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0. INTRODUCTION

The subject matter of this paper is a simple problem. Comparative statics in the

classic expenditure minimization problem.1 The proposed approach is novel and the

ensuing comparative statics results both new and useful, it is hoped. The approach is

perhaps best understood as an extension of revealed preference analysis.

Within a discrete comparative statics environment, the intuition for the proposed

approach is very simple. We wish to give sufficient conditions for a good to be a

net substitute of another good. Suppose we are presented with a pair of bundles,

candidates for being expenditure minimizing bundles at a relevant pair of prices, which

contradicted the net substitute condition for the good in question. Suppose also that

in such a case we could pinpoint to another pair of bundles, which themselves were

candidates for being expenditure minimizing at the same price-utility configurations,

and which did indeed satisfy the net substitute condition for the same good. If the

level of utility at the four bundles could be related in such a way as to exclude the

possibility that the original pair were indeed expenditure minimizing, then we would

have sufficient conditions for the comparative statics problem at hand.

This is indeed what the theorems of this paper state, albeit somewhat more formally.

But this simple intuition is the guiding light. It suggests that in this discrete com-

parative statics framework, we are to seek informative binary comparisons between

bundles. Such comparisons will be all the more meaningful if they are transitive, and

indeed if the underlying binary relations are reflexive, antisymmetric and transitive

(partial orders). Thus we exploit the order structure of the consumption set, as a

partially ordered set with partial order(s) which give rise to the required comparative

statics implications. Next, our intuition suggests that we are to search systematically

for alternative pairs of bundles which can be used to exclude candidate pairs of bundles

from being expenditure minimizing, if they do not satisfy the required comparative

statics result. Joins and meets provide the natural candidates for such alternative

pairs of bundles. Thus, in addition to the order structure of the consumption set, we

also exploit the induced lattice structure of the set. The final step in our intuition is to

relate the level of utility at an original pair of bundles, with the proposed alternative

pair, their join and meet. We can do this with the supermodular class of properties on

1The producer cost-minimization problem is analogous. We refer only to the consumer problem in
this paper for convenience.
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functions (see Milgrom and Shannon (1994) and also Veinott (1992)). We have thus

all the ingredients for the proposed lattice programming approach. It relies on the or-

der/lattice structure of the problem without recourse to the topological properties of

the problem (as in the standard implicit function theorem based comparative statics

analysis).

Lattice programming methods have a relatively short, but remarkable, track record

in economics. Milgrom and Shannon (1994) introduced ordinal lattice programming

methods to economics.2 Their main comparative statics theorem states that if a func-

tion which is being maximized is quasi-supermodular3 and the constraint sets, within

a lattice, are strong set comparable, then and only then, the corresponding optimizer

sets are strong set comparable and the optimized objective is itself quasi-supermodular

in the relevant parameters of the problem. As suggested above, quasi-supermodularity

relates to the behavior of functions at the join (least upper bound) and meet (greatest

lower bound) of a pair of points, vis-à-vis its values at the original pair of points.

Strong set comparability is set comparability that again utilizes the lattice structure

of the underlying set (unlike say set inclusion which does not) comparing the set

inclusion of joins and meets of pairs of points in the sets to be compared.4

This is an impressive and general result. The issue is the applicability of this

theorem (as well as adjacent theorems by Milgrom and Shannon (1994), Veinott,

(1992), Antoniadou, (1996), and others) to a variety of economics problems, something

which can be surprisingly difficult in problems with budgetary trade-offs between

variables. The application presented here demonstrates how such difficulties may be

overcome, by applying the methodological approach put forward in Antoniadou (1996),

namely that a most critical element in the application of the lattice programming

approach is the choice of appropriate underlying partial order(s), and corresponding

lattice structure, appropriate to each specific problem.

The plan of the paper is as follows; section 1 gives order theoretic definitions of net

substitutes and complements which are used to motivate the binary relations which

2Cardinal lattice theoretic methods, building primarily on Topkis (1978) were previously used in
economics.

3Veinott (1992) also defined the same property under the term lattice superextremal. Here we use
the more standard quasi-supermodular term.

4As its name indicates, it is a strong concept of comparability (we will give the formal definition
later). In particular, if the optimizers are unique, strong set comparability of the sets of optimizers
means that the optimizers are comparable with respect to the underlying order; for example, if
this is the Euclidean order, then it simply says that one optimizer is smaller than another in every
component.
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it is argued must be satisfied by partial orders appropriate for comparative statics

analysis in the consumer expenditure minimization problem. The approach is partly

demonstrated in the special case of two goods. Section 2 uses the general principles laid

out in the first section to state sufficient conditions for a good to be a net substitute

or complement of another. Section 3 demonstrates in the case of three goods, which

also gives the first description of Net Substitute and Net Complement Partial Orders.

Section 4 extends the construction of such partial orders when there are many goods.

Section 5 revisits the theorems of section 2 in light of the specific partial orders put

forward. Section 6 concludes.

1. DISCRETE NET SUBSTITUTION EFFECTS AND SUITABLE

PARTIAL ORDERS

In order to apply lattice programming techniques to the comparative statics analysis

of the consumer expenditure minimization problem, the consumption set must be

endowed with partial order(s), which can simultaneously accommodate the description

of such effects, while enabling the application of these comparative statics techniques.

For the latter the consumption set (and feasible sets therein) must be closed under

relevant joins and meets. For, in this setting, joins and meets identify the crucial points

of comparability. It is the nature of the behavior of the utility function at joins and

meets, vis-à-vis its behavior at pairs of (incomparable) elements of the consumption

set, which will enable the derivation of sufficient conditions for such comparative

statics analysis. Accordingly, the underlying partial order(s) on the consumption set

will not only be important in describing the comparative statics effect, but will also

be very important in determining the strength of the sufficient conditions derived.5

Thus, we begin by constructing partial orders describing net substitution effects from

a minimal set of binary relations that must hold whenever net substitution effects can

be analyzed. These binary relations are simply those that are implied by the weak

axiom of revealed preference.

5Intuitively, the more parsimonious the description of a specific comparative statics effect en-
abled by a partial order, the stronger the sufficient conditions for it which can be derived from the
application of lattice programming techniques with that partial order. For example, products of
component-wise orders could be used to describe any number of comparative statics changes, but
such ’descriptions’ would not be parsimonious with respect to any particular comparative statics
effect and the comparability enabled by such partial orders would not be particularly informative or
useful.
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Consumer preferences are represented by a utility function, U : X → <, defined

over the consumption set, X (element x ∈ X) subset of the commodity space <n.

In particular, the consumer has preferences over n goods, named i = 1, . . . , n.6 The

discrete comparative statics question to be addressed is that of the net substitutability

of good i for good j, in the expenditure minimization problem. More precisely, given

prices p = (p1, . . . , pn) and p′ = (p1, . . . , pj−1, p
′
j , pj+1, . . . , pn), with p, p′ ∈ <n

++, and

such that without loss of generality (w.l.o.g. hereafter) pj < p′j , attainable utility

level ū, and corresponding expenditure minimizing bundles, x̂ and x̂′ (i.e. x̂ =

argmin {p · x | x ∈ X, U (x) ≥ ū}, and similarly for x̂′), the comparability of x̂i and

x̂′
i (x̂i < x̂′

i or x̂′
i < x̂i) is the issue.7

Unlike implicit function based comparative statics approaches, with the lattice pro-

gramming approach optimizers need not be assumed to be unique. Therefore, we ad-

just the above statement accordingly. But the approach has also a drawback, namely

that it does not allow for the investigation of strict inequality relations as suggested

above. This is also taken into account in the formal definition below:

Definition 1.1.

(a) Good i is a Strongly Net Substitute of good j at price pair p, p′ ∈ <n
++,

p = (p1, . . . , pn), p′ = (p1, . . . , pj−1, p
′
j , pj+1, . . . , pn), with pj < p′j , and at attainable

utility level ū, if:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤s argmin
x∈X

{p′ · x | U(x) ≥ ū}

where ≤s is the strongly-lower-than set relation8 compatible with a partial order, ≤ns,

on the consumption set X, which implies, whenever x ≤ns x′:

S1: xi ≤ x′
i

Such partial orders on the consumption set will be called Net Substitutes Partial Orders

(denoted NSPOs).9

6Below we will need to distinguish between the index 1, . . . , n of a good and its name 1, . . . , n.
Thus, an indexing of goods will be a one to one mapping from the names of goods onto their indices.
However, where this is not confusing, we assume the natural indexing of goods, where the name and
index of each good coincide.

7Statements relating to the symmetry of net substitution effects are avoided, since symmetry is a
derived rather than an axiomatic property.

8A subset A of a poset (S,≤) is strongly-lower-than subset B, A ≤s B, iff for each x ∈ A, and
y ∈ B, x ≤ y in S. This definition is due to Veinott.

9Requiring the underlying binary relations to be partial orders is important for the proposed
analysis. Nonetheless, reflexivity, antisymmetry and also transitivity are not unduly restrictive for
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Good i is a Pathwise Net Substitute of good j at price pair p, p′ ∈ <n
++ and

attainable utility level ū, if the set relation ≤s above is replaced with ≤P , the pathwise

compatible set relation.10

If i = j in the definitions above, then good i is a Strongly (Pathwise) Own Net

Substitute at price pair (p, p′) and at attainable utility level ū.

Good i is a Strongly (Pathwise) Net Substitute of good j (everywhere), if it is

a Strongly (Pathwise) Net Substitute of good j at every such price pair, p, p′ ∈ <n
++,

and level of attainable utility ū.

(b) Good i is a Strongly (Pathwise) Net Complement of good j at price pair p, p′ ∈

<n
++ and attainable utility level ū (everywhere), as in (a) above, if the underlying

partial order ≤ns in (a) is replaced with a partial order, ≤nc, on the consumption set

X which implies, whenever x ≤nc x′:

C1: x′
i ≤ xi

Such partial orders on the consumption set will be called Net Complements Partial

Orders (denoted NCPOs).

It will prove convenient below, in the construction of Net Substitute (Complement)

Partial Orders, as in definition 1.1, to assume i = 1 and j = n, in the name, and every

relevant indexing of goods. Since this involves no loss of generality we will adopt it

from now on without further comment.

Definition 1.1 gives necessary restrictions on NSPOs and NCPOs in conditions S1

and C1, with respect to good 1 (good i more generally) comparability. However,

using revealed preference, we can establish that definition 1.1 suggests two further

restrictions on NSPOs and NCPOs, in order to perform their descriptive role within

the context of the expenditure minimization problem. Whenever x, x′ are expenditure

minimizing bundles at prices p, p′ respectively, as in definition 1.1:

H1: p · x ≤ p · x′ and H2: p′ · x′ ≤ p′ · x

the purposes of the definition alone, in as much as they relate to physical attributes of consumption
bundles. The definition makes clear that such underlying partial orders need not be unique.

10A subset A of a poset (S,≤) is pathwise-lower-than subset B, A ≤P B, iff for each x ∈ A (y ∈ B)
there exists y ∈ B (x ∈ A) such that x ≤ y in S (Antoniadou, 1996).
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For obvious reasons we will call all pairs satisfying H1 and H2, Hicks Consistent pairs

(at prices p, p′), and argue that NSPO/NCPO comparability must incorporate Hicks

Consistency on the consumption set.11

Thus, from now on it will be assumed that, whenever pair x, y are comparable with

respect to a NSPO, with x ≤ns y, then (S1) x1 ≤ y1, (H1) p · x ≤ p · y, and (H2)

p′ · y ≤ p′ · x. Similarly, whenever pair x, y are comparable with respect to a NCPO,

with x ≤nc y, then (C1) y1 ≤ x1, (H1) p · x ≤ p · y and (H2) p′ · y ≤ p′ · x (where

p, p′ ∈ <n
++, with p = (p1, . . . , pn), p′ = (p1, . . . , pn−1, p

′
n), and pn < p′n).12

In fact with two goods H1 and H2 themselves define a partial order, while with three

goods H1 and H2 with either S1 or C1 define a partial order. However, these conditions

are no longer sufficient to completely define partial orders with four or more goods

and therefore, in these more general cases, we have the task of constructing partial

orders, NSPOs and NCPOs, without further (unwarranted) descriptive content, but

with useful normative content. Before we do so however, we will present the main

comparatives statics theorems of the paper in the next section. These presume the

existence of NSPOs and NCPOs, but do not use their specific properties. It is hoped

that these will motivate the constructions of NSPOs and NCPOs that are suggested

in subsequent sections.

Even though the two goods case is too special to avail itself to the theorems of the

next section, it is useful for motivating and expositing the proposed lattice structures

and is therefore presented here:

11Thus the property, Hicks Consistency, which must hold at expenditure minimizing bundles is
extended to all comparable pairs of bundles. This is justified since comparability is determined a
priori. Also, it must be noted that H1 and H2 depend on the price pair, and therefore the partial
orders themselves will depend on the particular price pair. Thus, when we refer to a particular NSPO
or NCPO this will be a class of partial orders and not a unique partial order.

12An elementary observation is that, given the restriction on the pair of prices, H1 and H2 jointly
imply yn ≤ xn (strict inequality if at least one of H1, H2 is strict). This is a restatement of the
compensated law of demand, when only the price of one good changes (which is equivalent to the
weak axiom of revealed preference). In the context of this paper, its implication is that a partial
order which enables the derivation of sufficient conditions for good 1 to be a strongly/pathwise net
substitute/complement of good n, will also imply that the latter is a Strongly Own Net Substitute
everywhere (under no further restrictions on the utility function).
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x2

x1

x

x ↑ under Euclidean order

p

p'

x ↑ under p, ′p( ) NSPO

FIG. 1. The up-set of point x in the poset
(
<2,≤2

ns

)
with the (p,p ′) NSPO is depicted by the

shaded area. Notice that the intersection of this set with the up-set of x under the Euclidean order

is a singleton, x itself.

Special Case: Two Goods

It is easy to establish that with two goods H1 and H2 together imply S1 and that

in fact H1 and H2 define a partial order on <2. Therefore, a NCPO for two goods

does not exist, while the NSPO (clearly unique) can be completely defined by H1, H2

alone. Thus, let us define:

Definition 1.2. A pair x,y in <2, is comparable with respect to the (p,p ′) Net

Substitutes Partial Order (NSPO 2) on <2, w.l.o.g. x ≤2
ns y, if and only if:

H1: p1x1 + p2x2 ≤ p1y1 + p2y2 and H2 : p1y1 + p′2y2 ≤ p1x1 + p′2x2

where p = (p1,p 2) ∈ <2
++ and p′ = (p1,p

′
2) with p2 < p′2.

Verifying that the (p,p ′) Net Substitutes Partial Order on <2 is indeed a partial

order (reflexive, antisymmetric, and transitive) is immediate. It is also immediate to

show that: x ≤2
ns y implies x1 ≤ y1 and y2 ≤ x2, and, x ≤2

ns y with x 6= y imply

x1 < y1 and y2 < x2. The up-set of any point in <2 can be depicted graphically as in

Figure 1.

In fact the poset
(
<2,≤2

ns

)
is a lattice with the (p,p ′) Net Substitutes Partial Order

(but
(
<2

+,≤2
ns

)
is not a lattice). Given incomparable x,y in <2 such that p · x < p · y

and p′ · x < p′ · y, their join is given by x ∨ y =

(
x1 +

p′
2(p·y−p·x)

p1(p′
2−p2)

, x2 − p·y−p·x
p′
2−p2

)
,
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x2

x

y

x∨y

x∧y

x1

FIG. 2. The join and meet of incomparable x,y in
(
<2,≤2

ns

)
are such that (x ∧ y)1 < x1,y 1 <

(x ∨ y)1 and (x ∨ y)2 < x2,y 2 < (x ∧ y)2. But notice that
(
<2

+,≤2
ns

)
is not a (sub)lattice.

and their meet is given by x ∧ y =

(
x1 −

p2(p′·y−p′·x)
p1(p′

2−p2)
, x2 + p′·y−p′·x

p′
2−p2

)
. These are

demonstrated in Figure 2.

Nonetheless, this lattice structure is not useful in the case of two goods. Be-

cause, no additional assumptions are needed in order to establish that whenever

x̂ ∈ argmin
x∈X

{p · x | U(x) ≥ ū} and x̂′ ∈ argmin
x∈X

{p′ · x | U (x) ≥ ū}, then x̂ ≤2
ns x̂′,

thus restating the elementary result that with two goods, good 1 is a Strongly Net

Substitute of good 2 everywhere (and vice versa), and that each good is a Strongly

Own Net Substitute, according to Definition 1.1 above, without further conditions.

The reader familiar with what has come to be known as the Monotone Comparative

Statics literature may ponder what this may suggest about the quasi-supermodular

class of properties of the utility function in
(
X,≤2

ns

)
. It should not be taken to suggest

that such properties are not restrictive; rather the restictions that they impose are

not relevant to the expenditure minimization problem since incomparable pairs in
(
X,≤2

ns

)
are necessarily not Hicks Consistent.

This is a critical observation. The proposed NSPOs and NCPOs can induce a

rich lattice structure. The expenditure minimization problem however does not need

to make use of all this structure. Only the behavior of the utility function at Hicks

Consistent pairs, their meets and joins, is relevant. The behavior of the utility function

at incomparable pairs that are not Hicks Consistent will not add useful information

for the expenditure minimization problem. Thus, we will use the following definitions:
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Definition 1.3.

(a) <n endowed with a Net Substitutes Partial Order (satisfying S1, H1 and H2)

is called a (p,p ′) Net Substitutes Poset and denoted (<n,≤ns). Similarly, <n endowed

with a Net Complements Partial Order (satisfying C1, H1 and H2) is called a (p,p ′)

Net Complements Poset and denoted (<n,≤nc).

(b) A subset X of <n is called a Hicks Consistent Sublattice of (<n,≤ns) (alterna-

tively of (<n,≤nc)), if the join and meet of every Hicks Consistent pair in (<n,≤ns)

(alternatively in (<n,≤nc)) taken in <n exists in X . It is a Hicks Consistent Lattice

if the meet and join of every Hicks Consistent pair in X, taken in X, exists in X.

(c) A real-valued function f : X → < on a Hicks Consistent (sub)lattice is called

Hicks Consistent Quasi-Supermodular if it is quasi-supermodular at Hicks Consistent

pairs in X, i.e. for all Hicks Consistent pairs x,y such that (H1) p · x ≤ p · y and (H2)

p′ · y ≤ p′ · x:

f (x ∧ y)≤
<

f (x) =⇒ f (y)≤
<

f (x ∨ y) and f (x ∧ y)≤
<

f (y) =⇒ f (x)≤
<

f (x ∨ y) 13

Similarly, f is called Hicks Consistent Strictly Quasi-Supermodular if it is strictly

quasi-supermodular at Hicks Consistent incomparable pairs of points in X, i.e.

f (x ∧ y) ≤ f (x) =⇒ f (y) < f (x ∨ y) and f (x ∧ y) ≤ f (y) =⇒ f (x) < f (x ∨ y) 14

(d) A real-valued function f : X → < on a Hicks Consistent (sub)lattice is called

Hicks Consistent Lower-Semi-Quasi-Supermodular if for all Hicks Consistent pairs x,y

such that (H1) p · x ≤ p · y and (H2) p′ · y ≤ p′ · x:

f (x ∧ y)≤
<

f (x) =⇒ f (y)≤
<

f (x ∨ y) 15

Similarly f is called Hicks Consistent Strictly Lower-Semi-Quasi-Supermodular if in-

stead:

f (x ∧ y) ≤ f (x) =⇒ f (y) < f (x ∨ y) 16

(e) A real-valued function f : X → < on a Hicks Consistent (sub)lattice is called

Hicks Consistent Iso-Quasi-Supermodular if it is quasi-supermodular, as in (c) above,

13Equivalently: f (x ∨ y)≤
<

f (y) ⇒ f (x)≤
<

f (x ∧ y) and f (x ∨ y)≤
<

f (x) ⇒ f (y)≤
<

f (x ∧ y).

14Equivalently: f (x ∨ y) ≤ f (y) ⇒ f (x) < f (x ∧ y) and f (x ∨ y) ≤ f (x) ⇒ f (y) < f (x ∧ y).
15Equivalently: f (x ∨ y)≤

<
f (y) ⇒ f (x)≤

<
f (x ∧ y).

16Equivalently: f (x ∨ y) ≤ f (y) ⇒ f (x) < f (x ∧ y).
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at Hicks Consistent pairs, x,y , which in addition satisfy f(x) = f(y).

Similarly f is called Hicks Consistent Strictly Iso-Quasi-Supermodular if instead it

is strictly quasi-supermodular at Hicks Consistent incomparable pairs, x,y , which in

addition satisfy f(x) = f(y). Equivalently, for all such x,y :

f (x) = f (y) < f (x ∨ y) or f (y) = f (x) < f (x ∧ y)

The definition of a (strictly) quasi-supermodular function in Definition 1.3 is stan-

dard (Milgrom and Shannon 1994).17 The definitions of a (strictly) lower-semi-

quasi-supermodular and of (strictly) iso-quasi-supermodular function are new, weaker,

variants of the standard definitions. A (strictly) iso-quasi-supermodular function is

(strictly) semi-quasi-supermodular and a (strictly) semi-quasi-supermodular function

is (strictly) quasi-supermodular.

We turn without further discussion to the main theorems of the paper, which, it is

hoped, will make the usefulness of these definitions apparent.

2. THEOREMS FOR NET SUBSTITUTION EFFECTS

In this section we use the general properties of NSPOs and NCPOs, as discussed

in the previous section, to derive sufficient conditions for net substitution effects as in

definition 1.1. We have already seen how such partial order(s) can be constructed in

the case of two goods. The NSPOs and NCPOs constructed in the following sections

show how this can be done with three or more goods (for obvious reasons we assume

in this section that there are at least three goods). It is on balance appropriate to

give the theorems before discussing the construction of the relevant partial orders in

order to indicate in advance their usefulness. The theorems will be revisited once the

NSPOs and NCPOs have been discussed more fully in the following sections.

Theorem 2.1 (Net Substitutes).

Consider the consumer expenditure minimization problem, EM(p, ū):

min {p · x | x ∈ X, U (x) ≥ ū}

(a) If:

17This is also the same as the definition of a (strictly) lattice superextremal function due to Veinott
1992.
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(A) The consumption set X, X ⊂ <n, is a Hicks Consistent (Sub)lattice of a

(p,p ′) Net Substitutes poset (<n,≤ns), under some indexing of goods (with good 1

given index 1 and good n index n);

(B) The consumer utility function U : X → < is Hicks Consistent Iso-Quasi-

Supermodular on X;

Then, given feasible ū, such that solutions to the problems EM(p, ū) and EM(p′, ū)

exist and are such that there is no excess utility:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤a argmin
x∈X

{p′ · x |U (x) ≥ ū} 18

and therefore

argmin
x∈X

{p · x | U (x) ≥ ū} ≤P argmin
x∈X

{p′ · x |U (x) ≥ ū}

i.e. good 1 is a Pathwise Net Substitute of good n at prices (p,p ′) and at every such

attainable utility level, ū.

(b) If instead of (A) and (B) in part (a), (A), (B′) hold, where

(B′) The consumer utility function U : X → < is Hicks Consistent Strictly

Iso-Quasi-Supermodular on X, and

Then, given feasible ū, such that solutions to the problems EM(p, ū) and EM(p′, ū)

exist and are such that there is no excess utility:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤c argmin
x∈X

{p′ · x |U (x) ≥ ū} 19

If in addition:

(C) I ≡ argmin
x∈X

{p · x | U (x) ≥ ū} ∩ argmin
x∈X

{p′ · x |U (x) ≥ ū} contains no

more than one element,

Then

argmin
x∈X

{p · x | U (x) ≥ ū} ≤s argmin
x∈X

{p′ · x |U (x) ≥ ū}

i.e. good 1 is a Strongly Net Substitute of good n at prices (p,p ′) and at every such

attainable utility level, ū.

18Subset A is strong set smaller than subset B, A ≤a B, if A ∧ B ⊆ A and A ∨ B ⊆ B.
19Subset A is chain-lower-than subset B, A ≤c B, if A ≤a B and for each a ∈ A and b ∈ B, a and

b are comparable. Both this definition and the definition of strong set comparability are due Veinott.
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Remark 2. 1. As stated the theorem does not give sufficient conditions for the min-

imization problems to have solutions, nor for these to imply no excess utility at all ex-

penditure minimizing bundles. Standard assumptions can be employed for this. No ex-

cess utility is a standard assumption in the classical comparative statics analysis of this

problem. However, it is important that the proposed approach, and in particular the-

orem 2.1, can accommodate discrete, finite consumption sets, where this assumption

may not be justifiable. If so, the statment of the theorem can be adjusted by changing

assumptions (B) and (B′) to: U is Hicks Consistent Lower-Semi-Quasi-Supermodular

and Hicks Consistent Strictly Lower-Semi-Quasi-Supermodular, respectively. State-

ment argmin
x∈X

{p · x | U (x) ≥ ū} ≤a argmin
x∈X

{p′ · x |U (x) ≥ ū} would be changed to

argmax

{
U(x̂)

∣∣∣∣x̂∈argmin
x∈X

{p·x| U(x)≥ū}

}
≤a argmax

{
U(x̂)

∣∣∣∣x̂∈argmin
x∈X

{p′·x| U(x)≥ū}
}

(with all

subsequent statements adjusted correspondingly).

Proof (Theorem 2.1).

(a) Consider x̂ ∈ argmin
x∈X

{p · x | U (x) ≥ ū} and x̂′ ∈ argmin
x∈X

{p′ · x | U (x) ≥ ū}

which by assumption exist and are such that U (x̂) = U (x̂′) = ū. Clearly x̂, x̂′ are by

definition Hicks Consistent, i.e. (H1) p · x̂ ≤ p · x̂′ and (H2) p′ · x̂′ ≤ p′ · x̂. If both of

these are satisfied with equality, then either x̂ ≤ns x̂′ or x̂′ ≤ns x̂, but also in this case

x̂, x̂′ ∈ argmin
x∈X

{p · x | U (x) ≥ ū} and x̂, x̂′ ∈ argmin
x∈X

{p′ · x | U (x) ≥ ū}. Thus, in

either case x̂∧ x̂′ ∈ argmin
x∈X

{p · x | U (x) ≥ ū} and x̂∨ x̂′ ∈ argmin
x∈X

{p′ · x | U (x) ≥ ū}

as required. Therefore, assume that at lease one of (H1), (H2) is a strict inequal-

ity. If x̂, x̂′ are comparable, x̂ ≤n
ns x̂′ and there is nothing further to prove. Hence

assume that they are not comparable, i.e. x̂′
1 < x̂1. From assumption (A) their

join and meet exist, and furthermore these satisfy (1) p′ · (x̂ ∨ x̂′) ≤ p′ · x̂′, and (2)

p · (x̂ ∧ x̂′) ≤ p · x̂, (also x̂1 ≤ (x̂ ∨ x̂′)1 and (x̂ ∧ x̂′)1 ≤ x̂′
1). Using the definition of

x̂, x̂′ (under no excess utility) these imply (1′) U (x̂) = U (x̂′) ≥ U (x̂ ∨ x̂′) and (2′)

U (x̂′) = U (x̂) ≥ U (x̂ ∧ x̂′) respectively (strict inequalities if (a) or (b) are strict). But

these and the assumption that U is Hicks Consistent iso-quasi-supermodular (assump-

tion (B)) imply (1′′) U (x̂) = U (x̂′) ≤ U (x̂ ∧ x̂′) and (2′′) U (x̂′) = U (x̂) ≤ U (x̂ ∨ x̂′)

respectively (strict inequalities if (1′) or (2′) are strict). Therefore, (1) or (2) strict

imply a contradiction and the hypothesis that x̂, x̂′ are incomparable is false. Other-
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wise, U (x̂) = U (x̂′) = U (x̂ ∧ x̂′) = U (x̂ ∨ x̂′) and x̂ ∧ x̂′ ∈ argmin
x∈X

{p · x | U (x) ≥ ū}

and x̂ ∨ x̂′ ∈ argmin
x∈X

{p′ · x | U (x) ≥ ū} as required to complete the proof.

(b) The proof of this part is very similar to that of part (a) and will therefore not be

repeated here. We note that case assumption (C) implies that at least one of (H1) and

(H2) is a strict inequality if x̂ 6= x̂′. Hence if x̂, x̂′ are comparable there is nothing to

prove. An analogous argument to that in (a) can be used to establish by contradiction

that x̂, x̂′ cannot be incomparable, thus completing the proof.

Theorem 2.2 below is the analog of theorem 2.1 in the case of net complements.

But it bears a warning: as will be shown in the following sections, the assumption

that the consumption set X is a (sub)lattice of the relevant poset is more difficult to

establish here than in the case of net substitutes, especially if X is assumed to be a

set bounded from below, a standard assumption in economics:

Theorem 2.2 (Net Complements).

Consider the consumer expenditure minimization problem, EM(p, ū), as in theorem

2.1 above.

(a) If:

(A) The consumption set X, X ⊂ <n, is a Hicks Consistent (Sub)lattice of a

(p,p ′) Net Complements poset (<n,≤nc), under some indexing of goods giving good 1

index 1 and good n index n;

(B) The consumer utility function U : X → < is Hicks Consistent Iso-Quasi-

Supermodular on X.

Then, given feasible ū, such that solutions to the problems EM(p, ū) and EM(p′, ū)

exist and are such that there is no excess utility:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤a argmin
x∈X

{p′ · x |U (x) ≥ ū}

and therefore

argmin
x∈X

{p · x | U (x) ≥ ū} ≤P argmin
x∈X

{p′ · x |U (x) ≥ ū}

i.e. good 1 is a Pathwise Net Complement of good n at prices (p,p ′) and at every such

attainable utility level, ū.
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(b) If instead of (A) and (B) in part (a), (A), (B′) hold, where:

(B′) The consumer utility function U : X → < is Hicks Consistent Strictly

Iso-Quasi-Supermodular on X.

Then given feasible ū, such that solutions to the problems EM(p, ū) and EM(p′, ū)

exist and are such that there is no excess utility:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤c argmin
x∈X

{p′ · x |U (x) ≥ ū}

If in addition

(C) argmin
x∈X

{p · x | U (x) ≥ ū} ∩ argmin
x∈X

{p′ · x |U (x) ≥ ū} contains no more

than one element.

Then

argmin
x∈X

{p · x | U (x) ≥ ū} ≤s argmin
x∈X

{p′ · x |U (x) ≥ ū}

i.e. Good 1 is a Strongly Net Complement of good n at prices (p,p ′) and every such

attainable utility level, ū.

Proof. The proof is almost identical to the proof of theorem 2.1 and is omitted.

It is straightforward to extend theorems 2.1 and 2.2 to give sufficient conditions

for good 1 to be a Pathwise/Strongly Net Substitute or Complement of good n ev-

erywhere, by requiring conditions (A) and (B), or (B′), to hold in every such poset

generated under all possible such price pairs (p,p ′). It is also possible to weaken the

sufficient conditions of theorems 2.1 and 2.2 so that good 1 is a Pathwise/Strongly

Net Substitute or Complement of good n at a particular price pair (p,p ′) and par-

ticular attainable utility level (which may be more satisfactory especially in the case

of net complements), by requiring that the consumption set be closed under joins

and meets of Hicks Consistent pairs in the corresponding weakly preferred set (rather

than all Hicks Consistent pairs). Also, these sufficient conditions can apply, and can be

checked, with respect to more than one pair of goods simultaneously, thus establishing

conditions for the nature of net substitutability of a group of goods with respect to

any one good.
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3. NSPOS AND NCPOS WITH THREE GOODS

The aim of this and the following section is to show how partial orders, that may

be used to apply the comparative statics theorems of the previous section, can be

constructed. We begin with the special case of three goods in this section.

Unlike the case of two goods, with three goods H1 and H2 alone do not define

a partial order. Nonetheless, the three goods case is itself special because S1 (C1)

suffices, along with H1 and H2, to define completely a partial order something which

is not true with a larger number of goods. So let us begin by defining the NSPO and

the NCPO (importantly these are unique) in three dimensions:

Definition 3.1.

(a) A pair x,y in <3, is comparable with respect to the (p,p ′) Net Substitutes

Partial Order (NSPO3) on <3, w.l.o.g. x ≤3
ns y, if and only if:

S1: x1 ≤ y1 H1: p · x ≤ p · y and H2 : p′ · y ≤ p′ · x

(b) A pair x,y in <3, is comparable with respect to the (p,p ′) Net Complements

Partial Order (NCPO3) on <3, w.l.o.g. x ≤3
nc y, if and only if:

C1: y1 ≤ x1 H1: p · x ≤ p · y and H2: p′ · y ≤ p′ · x

where p ∈ <3
++ and p′ = (p1,p 2,p

′
3) with p3 < p′3.

It is easy to verify that NSPO3 and NCPO3 are indeed partial orders,20 and that
(
<3,≤3

ns

)
and

(
<3,≤3

nc

)
are Hicks Consistent lattices. In fact, given Hicks Con-

sistent incomparable pair x,y in the (p,p ′) Net Substitutes Poset,
(
<3,≤3

ns

)
, such

that (w.l.o.g.): (NS1) y1 < x1, (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at least

one of H1 and H2 strict inequality), then x ∨ y =
(
x1,y 2 − p1

p2
(x1 − y1) ,y 3

)
and

x ∧ y =
(
y1,x 2 + p1

p2
(x1 − y1) ,x 3

)
.21 Furthermore, the join and meet of x,y satisfy:

20One simple fact which distinguishes NCPO3 from NSPO3, is that x ≤3
nc y implies x2 ≤ y2 (i.e.

y1 ≤ x1, x2 ≤ y2 and y3 ≤ x3).This again restates what we would have expected, namely that with
three goods two goods cannot be both simultaneously net complements of the third one (with strict
inequalities).

21Theproof thatthese arethe joinand meet of x,y is straightforward. Here wesketch theargument

for the join. Let z ≡
(
x1,y2 − p1

p2
(x1 − y1) ,y 3

)
. Clearly p · z = p · y, p′ · z = p′ · y and therefore

x,y ≤3
ns z, i.e. z is an upper bound. Consider any upper bound of x,y, say r ≡ (r1,r 2,r 3). By

definition, x1 ≤ r1, p · y ≤ p · r and p′ · r ≤ p′ · y. Thus z1 ≤ r1, p · z ≤ p · r, and p′ · r ≤ p′ · z, i.e.
z ≤3

ns r as required, establishing z = x ∨ y.
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x2 < (x ∨ y)2 < y2 and x2 < (x ∧ y)2 < y2, with (x ∨ y)2 + (x ∧ y)2 = x2 + y2.

Therefore, x,y ∈ <3
+ implies x ∨ y,x ∧ y ∈ <3

+ and <3
+ is closed under joins and

meets of Hicks Consistent pairs taken in
(
<3,≤3

ns

)
. The join and meet also satisfy:

p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x, p′ · (x ∧ y) = p′ · x.

The construction of joins and meets under NCPO3 is analogous. Given Hicks Con-

sistent incomparable pair x,y in the (p,p ′) Net Complements Poset,
(
<3,≤3

nc

)
, such

that (w.l.o.g.): (NC1) x1 < y1, (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at

least one of H1, H2 strict inequality), then x ∨ y =
(
x1,y 2 + p1

p2
(y1 − x1) ,y 3

)
and

x ∧ y =
(
y1,x 2 − p1

p2
(y1 − x1) ,x 3

)
.22 Furthermore the join and meet of x,y satisfy

p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x, p′ · (x ∧ y) = p′ · x,

x2,y 2 < (x ∨ y)2 and (x ∧ y)2 < x2,y 2, with (x ∨ y)2 + (x ∧ y)2 = x2 + y2. Thus

x,y ∈ <3
+ implies x ∨ y ∈ <3

+, but not necessarily so for the meet. Thus <3
+ is closed

under joins (but not meets) of Hicks Consistent pairs taken in
(
<3,≤3

nc

)
.

The partial orders NSPO3 and NCPO3 are obviously related; whenever a Hicks

Consistent pair x,y at prices p,p ′, is incomparable with respect to NSPO3 it is com-

parable with respect to NCPO3, and vice versa. Thus, even though joins and meets

of Hicks Consistent pairs incomparable with respect to NCPO3 take the same form as

those of Hicks Consistent pairs incomparable with respect to NSPO3, the points where

these occur are mutually exclusive. Furthermore, it is important to note that despite

their algebraic similarity, while <3
+ is a Hicks Consistent sublattice of the (p,p ′) Net

Substitutes Poset,
(
<3,≤3

ns

)
, it is not so in the corresponding (p,p ′) Net Complements

Poset,
(
<3,≤3

nc

)
.

In fact this difference between NSPO3 and NCPO3 is even more pervasive. It is not

difficult to verify that <3
+ is not closed under meets of Hicks Consistent pairs under

NCPO3 even when these are taken in <3
+ itself (poset

(
<3

+,≤3
nc

)
).23 This difference

will extend to the n-dimensional extensions of NSPOs and NCPOs. What is critical

about <3
+, or <n

+ more generally, is that it is bounded below, and indeed it can be

established that this difference between the NSPOs and NCPOs extends to any such

22The argument establishing that these are the join and meet, respectively, of x,y is analogous to

that under NSPO3. We sketch the argument for the meet here. Let w ≡
(
y1,x 2 − p1

p2
(y1 − x1) ,x 3

)
.

Clearly p · w = p · x, p′ · w = p′ · x and therefore w ≤3
nc x,y , i.e. w is a lower bound. Consider any

other lower bound of x,yr ≤ p ·x and p′ ·x ≤ p′ ·r. Therefore, w1 ≤ r1, p ·r ≤ p ·w, and p′ ·w ≤ p′ ·r,
i.e. r ≤3

nc w as required, establishing w = x ∧ y.
23ThemeetdoesnotexistforHicksConsistentincomparablepairs x,y such that p1x1+p2x2 < p1y1

(whereby hypothesis x1 < y1). This could nothappen in the case of a Hicks Consistent incomparable
pair under NSPO3 since in that case the corresponding hypothesis would be y1 < x1.
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set bounded from below. Since the non-negative quadrant (or other sets bounded from

below) is often assigned to be the consumer consumption set, this contrast between

the Net Substitutes and Net Complements Partial Orders is important and alludes

to something intuitive, that it is more difficult to establish the net complementarity,

that the net subsitutability, of a good for another at every attainable utility level.

Before going on to the more general case, with four or more goods, we conclude this

section with two simple examples, Cobb-Douglas preferences and quasi-linear prefer-

ences. The comparative statics results in these examples are known, the method of

arriving at these is clearly different. They show that having established the basic prop-

erties of NSPO3, the relevant net substitute posets and Hicks Consistent (sub)lattices,

the comparative statics analysis involves little more than elementary inequality ma-

nipulation:

Example 3.1. If the consumer utility function over three goods is Cobb-Douglas:

U : <3
+ → < U (x) ≡ xα

1 x2x
γ
3 α,γ > 0

(a) The function U is Hicks Consistent weakly quasi-supermodular in the (p,p ′)

Hicks Consistent (sub)lattice
(
<3

+,≤3
ns

)
, for every pair of prices p,p ′ such that p ∈ <3

++

and p′ = (p1,p 2,p
′
3) with p3 < p′3. It is strictly quasi-supermodular at Hicks Consistent

pairs in the interior of the consumption set, <3
++.

(b) Each good is a strongly net substitute of every other good everywhere (at

positive utility levels).

Proof. (b) This follows from (a) and theorem 2.1, by observing that the indexing

of goods is inconsequential in the proof of (a) (also the argmax is a singleton):

(a) Given Hicks consistent incomparable pair x,y , such that (NS1) y1 < x1, (H1)

p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at least one of H1, H2 strict inequality),

x ∨ y =
(
x1,y 2 − p1

p2
(x1 − y1) ,y 3

)
and x ∧ y =

(
y1,x 2 + p1

p2
(x1 − y1) ,x 3

)
. Also

along with y1 < x1, we have: y3 < x3, x2 < y2, x2 < (x ∧ y)2 , (x ∨ y)2 < y2. Thus

x1,x 3,y 2, (x ∧ y)2 , (x ∨ y)2 are strictly positive. In order to prove the required result,

assume first U (x) ≥ U (x ∧ y), i.e.



19

xα
1 x2x

γ
3 ≥ yα

1 (x ∧ y)2 xγ
3

⇐⇒ xα
1 x2 ≥ yα

1 (x ∧ y)2 since x3 > 0

⇐⇒ xα
1 (x ∨ y)2 ≥ yα

1 (x ∧ y)2 + xα
1 [y2 − (x ∧ y)2] since (x ∧ y)2 + (x ∨ y)2 = x2 + y2

=⇒ xα
1 (x ∨ y)2 > yα

1 (x ∧ y)2 + yα
1 [y2 − (x ∧ y)2] since xα

1 > yα
1 , y2 − (x ∧ y)2 > 0

=⇒ xα
1 (x ∨ y)2 yγ

3 ≥ yα
1 y2y

γ
3 strict inequality if y3 > 0

i.e. U (x) ≥ U (x ∧ y) implies U (x ∨ y) ≥ U (y) for x,y in <3
+, and it implies

U (x ∨ y) > U (y) for x,y in <3
++.

Thus U is Hicks Consistent Lower-Semi-Quasi-Supermodular on <3
+ and stictly so on

<3
++. This suffices to establish (b). In order to prove that in addition U is Hicks Con-

sistent Quasi-Supermodular on <3
+, and strictly so on <3

++, assume next that U (x) ≥

U (x ∨ y). The remaining steps are as elementary as the steps above and are therefore

omitted.

Example 3.2. If the consumer utility function over three goods is given by:

U : <3
+ → < U (x) = min {x1,x 2} + x3

Then goods 1 and 2 are strongly net substitutes of good 3 everywhere.

Proof. Given theorem 2.1, the result follows if we prove that the utility function

is strictly lower-semi-quasi-supermodular in every (p,p ′) Hicks Consistent (sub)lattice
(
<3

+,≤3
ns

)
(and observe that the indexing of goods 1 and 2 is inconsequential in the

proof):

As in example 3.1, given Hicks consistent incomparable pair x,y , such that (NS1) y1 <

x1, (H1) p·x ≤ p·y, and (H2) p′ ·y ≤ p′ ·x (at least one of H1, H2 is a strict inequality),

x∨y =
(
x1, y2 − p1

p2
(x1 − y1) , y3

)
and x∧y =

(
y1, x2 + p1

p2
(x1 − y1) , x3

)
, y1 < x1,

we have: y3 < x3, x2 < y2, x2 < (x ∧ y)2 , (x ∨ y)2 < y2, and x1,x 3,y 2, (x ∧ y)2 , (x ∨ y)2

are strictly positive. Suppose U (x) ≥ U (x ∧ y), i.e. min {x1,x 2}+x3 ≥ min {y1, (x ∧ y)2}+

x3 which implies min {x1,x 2}+y3 ≥ min {y1, (x ∧ y)2}+y3. If x2 < x1, i.e. min {x1,x 2} =

x2, then x1 > x2 ≥ min {y1, (x ∧ y)2} implies min {y1, (x ∧ y)2} = y1 since (x ∧ y)2 >

x2. Hence U (x ∨ y) > U (y) as required since min {x1, (x ∨ y)2} > min {x1,x 2} =

x2 ≥ y1 = min {y1, (x ∧ y)2} = min {y1,y 2} or min {x1, (x ∨ y)2}+y3 > min {y1,y 2}+

y3. If x1 ≤ x2, i.e. min {x1,x 2} = x1 then again it must be that min {y1, (x ∧ y)2} =
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y1 since (x ∧ y)2 > x2 ≥ x1 > y1. Hence in this case U (x) > U (x ∧ y) and

min {x1, (x ∨ y)2} + y3 > min {y1,y 2} + y3 or U (x ∨ y) > U (y) as required, since

min {x1, (x ∨ y)2} = min {x1,x 2} = x1 and min {y1, (x ∧ y)2} = min {y1,y 2} = y1.

4. NSPOS AND NCPOS WITH MORE THAN THREE GOODS

With more than three goods S1, H1 and H2 (alternatively C1, H1 and H2) do not

define a partial order. There is now arbitrariness in the indexing of goods 2,...,n −1,

and corresponding flexibility in their normative role. Therefore, as we have already

alluded to above, with more than three goods we must differentiate between the name,

1,...,n , of a good, and its index, 1,...,n .24

We are faced with the challenge of constructing partial orders that are descriptively

parsimonious and also normatively rich. Perhaps the most obvious and descriptively

parsimonious way to construct partial orders from S1, H1 and H2 (respectively C1,

H1 and H2) is by replacing S1 (C1) with a (generalized) lexicographic order. The

lexicographic order does not add significantly, if at all, to the descriptive content of

an NSPO or NCPO, as defined in the previous section. Its import (over and above

S1/C1) in terms of the descriptive performance of the partial order is non-vacuous only

at critical cases (when y1 = x1, where x,y is a Hicks Consistent pair). But, since the

indexing of goods (2,...,n − 1) is arbitrary and since we would expect good n to have

at least one net substitute (strict inequality) this should not present a problem with

the choice of an appropriate indexing. Furthermore, the (generalized) lexicographic

order is particularly appealing in being a total binary relation (order), thus ensuring

the existence of a partial order when combined with H1 and H2. We will call the

partial orders so constructed (definition 4.1 below) the Lexicographic NSPO (denoted

LNSPO) and the Lexicographic NCPO (denoted LNCPO), respectively.

LNSPOs and LNCPOs are important in their descriptive role and also as a useful

benchmark. However, in the normative role of LNSPO and LNCPO, in the derivation

of sufficient conditions on the utility function, the import of the lexicographic order is

a lot more substantive, since it affects the nature of joins and meets of Hicks Consistent

24Recall that an indexing of the goods is a one-to-one mapping from the names of goods onto their
indices. Obviously, the natural indexing corresponds to the identity map, and again unless otherwise
warranted we will continue using the natural indexing of goods for simplicity. For obvious reasons,
all relevant indexings of goods will be such that good 1 is mapped to index 1 and good n to index n.
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incomparable pairs in the commodity space. It enables a particularly simple form for

such joins and meets, such that only the quantities of the two goods in question and

only one other good (the good with index n− 1) are adjusted.25 While the simplicity

of the construction is attractive, its inflexibility is a drawback. Once the indexing

of goods is determined, and in particular index n − 1 is assigned, this good is given

undue influence in the comparability of any pair of bundles without regard to any

other information that the pair of bundles may contain.

The most obvious information that we can draw from a pair of bundles, is the list of

goods that are in larger quantity in one bundle and those that are in larger quantity

in the other. This gives some a-priori information about which goods are candidates

for being net substitutes and which net complements of good n, and it would seem

appropriate that it is used. We apply this intuition to provide extensions of LNSPO

and LNCPO (definition 4.2 below) which utilize the arbitrariness of the indexing of

goods 2,...,n − 1, as suggested here, thus enhancing the normative performance of

these partial orders, while maintaining the descriptive parsimony of LNSPOs and

LNCPOs in binary comparisons. We call these partial orders Augmented LNSPO

(denoted ALNSPO) and Augmented LNCPO (denoted ALNCPO).

Definition 4.1.

(a) A pair x,y in <n, is comparable with respect to the Lexicographic (p,p ′) Net

Substitutes Partial Order (LNSPO) on <n, w.l.o.g. x ≤n
ns y, if and only if:

LS1: x ≤L y H1: p · x ≤ p · y and H2: p′ · y ≤ p′ · x

where ≤L is the lexicographic order on <n under some indexing of goods (such that

good 1 is given index 1 and good n index n), p ∈ <n
++ and p′ = (p1,p 2,...,p n−1,p

′
n)

with pn < p′n.26

We call (<n,≤n
ns) the Lexicographic (p,p ′) Net Substitutes poset.

(b) A pair x,y in <n, is comparable with respect to the Lexicographic (p,p ′) Net

Complements Partial Order (LNCPO) on <n, w.l.o.g. x ≤n
nc y, if and only if:

LC1: x ≤LC y H1: p · x ≤ p · y and H2: p′ · y ≤ p′ · x
25When the set is bounded below joins and meets can take more complicated form.
26There are (n − 2)! index sets which would give rise to distinct LNSPOs with a priori equivalent

descriptive power in describing good 1 as a (strongly/pathwise) net substitute of good n. However,
we suppress this fact in the notation, and we use the natural indexing whenever this involves no loss
of generality, for notational simplicity.
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where ≤LC is the generalized lexicographic order on <n, under some indexing of goods

(such that good 1 is given index 1 and good n index n), such that x ≤LC y iff y1 < x1,

or y1 = x1 and x−1 ≤L y−1, where x−1 ≡ (x2,...,x n) and p,p ′ are as in (a) above.

We call (<n,≤n
nc) the Lexicographic (p,p ′) Net Complements poset.

Definition 4.2.

(a) A pair x,y in <n, is comparable with respect to the Augmented Lexicographic

(p,p ′) Net Substitutes Partial Order (ALNSPO) on <n, w.l.o.g. x ≤n
ans y, if and only

if:

x ≤n
ns y (i.e. LS1: x ≤L y; H1: p · x ≤ p · y; H2: p′ · y ≤ p′ · x)

(where ≤L, p,p ′ are as in Definition 4.1(a) above)

and (whenever n ≥ 4):

S2: Sk
yx < 0 ⇒ (yk+1, ··· ,y n) ≤E (xk+1, ··· ,x n), k = 2,...,n − 2

where Sk
yx ≡

k∑
i=1

pi (yi − xi), and ≤E is the usual (Euclidean) order.

We call (<n,≤n
ans) the Augmented Lexicographic (p,p ′) Net Substitutes poset.

(b) A pair x,y in <n, is comparable with respect to the Augmented Lexicographic

(p,p ′) Net Complements Partial Order (ALNCPO) on <n, w.l.o.g. x ≤n
anc y, if and

only if:

x ≤n
nc y (i.e. LC1: x ≤LC y; H1: p · x ≤ p · y; H2: p′ · y ≤ p′ · x)

(where ≤LC , p,p ′ are as in Definition 4.1(b) above)

and (whenever n ≥ 4):

C2: S2,k
yx < 0 ⇒ (yk+1, ··· ,y n) ≤E (xk+1, ··· ,x n) k = 2,...,n − 2

where S2,k
yx ≡

k∑
i=2

pi (yi − xi), and ≤E is the usual (Euclidean) order.

We call (<n,≤n
anc) the Augmented Lexicographic (p,p ′) Net Complements poset.
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Conditions S2 and C2 in definition 4.2 warrant comment. Their purpose is to force

the choice of the indexing of goods to be such as to give potential complements of good

n high indices. It may be suggested that a simpler way of achieving this is by using:

(S2′) (x1, ··· ,x k) ≤E (y1, ··· ,y k), (yk+1, ··· ,y n) ≤E (xk+1, ··· ,x n), k ∈ {2, ··· ,n −1}

This condition implies (S1) and (S2), but it is not equivalent to them. The problem

with it is that if k is not fixed for all pairs then it fails to be transitive, and fixing k

is unduly limiting. An alternative condition that does give rise to a partial order is:

(D) yk+1 − xk+1 ≤ yk − xk k = 2,...,n − 2

This, given (S1), implies (S2). Furthermore, it is not descriptively cumbersome if

applied to each pair of bundles under suitable indexing, and together with (S1), (H1)

and (H2) it defines a partial order. Indeed, it can be shown that <n is a Hicks

Consistent lattice with the ensuing partial order. The difficulty is that <n
+ is not a

Hicks Consistent (sub)lattice. Therefore, we choose to proceed with (S2) (and (C2)).

It is convenient to first give the properties of LNSPOs and LNCPOs and this is done

in lemmas 4.1,4.2, and 4.3:

Lemma 4.1.

(a) LNSPOs and LNCPOs are partial orders on <n.

(b) (i) x ≤n
ns y implies x1 ≤ y1, yn ≤ xn and Sn−1

yx ≥ 0;

(ii) x ≤n
nc y implies y1 ≤ x1, yn ≤ xn and Sn−1

yx ≥ 0.

(c) When n = 3 LNSPO coincides with NSPO3 and LNCPO with NCPO3 (defi-

nition 3.1), and when n = 2 LNSPO coincides with NSPO 2 (definition 1.2).

Proof. See Appendix

Lemma 4.2.

(a) Given Hicks Consistent incomparable pair x,y in the Lexicographic (p,p ′) Net

Substitutes poset (<n,≤n
ns), such that w.l.o.g.: (NLS1) y <L x, (H1) p · x ≤ p · y, and

(H2) p′ · y ≤ p′ · x (at least one of H1, H2 strict inequality), then

x ∨ y =

(
x1,x 2,...,x n−2, xn−1 +

Sn−1
yx

pn−1
, yn

)
(1)
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x ∧ y =

(
y1,y 2,...,y n−2, yn−1 −

Sn−1
yx

pn−1
, xn

)
(2)

with p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x, p′ · (x ∧ y) = p′ · x, and

(x ∨ y)n−1 + (x ∧ y)n−1 = xn−1 + yn−1

(b) Given Hicks Consistent incomparable pair x,y in the Lexicographic (p,p ′) Net

Substitutes poset
(
<n

+,≤n
ns

)
, as in (a) above, their join, x ∨ y, is given by (1) above,

and their meet, x ∧ y, is given by:

x ∧ y =





(
y1,y 2,...,y n−2,y n−1 −

Sn−1
yx

pn−1
, xn

)
if Sn−1

yx ≤ pn−1yn−1

...(
y1,...,y k−1,y k − Sn−1

yx −Sk+1,n−1
y

pk
, 0,..., 0,x n

)
if Sk+1,n−1

y < Sn−1
yx ≤ Sk,n−1

y

...
(
y1,y 2 −

Sn−1
yx −S3,n−1

y

p2
,0,..., 0, xn

)
if S3,n−1

y < Sn−1
yx

(3)

where Sk,n−1
y ≡ pkyk + ··· + pn−1yn−1 and, as before, Sk

yx ≡
k∑

i=1

pi (yi − xi). Also,

p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x,p′ · (x ∧ y) = p′ · x.

Proof. See Appendix

Lemma 4.3.

(a) Given Hicks Consistent incomparable pair x,y in the Lexicographic (p,p ′) Net

Complements poset (<n,≤n
nc), such that w.l.o.g.: (NLC1) y <LC x, (H1) p · x ≤ p · y,

and (H2) p′ · y ≤ p′ · x (least one of H1, H2 strict inequality), their join is given by 1,

and their meet by 2 in lemma 4.2 above. Furthermore these satisfy p · (x ∨ y) = p · y,

p′ · (x ∨ y) = p′ ·y, p · (x ∧ y) = p ·x, p′ · (x ∧ y) = p′ ·x, and (x ∨ y)n−1 +(x ∧ y)n−1 =

xn−1 + yn−1.

(b) Given Hicks Consistent incomparable pair x,y in the Lexicographic (p,p ′) Net

Complements poset
(
<n

+,≤n
nc

)
, as in (a) above, their join is given by 1 in lemma 4.2.

Their meet is well defined and is given by 3 in lemma 4.2 if and only if p1y1 ≤ p−n·x−n.

Proof. See Appendix
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Lemmas 4.2 and 4.3 show that, as in the three goods case, the algebraic structure

of the join and meet of Hicks Consistent pairs in <n under LNSPO and LNCPO is the

same. Obviously the pairs where these occur are mutually exclusive. Consider a Hicks

Consistent pair, x,y , in <n such that w.l.o.g. (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x

(with at least one of H1, H2 a strict inequality): If x1 = y1 then x,y is comparable with

respect to (p,p ′) LNSPO if and only if it is comparable with respect to (p,p ′) LNCPO.

If x1 6= y1 then x,y is comparable with respect to (p,p ′) LNSPO if and only if it is not

comparable with respect to (p,p ′) LNCPO. Let z ≡
(
x1,...,x n−2,x n−1 +

Sn−1
yx

pn−1
,y n

)
,

r ≡
(
y1,...,y n−2,y n−1 −

Sn−1
yx

pn−1
,xn

)
. If y1 < x1, so that x,y is incomparable with

respect to LNSPO and comparable with respect to LNCPO, and z ≡ x ∨ns y and

r ≡ x ∧ns y, (lemma 4.2). Then r,z are Hicks Consistent incomparable with respect

to LNCPO, with r ∨nc z = y and r ∧nc z = x. Similarly, if x1 < y1, so that x,y is

incomparable with respect to LNCPO and comparable with respect to LNSPO, and

z = x∨nc y and r = x∧nc y (lemma 4.3). Then r,z are Hicks Consistent incomparable

with respect to LNSPO, with r ∨ns z = y and r ∧ns z = x.

We now turn to the discussion of ALNSPOs and ALNCPOs. Lemma 4.4 collects

some basic properties of ALNSPOS and ALNCPOs and then lemma 4.5 shows that in

comparing any pair of bundles they have no descriptive content over that of LNSPO

and LNCPO respectively, if an appropriate indexing is chosen:

Lemma 4.4.

(a) (i) x ≤n
ans y implies x1 ≤ y1, yn ≤ xn and Sk

yx ≥ 0, k = 2,...,n − 1 (and

thus the conditions in S2 are not binding);

(ii) x ≤n
anc y implies y1 ≤ x1, yn ≤ xn, Sn−1

yx ≥ 0 and S2,k
yx ≥ 0, k =

2,...,n − 1 (and thus the conditions of C2 are not binding).

(b) ALNSPOs and ALNCPOs are partial orders on <n.

(c) When n = 3 ALNSPO coincides with NSPO3 and ALNCPO with NCPO3

(definition 3.1). When n = 2 ALNSPO coincides with NSPO 2 (definition 1.2).

Proof. See Appendix
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Lemma 4.5.

(a) x ≤n
ans y in (<n,≤n

ans) implies x ≤n
ns y in (<n,≤n

ns) under the same indexing,

and x ≤n
anc y in (<n,≤n

anc) implies x ≤n
nc y in (<n,≤n

nc) also under the same indexing.

(b) (i) If x ≤n
ns y in (<n,≤n

ns) under the natural indexing of goods (w.l.o.g.),

then there exists an indexing of goods (where good 1 is given index 1 and good n

index n), possibly different, such that x ≤n
ans y in (<n,≤n

ans) under this indexing. In

particular this will be so if goods are indexed according to:

(D) yk+1 − xk+1 ≤ yk − xk k = 2,...,n − 2

(ii) If x ≤n
nc y in (<n,≤n

nc) under the natural indexing of goods (w.l.o.g.),

then there exists an indexing of goods (where good 1 is given index 1 and good n

index n), possibly different, such that x ≤n
anc y in (<n,≤n

anc) under this indexing. In

particular this will be so if goods are indexed according to (D) as in (i) above.

(c) (i) Given Hicks Consistent incomparable pair x,y in (<n,≤n
ns), i.e. such

that (NS1) y1 < x1, (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at least one of H1, H2

strict inequality), then x,y are Hicks Consistent incomparable in (<n,≤n
ans) under the

indexing according to (D) with: (NS1) y1 < x1, (H1) p · x ≤ p · y, (H2) p′ · y ≤ p′ · x,

and (NS2) S1
yx < 0,...,S k−1

yx < 0 and Sk
yx ≥ 0,...,S n−1

yx ≥ 0, k ∈ {2,...,n − 1},

under this indexing.

(ii) Given Hicks Consistent incomparable pair x,y in (<n,≤n
nc), i.e. such

that (NC1) x1 < y1, (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at least one of H1, H2

strict inequality), then x,y are Hicks Consistent incomparable in (<n,≤n
anc) under the

indexing according to (D) with: (NC1) x1 < y1, (H1) p · x ≤ p · y, (H2) p′ · y ≤ p′ · x

and (NC2) S2,2
yx ≥ 0 (if k > 2), ..., S2,k−1

yx ≥ 0, and S2,k
yx < 0, ..., S2,n−1

yx < 0 (if

k < n), for k ∈ {2,...,n }, under this indexing.

Proof. See Appendix

Lemma 4.5(b) shows that ALNSPOs and ALNCPOs do not add descriptive content

over and above LNSPOs and LNCPOs, in the comparison of pairs of bundles. However,

this does not extend to transitive comparisons, since the same indexing may not be

suitable for two different binary comparisons under ALNSPO or ALNCPO. Thus, the
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basic Hicks Consistent comparability criterion remains under LNSPOs and LNCPOs.

Based on this, lemma 4.5(c) suggests which Hicks Consistent incomparable pairs in

the richer ALNSPOs and ALNCPOs must be considered, under suitable indexing.

This is applied in the following two lemmas:

Lemma 4.6. Given Hicks Consistent incomparable pair x,y in the Augmented Lex-

icographic (p,p ′) Net Substitutes poset (<n,≤n
ans), such that: (NS1) y1 < x1, (H1)

p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (at least one of H1, H2 strict inequality), and

(NS2) S1
yx < 0,...,S k−1

yx < 0 and Sk
yx ≥ 0,...,S n−1

yx ≥ 0, k ∈ {2,...,n − 1}. Then:

(a)

x ∨ y =





(
x1,x 2,...,x n−2,yn−1 +

Sn−2
yx

pn−1
,yn

)
if Sn−2

yx ,..., S2
yx < 0

...(
x1,...,x k−1,y k +

Sk−1
yx

pk
,y k+1,...,y n

)
if Sn−2

yx ,...,S k
yx ≥ 0& Sk−1

yx ,...,S 2
yx < 0

...
(
x1,x 2 +

S2
yx

p2
,y 3,...,y n

)
if Sn−2

yx , ... ,S 2
yx ≥ 0

(4)

x ∧ y =





(
y1,y 2,...,y n−2,x n−1 −

Sn−2
yx

pn−1
,x n

)
if Sn−2

yx ,...,S 2
yx < 0

...(
y1,...,y k−1,x k − Sk−1

yx

pk
,x k+1,...,x n

)
if Sn−2

yx ,...,S k
yx ≥ 0& Sk−1

yx ,...,S 2
yx < 0

...
(
y1,y 2 −

S2
yx

p2
,x 3,...,x n

)
if Sn−2

yx ,...,S 2
yx ≥ 0

(5)

with p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x, p′ · (x ∧ y) = p′ · x.

(b) If Sn−2
yx ,...,S 2

yx < 0 then xn−1 < (x ∧ y)n−1 , (x ∨ y)n−1 < yn−1 and

(x ∨ y)n−1 + (x ∧ y)n−1 = xn−1 + yn−1. And in general, if Sn−2
yx ,...,S k

yx ≥ 0 and

Sk−1
yx ,...,S 2

yx < 0, k ∈ {2,...,n − 2}, then xk ≤ (x ∨ y)k < yk, xk < (x ∧ y)k ≤ yk

and (x ∧ y)k + (x ∨ y)k = xk + yk.

(c)
(
<n

+,≤n
ans

)
is closed under joins and meets of Hicks Consistent incomparable

pairs, satisfying (NS1), (H1), (H2), and (NS2), taken in the Augmented Lexicographic

(p,p ′) Net Substitutes poset (<n,≤n
ans).
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Proof. See Appendix

Lemma 4.7. Given Hicks Consistent incomparable pair x,y in the Augmented Lex-

icographic (p,p ′) Net Complements poset (<n,≤n
anc), such that: that (NC1) x1 < y1,

(H1) p · x ≤ p · y, (H2) p′ · y ≤ p′ · x (at least one strict inequality) and (NC2) (NC2)

S2,2
yx ≥ 0 (if k > 2), ..., S2,k−1

yx ≥ 0, and S2,k
yx < 0, ..., S2,n−1

yx < 0 (if k < n), for

k ∈ {2,...,n }. Then:

(a)

x ∨ y =





(
x1,x 2,...,x n−2,x n−1 +

Sn−1
yx

pn−1
,y n

)
if S2,n−1

yx ,...,S 2,2
yx < 0

...(
x1,y 2,...,y k−1,x k − S2,k−1

yx

pk
, if S2,n−1

yx ,...,S 2,k
yx < 0 &

xk+1,...,x n−2,x n−1 +
Sn−1

yx

pn−1
,y n

)
S2,k−1

yx ,...,S 2,2
yx ≥ 0

...
(
x1,y 2,...,y n−2,y n−1 +

p1(y1−x1)
p2

,yn

)
if S2,n−1

yx ,...,S 2,2
yx ≥ 0

(6)

x ∧ y =





(
y1,y 2,...,y n−2,y n−1 −

Sn−1
yx

pn−1
,x n

)
if S2,n−1

yx ,...,S 2,2
yx < 0

...(
y1,x 2,...,x k−1,y k +

S2,k−1
yx

pk
, if S2,n−1

yx ,...,S 2,k
yx < 0 &

yk+1,...,y n−2,yn−1 −
Sn−1

yx

pn−1
,xn

)
S2,k−1

yx ,...,S 2,2
yx ≥ 0

...
(
y1,x 2,...,x n−2,x n−1 − p1(y1−x1)

p2
,xn

)
if S2,n−1

yx ,...,S 2,2
yx ≥ 0

(7)

with p · (x ∨ y) = p · y, p′ · (x ∨ y) = p′ · y, p · (x ∧ y) = p · x, p′ · (x ∧ y) = p′ · x.

(b)
(
<n

+,≤n
anc

)
is closed under joins but not under meets of Hicks Consistent

incomparable pairs, satisfying (NC1), (H1), (H2) and (NC2), in the Augmented Lex-

icographic (p,p ′) Net Complements poset (<n,≤n
anc).

Proof. The proof is similar to the proof of lemma 4.6 and is therefore omitted.
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Some of the results of this section can be summarized as follows: (<n,≤n
ns), (<n,≤n

nc),

(<n,≤n
ans), (<n,≤n

anc),
(
<n

+,≤n
ns

)
and

(
<n

+,≤n
ans

)
are Hicks Consistent lattices.27 In

fact, lemma 4.6 shows that
(
<n

+,≤n
ans

)
is a Hicks Consistent sublattice of (<n,≤n

ans),

while neither is
(
<n

+,≤n
ns

)
a Hicks Consistent sublattice of (<n,≤n

ns), nor is
(
<n

+,≤n
anc

)

a Hicks Consistent Sublattice of (<n,≤n
anc).

5. SUFFICIENT CONDITIONS FOR NET SUBSTITUTION EFFECTS

REVISITED

In section 2 we gave sufficient conditions on preferences for a good to be a path-

wise/strongly net substitute of another, based on the general properties of NSPOs

and NCPOs developed in section 1. The results of the previous section show that the

two main theorems can be applied using LNSPOs and LNCPOs. However, we also

argued in the previous section that these class of partial orders is not normatively

entirely satisfactory. In Corollary 5.1 below we show how the ALNSPOs and can be

used instead (the analogous result with respect to ALNCPO is left to the interested

reader):

Corollary 5.1 (Net Substitutes).

Consider the consumer expenditure minimization problem, EM(p, ū) as in theorem 2.1:

(a) If:

(A) The consumption set X, X ⊂ <n, is closed under joins and meets of Hicks

Consistent incomparable pairs satisfying (NS2) in the Augmented Lexicographic (p,p ′)

Net Substitutes poset (<n,≤n
ans) for every indexing of goods 2,...,n − 1;

(B) The consumer utility function U : X → < is Hicks Consistent Iso-Quasi-

supermodular on X at all such pairs of points in (A), in every Augmented Lexico-

graphic (p,p ′) Net Substitutes poset (<n,≤n
ans).

Then, given feasible ū, such that solutions to the problems EM(p, ū) and EM(p′, ū)

exist and are such that there is no excess utility:

argmin
x∈X

{p · x | U (x) ≥ ū} ≤P argmin
x∈X

{p′ · x |U (x) ≥ ū}

27Of course in the case of (<n,≤n
ans) and (<n,≤n

anc), the relevant Hicks Consistent pairs satisfy
(NS2) and (NC2) respectively.
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(where the underlying order on the consumption set is ≤n
ns for some indexing of goods

2,...,n − 1), and good 1 is a Pathwise Net Substitute of good n at prices (p,p ′) and

at every such attainable utility level ū.

(b) If instead of (A) and (B) in part (a), (A), (B′) and (C) hold, where

(B′) The consumer utility function U : X → < is Hicks Consistent Strictly

Iso-Quasi-supermodular on X at all such pairs of points in (A), in every Augmented

Lexicographic (p,p ′) Net Substitutes poset(<n,≤n
ans);

(C) I ≡ argmin
x∈X

{p · x | U (x) ≥ ū} ∩ argmin
x∈X

{p′ · x |U (x) ≥ ū} contains no

more than one element, where ū is an attainable utility level,

Then

argmin
x∈X

{p · x | U (x) ≥ ū} ≤s argmin
x∈X

{p′ · x |U (x) ≥ ū}

(where the underlying order is ≤n
ns for some indexing of goods 2,...,n − 1), and good

1 is a Strongly Net Substitute of good n at prices (p,p ′) and at every such attainable

utility level ū.

Remark 5. 1. Notice that unlike in theorem 2.1, it is no longer possible to show

in (a) that argmin
x∈X

{p · x | U (x) ≥ ū} ≤a argmin
x∈X

{p′ · x |U (x) ≥ ū}, and in (b) that

argmin
x∈X

{p · x | U (x) ≥ ū} ≤c argmin
x∈X

{p′ · x |U (x) ≥ ū}, with underlying order ≤n
ns,

under any -re-indexing of goods 2,...,n − 1.

Proof. Follows easily from theorem 2.1 and the results of the previous section.

It is tempting to consider the conditions in corollary 5.1 above, which restrict the

behavior of the utility function within not just one Hicks Consistent poset, but in

all possible ones under some re-indexing of goods 2,...,n − 1, more restrictive than

the conditions of theorem 2.1. However, the Hicks Consistent incomparable pairs

at which the behavior of the utility function is restricted in this class of posets is

also restricted. And, as will be shown with the example of additive preferences, it is

possible that quasi-supermodularity in this class of posets is satisfied whereas it is not

in any single poset under LNSPO:
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Corollary 5.2 (Additive Preferences). If consumer preferences are additive such

that U : <n
+ → < U (x) ≡ U1 (x1)+ ... + Un (xn) where each Ui is a monotone, con-

cave function, then

(a) The function U is Hicks Consistent quasi-supermodular at all incomparable

pairs satisfying (NS2) in the (p,p ′) Hicks Consistent poset
(
<n

+,≤n
ans

)
, for every re-

indexing of goods 2,...,n − 1, and for every (p,p ′) such that p ∈ <n
++ and p′ =

(p1,...,p n−1,p
′
n) with pn < p′n.28

(b) Each good is a pathwise net substitute of every other good everywhere.

Proof. Part (b) follows from (a) and theorem 2.1 above, by observing that the

choice of goods 1 and n is inconsequential in the proof of (a) (note however, that the

quasi-supermodularity established (a) is more than is needed for (b)):

Consider Hicks Consistent incomparable pair x,y , such that (refer to lemma 4.5):

(NS1) y1 < x1, (H1) p · x ≤ p · y, and (H2) p′ · y ≤ p′ · x (where at least one is a

strict inequality), and (NS2) S1
yx < 0,...,S k−1

yx < 0 and Sk
yx ≥ 0,...,S n−1

yx ≥ 0,

k ∈ {2,...,n − 1}. In order to prove the required result, assume that U (x) ≥

U (x ∧ y) i.e. U1 (x1)+ ... + Un (xn) ≥ U1 (y1)+ ... +Uk−1 (yk−1)+ Uk

(
yk − Sk

yx

pk

)
+

Uk+1 (xk+1)+... +Un (xn). Hence U1 (x1)+... +Uk (xk) ≥ U1 (y1)+... +Uk−1 (yk−1)+

Uk

(
yk − Sk

yx

pk

)
or U1 (x1) + ... + Uk (xk) + Uk

(
xk +

Sk
yx

pk

)
+ Uk+1 (yk+1) + ... +

Un (yn) ≥ U (y) − Uk (yk) + Uk

(
yk − Sk

yx

pk

)
+ Uk

(
xk +

Sk
yx

pk

)
or U (x ∨ y) ≥ U (y) +

Uk

(
yk − Sk

yx

pk

)
+ Uk

(
xk +

Sk
yx

pk

)
− Uk (xk) − Uk (yk). Similarly U (x) ≥ U (x ∨ y)

implies U (x ∧ y) ≥ U (y) + Uk

(
yk − Sk

yx

pk

)
+ Uk

(
xk +

Sk
yx

pk

)
− Uk (xk) − Uk (yk).

Therefore, if Uk

(
yk − Sk

yx

pk

)
+ Uk

(
xk +

Sk
yx

pk

)
− Uk (xk) − Uk (yk) ≥ 0 then U (x) ≥

U (x ∧ y) implies U (x ∨ y) ≥ U (y) (strict inequality if U (x) > U (x ∧ y)) and U (x) ≥

U (x ∨ y) implies U (x ∧ y) ≥ U (y) (again strict inequality if U (x) > U (x ∨ y)) i.e.

U is quasi-supermodular as required. From lemma 4.6 of the previous section xk ≤(
xk +

Sk
yx

pk

)
< yk, xk <

(
yk − Sk

yx

pk

)
≤ yk and (x ∧ y)k+(x ∨ y)k = xk+yk. Therefore

(
xk +

Sk
yx

pk

)
= αxk + (1 − α) yk and

(
yk − Sk

yx

pk

)
= (1 − α)xk + αyk, for some α ∈

28It is possible to construct examples of Hicks Consistent incomparable pairs with LNSPO, with
just four goods, where the quasi-supermodular property may fail for both of the indexings of goods
relevant for the description of good 1 as a net substitute of good 4.
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(0 , 1]. Hence by concavity Uk

(
xk +

Sk
yx

pk

)
≥ αUk (xk)+ (1 − α)Uk (yk) and similarly

Uk

(
yk − Sk

yx

pk

)
≥ (1 − α)Uk (xk) + αUk (yk) . Hence adding these two inequalities

Uk

(
yk − Sk

yx

pk

)
+Uk

(
xk +

Sk
yx

pk

)
≥ Uk (xk)+ Uk (yk) as required, establishing that in-

deed U is quasi-supermodular.

6. CONCLUDING REMARKS

It is perhaps surprising that almost half a century of consumer theory has produced

very little in the way of conditions on consumer preferences that suffice to sign net

substitution effects. We hope that the sufficient conditions offered in this paper con-

tribute in this direction, and that in the process the versatility of the proposed order

theoretic framework is established. The methods exploit the order/lattice structure of

a problem, and it is important therefore to identify the appropriate order structures

inherent to the problem in hand before applying the general lattice programming theo-

rems and results. The strength of the results relies on the stregth of these order/lattice

structures.

It is hoped that the results of this paper can be helpful in both theoretical and

applied work. On the applied side, it can be envisaged that the methods developed can

be used to develop market research methods based on the questionnaire approach. It

is not easy to structure questionnaires that may confirm or otherwise that consumers

have, for example, additive preferences. But it would seem possible to construct

a finite set of questions, which can suggest with some degree of accuracy whether

consumer preferences satisfy quasi-supermodularity conditions as developed here. On

the theoretical side, at least part of the attraction of the proposed approach is that it

can be applied in cases with non-convexities and indivisibilities, to name but a couple

of its differences with standard approaches. In this paper we have worked within a

conventional setting and hinted only at possible extensions. It would be useful to

carry out such extensions explicitly.

Milgrom and Shannon (1994) provide an order theoretic (and a differential) gener-

alization of the (Spence-Mirlees) Single Crossing Property, paving the way for more

versatile extensions of asymmetric information models beyond the standard two vari-

able, one dimensional information characteristic, set-up. One such problem is that
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of the incentive compatible profit maximizing, or optimal, non-linear price schedule

for a good, when consumers preferences over many goods are explicitly modeled, as

opposed to the standard practice of using reduced demand functions. This example

is suggestive because it raises the question of the applicability of lattice programming

techniques to problems where there are budgetary trade-offs between the variables.

This is a difficult problem. The difficulty manifests itself in the fact that constraint

sets involving budgetary trade-offs between more than two variables do not avail them-

selves to strong set comparability (or even weaker forms of set comparability) under

commonly used partial orders, most notably the Euclidean order, as lattice program-

ming theorems require. It is the aim of the research agenda, of which this paper is a

part, to provide the required machinery for such applications.

APPENDIX

Proof (Lemma 4.1).

(a) Obvious.

(b) (i) and (ii): x1 ≤ y1 (y1 ≤ x1) follows from LS1 (LC1). yn ≤ xn and

Sn−1
yx ≥ 0 follow from H1 and H2.

(c) It is obvious that when n = 3 comparability with respect to LNSPO (LNCPO)

implies comparability with respect to NSPO3 (NCPO3). For the converse, assume first

x ≤3
ns y and therefore x1 ≤ y1 and y3 ≤ x3. If x1 < y1 then clearly x ≤n

ns y. If x1 = y1

then S2
yx ≥ 0 implies x2 ≤ y2. If the inequality is strict there is again nothing further

to prove. If x2 = y2 then from H1 and H2 y3 = x3. Hence x ≤3
ns y implies x ≤L y

and therefore x ≤n
ns y as required. The argument establishing that x ≤3

nc y implies

x ≤n
nc y is very similar. The case n = 2 is trivial.

Proof (Lemma 4.2).

(a) Considering first the join of x,y : Let z ≡ (x1,x 2,...,x n−2,z n−1,y n) with

zn−1 ≡ xn−1 +
Sn−1

yx

pn−1
. Clearly xn−1 < zn−1, and y <L x <L z. Also p · z = p · y and

p′ ·z = p′ ·y. Hence x ≤n
ns z and y ≤n

ns z, i.e. z is an upper bound of x,y . Consider next

any upper bound, w ≡ (w1,...,w n). By definition y <L x ≤L w, p · x ≤ p · y ≤ p · w

and p′ ·w ≤ p′ ·y ≤ p′ ·x and in particular wn ≤ yn = zn. If x1 < w1, or if xi−1 = wi−1
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and xi < wi , i = 2,...,n − 2 then z <L w and z ≤n
ns w as required. Therefore,

suppose xi = wi, i = 1,...,n − 2. If wn−1 < zn−1 then p · z = p · y ≤ p · w implies

yn = zn < wn contradicting wn ≤ yn = zn. Therefore, zn−1 ≤ wn−1. If zn−1 < wn−1

then z <L w as required and if zn−1 = wn−1, then wn ≤ yn = zn and p·z = p·y ≤ p·w

imply wn = yn = zn, i.e. z = w, thus completing the proof that z ≤n
ns w, i.e. z is the

join of x,y .

Considering next the meet of x,y :Let r ≡ (y1,y 2,...,y n−2,rn−1,xn) with rn−1 ≡

yn−1 − Sn−1
yx

pn−1
. Clearly rn−1 < yn−1, and r <L y <L x. Also p · r = p · x and

p′ · r = p′ · x. Hence r ≤n
ns x and r ≤n

ns y, i.e. r is a lower bound of x,y . Consider

any lower bound s ≡ (s1,...,s n). By definition s ≤L y <L x, p · s ≤ p · x ≤ p · y, and

p′ · y ≤ p′ · x ≤ p′ · s and in particular rn = xn ≤ sn. If s1 < y1, or if yi−1 = si−1,

and si < yi, i = 2,...,n − 2, then s <L r and s ≤n
ns r as required. Therefore suppose

yi = si, i = 1,...,n − 2. If rn−1 < sn−1 then p · s ≤ p · x = p · r implies sn < rn = xn,

contradicting rn = xn ≤ sn. Therefore, sn−1 ≤ rn−1. If sn−1 < rn−1, then s <L r

and s ≤n
ns r as required. If sn−1 = rn−1, then rn = xn ≤ sn and p · s ≤ p · x = p · r,

imply sn = rn = xn, i.e. s = r, thus completing the proof that s ≤n
ns r, i.e. r is the

meet of x,y .

(b) Since x ∨ y =
(
x1,x 2,...,x n−2,xn−1 +

Sn−1
yx

pn−1
,yn

)
∈ <n

+ whenever x,y ∈ <n
+,

the proof for the join is the same as in part (a). Therefore we only need to amend the

proof of part (a) in the case of the meet:

Case 1; Sn−1
yx ≤ pn−1yn−1. The proof in part (a) applies.

Case 2; Sk+1,n−1
y < Sn−1

yx ≤ Sk,n−1
y , k = 3,...,n − 2:

Let rk ≡
(

y1,...,y k−1,y k − Sn−1
yx −Sk+1,n−1

y

pk
, 0,..., 0,x n

)
. The hypotheses of this case

implies rk ∈ <n
+ and furthermore rk

k < yk, p · rk = p · x and p′ · rk = p′ · x. Hence

rk <L y <L x and rk ≤n
ns x,y , i.e. rk is a lower bound of x,y . Consider any

lower bound s ≡ (s1,...,s n). By definition s ≤L y <L x, p · s ≤ p · x ≤ p · y, and

p′ · y ≤ p′ · x ≤ p′ · s, and in particular xn = rk
n ≤ sn. If s1 < y1, or if yi−1 = si−1,

and si < yi, i = 2,...,k − 1, then s <L rk and s ≤n
ns rk as required. Therefore,

suppose yi = si, i = 1,...,k − 1. If rk
k < sk then this along with xn = rk

n ≤ sn, in

p · s ≤ p · rk = p · x or pksk + ··· + pnsn ≤ pkr2
k + pnrk

n, imply si < 0 some k < i < n,

contradicting s ∈ <n
+. Therefore sk ≤ rk

k . If sk < rk
k then s <L rk and s ≤n

ns rk as

required. Therefore suppose sk = rk
k . But then pk+1sk+1 + ··· + pnsn ≤ pnrk

n, given

xn = rk
n ≤ sn, implies si = 0, i = k +1 ,...,n − 1, and xn = rk

n = sn, i.e. s = rk, thus
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completing the proof that s ≤n
ns rk, i.e. rk is the meet of x,y .

Case 3; S3,n−1
y < Sn−1

yx : Let r2 ≡
(
y1,y 2 −

Sn−1
yx −S3,n−1

y

p2
,0,..., 0,xn

)
. r2

2 ≥ 0 is

equivalent to Sn−1
yx ≤ S2,n−1

y or p1y1 ≤ p−n · x−n which is clearly true since by

hypothesis y <L x. Therefore, r2 ∈ <n
+. The rest of the proof is identical to the

general proof in case 2 above.

Proof (Lemma 4.3).

The proof is very similar to the proof of lemma 4.2 and is therefore not repeated here.

We only remark that the meet of x,y does not exist when p−n · x−n < p1y1 since the

meet, if it exists, must be such that (x ∧ y)1 = y1 and (x ∧ y)n = xn. But this is incom-

patible with p · (x ∧ y) ≤ p · x in this case.

Proof (Lemma 4.4).

(a) (i) x1 ≤ y1, yn ≤ xn and Sn−1
yx ≥ 0 are consequences of x ≤n

ns y (see

lemma 4.1). Suppose Sk
yx < 0, some k ∈ {2,...,n − 2}. But then by (S2), Sk+1

yx < 0,

..., Sn−1
yx < 0, contradicting, Sn−1

yx ≥ 0. Thus, Sk
yx ≥ 0, k = 2,...,n − 2 whenever

x ≤n
ans y.

(ii) y1 ≤ x1, yn ≤ xn, Sn−1
yx ≥ 0 and S2,n−1

yx ≥ 0 are consequences of

x ≤n
nc y. Suppose S2,k

yx < 0, some k ∈ {2,...,n − 2}. But then by (C2), S2,k+1
yx < 0,

..., S2,n−1
yx < 0, contradicting, S2,n−1

yx ≥ 0. Thus, S2,k
yx ≥ 0, k = 2,...,n −2, whenever

x ≤n
anc y.

(b) ALNSPO: Reflexivity and antisymmetry are obvious. In order to establish

transitivity assume x ≤n
ans y and y ≤n

ans z. Hence x ≤n
ns z. From (a)(i) above

Sk
yx ≥ 0, and Sk

zy ≥ 0, k = 2,...,n − 2, implying Sk
zx ≥ 0, k = 2,...,n − 2, rendering

the conditions of (S2) non-binding. Hence x ≤n
ans z as required. The argument for

ALNCPO is analogous.

(c) Follows from lemma 4.1(c) since by construction (S2) and (C2) are inapplicable

when n = 2,3.
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Proof (Lemma 4.5).

(a) This is obvious from definitions 4.1 and 4.2.

(b) (i) We show that the indices of goods 2,...,n − 2 can be chosen so that

Sk
yx ≥ 0 , k = 2,...,n − 1. Suppose this is not true under the natural indexing. An

indexing that will work (not necessarily unique) is one which indexes goods according

to (D) yk+1 − xk+1 ≤ yk − xk, k = 2,...,n − 2. Under this indexing, if Sk
yx < 0 for

some k, then Sk+1
yx < 0,..., Sn−1

yx < 0, contradicting, Sn−1
yx ≥ 0. Furthermore, under

this indexing clearly x ≤L y, and (H1) and (H2) are unaffected by the re-indexing.

(ii) The proof is almost identical to (i) and is therefore omitted.

(c) Obvious, using the same argument as in (b) above.

Proof (Lemma 4.6).

(a) Considering first the join of x,y : Let

z =





(
x1,x 2,...,x n−2,yn−1 +

Sn−2
yx

pn−1
,yn

)
if Sn−2

yx ,...,S 2
yx < 0

...(
x1,...,x k−1,y k +

Sk−1
yx

pk
,y k+1,...,y n

)
if Sn−2

yx ,...,S k
yx ≥ 0& Sk−1

yx ,...,S 2
yx < 0

...
(
x1,x 2 +

S2
yx

p2
,y 3,...,y n

)
if Sn−2

yx ,...,S 2
yx ≥ 0

By construction p · z = p · y and p′ · z = p′ · y. Next we show: y <L x <L z:

Firstly, yk +
Sk−1

yx

pk
= xk +

Sk
yx

pk
≥ xk, k = 2,...,n − 1, whenever Sk

yx ≥ 0. If this is

strict inequality the result follows immediately. If Sk
yx = 0, Sk+1

yx ≥ 0 is equivalent to

zk+1 = yk+1 ≥ xk+1. If this is strict inequality the result again follows. Similarly, if

Sk+1
yx = 0 ,..., Sn−2

yx = 0 (i.e. yk+1 = xk+1,...,y n−2 = xn−2) then Sn−1
yx > 0 (implied

by H1, H2 where at least one is strict inequality) implies xn−1 < yn−1. Hence x <L z

as required. Therefore x ≤n
ns z and y ≤n

ns z. Furthermore,

Sn−2
zx =





0

Sn−2
yx ≥ 0

Sn−2
yx ≥ 0

Sn−2
zy =





−Sn−2
yx > 0

0

0

if Sn−2
yx ,...,S 2

yx < 0

if Sn−2
yx ≥ 0 & Sn−3

yx ,...,S 2
yx < 0

if Sn−2
yx ,...,S k

yx ≥ 0& Sk−1
yx ,...,S 2

yx < 0
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and in general, for k = 2,...,n − 3

Sk
zx =





0

0

Sk
yx ≥ 0

Sk
zy =





−Sk
yx > 0

−Sk
yx > 0

0

if Sn−2
yx ,...,S 2

yx < 0

if Sn−2
yx ≥ 0, & Sn−3

yx ,...,S 2
yx < 0 ...

Sn−2
yx ,...,S k+1

yx ≥ 0, &Sk
yx,...,S 2

yx < 0

if Sn−2
yx ,...,S k

yx ≥ 0, &Sk−1
yx ,...,S 2

yx < 0

... Sn−2
yx ,...,S 2

yx ≥ 0

Therefore the conditions of S2 do not apply and x ≤n
ans z, and y ≤n

ans z, i.e. z is an

upper bound of x,y . Consider any other upper bound of x,y , say r;

Case 1; Suppose Sn−2
yx ,...,S 2

yx < 0; clearly Sk
rz = Sk

rx − Sk
zx = Sk

rx ≥ 0 , k =

2,...,n −2, since Sk
zx = 0 from above and Sk

rx ≥ 0 since x ≤n
ans r (refer to lemma 4.4).

This means that if z ≤n
ns r then z ≤n

ans r since the conditions of S2 are inapplicable.

But z ≤n
ns r follows from the proof of lemma 4.2 and therefore z ≤n

ans r as required.

Case 2; Suppose Sn−2
yx ,...,S k

yx ≥ 0, Sk−1
yx ,...,S 2

yx < 0, k = 2,...,n − 2. As in case 1

above Sm
rz = Sm

rx − Sm
zx = Sm

rx ≥ 0 for m = 2,...,k − 1 since Sm
zx = 0 from above and

Sm
rx ≥ 0 since x ≤n

ans r. Similarly Sm
rz = Sm

ry − Sm
zy = Sm

ry ≥ 0 for m = k,...,n − 2

since again Sm
zy = 0 from above and Sm

ry ≥ 0. Therefore the conditions of S2 do not

apply and z ≤n
ns r implies z ≤n

ans r. If r1 < x1 or if ri−1 = xi−1 and ri < xi,

i = 2,...,k − 1 then r <L x, contradicting x ≤n
ans r. If x1 < r1 or if ri−1 = xi−1 and

xi < ri, i = 2,...,k − 1 then z ≤n
ns r and therefore z ≤n

ans r. Hence assume ri = xi,

i = 1,...,k −1 and suppose that xk ≤ rk < zk. Therefore Sk
ry < Sk

zy = 0 contradicting

Sk
ry ≥ 0. Hence zk ≤ rk; if the inequality is strict then z ≤n

ns r and z ≤n
ans r. Therefore

assume zk = rk. If rk+1 < zk+1 = yk+1 or if ri−1 = zi−1 = yi−1 and ri < zi = yi,

i = k + 2,...,n − 2 then again Si
ry < Si

zy = 0 contradicting Si
ry ≥ 0. Ifzk+1 = yk+1 <

rk+1 or if ri−1 = zi−1 = yi−1 and zi = yi < ri, i = k + 2,...,n − 2 then z ≤n
ns r and

therefore z ≤n
ans r. Therefore assume further ri = zi = yi, i = k +1 ,...,n −2. If next

rn−1 < zn−1 = yn−1 then using p · z = p · y ≤ p · r, zn = yn < rn which contradicts

rn ≤ yn (implied by p · y ≤ p · r and p′ · r ≤ p′ · y). Hence zn−1 = yn−1 ≤ rn−1. Again

if the inequality is strict then z ≤n
ns r and z ≤n

ans r. If yn−1 = rn−1 then rn = yn and

r = z, thus completing the proof that z ≤n
ans r for each upper bound of x,y and thus

z = x ∨ y.

Considering next the meet of x,y (the proof is analogous to the argument establishing
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the join and may be omitted). Let

w =





(
y1,y 2,...,y n−2,xn−1 −

Sn−2
yx

pn−1
,xn

)
if Sn−2

yx ,...,S 2
yx < 0

...(
y1,...,y k−1,x k − Sk−1

yx

pk
,x k+1,...,x n

)
if Sn−2

yx ,...,S k
yx ≥ 0& Sk−1

yx ,...,S 2
yx < 0

...
(
y1,y 2 −

S2
yx

p2
,x 3,...,x n

)
if Sn−2

yx ,...,S 2
yx ≥ 0

By construction p · w = p · x and p′ · w = p′ · x. Next we show w <L y <L x:

Firstly, xk − Sk−1
yx

pk
= yk − Sk

yx

pk
≤ yk, k = 2,...,n − 1, whenever Sk

yx ≥ 0. If this is

strict inequality the result follows. If Sk
yx = 0, Sk+1

yx ≥ 0 is equivalent to wk+1 =

xk+1 ≤ yk+1. If this is strict inequality then again the result follows. Similarly, if

Sk+1
yx = 0,..., Sn−2

yx = 0 (i.e. yk+1 = xk+1,...,y n−2 = xn−2) then Sn−1
yx > 0 (implied

by H1, H2 where at least one is strict inequality) implies xn−1 < yn−1 and w <L y as

required. Therefore w ≤n
ns x and w ≤n

ns y. Furthermore,

Sn−2
yw =





0

Sn−2
yx ≥ 0

Sn−2
yx ≥ 0

Sn−2
xw =





−Sn−2
yx > 0

0

0

if Sn−2
yx ,...,S 2

yx < 0

if Sn−2
yx ≥ 0, &Sn−3

yx ,...,S 2
yx < 0

if Sn−2
yx ,...,S k

yx ≥ 0, & Sk−1
yx ,...,S 2

yx < 0

and in general, for k = 2,...,n − 3

Sk
yw =





0

0

Sk
yx ≥ 0

Sk
xw =





−Sk
yx > 0

−Sk
yx > 0

0

if Sn−2
yx ,...,S 2

yx < 0

if Sn−2
yx ≥ 0, &Sn−3

yx ,...,S 2
yx < 0 ...

Sn−2
yx ,...,S k+1

yx ≥ 0, &Sk
yx,...,S 2

yx < 0

if Sn−2
yx ,...,S k

yx ≥ 0, & Sk−1
yx ,...,S 2

yx < 0 ...

Sn−2
yx ,...,S 2

yx ≥ 0

Therefore the conditions of S2 do not apply; w ≤n
ans x, and w ≤n

ans y, i.e. w is a lower

bound of x,y . Consider any other lower bound of x,y , say r;

Case 1; Suppose Sn−2
yx ,...,S 2

yx < 0; clearly Sk
wr = −Sk

yw + Sk
yr = Sk

yr ≥ 0, k =

2,...,n − 2, since Sk
yw = 0 from above and Sk

yr ≥ 0 since r ≤n
ans y (refer to lemma

4.4). This means that if r ≤n
ns w then r ≤n

ans w since the conditions of S2 are

inapplicable. But r ≤n
ns w follows from lemma 4.2 and therefore r ≤n

ans w as required.

Case 2; Suppose Sn−2
yx ,...,S k

yx ≥ 0, Sk−1
yx ,...,S 2

yx < 0, k = 2,...,n − 2. As in case

1 above Sm
wr = −Sm

yw + Sm
yr = Sm

yr ≥ 0 for m = 2,...,k − 1 since from above and
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Sm
yr ≥ 0 since r ≤n

ans y. Similarly Sm
wr = −Sm

xw + Sm
xr = Sm

xr ≥ 0 for m = k,...,n − 2

since again Sm
xw = 0 from above and Sm

xr ≥ 0. Therefore the conditions of S2 do

not apply and r ≤n
ns w implies r ≤n

ans w. If y1 < r1 or if yi−1 = ri−1 and yi < ri,

i = 2,...,k − 1 then y <L r, contradicting r ≤n
ans y. If r1 < y1 or if yi−1 = ri−1

and ri < yi, i = 2,...,k − 1 then r ≤n
ns w and therefore r ≤n

ans w. Hence assume

ri = yi, i = 1,...,k − 1 and suppose that wk < rk ≤ yk. Therefore Sk
xr < Sk

xw = 0

contradicting Sk
xr ≥ 0. Hence rk ≤ wk; if the inequality is strict then r ≤n

ns w and

r ≤n
ans w. Therefore assume rk = wk. If xk+1 = wk+1 < rk+1 or if xi−1 = wi−1 = ri−1

and xi = wi < ri, i = k+2,...,n −2 then again Si
xr < Si

xw = 0 contradicting Si
xr ≥ 0.

If rk+1 < wk+1 = xk+1 or if ri−1 = wi−1 = xi−1 and ri < wi = xi, i = k +2 ,...,n − 2

then r ≤n
ns w and therefore r ≤n

ans w. Therefore assume further ri = wi = xi,

i = k + 1,...,n − 2. If next wn−1 = xn−1 < rn−1 then using p · r ≤ p · w = p · x,

rn < wn = xn which contradicts xn ≤ rn (implied by p · r ≤ p · x and p′ · x ≤ p′ · r).

Hence rn−1 ≤ wn−1 = xn−1. Again if the inequality is strict then r ≤n
ns w and

r ≤n
ans w. If rn−1 = wn−1 then rn = xn and r = w, thus completing the proof that

r ≤n
ans w for each lower bound of x,y . Thus w = x ∧ y.

(b) and (c) : Obvious from the proof of (a)
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