and Wooders (1996). For the
purposes of the current paper, q-comprehensiveness can be relaxed outside the individually rational
payo® sets.
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bounds the slopes of the Pareto frontier of payo® sets away from zero. Note that for
q = 0; 0-comprehensiveness is simply comprehensiveness. Also note that if a game
is q-comprehensive for some q > 0 then the game is q0-comprehensive for all q0 with
0 · q0 · q:

Let VS ½ RS be a payo® set for S ½ N: Given q, 0 · q · 1; let W qS ½ RS be
the smallest q-comprehensive set that includes the set VS.11 For V (S) ½ RN let us
de¯ne the set cq(V (S)) in the following way:

cq(V (S)) :=
n
x 2 RN : xS 2W qS and xa = 0 for a =2 S

o
:

Notice that for the relevant components { those assigned to the members of S { the
set cq(V (S)) is q-comprehensive, but not for other components. With some abuse
of the terminology, we will call this set the q-comprehensive cover of V (S): When
q > 0 we can think of a game as having some degree of \side-paymentness" or as
allowing transfers between players, but not necessarily at a one-to-one rate. This is
an eminently reasonable assumption for games derived from economic models.

A game with side payments (also called a TU game) is a game (N; V ) with
1-comprehensive payo® sets, that is V (S) = c1(V (S)) for any S ½ N: This im-
plies that for any S ½ N there exists a real number v(S) ¸ 0 such that VS =n
x 2 RS :

P
i2S xi · v(S)

o
. The numbers v(S) for S ½ N determine a function v

mapping the subsets of N to R+. Then the TU game is represented as the pair
(N; v).

2.2 Parameterized collections of games.
To introduce the notion of parameterized collections of games we will need the concept
of Hausdor® distance. For every two non-empty subsets E and F of a metric space
(M; d); de¯ne the Hausdor® distance between E and F (with respect to the metric d
on M), denoted by dist(E;F ), as

dist(E;F ) := inf f" 2 (0;1) : E ½ B"(F ) and F ½ B"(E)g ;

where B"(E) := fx 2M : d(x;E) · "g denotes an "-neighborhood of E.
Since payo® sets are unbounded below, we will use a modi¯cation of the concept

of the Hausdor® distance so that the distance between two payo® sets is the distance
between the intersection of the sets and a subset of Euclidean space. Let m¤ be a
¯xed positive real number. Let M¤ be a subset of Euclidean space RN de¯ned by
M¤ :=

n
x 2 RN : xa ¸ ¡m¤ for any a 2 N

o
. For every two non-empty subsets E

and F of Euclidean space RN let H1[E;F ] denote the Hausdor® distance between
11Notice that there exist q-comprehensive sets that contain VS, speci¯cally RS: The set W q

S is the
intersection of all q-comprehensive sets containing VS .
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E\M¤ and F\M¤ with respect to the metric kx¡ yk1 := maxi jxi ¡ yij on Euclidean
space RN .

The concepts de¯ned below lead to the de¯nition of parameterized collections
of games. To motivate the concepts, each is related to analogous concepts in the
pregame framework.

±¡substitute partitions: In our approach we approximate games with many players,
all of whom may be distinct, by games with ¯nite sets of player types. Observe that
for a compact metric space of player types, given any real number ± > 0 there is a
partition (not necessarily unique) of the space of player types into a ¯nite number
of subsets, each containing players who are \±-similar" to each other. Parameterized
collections of games do not restrict to a compact metric space of player types, but do
employ the idea of a ¯nite number of approximate types.

Let (N;V ) be a game and let ± ¸ 0 be a non-negative real number. A ±-substitute
partition is a partition of the player set N into subsets with the property that any
two players in the same subset are \within ±" of being substitutes for each other.
Formally, given a set W ½ RN and a permutation ¿ of N , let ¾¿ (W ) denote the set
formed fromW by permuting the values of the coordinates according to the associated
permutation ¿ . Given a partition fN [t] : t = 1; ::; Tg of N , a permutation ¿ of N is
type ¡ preserving if, for any i 2 N; ¿ (i) belongs to the same element of the partition
fN [t]g as i. A ±-substitute partition of N is a partition fN [t] : t = 1; ::; Tg of N with
the property that, for any type-preserving permutation ¿ and any coalition S,

H1
h
V (S); ¾¡1¿ (V (¿(S)))

i
· ±:

Note that in general a ±-substitute partition of N is not uniquely determined.
Moreover, two games may have the same partitions but have no other relationship to
each other (in contrast to games derived from a pregame).

(±,T )- type games. The notion of a (±,T )-type game is an extension of the notion of
a game with a ¯nite number of types to a game with approximate types.

Let ± be a non-negative real number and let T be a positive integer. A game (N; V )
is a (±; T )-type game if there is a T -member ±-substitute partition fN [t] : t = 1; ::; Tg
of N . The set N [t] is interpreted as an approximate type. Players in the same element
of a ±-substitute partition are ±-substitutes. When ± = 0; they are exact substitutes.

pro¯les. Another notion that arises in the study of large games is that of the pro¯le
of a player set, a vector listing the number of players of each type in a game. This
notion is also employed in the de¯nition of a parameterized collection of games, but
pro¯les are de¯ned relative to partitions of player sets into approximate types.
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Let ± ¸ 0 be a non-negative real number, let (N; V ) be a game and let
fN [t] : t = 1; ::; Tg be a partition of N into ±-substitutes. A pro¯le relative to fN [t]g
is a vector of non-negative integers f 2 ZT+ and a subpro¯le s of a pro¯le f is a pro¯le
satisfying the condition that s · f . Given S ½ N the pro¯le of S is a pro¯le, say
s 2 ZT+, where st = jS \N [t]j : A pro¯le describes a group of players in terms of
the numbers of players of each approximate type in the group. Let kfk denote the
number of players in a group described by f , that is, kfk =

P
ft.

¯¡e®ective B¡bounded groups: In all studies of approximate cores of large games,
some conditions are required to limit gains to collective activities, such as bounded-
ness of marginal contributions to coalitions, as in Wooders and Zame (1984,1989) or
the less restrictive conditions of per capita boundedness and/or small group e®ective-
ness, as in Wooders (1983,1994a,b), for example. Small groups are e®ective if all or
almost all gains to collective activities can be realized by groups bounded in size of
membership. The following notion formulates the idea of small e®ective groups in
the context of parameterized collections of games.

Informally, groups of players containing no more than B members are ¯-e®ective
if, by restricting coalitions to having fewer than B members, the loss to each player is
no more than ¯: This is a form of small group e®ectiveness for arbitrary games. Let
(N;V ) be a game. Let ¯ ¸ 0 be a given non-negative real number and let B be a given
positive integer. For each group S ½ N; de¯ne a corresponding set V (S;B) ½ RN in
the following way:

V (S;B) :=
[ "X

k
V (Sk) :

n
Sk

o
is a partition of S,

¯̄
¯Sk

¯̄
¯ · B

#
.

The set V (S;B) is the payo® set of the coalition S when groups are restricted to
have no more than B members. Note that, by superadditivity, V (S;B) ½ V (S) for
any S ½ N and, by construction, V (S;B) = V (S) for jSj · B. We might think of
cq(V (S;B)) as the payo® set to the coalition S when groups are restricted to have
no more than B members and transfers are allowed between groups in the partition.
If the game (N; V ) has q-comprehensive payo® sets then cq(V (S;B)) ½ V (S) for any
S ½ N: The game (N; V ) with q-comprehensive payo® sets has ¯-e®ective B-bounded
groups if for every group S ½ N

H1 [V (S); cq(V (S;B))] · ¯.

When ¯ = 0, 0-e®ective B-bounded groups are called strictly e®ective B-bounded
groups.

parameterized collections of games Gq((±; T ); (¯;B)). With the above de¯nitions in
hand, we can now de¯ne parameterized collections of games.
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Let T and B be positive integers and let q be a real number, 0 · q · 1. Let
Gq((±; T ); (¯;B)) be the collection of all (±; T )-type games that have q-comprehensive
payo® sets and ¯-e®ective B-bounded groups.

Less formally, given non-negative real numbers q; ¯ and ±; and positive integers
T and B; a game (N; V ) belongs to the class Gq((±; T ); (¯;B)) if:

(a) the payo® sets satisfy q-comprehensiveness;

(b) there is a partition of the total player set into T sets where each element of the
partition contains players who are ±-substitutes for each other; and

(c) almost all gains to collective activities (with a maximum possible loss of ¯ for
each player) can be realized by partitions of the total player sets into groups
containing fewer than B members.

Our results hold for all parameters ± and ¯ that are su±ciently small, that is,
2(± + ¯) < m¤; where m¤ is a positive real number used in the de¯nition of the
Hausdor® distance. (Since m¤ can be chosen to be arbitrarily large, this requirement
is nonrestrictive.)

the equal-treatment property. Let (N; V ) be a (±,T )-type game, let x be a payo® vector
and let S ½ N . We say that x is equal treatment on S if, for each t = 1; :::; T and each
i; j 2 N [t]\S; it holds that xi = xj. For S = N , we say that x has the equal-treatment
property or is an equal treatment payo® vector.

The equal-treatment property of the core and approximate cores is treated in
Kovalenkov and Wooders (1997b) and in a sequel to this paper. It's useful, however,
in describing our results to have these de¯nitions in hand.

3 Non-emptiness of approximate cores of games.
the core and the "-core. Let (N;V ) be a game. A payo® vector x is "-undominated
if, for all S ½ N and y 2 V (S); it is not the case that yS >> xS + ~1S". The payo®
vector x is feasible if x 2 V (N). The "-core of a game (N; V ) consists of all feasible
and "-undominated payo® vectors. When " = 0, the "-core is the core.

3.1 The "-remainder core.
The concept of the "-remainder core is based on the idea that all requirements of
the core should at least be satis¯ed for almost all players with the remainder of
players representing a small fraction of \unemployed" or \underemployed" players.
This approximate core notion can be viewed as a stepping stone to other notions
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of approximate cores. There are game-theoretic situations, however, in which the
notion of the "-remainder core may naturally arise { for example, the demand games
of Selten (1981).

the "-remainder core. Let (N; V ) be a game. A payo® vector x belongs to the "-
remainder core if, for some group S ½ N , jN j¡jSj

jN j · " and xS belongs to the core of
the subgame (S; V ).

Note that the following theorem requires no restrictions on the degree of compre-
hensiveness { the usual notion of comprehensiveness su±ces.

Theorem 1. Non-emptiness of the "-remainder core. Let T and B be positive
integers. For any " > 0; there exists an integer ´1("; T; B) such that if

(a) (N; V ) 2 Gq((0; T ); (0; B)) and
(b) jN j ¸ ´1("; T; B)

then the "-remainder core of (N;V ) is non-empty.

While the assumptions of Theorem 1 are strong { a ¯xed number T of exact
player types and strictly e®ective groups of size less than or equal to B; they provide
a strong conclusion. The theorem states that for any " > 0 there exists a lower
bound ´1("; T; B) on the number of the players such that all games satisfying the
assumptions with more than ´1("; T; B) players have non-empty "-remainder cores.
Since the bound depends only on "; T; and B, the bound is uniform across all the
games characterized by the parameters; there is no restriction to replica games. Our
result extends the result of Kaneko and Wooders (1982) from replication sequences
to arbitrary large games. As in Kaneko and Wooders (1982) the result is independent
of the characteristic function of the games; the same bound holds for all games in the
collection parameterized by T and B.

To illustrate the application of Theorem 1, consider the collection of all games
with at most two types of players and with two-person e®ective coalitions { marriage
games, buyer-seller games, coalition production economies where two and only two
workers are required for a productive coalition, and so on. Note that this collection of
games cannot be described by a pregame { the collection is too large and cannot be
accomodated by one space of player types and one worth function. Our result shows
that given " > 0; provided the number of players in the game is su±ciently large; any
game in the collection has a nonempty "-remainder core. In Appendix 2 we provide
another example illustrating application of the result.

3.2 Some preliminary intuition.
To give some intuition into Theorem 1 and the following Theorems, consider a par-
ticular game were all players are identical and only two-player coalitions are e®ective.
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It is immediate that the core of the game is nonempty if there is an even number
of players. In fact, any even replication of a given game has a nonempty core. This
doesn't depend on the payo® sets of the games; instead, it re°ects the fact that any
set with an even number of players can be partitioned into two-person \optimal"
coalitions. When the total number of players is odd, one player can be assigned his
individually rational payo®; thus, given " > 0, for all su±ciently large total player
sets, the "-remainder core is nonempty.12

For sequences of games with a ¯xed distribution of player types and e®ective
coalition sizes bounded by a positive integer B, for any game in the sequence there
is a replication of the player set for which the core is non-empty { there are no
\left-overs"; this follows from the fact that \minimal balancing weights" are rational
numbers, an observation made by Shapley (1967) and applied in the study of large
games in Wooders (1979,1980,1983).13 Formally, there is an integer r0 such that in
the r0th replicated game there are more than B players of each type. Since minimal
balancing weights are rational numbers, there is an integer r1 that clears all denom-
inators of all minimal balancing weights for the r0th replicated game. E®ectively,
balanced collections of coalitions for the r0th replicated game become partitions in
the r1r0th replicated game. Thus, payo® vectors for the balanced cover of the r0th
game, replicated r1 times, are feasible payo® vectors for the r1r0th replicated game.
Since no new improving opportunities arise when the r0th game is replicated (from
boundedness of e®ective group sizes) replications of payo® vectors in the core of the
balanced cover of the r0th game cannot be improved upon in the r1r0th replicated
game. Moreover, for any positive integer `, payo®s in the core of the balanced cover
of the r0th game, replicated `r1 times are in the cores of the `r1r0th replicated game
(Wooders (1979,1983), Kaneko and Wooders (1982)).

With e®ective group sizes bounded by B and a ¯nite number of types of players,
large player sets can be partitioned so that most players are in optimal coalitions.
The argument above is for replication sequences. Demonstrating that this holds in
general is the purpose of our fundamental proposition, the balancing e®ect of large
numbers, provided in Section 5.

With the balancing e®ect of large numbers in hand, Theorem 1 is immediate.
12This intuition, for the case of identical players, already appears in Pauly (1970) and Shubik

(1971). (Pauly's assumption in the two-type case, relating marginal contributions of players of
di®erent types to the worths of coalitions, are quite restrictive and in fact imply that there is no loss
in e±ciency in mixing both types. A paper demonstrating this result is available on request from
Myrna Wooders.)

13The balanced cover of a game without side payments is another game with the same payo® sets
for proper subsets of players and with the payo® set to the total player set enlarged su±ciently so
that Scarf's (1967) Nonemptiness Theorem for the core of a balanced game can be applied. Roughly,
balancedness of a game requires that there is no possible gain to allowing fractional coalitions, where
the fractions can be assumed to be rational. The set of minimal balancing weights is just the smallest
set of fractional coalitions that need be considered for Scarf's Theorem to apply.
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Theorems 2 and 3 follow by approximation arguments. The games considered ap-
proximate the class of games treated in Theorem 1.

3.3 The "1-remainder "2-core.
For a less restrictive de¯nition of the approximate core we can treat a signi¯cantly
more general class of games than those of Theorem 1, in particular, we can allow
approximate types (± > 0) and almost e®ective groups (¯ > 0). For example, the
class of models covered by our next Theorem includes replica models of economies
with private goods as in Debreu and Scarf (1963) and models of local public good
economies satisfying per capita boundedness, as in Wooders (1988).

the "1-remainder "2-core. Let (N; V ) be a game. A payo® vector x belongs to the
"1-remainder "2-core if there for some group S ½ N , jN j¡jSj

jN j · "1 and xS belongs to
the "2-core of the subgame (S; V ).

The following result extends the nonemptiness results of Wooders (1980,1983,1992),
Shubik and Wooders (1983), and Wooders and Zame (1984,1989) from pregames to
parameterized collections of games. For the same values of the parameters T and B
the bound on the sizes of games in the following theorem can be chosen to equal the
bound in the preceding theorem. Note that there are no restrictions on the value of
q { strong comprehensiveness is not required.

Theorem 2. Non-emptiness of the "-remainder (± + ¯)-core. Let T and B be
positive integers. For any " > 0 there exists an integer ´1("; T; B) such that if

(a) (N; V ) 2 Gq((±; T ); (¯;B)) and
(b) jN j ¸ ´1("; T; B)

then the "-remainder (± + ¯)-core of (N;V ) is non-empty.

To describe the intuition behind Theorem 2, we begin with the same sort of
example as discussed above where only two-player coalitions are e®ective. Suppose
now that only two-player coalitions are e®ective but that the players are not identical,
they are only all ±-substitutes for each other. Suppose that the total number of players
is even. Consider a feasible payo® vector x that assigns the largest possible amount
of payo® to each player, subject to the constraint that x has the equal-treatment
property. Since all players are ±-substitutes, no two players can improve on x by
more than ± for each player. Thus, x is in the ±-core. If there is an odd number of
players and if " > 1

jN j then the "-remainder ±-core is nonempty; one player can be
assigned his individually rational payo®.

Now let us suppose that two-person coalitions are only ¯-e®ective. When jN j is
even, selecting x as in the preceding paragraph will lead to a payo® vector in the
(± + ¯)-core. When jN j is odd, the "-remainder (± + ¯)-core is nonempty for any "
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satisfying " > 1
jN j ; again, one player can be assigned his individually rational payo®.

In e®ect, a parameterized collection of games Gq((±; T ); (¯;B)), by its de¯nition, can
be approximated by the collection Gq((0; T ); (0; B)):

Observe that by de¯nition the "-remainder 0-core coincides with the "-remainder
core. Therefore, Theorem 2 is a strict generalization of Theorem 1 (Theorem 1 is a
subcase for ± = ¯ = 0). But both Theorem 1 and Theorem 2 are based on the idea
that some small proportion of the players can be ignored. An example in Appendix
2 illustrates this point.

3.4 The "-core.
Our third Theorem provides conditions for the non-emptiness of the "-core of large
games. The proof is based on the idea of compensating the \remainder" players
from the previous theorems, as in Wooders (1980,1983) and a number of subsequent
papers. This compensation is possible under q-comprehensiveness (with q > 0) and
one more condition, typically called per capita boundedness.

per capita boundedness. Let C be a positive real number. A game (N;V ) has a per
capita payo® bound of C if, for all coalitions S ½ N ,

X

a2S
xa · C jSj for any x 2 V (S).

Theorem 3. Non-emptiness of the (" + ± + ¯)-core. Let T and B be positive
integers. Let C and q be positive real numbers. Then for each " > 0 there exists an
integer ´2("; T; B; C; q) such that if:

(a) (N; V ) 2 Gq((±; T ); (¯;B)),
(b) (N;V ) has per capita payo® bound C, and
(c) jN j ¸ ´2("; T;B; C; q)

then the ("+ ± + ¯)-core of (N;V ) is non-empty.

To describe the intuition behind Theorem 3, return again to the situation where all
players are identical, only two-player coalitions are e®ective and jN j is odd. Suppose
also that this is a game with side payments and any two-person coalition can earn 1;
thus, the payo® vector (12 ; :::;

1
2 ; 0) is feasible. Then for any " satisfying " jN j > 1

2 the
payo® vector (12¡"; :::; 12¡"; y) is in the "-core where y = (jN j¡1)". Informally, we can
make transfers of " from each of jN j¡ 1 players in optimal coalitions to the reminder
player so that every player has a payo® of at least (12 ¡ "). It follows that no group
of players can signi¯cantly improve (by more than " in this case) upon such a payo®.
The feature that per capita payo®s are bounded puts an upper bound on the required
transfer to the remainder players. In games without side payments, the feature that
q is greater than zero means that a small amount of payo® can be transferred from
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players in optimal coalitions to remainder players (but not necessarily at a one-to-one
rate) until the remainder players are as well o® as those players in optimal coalitions,
with the consequence that no group of players can signi¯cantly improve upon the
resulting payo® vector.

Now return to the situation where two-player coalitions are ¯-e®ective and all
players are ±-substitutes for each other. As we've observed, if jN j is odd, the (±+¯)-
core may be empty. When per capita payo®s are bounded and there is some means
of making transfers (q > 0) then, for su±ciently large jN j ; it's possible to begin
with some payo® vector in the "-remainder (± + ¯)-core, and make transfers to the
remainder players so that, no coalition could improve on the resulting payo® by
"+ ¯ + ± for each player.

We note that the assumption of per capita boundedness is actually stronger than
required. For our proofs (as the proof of Wooders (1983)) we may use only the fact
that the set of equal-treatment payo® vectors satisfy the per capita boundedness
condition.

Indispensability of the conditions of Theorem 3 is demonstrated by the examples
in Subsection 3.6 and in Appendix 2. The following Corollary shows that Theorem
3 can be applied to obtain non-emptiness of approximate cores of games that are
\close" to q-comprehensiveness games (with q > 0).14 The proof of this result is left
to the reader.

Corollary. Non-emptiness with near q-comprehensiveness. Let (N;W ) be
a game. Suppose that for some q > 0; " > 0; and ° > 0 there exist a game
(N;V ) 2 Gq((±; T ); (¯;B)) such that:

(a) (N; V ) has per capita payo® bound C,
(b) jN j ¸ ´2("; T; B; C; q) and
(c) H1[W (S); V (S)] · °

2 for all S ½ N:
Then the ("+ ± + ¯ + °)-core of (N;W ) is non-empty.

InWooders (1983), to obtain nonemptiness of approximate cores, q-comprehensiveness
is not required. To obtain her equal-treatment result, however, as noted previously
Wooders employs approximating games satisfying strong comprehensiveness. A sim-
ilar idea is at work in our Corollary. If there is another game (N; V ) with payo® sets
close { within °2 { to those of (N;W ) and (N; V ) satis¯es the conditions of Theorem
3, it is not necessary that the game (N;W ) itself satis¯es those conditions. In these
circumstances, we can ¯nd a payo® vector that is in the (" + ± + ¯)-core of (N; V )
and adjust this payo® vector so that it's in the (" + ± + ¯ + °)-core of (N;W ). In
essence, this is similar to the sort of approximation technique used for our Theorems
2 and 3.

14Any comprehensive payo® set can be approximated arbitrarily closely by a q-comprehensive
payo® set, for q small (Wooders 1983, Appendix).
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3.5 A simple example of a production economy.
The following example illustrates the application of our results to a familiar sort of
situation { one with ¯rms and workers. The example also illustrates the application
of our results to situations where there is a compact metric space of player types,
essentially a special case.

Example 1. Suppose a pregame has two sorts of players, ¯rms and workers.15 The
set of possible types of workers is given by the points in the interval [0; 1) and
the set of possible types of ¯rms is given by the points in the interval [1; 2] :
To derive a game from the information given above, let N be any ¯nite player
set and let » be an attribute function, that is, a function from N into [0; 2]. In
interpretation, if »(i) 2 [0; 1) then i is a worker and if »(i) 2 [1; 2] then i is a
¯rm. Firms can pro¯tably hire up to three workers and the payo® to a ¯rm
i and a set of workers W (i) ½ N , containing no more than 3 members, is given
by v(fig S

W (i)) = »(i) +
P
j2W (i) »(j): Workers and ¯rms can earn positive

payo® only by cooperating so v(fig) = 0 for all i 2 N . For any coalition S ½ N
de¯ne v(S) as the maximum payo® the group S could realize by splitting into
coalitions containing either workers only, or 1 ¯rm and no more than 3 workers.
This completes the speci¯cation of the game.

We leave it to the reader to verify that for any positive integerm every game de-
rived from the pregame is a member of the classG1(( 1

m ; 2m); (0; 4)) and has a per
capita bound of 2. Theorem 3 states that given " > 0; if jN j ¸ ´2("; 2m; 4; 2; 1)
then the game (N; v) has a non-empty (" + 1

m)-core. In fact, Theorem 3 states
this conclusion for an arbitrary game (N;V ) described by the same parameter
values, T = 2m; B = 4; ± + ¯ = 1

m ; C = 2 and q = 1:

3.6 Per capita boundedness and small group e®ectiveness.
Our ¯nal result, Theorem 3, requires both per capita boundedness and small group
e®ectiveness. As noted previously, in the context of pregames with side payments,
when arbitrarily small percentages of players of any particular type is ruled out, then
these two conditions are equivalent. But in important economic contexts, neither
condition implies the other. The next example illustrates a voting games satisfying
per capita boundedness. There is only one player type in each game so the \thick-
ness" condition of Wooders's (1994b) equivalence result is satis¯ed. But small group
e®ectiveness does not hold and Theorem 3 does not apply.

15We refer the reader to Wooders and Zame (1984) or Wooders (1992) for a de¯nition of a pregame
(with side payments) with a compact metric space of player types. For games without side payments,
see Kaneko and Wooders (1996) or Wooders (1991), for example.
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Example 2. Voting games. Consider a sequence of games (Nm; vm)1m=1 with
side payments and where the mth game has 3m players. Suppose that there
are widespread positive externalities so that in the mth game, any coalition
S consisting of at least 2m players can get up to 2m units of payo® to divide
among its members, that is, vm(S) = 2m. Assume that if jSj < 2m; then
vm(S) = 0.

We can think of the games as a sequence of voting games where a winning coali-
tion must contain 2

3 of the population, for example, impeachment of a President
of the United States or rati¯cation of a treaty in some parliaments.

Observe that each game in the sequence has one exact player type and a per
capita bound of 1. That is, q = 1; T = 1; C = 1; and ± = 0: However, the 1

7 -core
of the game is empty for arbitrarily large values of m:

To see that the 1
7-core is empty, observe that for any feasible payo® vector there

are m players that are assigned, in total, no more than 2m
3mm = 2

3m: There are
another m players that get in total no more than 2m

2mm = m: These 2m players
can form a coalition and receive 2m in total. This coalition can improve upon
the given payo® vector for each of its members by 1

6 ; since (2m¡ 5
3m) 1

2m = 1
6 :

The following example, of matching games with widespread positive externali-
ties, illustrates economic situations where, because of small group e®ectiveness, "-
remainder cores are nonempty for positive ", but per capita boundedness does not
hold and Theorem 3 does not apply.

Example 3. A matching game with widespread positive externalities.16 The eco-
nomic situation we've in mind is one where any two players can carry out
some job but their reward from the job depends on the size of the economy in
which they live. (It would be easy to modify the example to become a two or
many-sided matching game.) Consider a sequence of games with side payments
(Nm; vm)1m=1 where the mth game has 2m+ 1 players: Assume that any player
alone can get only 0 units or less, that is vm(fig) = 0 for all i 2 N . Also
assume that any two-player coalition can get up to 2m units of payo® to divide;
vm(S) = 2m if jSj = 2. An arbitrary coalition can gain only what it can obtain
in partitions where no member of the partition contains more than two players.

The games (Nm; vm)1m=1 are members of the collection of games with one exact
player type and strictly e®ective small groups of two. That is, q = 1; T =
1; B = 2; and ± = ¯ = 0: Given " > 0 the "-remainder core of the game
(Nm; vm) is nonempty for all m satisfying 1

2m+1 < ". However, the
1
7-core of the

game is empty for arbitrarily large values of m; the remainder player cannot be
16A similar example in Wooders and Zame (1984).
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compensated by the sum of taxes on the players in two-person coalitions:

To see that the 1
7-core is empty, observe that for any feasible payo® vector

there is a player whose payo® is no more than 2m2

2m+1 : There is another player
whose payo® must be no more than 2m2

2m = m: These two players may form a
coalition and realize 2m: Thus they gain m ¡ 2m2

2m+1 = m
2m+1 ¸ m

3m = 1
3 : Obvi-

ously, together this two-player coalition can improve upon the given payo® by
1
6 for each member of the coalition:

3.7 Remarks.
Remark 1. q-comprehensiveness or convexity? It is possible to obtain a result
similar to Theorem 3 using convexity of payo® sets and \thickness" instead of q-
comprehensiveness (see Kovalenkov and Wooders 1997a). Strong comprehensiveness,
however, can be naturally satis¯ed by games derived from economies. Moreover,
\1-strongly comprehensive games" are games with side payments, so we can incor-
porate this important special case. Furthermore, in models of economies with local
public goods or with clubs, convexity may be di±cult to satisfy. Although exam-
ples show that none of the assumptions can be omitted, our Corollary relaxes q-
comprehensiveness.

Remark 2. Explicit bounds. It may be possible to compute the bounds on the
size of the total player sets given in Theorems 1, 2, and 3 in terms of the parame-
ters describing the games. A simple bound is obtained in Kovalenkov and Wooders
(1997b), although under somewhat di®erent assumptions. Also, the proofs of that
paper, relative to those of this paper, are quite complex.

Remark 3. Absolute or relative sizes? It is possible to obtain similar results with
bounds on relative sizes of e®ective coalitions. In a ¯nite game with a given number
of players, assumptions on absolute sizes and on relative sizes of e®ective coalitions
are equivalent. We have chosen to develop our results using bounds on absolute sizes
of near-e®ective coalitions since this seems to re°ect typical economic and social sit-
uations. Examples include: marriage and matching models (see Kelso and Crawford
(1982) and Roth and Sotomayor (1990)); models of economies with shared goods and
crowding (see Conley and Wooders (1998) for a survey); and private goods exchange
economies (see Mas-Colell (1979) and Kaneko and Wooders (1989) for example). In
fact, assumptions on proportions of economic agents typically occur only when there
is a continuum of players, cf. Ostroy (1984).

Remark 4. Limiting gains to coalition formation. In the pregame framework several
di®erent conditions limiting returns to coalition formation have been used. For situa-
tions with a ¯xed distribution of a ¯nite number of player types, Wooders (1980,1983)
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and Shubik and Wooders (1983) require per capita boundedness. To treat compact
metric spaces of player types, Wooders and Zame (1984,1989) require boundedness of
marginal contributions to coalitions while Wooders (1992,1994a,b) requires the less
restrictive condition of small group e®ectiveness. As noted in the introduction, in
the context of games derived from pregames, small group e®ectiveness and per capita
boundedness are equivalent. In Subsection 3.5, we have shown that in the broader
framework of parameterized collections of games both ¯-e®ective B-bounded groups
and per capita boundedness are required.

4 Economies with clubs.
We de¯ne admissible club structures in terms of natural properties and take as given
the set of all admissible club structures for each coalition of agents. Generalizing
Mas-Colell's (1980) notion of public projects to club activities, there is no necessary
linear structure on the set of club activities. Indeed, our results could be obtained
even without any linear structure on the space of private commodities. We remark
that it would be possible to separate crowding types of agents (those observable
characteristics that a®ect the utilities of others, or, in other words, their external
characteristics) from taste types, as in Conley and Wooders (1996,1997), and have
agents' roles as club members depend on their crowding types. In these papers,
however, the separation of crowding type and taste type has an important role; the
authors show that prices for public goods { or club membership prices { need only
depend on observable characteristics of agents and not on their preferences. The
current paper treats only the core so the separation of taste and crowding type would
have no essential role and therefore is not made.

agents. There are T \types" of agents. Let m = (m1; :::;mT ) be a given pro¯le, called
the population pro¯le. The set of agents is given by

Nm = f(t; q) : q = 1; :::;mt and t = 1; :::; T g;

and (t; q) is called the qth agent of type t. It will later be required that all agents of
the same type may play the same role in club structures. For example, in a traditional
marriage model, all females could have the role of \wife". De¯ne Nm[t] := f(t; q) :
q = 1; :::;mt g. For our ¯rst Proposition members of Nm[t] will be exact substitutes
for each other and for our next two Propositions, approximate substitutes.

commodities. The economy has L private goods. A vector of private goods is denoted
by y = (y1; :::; y`; :::; yL) 2 RL+.

clubs. A club is a subset of agents. For each S ½ Nm, a club structure of S, denoted by
S, is a set of clubs whose union coincides with S: The non-empty set of admissible club
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structures for S is denoted by C(S). These sets are required to satisfy the following
two properties:

1. If S and S 0 are disjoint subsets of agents and S and S 0 are club structures of
S and S 0 respectively, then fC : C 2 S S S 0 g is a club structure of S

S
S 0

(unions of admissible club structures of disjoint coalitions are club structure of
the unions of the coalitions).

2. Let S and S0 be subsets of agents with the same pro¯les, let S be a club
structure of S and let ' be a type-preserving 1-1 mapping from S onto S 0 (that
is, if (t; q) 2 S then '((t; q)) = (t; q0) for some q0 = 1; :::;mt). Then

S 0 = fC ½ S 0 : '¡1(C) 2 Sg

is a club structure of S 0 (admissible club structures depend only on pro¯les,
that is, all agents of the same type have the same roles in clubs).

Note that it follows from the de¯nition of the admissible club structures that the
partition of any set S into singletons is always an admissible club structure for S.
The ¯rst assumption is necessary to ensure that the game derived from the economy
is superadditive. It corresponds to economic situations where one option open to a
group is to form smaller groups. The second assumption corresponds to the idea that
the opportunities open to a group depend on the pro¯le of the group.

club activities. For each club C there is a set of club activities A(C): An element
® of A(C) requires input x(C; ®) 2 RL of private goods. For any two clubs C
and C 0 with the same pro¯le we require that if ® 2 A(C), then ® 2 A(C 0) and
x(C; ®) = x(C 0; ®): For 1-agent clubs f(t; q)g, we assume that there is an activity ®0
with x(f(t; q)g; ®0) = 0, that is, there is an activity requiring no use of inputs.

preferences and endowments. Only private goods are endowed. Let !tq 2 RL+ be the
endowment of the (t; q)th participant of private goods.

Given S ½ Nm, (t; q) 2 S, and a club structure S of S, the consumption set of
the (t; q)th agent (relative to S) is given by

©tq (S) := X tq(S) £
Y

C2S
A(C);

where Xtq(S) ½ RL is the private goods consumption set relative to S, assumed to
be closed. Thus, the entire consumption set of the (t; q)th agent is given by

©tq :=
[

S½Nm:(t;q)2S

[

S2C(S)
©tq (S) :
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We assume that the (t; q)th agent can subsist in isolation. That is

(!tq; ®0) 2 ©tq (f(t; q)g) :
It is also assumed that for each (t; q); each S ½ Nm; (t; q) 2 S, and each club

structure S of S, the preferences of the (t; q)th agent are represented by a continuous
utility function utq(¢;S) de¯ned on ©tq(S).

states of the economy. Let S be a non-empty subset of Nm and let S be a club
structure of S. A feasible state of the economy S relative to S, or simply a state for
S, is a pair (yS ; ®S) where:

(a) yS = fytqg(t;q)2S with ytq 2 Xtq(S) for (t; q) 2 S;
(b) ®S = f®CgC2S with ®C 2 A(C) for C 2 S; and
(c) the allocation of private goods is feasible, that is,

X

C2S
x(C; ®C) +

X

(t;q)2S
ytq =

X

(t;q)2S
!tq:

feasible payo®s vectors. A payo® vector U = (¹utq)(t;q)2Nm is feasible for a coalition
S if utq = 0 for all (t; q) 2 NmnS and there is club structure S of S and a feasible
state of the economy for S relative to S; (yS ; ®S); such that utq = utq(ytq; ®S ;S) for
each (t; q) 2 S.

the game induced by the economy. For each coalition S ½ Nm; de¯ne
V (S) = f(butq)(t;q)2Nm : there is a payo® vector (¹utq)(t;q)2Nm

that is feasible for S and butq · utq for all (t; q) 2 Sg:
It is immediate that the player set Nm and function V determine a game (Nm; V )
with comprehensive payo® sets.

"-domination. Let Nm be a club structure of the total agent setNm and let (yNm ; ®Nm)
be a feasible state of the economy Nm relative to Nm . A coalition S can "-dominate
the state (yNm ; ®Nm) if there is a club structure S = fS1; :::; SKg of S and a feasible
state (y0S ; ®0S) for the economy S such that for all consumers (t; q) 2 S it holds that

utq(y0tq; ®0S;S) > utq(ytq; ®S ;Nm) + ":
the core of the economy and "-cores. The state (yNm; ®Nm) is in the core of the econ-
omy if it cannot be improved upon by any coalition S. It is clear that if (yNm ; ®Nm) is
a state in a core of the economy then the utility vector induced by that state is in the
core of the induced game. Similarly, if (¹utq)(t;q)2Nm is in a core of the game then there
is a state in the core of the economy (yNm ; ®Nm) such that the utility vector induced
by that state is (¹utq)(t;q)2Nm . Notions of the "-remainder core, the "-remainder "-core,
and the "-core of the economy are de¯ned in the obvious way.
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4.1 Non-emptiness of approximate cores.
To obtain our results we require few restrictions on the economy. Our ¯rst Proposition
requires exact player types and strictly e®ective small groups.

(A.0) For each t and all q; q0 2 f1; :::;mtg; utq(¢) = utq0(¢) and !tq = !tq0 : In ad-
dition, in the game induced by the economy the players (t; q) and (t; q0) are
exact substitutes. (All agents of the same type are identical in terms of their
endowments, preferences and crowding types { their e®ects on others.)

(A.1) There is a bound B such that for any population pro¯le m; any coalition S ½
Nm; and any club structure S of S, if U = (¹utq : (t; q) 2 S) is a feasible payo®
vector for the club structure S then there is a partition of S into coalitions, say
fS1; :::; SKg and club structures of these coalitions, fS1; :::;SKg such that for
each k

¯̄
¯Sk

¯̄
¯ · B and Uk := (utq : (t; q) 2 Sk) is a feasible payo® vector for Sk:

Our approach requires that the set of individually rational and feasible outcomes
is compact. It is possible to introduce conditions on the primitives of the economy
as, for example, Debreu's (1962) condition of positive semi-independence, but for the
purposes of this application, we will simply assume compactness.

(A.2) For each subset of agents S ½ Nm the setV (S) \RN+ is compact.

The following result is an immediate application of Theorem 1.

Proposition 1. Non-emptiness of the "-remainder core. Let T and B be
positive integers. Assume (A.0)-(A.2) hold. Given " > 0; there exists an integer
´1("; T;B) such that if m, the pro¯le of the economy, satis¯es the property that
kmk ¸ ´1("; T; B) then the "-remainder core of the economy is non-empty.

Proposition 1 is most natural if there is only one private good or if private goods
are indivisible so that all gains from trade in private goods can be realized by trade
within coalitions of bounded sizes. If we require only non-emptiness of the "-remainder
"-core we can weaken the restrictions on the economy { players of the same type need
only be approximate substitutes and small groups need only be nearly e®ective. For
brevity, these assumptions will not be made on the primitives of the economy. Thus,
instead of (A.0) and (A.1), for the following two Propositions, we will assume (A.00)
and (A.10):

(A.00) For some ± ¸ 0 the players in the set Nm[t] = f(t; q) : q = 1; :::;mtg are
±-substitutes for each other in the game induced by the economy.

(A.10) There is an ¯ ¸ 0 and an integer B so that the game derived from the economy
has ¯-e®ective B-bounded groups.
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Then the following result, for the "1-reminder "2-core, follows from Theorem 2.

Proposition 2. Non-emptiness of the "-remainder (± + ¯)-core. Let T and
B be positive integers. Assume (A.00), (A.10) and (A.2) hold. Given " > 0; there
exists an integer ´1("; T; B) such that if m, the pro¯le of the economy, satis¯es the
property that kmk ¸ ´1("; T;B) then the "-remainder (±+ ¯)-core of the economy is
non-empty.

For our next result, we require that each agent always owns some commodity
which other agents value. Speci¯cally, we assume that the Lth commodity is a \quasi-
money" with which everyone is endowed and for which everyone has a separable
preference. In the following, let ytq¡L; and X

tq
¡L(S) denote the restriction of ytq and

Xtq(S) respectively to their ¯rst (L¡ 1) coordinates. We also assume that, for some
real number q¤ 2 (0; 1], the marginal utility of the Lth commodity, for all su±ciently
large amounts of the commodity, is greater than or equal to q¤:

(A.3) ( q¤-comprehensiveness): For good L and all participants (t; q) 2 Nm there is
a positive real number º such that !tqL ¸ º > 0 (everybody is endowed with the
Lth good). Moreover, for any state of the economy (yS; ®S) we have :

(a)X tq(S) = X tq¡L(S)£R+ (the consumption set is separable and the projection
of the Lth coordinate is R+),

(b) utq(ytq; ®S;S) = utq¡L(ytq¡L; ®S ;S)+utqL (ytqL ; ®S ;S) for some functions utq¡L(¢; ¢)
and utqL (¢; ¢) (utility is separable),

(c) for a real number q¤; 0 < q¤ · 1; for all players (t; q) the marginal utility of
the (t; q)thplayer for the Lth good on the range (º2 ;1) is between q¤ and 1.

(A.4) (per capita boundedness): There is a constant C such that the condition of
per capita boundedness is satis¯ed by the games derived from the economies.

Assumption (A.3) ensures that the remainder players can be \paid o®," (at the rate
q¤) so that they cannot pro¯tably join improving coalitions.17 Alternatively, it could
simply be assumed that utility functions are linear in one commodity. (That is,
utq(xtq; ®S ;S) = utq¡L(x

tq
¡L; ®S ;S) + xtqL :) This implies q¤-comprehensiveness of the

game derived from the economy. Then the next result follows from Theorem 3.
17Such an assumption, in the literature on private goods economies with indivisibilities, goes back

at least to Broome (1972). It was introduced in the club/local public good literature in several
papers due to Wooders, for example, Wooders (1988). It is possible to weaken (A.3) to the sort of
assumption introduced in Hammond, Kaneko and Wooders (1989), that the endowment is preferred
to any bundle containing only indivisible (in our case, club) goods but, for our purposes here, we
prefer assumptions that make the results transparent.
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Proposition 3. Non-emptiness of the (" + ± + ¯)-core. Let T and B be
positive integers. Let C be a per capita bound and q¤ be positive real numbers.
Assume that (A.00), (A.10), (A.2)-(A.4) hold. Given " > 0; there exists an inte-
ger ´2("; T; B; C; q¤; º) such that if m; the pro¯le of the economy, satis¯es kmk ¸
´2("; T;B;C; q¤; º) then the ("+ ± + ¯)-core of the economy is non-empty.

4.2 Further applications.
The class of economies de¯ned above is very broad. The results can be applied to
extend results already in the literature on economies with coalition structures, such
as those with local public goods (called club economies by some authors), cf., Shubik
and Wooders (1982).

For example, there are a number of papers showing core-equilibrium equivalence
in ¯nite economies with local public goods and one private good and satisfying strict
e®ectiveness of small groups, cf., Conley and Wooders (1995) and references therein.
In these economies, from the results of Wooders (1983) and Shubik and Wooders
(1983), existence of approximate equilibrium where an exceptional set of agents is
ignored is immediate. (Just take the largest subgame having a non-empty core and
consider the equilibria for that subeconomy; ignore the remainder of the consumers.)
Our results allow the immediate extension of these results to results for all su±ciently
large economies { no restriction to replication sequences is required.

5 Mathematical foundations: Partition-balanced
pro¯les.

This section formalizes some key ideas about pro¯les that underlie the non-emptiness
of approximate cores of large games. Throughout this section, let the number of types
of players be ¯xed at T . Thus, every pro¯le f has T components and f 2 RT . Our
key de¯nitions follow.

B{partition-balanced pro¯les. A pro¯le f is B-partition-balanced if any game (N; V ) 2
Gq((0; T ); (0; B)) where the pro¯le of N is f (that is, jN [i]j = fi for any i = 1; ::; T )
has a nonempty core.

replicas of a pro¯le. Given a pro¯le f and a positive integer r; the pro¯le rf is called
the rth replica of f:

The Lemma below is a very important step. It states that, for any pro¯le f; there
is a replica of that pro¯le that is B-partition-balanced. The smallest such replication
number is called the depth of the pro¯le. Note that the depth of a pro¯le depends on
the pro¯le.
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Lemma 1. (Kaneko and Wooders, 1982, Theorem 3.2)18 The balancing
e®ect of replication. Let B be a positive integer and let f be any pro¯le. Then
there is an integer r(f;B); the depth of f , such that, for any positive integer k, the
pro¯le kr(f;B)f is B-partition-balanced.

We refer the reader to Kaneko and Wooders (1982) for a proof. This result partially
extends the earlier result, discussed in Subsection 3.2, that for sequences of games
with a ¯xed distribution of player types, when all gains to improvement can be realized
by coalitions bounded in size, there is a replication of any game in the sequence with
the property that the replicated game has a nonempty core (Wooders (1979, 1983)).
The following concept of "-B-partition-balanced pro¯les completes our construction.

"-B-partition-balanced pro¯les. Given a positive integer B and a non-negative real
number "; 0 · " · 1; a pro¯le f is "-B-partition-balanced if there is a subpro¯le f 0 of
f such that kf 0k

kfk ¸ 1 ¡ " and f 0 is B{partition-balanced.

The next result is key: given " > 0 and B; any su±ciently large pro¯le is "-B-
partition-balanced. Note that this result is uniform across all large pro¯les.

Fundamental Proposition. The balancing e®ect of large numbers. Given a
positive integer B and a positive real number "; 0 < " · 1; there is a positive integer
k("; B) such that any pro¯le f with kfk ¸ k(";B) is "-B-partition-balanced.

The idea of the proof: Lemma 1 provides a way to replicate a pro¯le that ensures "-
B-partition-balancedness of the resulting replica. The manner of replication depends
on the initially given pro¯le. Using Lemma 1, however, for any given " we can
construct a number of \small" pro¯les that, when appropriately replicated, create
B-partition-balanced replicas that \"-approximate" all su±ciently large pro¯les. The
proof is presented in Appendix 1.

6 Conclusions.
Except in certain idealized situations, cores of games are typically empty. This has the
consequences that important classes of economies typically have empty cores and a
competitive equilibrium does not exist. Examples include economies with indivisibil-
ities and other nonconvexities, economies with public goods subject to crowding, and
production economies with non-constant returns to scale. The standard justi¯cation
for convexity, assumed in Arrow-Debreu-McKenzie models of exchange economies, is
that the economies are \large," rendering nonconvexities negligible { the convexifying

18For a recent discussion and an interesting application of this sort of result to dynamic matching
processes, see Myerson (1991).
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e®ect of large numbers. Similarly results on non-emptiness of approximate cores rely
on large numbers of players and the balancing e®ect of large numbers. An important
aspect of our results in this paper is that they are for arbitrary games and the bounds
depend on the parameters describing the games; the compact metric space of player
types assumed in previous work is a special case. Moreover, our approach allows both
widespread externalities and uniform results.

It appears that the framework of parametrized collections of games and our ap-
proach will have a number of uses. In ongoing research this framework is used to
demonstrate further market-like properties of arbitrary games19: approximate cores
are nearly symmetric { treat similar players similarly; arbitrary games are approxi-
mately market games and; arbitrary games satisfy a \law of scarcity," dictating that
an increase in the abundance of players of a given type does not increase the core
payo® vectors to members of that type. In addition, some initial results have been
obtained on convergence of cores and approximate cores. A particularly promising
direction appears to be the application of ideas of lottery equilibrium in games of
Garratt and Qin (1996) to parameterized collections of games. Another possible ap-
plication is to games with asymmetric information, as in Allen (1994), for example,
and Forges (1998).20

7 Appendix 1: Proofs.
A technical lemma is required. Denote by k¢k the sum-metric in RT , that is, for
x; y 2 RT ; kx¡ yk :=

P
i jxi ¡ yij. Let us consider the simplex in RT+: 4+ :=n

¸ 2 RT+ :
PT
i=1 ¸i = 1

o
: For any positive integer ´; let us de¯ne the following ¯nite

set in the simplex:
4´ :=

n
x 2 4+ : ´x 2 ZT+

o
:

Finally, let us de¯ne ´(") = min
n
´ 2 Z+ : ´ ¸ T

"

o
. Now we can state the lemma.

Lemma 2. For each " > 0 and for any f 2 RT+ there is a vector g 2 RT+ satisfying
g · f; kfk ¡ kgk = kf ¡ gk · " kfk and g

kgk 2 4´("):

Proof of Lemma 2: Let us ¯rst prove that (1+")4+ ½ 4´(")+" 4+: Consider any
a = (a1; ::; aT ) 2 (1 + ")4+: (That is

PT
i=1 ai = 1+ " and ai ¸ 0 for each i = 1; ::; T:)

Let us de¯ne Ik 2 RT such that Ikl = 1 for k = l and 0 otherwise. Notice that
Ik 2 4´(") for any k: If there exist j such that aj ¸ 1; then (a¡ Ij) 2 " 4+ and thus

19See Shapley and Shubik (1966,1969) for seminal results of this nature and Wooders (1994a,b) for
more recent references to related results in the context of pregames and economies with clubs/local
public goods.

20We are grateful to Francoise Forges for pointing out this possible application.
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a = Ij+(a¡Ij) 2 4´(")+"4+: If aj < 1 for any j; then let us consider aj =
lj
´(")+rj,

where lj is an integer, lj < ´("); and 0 · rj < 1
´(") : Then

a = (a1; ::; aT ) 2 (
l1
´(")
; ::;

lT
´(")

) +
T
´(")

4+ ½ 4´(") +
T
´(")

4+ ½ 4´(") + "4+:

Now given a pro¯le f , observe that f
kfk 2 4+ ½ (4´(")+"4+) 1

1+" : Therefore there
exists h 2 1

1+"4´(") such that f
kfk 2 (fhg + "

1+"4+): Now, de¯ne g := h kfk : Then
g · f and, by construction, g

kgk = (1 + ")h 2 4´("): Moreover kfk¡kgk
kfk = 1 ¡ 1

1+" =
"

1+" < ":

Proof of Fundamental Proposition: Given a positive integer ´; we ¯rst de¯ne
an integer that will play an important role in the proof. Arbitrarily select x 2 4´
and de¯ne y(x) := ´x 2 ZT+: Since y(x) is a pro¯le, by Lemma 1 there is an integer
r(y(x); B) such that for any integer k the pro¯le kr(y(x); B)y(x) is B-partition-
balanced: There exists such an integer r(y(x); B) for each x 2 4´: Since 4´ contains
only a ¯nite number of points, there is a ¯nite integer M(´;B) such that M(´;B)

r(y(x);B) is
an integer for any x 2 4´:

By Lemma 2, given "2 > 0; there exists a positive integer ´0 := ´( "2); such that for
any f 2 RT+ there exists a vector g 2 RT+ satisfying

g · f;
kfk ¡ kgk = kf ¡ gk · "

2 kfk and
g
kgk 2 4´0 :

Arbitrarily select f 2 RT+ and let g 2 RT+ be a vector satisfying the above condi-
tions. De¯ne y¤ := ´0 gkgk . Since g

kgk 2 4´0; it holds that y¤ 2 ZT+: Therefore y¤ is a
pro¯le. Moreover, by the choice of M(´0; B); the kM(´0; B)th-replica of the pro¯le y¤
is B-partition-balanced for any integer k:

Observe that there is an integer k0; possibly equal to zero, such that

k0M(´0; B)y¤ · g < (k0 + 1)M(´0; B)y¤:

De¯ne
f 0 := k0M(´0; B)y¤ = k0M(´0; B)´0

g
kgk :

Obviously, f 0 is a pro¯le (f 0 2 ZT+) and f 0 · g · f: Suppose that k0 > 0: Then

f 0

kf 0k =
g

kgk and kgk ¡ kf 0k = kg ¡ f 0k ·M(´0; B)´0:

Moreover, the pro¯le f 0 is B-partition-balanced since it is a replica of the pro¯le y¤:
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Now, de¯ne k(";B) :=M(´0; B)´0 2" : If kfk ¸ k("; B); then

k0 > 0; f 0 · g · f ,
kf ¡ gk · "

2 kfk ; and
kg ¡ f 0k ·M(´0; B)´0 · "

2 kfk :

Therefore kfk ¡ kf 0k = kf ¡ f 0k · " kfk : Thus f 0 is a subpro¯le of f , kf
0k

kfk ¸ 1 ¡ ";
and f 0 is B-partition-balanced.

Proof of Theorem 1: Fix the number of types T and consider the bound k(";B)
from the Fundamental Proposition. Let ´1(";B; T ) := k("; B): Let (N; V ) be a game
with jN j ¸ k("; B). Denote the pro¯le of N by f: By the Fundamental Proposition,
f is "-B-partition-balanced. That is, there is a B-partition-balanced subpro¯le f 0

of f such that kf 0k
kfk ¸ 1 ¡ ": Now select some S ½ N such that jS [i]j = f 0i for any

i = 1; ::; T: Then jN j¡jSj
jN j · " by choice of S and the subgame (S; V ) has a non-empty

core. Thus the "-remainder core of (N; V ) is non-empty.

Proof of Theorem 2: For any S ½ N de¯ne V 0(S) :=
T
¾¡1¿ (V (¿ (S))); where

the intersection is taken over all type-preserving permutations ¿ of the player set
N . Then (N;V 0) 2 Gq((0; T ); (¯;B)). Moreover, from the de¯nition of V 0(S) it fol-
lows that V 0(S) ½ V (S): (Informally, taking the intersection over all type-preserving
permutations makes all players of each approximate type no more productive than
the least productive members of that type.) From the de¯nition of ±-substitutes, it
follows that H1[V 0(S); V (S)] · ± for any S ½ N .

Now for any S ½ N , de¯ne V q(S) := cq(V 0(S;B)). Then (N; V q) 2 Gq((0; T ); (0; B)).
Moreover, V q(S) ½ V 0(S) ½ V (S) and H1[V q(S); V (S)] · H1[V q(S); V 0(S)] +
H1[V 0(S); V (S)] · ¯ + ±.

By Theorem 1, if jN j ¸ ´1("; T;B) then the "-remainder core of the game (N; V q)
is non-empty. That is, there exists S ½ N such that jN j¡jSj

jN j · " and such that (S; V )
has a non-empty core. Let x be a payo® vector in the core of the game (S; V q). Since
V q(S) ½ V (S), the payo® vector x is feasible and (¯ + ±)-undominated for the game
(S; V ). Thus, the "-remainder (± + ¯)-core of (N;V ) is non-empty.

Proof of Theorem 3: As in the proof of Theorem 2 ¯rst construct the game
(N;V q) 2 Gq((0; T ); (0; B)). As noted in the proof of Theorem 2, V q(S) ½ V (S) and
H1[V q(S); V (S)] · ¯ + ± for any S ½ N . In addition, the game (N; V q) has a per
capita bound of C. We required that 2(¯ + ±) < m¤. Assume ¯rst that 2" · m¤:
Thus ("+ ¯ + ±) < m¤.

Applying Theorem 1 for "0 := q
BC " to the game (N; V q) we found that for jN j ¸

´1("0; B; T ) there is some subset of players S ½ N with jN j¡jSj
jN j · "0 such that the

game (S; V q) has a non-empty core. Let x be a payo® vector in the core of (S; V q).
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We now construct a payo® vector y 2 RN for the game (N;V ): For a 2 S, de¯ne
ya := xa ¡ " and for a =2 S, de¯ne ya := BC ¡ ". Observe that y is in the "-core of
the game (S; V q).

We next need to show that y 2 V q(N). Since jN j¡jSj
jN j · "0 = q

BC ", it holds that

q" jN j ¸ BC(jN j ¡ jSj):

Since q · 1, it follows that

q" jSj ¸ (BC ¡ ")(jN j ¡ jSj):

Informally, this means that we can take " away from each player in S, transfer
this amount to the players in NnS at the rate q; and increase the payo® to each
player in NnS to BC ¡ ": Therefore since x 2 V q(S); by superadditivity and by
q-comprehensiveness of payo® sets it holds that y 2 V q(N).

We now prove that the payo® vector y is "-undominated in the game (N; V q).
The strategy of the proof is to show that if y is "-dominated in the game (N; V q)
then it can be "-dominated by some coalition (to be called) A ½ S: We thus obtain
a contradiction. The proof proceeds through two steps.

The ¯rst step is to construct the coalition A. Suppose that y is "-dominated in the
game (N; V q) by some coalition W: Speci¯cally, suppose there exists a payo® vector
z such that

z 2 V q(W ) = cq(V q(W ;B)) and

zW >> yW +~1W ":

Since z 2 V q(W ) there exists some partition
n
W k

o
of W;

¯̄
¯W k

¯̄
¯ · B and some payo®

vector z0 2 P
k V q(W k) such that z can be obtained from z0 by making \transfers" at

the rate q between agents in W: Let

A :=
[ n
W k : W k ½ S

o
and let AL :=

[ n
W k :W knS 6= ;

o
;

that is, A consists of those members of subsets in fW kg that are contained in S and
AL consists of those members of subsets of fW kg that contain at least one player
from NnS:

The second step is to show that the set A is non-empty and can "-dominate the
payo® vector y. Since y is in the "-core of the subgame (S; V q) it is clear that the
coalition W must contain at least one member of NnS; therefore the set AL must
be non-empty. Observe that for any W k ½ AL and x0 2 V q(W k); it holds thatP
a2Sk x0a · BC: There exists, however, a 2 W knS such that za >> ya + " = BC:

Thus, z can be feasible in V q(W ) only by some transfers from the players in the set A
to the players in the set AL: This implies that the set A is non-empty. Moreover the
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coalition A is not a net bene¯ciary of transfers needed to support the payo® vector z:
This implies that there is a payo® vector z00 2 V q(A) such that for all players a 2 A;

z00a ¸ za > ya + ":

Since A ½ S; this is a contradiction to the construction of y as a payo® vector in
the "-core of the game (S; V q): We conclude that y is "-undominated in the game
(N;V q).

Since the payo® vector y is "-undominated in the game (N;V q), for jN j ¸
´1( qBC "; B; T ) the payo® vector y is in the "-core of the game (N; V q). This implies
that y is feasible and (" + ¯ + ±)-undominated in the initial game (N; V ), providing
that jN j ¸ ´1( qBC "; B; T ). Let ´2("; B; T; C; q) := ´1( qBC "; B; T ). Thus, we proved
that for jN j ¸ ´2("; B; T;C; q) the ("+ ¯ + ±)-core of the game (N; V ) is non-empty.

For " > m¤
2 let us de¯ne ´2("; B; T;C; q) := ´2(m

¤
2 ; B; T; C; q). Then for jN j ¸

´2(";B; T;C; q) again the ("+ ¯ + ±)-core of the game (N;V ) is non-empty.

8 Appendix 2: Mathematical Examples.
In the following example we enlarge the player set of a given game so that the number
of players of each type is arbitrary and illustrate the conditions of Theorem 1.

Example A1. Let (N;V ) be a game satisfying comprehensiveness. Suppose jN j =
T:We construct a collection of games with T player types and strictly e®ective
group sizes bounded by B = T: The games are indexed by m 2 ZT+: Given a
vector m de¯ne Nm[t] = f(t; q) : q = 1; :::;mtg and de¯ne Nm =

S
Nm[t]: Next,

de¯ne a characteristic function Vm in the following way. Let S be any coalition
in Nm containing no more than one player from each set Nm[t] and let S 0 be a
subset of N with the same pro¯le. Formally, let ¿ be a type-consistent 1-to-1
correspondence between S and S 0: De¯ne a payo® set VmS for a coalition S as
follows:

VmS := V¿(S)
That is, any coalition S of players in Nm with the same pro¯le as some coalition
S 0 of players in N has the same payo® possibilities as S 0. The function Vm is
extended to the remaining coalitions in Nm by superadditivity. Speci¯cally, for
any S ½ Nm;

Vm(S) :=
[

P(S)

X

S02P(S)
Vm(S 0)

where P(S) is a partition of S with the property that jS 0 \N [t]j · 1 for all
members S 0 of the partition: The game (Nm; Vm) satis¯es the condition on the
class of games of Theorem 1.

Theorem 1 implies that given " > 0 there is a size of game ´1("; T; B) such
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that for all possible choices of m, if kmk = jNmj ¸ ´1("; T;B) then the game
(Nm; Vm) has a non-empty "-remainder core. But the theorem implies more;
the bound ´1("; T;B) is independent of the initial characteristic function V . To
clarify this remark, let (N; V 0) be another game with the same player set as
(N;V ) but there is no necessary relationship between V and V 0: Then for all
possible choices of m, if kmk = jNmj ¸ ´1("; T;B) then the game (Nm; V 0m) has
a non-empty "-remainder core where V 0m is de¯ned from V 0 just as Vm was
de¯ned from V .

The following example continues Example A1 and illustrates the application of
Theorem 2.

Example A2. Let ¹ > 0 be real number and let B and T be positive integers.
Consider the collection of games (Nm; Vm) de¯ned in Example A1. Given a
pro¯lem 2 ZT+ with kmk ¸ ´1("; T; B) consider a superadditive game (Nm;Wm)
satisfying the following properties:

Vm(S) ½Wm(S) ½ Vm(S) + ~1Nm¹ for all S ½ Nm:

For the game (Nm;Wm) it may be that none of the players are exact substitutes
for each other and it may be that there are increasing returns to group size.
The games (Nm;Wm); however, are members of the class G0((¹; T ); (¹;B)) and
Theorem 2 applies. Given " > 0 the bound ´1("; T; B); depending only on "; T;
and B; has the property that if the game Nm has more than ´1("; T;B) players
the "-remainder 2¹-core of the game is non-empty. Theorem 2 applies uniformly
to all games (Nm; Vm) derived from a game (N; V ) that has T types of players
and strictly e®ective groups bounded in size by B:

The ¯nal example motivates the requirement of some transferability of payo®,
and, in this paper, the condition of Theorem 3 that q is greater than zero.

Example A3. The positivity of q. Consider a sequence of games without side
payments (Nm; V m)1m=1 where the mth game has 2m+ 1 players: Suppose that
any player alone can earn only 0 units or less. Suppose that any two-player
coalition can distribute a total payo® of 2 units in any agreed-upon way, while
there is no transferability of payo® between coalitions. Suppose only one- and
two-player coalitions are e®ective. Then the game is described by the following
parameters: q = 0; T = 1; B = 2; ± = ¯ = 0: Moreover, the game has per capita
bound C = 1: Thus the game satis¯es strict small group e®ectiveness and per
capita boundedness. However, the 1

3-core of the game is empty for arbitrarily
large values of m: (At any feasible payo® vector, at least one player gets 0 units
and some other player no more than 1 unit. These two players can form a
coalition and gain 1

2 each.)
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