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Abstract

In this paper, we reconsider the irreversibility theory in a non-Bayesian framework.
First, we propose three definitions in order to make the difference between the effects
of the irreversibilities and of the information which were mixed in the standard
definition of the ”irreversibility effect” proposed by Arrow-Fisher [1] and Henry [10].
The agent faces total uncertainty and uses the Max-min criterion. We consider
two types of model. The former deals with decisional irreversibilities while the
latter considers also accumulation process. Our results are similar to the ones of
the literature. Yet, we notice important quantitative differences. The Max-min
criterion does not lead necessarily to more flexible decision than Expected Utility
and there is no probability distributions that could produce the Max-min decisions.
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1 Introduction

Decision makers have to face many problems with uncertainty, irreversibilities and information.
We just have to mention problems such as global warming, the ”crazy” cow crisis, or
the introduction of genetically modified organisms... How those problems have to be
managed? Do decision makers have to take measures immediately in spite of uncertainties
or to wait for more information? Should we be more careful because of irreversibilities?
Many environmental problems can be formalised in the irreversibility theory framework.
It can enable us to answer some questions of this type. This theory gives an interesting
concept, which is the ”irreversibility effect”, shown by Arrow and Fisher [1] and Henry
[10]. The standard definition of this ”irreversibility effect” is the following : "to a finer

information structure, must be associated a less irreversible current decision”. Such a
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result is against the learn then act. The wait of information must not lead us to put back
environmental preservation decisions.

In this work, we consider a particular type of irreversibility : a current decision ¢ will
be said to be less irreversible than a decision ¢ if the set of future possible choices following
decision ¢ contains the set of future possible choices following decision ¢’. This definition
corresponds to the impossibility of a flashback. For example, it is impossible to decrease
a CO, stock in the atmosphere. Formally, it corresponds to an infinite adjustment cost.
It is an hard irreversibility. A more wide type of irreversibility would be to consider
adjustment but with finite cost.

The lighting brought by the irreversibility theory is adequate,because environmental
issues have three 3 main features of the decisional irreversibility problems :

1. Uncertainty : consequences (costs and benefits) of the current decision are uncertain.
For example, we do not know what the consequences of greenhouse gas emissions will be...

2. Uncertainty can possibly be solved by the time : research enables to understand
causalities better. Concerning global warming, models of climate become finer.

3. Sequential decisions : a succession of decisions has to be taken. Their consequences
are more or less irreversible for the future. In the global warming issue, we have to choose

the greenhouse gas emissions level, which will accumulate in the atmosphere.

What are the results of the literature? The ”irreversibility effect” was proved by Arrow
and Fisher [1]and Henry [10] then by Freixas and Laffont [7]in a more general context.
Nevertheless,those models have specific features, that is the intertemporal separability :
the current decision does not appear in the utility function, it only defines the constraint of
future decision. But in the considered environmental issues, a stock phenomenom exists.
This one generates intertemporal externalities. So, it seems more realistic to suppose that
current decision is an argument of the future utility function. However, results do not
allow to generalise the ”irreversibility effect”.

We must add another limit. The theoretical framework of this literature is only the
Bayesian one : agents are endowed with probabilities and the information process is built
on the Bayes rule. These hypothesis are not realistic for our problems : uncertainty on
the costs of global warming... Moreover supposing that the decision maker maximises
an expected utility with subjective probabilities is not more satisfactory. The Ellsberg’s
paradox [6]showed that with ambiguity most people do not conform to this model.

Our aim is to reconsider those decision problems with irreversibilities in a non-Bayesian
framework. We propose to extend the analyse on two points.

1. Uncertainty not entirely probabilised : we will consider cases in which the agent
would have ambiguous beliefs, for example family of probabilities, instead of having a

unique probabilities distribution. It is more realistic. For instance, if we appeal to experts



to assess subjective probabilities, their valuation would be for sure different. One could
compute a mean, i.e. one could use the Bayesian framework. But we would loose some
elements : the different assessings reflect the ambiguity of knowledge at a certain time.
We can keep the family of probabilities in using the Gilboa and Schmeidler'model [8]
(Max-min criterion of the expected utility valued on the family).

2. Information structure reflecting the ambiguity decrease : In such a situation, new
informations can lead to reduce ambiguity, i.e. a restriction of the family of probabilities.
Information processes considered by Chassagnon and alii [3Jand Chateauneuf and alii
[4]are built on this idea. Dynamic optimisation is possible in the Gilboa and Schmeidler’'model
[8] with such processes, whereas non-Bayesian models are confronted to dynamic consistency
problems with partitional informations.

Here we are in the first steps. We consider total uncertainty and simple information
processes. So we propose an extreme case which permits to show clearly the differences
with Bayesian framework. Under total uncertainty, the Gilboa and Schmeidler’'model [8] is
similar to the Max-min criterion. In conclusion, we discuss on the extend of the obtained
results for more general processes. In a theoretical point of view, our analyse permits to
test the range of the irreversibility effect and to study the extend of the literature results.
In an operational point of view, it enables to establish the consequences of the choosen
decision criterion .

Besides, we propose to make clear the irreversibility effect. Indeed, we propose three
definitions in order to make the difference between the effects of the irreversibilities and of
the information which were mixed in the standard definition of the ”irreversibility effect”.

We proceed as follow. In the second section, we present the general formulation of the
model. We show that it permits us to deal with specific models treated in the literature.
We try and clarify the notion of ”irreversibility effect” and we propose a new typology.
Technical results of the general model are in the appendix. In the third section, we analyse
models with intertemporal separability (Arrow and Fisher [1], Henry [10], Freixas and
Laffont [7]...). Our results extend those of the literature to a non-Bayesian framework. We
consider quantitative differences between a total uncertainty and a probabilistic situation.
Surprisingly, the Max-min criterion does not lead necessarely to make more careful choices.
In the fourth section, we consider models without intertemporal separability (Gollier and
alii [9], Kolstad [11], Ulph and Ulph [12]). We focus on the Ulph-Ulph model. Our
results are similar to those of the literature. However, our revisiting of the ”irreversibility
effect” makes clear the part of the irreversibility constraint. We show that informationnal
effect is not systematic but informationnal irreversibility effect holds : as it were, if more
information does not imply necessarily to be more precautionnous, on the other hand
irreversibilities always expand informationnal effect when it exists. In the fifth section,

we conclude on the theoretical and operationnal applications of those results and we



discuss on their generalisation.

2 The model

The general model we propose is simplified at the most so that difference of results between

our approach and a bayesian approach appear clearly.

2.1 The utility function and features of the problem

We consider a sequential decision-making problem in which the payoff function is :
Ur(er) + Ua(c, b¢1 + 3, 0)

where ¢; > 0denotes the choice in period 1, ¢ in period 2, 6 > 0, is a decay factor and
0 the state of the world.

We formalize the characteristics of the problem in this way :

1. Uncertainty : we suppose 2 possible states of the world : Q = {61,605}, the agent
faces a total uncertainty situation, that is to say he considers that all probability
distributions are possible. In part 3, we will compare the results with the Bayesian
ones where the agent would be endowed in period 1 with probabilistic beliefs (p, 1 —

p)on €.

2. Information : for comparative statics , we will consider 2 structures of information.
We will compare the case of perfect learning ( the decision maker learns the true
state of the world prior to the choice of ¢s), with the case of no learning ( the decision

maker still does not know which state of the world will arise).

3. Irreversibility : in our models, we study a hard irreversibility constraint : a decision
in first period is said to be more irreversible than an other decision if it restricts the
set of choices in period 2. Irreversibility is captured by the constraint ¢, > 0. Then,
if we consider the value 6c¢; + ¢ from which the utility of period 2 depends, it can
take only the values greater than dc; with the constraint co > 0. So the choice of

¢ is said to be a more irreversible decision than the choice of ¢} if ¢; > ¢}.

The shape of the utility function enables us to analyse as special cases several models

of the litterature.

o Decision with irreversibility in the choice of the level of development



The seminal works considered payoffs functions of the form : V;(z) + Va(y, 8) with the
constraint set y > x. The variable x can be viewed as the level of development reached in
period 1, y the level of development in period 2. The irreversibility constraint reflects the
impossibility of a flashback, 8 the uncertainty of the rentability of the project.Supposing
¢g = zand ¢g =y — x,conducts to have Vi(c1) + Va(er + co,0) with the irreversibility
constraint ¢, > 0.It is well a special case of our function considered. Nevertheless, the
choice in period 1 appears in the payoff function of period 2 through a stock effect but it

is the choice in period 2 which is no more a source of utility.
e The optimal level of greenhouse gas emissions.

The global warming issue can be treated by those models :

- there is an uncertainty about the consequences of greenhouse gas emissions.

- information comes with the pass of time.

- greenhouse gas emissions accumulates in the atmosphere, it is impossible te depollute.

Recent works have analysed this question supposing the intertemporal utility function
such as :

Gollier and alii [9] take : Ui(c1) 4+ Uz(co — 0(6cq + ¢2)) subject to ¢; > 0,¢2 > 0. ¢; and

co are the greenhouse gas emissions in period 1 and in period 2, ¢is a decay factor, it
represents the stock of greenhouse gases that survives from one period to the next. 8 is
the random variable, it determines how damaging the stock of emissions is.

Ulph and Ulph [12], consider a payoff function with separability in period 2 between utility
of consumption and the damage : Ui(c1) + Uz(c2) — D(6¢1 + ¢2) with the constraints

¢1 > 0,¢2 > 0, the same meanings of the variables and D(6c¢; + ¢2) denotes the damage
caused by the greenhouse gas emissions. D is an increasing and convex function. We will
analyse a generalisation of this model considering a damage function D(dc; + ¢z, 0). With
the function 0D(6c; + ¢2), uncertainty is only on the intensity of damage. There is no
uncertainty on the mecanism of the relation stock-damage. A more general function can
include this type of incertainty, which corresponds to the uncertainties nowadays.

It concerns 2 special cases of our decision problem. In these models, the irreversibility
problem is compounded by the intertemporal externalities. Indeed the payoff function

has now 2 arguments.

2.2 What is the irreversibility effect?

The definition of irreversibility effect introduced originally in the framework of decisionnal
irreversibility problem seems us inadequate in a more general framework. That is the
reason why we give another typology. Let c{’AI, cf Al he respectively the optimal choices

in period 1 in the case of no learning and irreversibilities, and in the case of no learning



without irreversibilities and let c{ IP, EIP he respectively the optimal choices in period

1 in the case of perfect learning and irreversibilities, and in the case of perfect learning

without irreversibilities.

The standard definition of the irreversibility effect consists in comparing c1 LAL and cI AP

that is to say the effect of an improvment of information when there are irreversibilities
constraints. In decisional irreversibility problems, under standard conditions on the form

I1,AI I1,1P

of utility functions, we have ¢;’”" > ¢;”" in a Bayesian framework. That means that an

improvment of expected information leads to a more flexible decision in period 1. This

effect does not exist without irreversibility constraint. Indeed, we have ¢4 = &>

Introducing intertemporal externalities makes the problem more complex, since c; PAL Qiffers
from cf 1P Indeed, without the irreversibility constraint, there is no more restriction on
the reachable values of d¢; +co, but it means, for example, that for reaching a fixed goal for
the value of the stock dc¢; +cs we will have to diminish ¢; if we increase ¢; which can induce
a decrease of utility in period 2. Thus, even though hard irreversibilities are remove, there
are still adjustments costs. In that manner, even without hard irreversibility constraint,
¢1 > ¢} means again that decision ¢; is more irreversible than decision ¢}.

Gollier and alii [9] call ¢** > """ a precautionnary effect. We call ”informationnal
effect”. A situation in which we would have ¢24 = ¢4 > LI — PP §g possible in a
case where irreversibility constraint would not bite for the optimal choice in period 2. Can
we call this an irreversibility effect, whereas the effect is not relied to the irreversibilities
constraint? Obviously, no. Information plays a part that we have to distinguish from
the irreversibility one. The typology suggested enables to avoid confusion of the different
effects.

Definition 1 : There is a pure irreversibility effect if for a given information structure,

. g . . . .. . . . IAI FAI
irreversibility constraint induces more flexible decisions in period 1 (i.e : ¢;”" < ¢ and

IIP FIP
<’ )

This effect is not usually studied in the literature’ whereas it corresponds to the more
natural idea of an ”irreversibility effect”. The irreversibility constraint introduces a trade
off for the decision maker between his first period aims and hisdecisionnal flexibility in
period 2. We have to check that the trade off induces the decision maker to be more

precautionnous, this one willing to relax his constraints of choice in period 2.

Definition 2 : There is an informationnal effect if without irreversibility constraint, a

. . . . . .. . . . FAI
finer information structure induces a less irreversible decision in period 1 (i.e : ¢ >

FIP
cr’ )

Sometimes, we call informationnal effect in case of the irreversibility constraint to

1,AI I1,1P

mean that ¢;”" > ¢;”", which we usually denotes by ”irreversibility effect”.

1Tt seems perhaps too obvious?



Definition 3 : There is an informationnal irreversibility effect if irreversibility accentuates

: , FAI FIP 1,AI 1,1P
the informationnel effect : if ¢, > ¢, then ;™" > ¢y

It is a second order effect : the introduction of the irreversibility constraint maintains
the informationnal effect we had without irreversibility?. When i = ¢™* informationnal
irreversibility effect is equivalent to the ”irreversibility effect” indicated in the literature.
Thus the informationnal irreversibility effect has been demostrated in the Bayesian framework
for the decisionnal irreversibilities. This definition is ours, so there is no result concerning

it for the model without intertemporal separability.

2.3 Implementation of the Max-min criterion.

At the beginning,the decision maker faces a total uncertainty. Then, we suppose he
assesses the possible options in accordance with the Max-min criterion. In view of the
information structure and the irreversibilities constraints, he will have to face one of the

four following sequential decision problems :
e No learning and irreversible decision.

When the DM makes her choice in period 2, she has no additional information and her

optimal choices will amount to : ]6\24 ax {M in{Us(ca, 6c1+c2,0;) }}. In fact, her maximization

main of her temporal utility leads her to choose and value her optimal plan in this way :

Max{U (¢ AI) + Mcwc{ Mm{Uz(Cz,501 + ¢, 6:)}}}

c1>0

In a Bayesian framework where the agent would have probabilised beliefs (p, 1 — p) on
{61, 02}, the maximization problem would be :

MCLZE{Ul( ) + ]ggéﬁ{pUQ(CQ, (501 + 02,01) + (1 - p)UQ(CQ, 501 + Co, 02)}}

Cl>
e Perfect learning and irreversible decision.

At the beginning of period 2, the DM knows the true state of the world #; and
her optimal choice will be to maximize M am{UQ(CQ, dc1+c2,0;)}. He anticipates his
optimal choice in period 2 but he doesn’ t know which information he will receive. So

he assesses ex ante the value of his choice in period 2 by : .Me in {Mazx{Us(cz, 6c1 +
2 2>0

¢2,0;)}} and in fact, his maximization goal of intertemporal utility leads him to

choose et value his optimal choice like this :

Maa:{U ( IAI) + Mm {Max{Us(cs,6c1 + ¢2,6;)} }}

'b c2>0

2We would have liked to quantify this ”increase”, but we can’t prove , for example, that
AT I,IP F,AI F,IP
(=) 2 (e =)



In a Bayesian framework, we would have :
Maz{Ui(c1) + {p MazUs(ca,6c1 + ¢2,601) + (1 — p)MazUs(cz, 6¢1 + ¢2,02)}}
c1>20 c2>0 c2>0

e No learning and reversible decision.

The decision and valuation is similar to the first case excepted that there is no more

irreversibility constraint c; > 0. So the criterion is :
Jggéﬂ{w(cﬂ + ]\/0[2&33'{]\9{7;71{(]2(02, oci + ¢2,0;) )
and in a Bayesian framework :
JC\{ZCLO:C{Ul(cl) + ]\/{gaz{pUQ(CQ, dc1 4 c2,01) + (1 — p)Us(co, by + ¢2,02) }}
e Perfect learning and reversible decision.

In relation to the second situation, the only difference is there is no ireversibility
constraint too, hence : M%E{Ul(cl) + ]\/gm {Max{Us(cz,6c1 + c2,0:)}}}
C1~ % (&)

and in a Bayesian framework :
M>CL6I'{U1(01) + {p MCL.I'UQ(CQ, 601 + Ca, 91) + (1 — p)MCLiEUQ(CQ, (561 + Co, 92)}}
c1~> Cc2 €2

In a total uncertainty framework, the Max-min criterion hasn’t problems such as
temporal inconsistency and it permits to apply the techniques of dynamic optimisation.
Indeed, we can realize that solving decision trees by backward induction or by a strategic
form would lead to the same optimal choice and to the same valuation. For example, that
is the case for Perfect learning and irreversible decisions. We can see that :

Jggée{Ul(cl)—l—]Weim {i{%x{UQ(CQ, dc1+eo,0:) ) = 012]\({%:5:20{]\49371 {U1(c1)+Us(ca, 61+
Co4, 91)}}, )

the right hand-side term represents the decision criterion to solve the problem under

strategic form.

3 Irreversibilities in decision-making.
Here we use the specific formulation of the intertemporal utility function :

Ul(Cl) -+ U2(027501 + 02,02') = ‘/1(01) -+ ‘/2(01 + Co, 02>



The utility function in period 2 depends only on the stock s = d¢; + ¢o with 6 = 1.

Consider the following conditions :

Hypothesis 1-bis® :V; and V; are strictly concave.

Hypothesis 5-bis : If Vi(c; + c2,01) = Va(ey + ¢, 02) then aVQ(Cl;;CQ’Gl) +# 6‘/2(01;8'02’92)

It is a condition of differentiation on the states 6;.
Hypothesis 6 : V; reachs a mazimum in s; in the state 0,*.

The next result shows that in our framework, we find the same results as ones in the

Bayesian framework.

Proposition 1 : Under the hypothesis 1-bis, 5-bis, 6 °
The irreversibility constraint induces less irreversible decisions in period 1 ( pure irreversibility
effect) i.e - &M > LA and P> AP
Without irreversibility constraint, information structure has no influence on the choice in
period 1 (informationnal effect is nil) i.e : & = P
With irreversibility constraint, perfect learning induces less irreversible decisions in period

1 than no learning : the informationnal irreversibility effect holds, c{’AI > c{’IP.

This ”result” shows us the robustness of the ”irreversibility effect” to the uncertainty

situation we are confronted to. Broadly and whatever the uncertainty is, it seems that
irreversibilities have a twofold effect. We have to prove those results in a wider extent. In
conclusion, we give the feeling of such a kind of generalisation.
Qualitatively, results are the same whatever uncertainty is. We wonder wether it is the
same quantitavely. We could think that being in a total uncertainty situation leads the
agent to be all the more precautionnous, since he has a very pessimistic criterion®. But
it is not the case. The next result points it :

Proposition 2 : For some decision problems we can find a probability p such as c{’AI

> M (p)and/or PP > P (p).

In the appendix, a numerical example is given for the first situation. It is built on the
following fact : the constraint can bite in a Bayesian framework for some c¢; more little

than in a total uncertainty situation. That’s why ¢4 > b4

(p) is possible.
In the next results, we show that it is particular cases. It could be said that the

Max-min criterion leads to be more careful than in a probabilised situation.

3The main numbering of the hypothesis is used for the general model in appendix.

4Monotony is not worth be analyzed because the constraints would always bite, and there would be
no informationnal effects.

®Without hypothesis, finite optimal solutions are not certain.

SHe could use the Hurwicz rule which weights the Max and the Min.



Proposition 3 : Under the conditions 1-bis, 5-bis and 6,
a) In case of perfect learning, if irreversibilities constraints does not bite in the two

states of the world for the optimal solution then c¢i* = c¢bHM(p) = B4 = B () =

I,IP IIP FIP FIP
¢y =cy (p)=ci =cy (p)Vp €[0,1].

b) In case of perfect learning, if irreversibilities constraints bite in the two states of the
world for the optimal solution then ¢ =t Pand ¢ (p) = P (p)vp €[0,1].
c) In case of perfect learning, if irreverszbzlzties constraints bite in one state of the

world for the optimal solution and dvl Wil T # 07, then Vp €]0,1[ c1'" < ¢ 7" (p).

The case a) is possible only if V} is not monotonous, the optimal condition is then
avi(ept )
dCl
interested only in this well-being in period 1 : total uncertainty and probabilistic situation,

= 0.1t is as if the agent didn’t have to consider the second period and were

irreversibilities or not, information... it is not important.

In the case b), information possibilities have no effect ont the agent’s choice. We can
observe ¢t > c{lp(p) only in this situation. It comes from the fact that max-min
criterion keeps the worst state of the world in tems of value, but the marginal damage can
be lower in this state than in the other. A Bayesian process weights marginal damages in
the two states of the world. So, it can lead to a greater valuation of marginal damages.

A positive informationnal irreversibility effect can only exist in the situation c). In
this case, the Max-min criterion induces the agent to be more careful in case of perfect
learning.

In total uncertainty, processing with the Bayesian framework is not innocuous. We
must bear in mind that it is tha Max-min criterion which permits to assure the best utility
level in the worst situation and whatever the situation is. On the other hand, as shown
by the next result, there is no probability distributions that could produce the Max-min
decisions.

Proposition 4 : If there is a positive informationnal irreversibility effect in case

of total uncertainty,then there is no p € [0,1] such that ¢1'F = ¢ (p) and ¢ =

1AI
ey (p).
In this case where irreversibilities and information play a part, the Max-min criterion

differs from a probability 1 on the bad state of the world. Indeed, one can not identify a

state of the world which would be bad in all circumstances.

7So it is certain that the state for which the constraint bites, is the worst state of the world on
optimum.

10



4 Intertemporal externalities.

In this section, we focus on the Ulph and Ulph model[12]. As the Gollier and alii model[9],
it has a specific structure : there is a worst state of the world whatever the circumstances

are. It is a restriction to our analyze. But the Ulph and Ulph model is easy to generalise.

4.1 The Ulph-Ulph model.

Decisionnal irreversibilities model permits us to formalize few environmental problems.
We can not in particular formalize problems with stock phenomenom inducing intertemporal
externalities (stock of greenhouse gas for example...). Ulph and alii [12] model this. They

take as intertemporal utility function :
U1(61> —+ U2(027601 + Co, 9) = U1(61> —+ ‘/2(62) — HD(écl -+ CQ)

The random variable 6 denotes uncertainty, it determines how damaging the stock of
emmissions is. We consider 2 states of the world : 6; and 6,,such as #; < 6. In this
model, 05 is the worst state of the world and whatever the structure information is, the

Max-min criterion is equivalent to maximize :
Ul(Cl) + ‘/2(62) — 92D((561 + Cg)
So the next result :

Proposition 5 : If Us(c, 6c1 + ¢2,0) is Va(ca) — 0D(6cy + ¢2) then the irreversibility
constraint leads to less irreversible decisions in period 1 (pure irreversibility effect) i.e.:

FAI o AT FIP  IIP , : ‘ .
> and ¢t > ¢ but information structure has no influence on choices in

, . FAI _ FIP LAI_ IIP
period 1 i.e.:c;” = and ¢ = ¢y .

What are the results in the Bayesian framework 7

e The irreversibility constraint induces less irreversible decisions in period 1, i.e. ¢, (p) >

A (p) and P (p) > P (p). Pure irreversibility effect holds.

e On the other hand, it is difficult to rule on the informationnal effect. It is clear however
that for some decisions problems this effect does not hold, i.e. ¢ (p) < ¢ (p). That

is the case particulary when the damage D and the utility function V; are quadratics.

e With irreversibilities, there is no general result. Ulph-Ulph give some sufficient conditions
to have ¢ (p) > ¥ (p) :

- if the constraint bites in the case of no learning for the expected state, then a finer
information structure leads to less irreversible decisions in period 1.

- if the constraint bites in case of no learning for the best state of the world then there is

no effect of information structure.

11



Comparing choices in period 1 in the two situations of uncertainty enables us to
see : whatever the theoretical framework is, the pur irreversibility effect holds. The
irreversibility constraint leads to make choices more flexible in period 1.

In a bayesian framework results concerning informationnal effect are ambigous. The Max-

min criterion gives a clear result : information structure has no effect on choice in period
1.

The question is then : would those effects be relevant if the bad state of the world
changed?

4.2 A generalization of the Ulph and Ulph model.

It is interesting to analyse the case in which the worst state of the world changes. Thus

we consider a decision problem such as :
Ul(Cl) + UQ(CZ(SCl + Ca, 9) = Ul(Cl) + ‘/2(02) — D(601 + Co, 9)

The previous model considered only the case with an uncertainty about the importance

of damage. We generalise the possibilities of uncertainty. Consider the following conditions

Hypothesis 1-ter :U; and V5 are strictly concave, Vs is an increasing function, D is

an increasing convex function.

Hypothesis 5-ter : If D(dc;+c,01) = D (6c1+ c2,05) then aD(échQ’el) # 8D(6Cg§02’92)

The results are :

Proposition 6 : Under the conditions 1-ter and 5-ter,

FAT > LAl

4 0 , FIP  IIP
Pure irreversibility effect holds i.e. c; U and ¢ > ey

Without irreversibility constraint, perfect learning induces no necessarely more flexible

decisions in period 1 than no learning.

: 4 4 . , . o FAI F,IP AT
The informationnal irreversibility effect is confirmed, i.e. if ¢’ > ¢, then ¢ >
1,IP

G

Results are qualitatively the same in a situation of probabilistic uncertainty.

Proposition 7 : Under the hypothesis 1-ter et 5-ter,
The pure irreversibility effecet holds i.e. ¥p € [0,1] ¢ (p) > Y (p) and &F(p) >

I,IP
C (p)

12



Without irreversibility constraint, perfect learning induces no necessarely more flexible

decisions in pertod 1 than no learning.

The informationnal irreversibility effect is confirmed, i.e. if ¢ (p) > ¥ (p) then
1Al 1IP
a”(p) = a (p)

The sufficient condition to have - (p) > ¢2'F(p) is identical to the Ulph-Ulph ’s one (cf
proof of the proposition ) : if the constraint bites in the case if no learning, then a finer

structure information induces more flexible decisions in period 1.

The last result of proposition 7 means that informationnal irreversibility effect holds.
It is a positive result in favour of our typology suggested to distinguish the part of
information and the part of irreversibilities®.

We shall not analyse quantitative differences between the Max-min criterion and
the Bayesian framework. We think they are similar to those identified for decisionnal

irreversibilities.

5 Conclusion

We proposed a very simple models in terms of information structure and states of the world
set. Nevertheless the results enable to clarify the part of externalities. Moreover ,they
do not depend on the nature of uncertainty. According to informationnal irreversibility
effect and informationnal effect , irreversibilities must lead to be more careful.

It would be logical to extend those results, i.e. to consider more general information

and uncertainty situation.

First, in a Bayesian framework with Blackwell information structure, we think the
informationnal irreversibility effect must hold in the Ulph-Ulph generalised model. Then,
the generalisation in a non Bayesian framework implies to precise the adopted formalisation
of uncertainty and the information structure we would consider. Total uncertainty is a
special case means we have no quantitative presumption on the risk level. Despite the
lack of data, we can often have some clues.In this way, we can consider a family of
probabilities on the state of the world and implement a Max-min criterion of expected
utility”’. Total uncertainty and Max-min criterion, probabilistic uncertainty and expected
utility are two special cases of this general formalisation.. In this framework, Chassagnon

and Vergnaud [3] and Chateauneuf and Vergnaud [4] proposed to consider an information

80n the contrary, there was a confusion with the standard definition of the irreversibility effect. In
their article, Gollier and alii [9] noted that their sufficient conditions were similar for the informationnal
effect (precautionary effect in their terms) and the irreversibility effect.

9For example, the family of probabilities can correspond to the subjective probabilities distributions
of the consulted experts for a problem.
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process with ambiguity reduction : when information arrives, the family of prior is
reduced. They proposed a consistent definition of information structure and demonstrated
we can apply the dynamic optimisation. They explained the partial order of these
information structures. In our model, no learning and perfect learning in total uncertainty

0

are two information structures of this type.!. Turning to this general formalization,

results will probably be generalized.

We have noted quantitative differences between the Max-min criterion and the bayesian
framework : Max-min criterion leads to make more careful choices. Broadly, we can not
say that Max-min criterion is equivalent to put a probability 1 on the "bad” state of
the world, because we can not identify a state of the world which would be bad in all
circumstances. There is no probability distributions that could produce the Max-min
decisions. We shall obtain probably the same quantitative differences in the more general
framework with family of probabilities. An intuitive definition of a more uncertain or more
ambiguous would build on an increasing of the familty of probabilities In an operational
point of view, proceeding with the Bayesian framework rather than the Max-min criterion
when we have some quantitative data is less relevant because the alternative with family

of probabilities exists.

6 Appendix

6.1 Optimality conditions in period 2 in the general model.

The comparative static results we look for are built on the comparison of the current
decisions ¢y, in view of the expected information structure and the irreversibilities constraints. First,
we have to explicit the conditionnal choice in period 2. In this section, we study the
hypothesis that permit to have optimization results in period 2 with good properties .

We consider that there is a unique solution for every optimisation problem considered.

The next hypothesis assures it :

U, and U, are strictly concave (in their 2 first arguments for Us).

6.1.1 Optimal choices in period 2 in the case of perfect learning.

Let’s consider the case in which the agent is informed of the true state of the world
;. We note I%(cy), F%(cy) the optimal choices respectively in case of irreversibilities
and without irreversibilities; and J'(cy, 6;), J¥ (c1,0;) the corresponding value functions.

Value functions give the utility of an optimal choice in period 2. So, we have :

10Tt justifies that in a first step we have only considered the extreme case of total uncertainty, which
enables to see clearly the differences.
1 The Max-min criterion makes the analyze particular because of points which can not be differentied.
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JI(Cl, 02> = UQ(Iei(Cl), (501 + .[gi (Cl), 62) = M>CL6’E{U2(CQ, 501 + Co, 02>} for i = ]_, 2
22
JE(e1,0;) = Us(FY%(cy), 6c1 + F%(cy),0;) = Max{Us(ca, 6c1 + co,0;)} for i = 1,2
Cc2
If the irreversibility constraint prevents from choosing the optimal level, then the constraint

bites as the next result shows it.

Lemma 1 Under the condition 6.1, I%(c;) = 0 < F%(c;) < 0 and Fl(c;) > 0 =
I%(c;) = FY%(cy) fori=1,2

How evolves the choice in period 1 with respect to ¢;? It depends on the U, features.

For this, let’s introduce the following conditions.

U is an increasing function in its first argument (i.e : Wplepbertesdi) > (e, ¢ 0;).
Oca ) )

This condition could be relaxed.

82Uz (ca,8c1+c2,0;)
0“ Oco0s =0.

It amounts to supposing that increase in stock s has no effect on the marginal utility

vcl; Ca,

of consumption in period 2 and that there is separability between variables ¢, and s. As

we will see this condition holds for the utility functions quoted before.

Lemma 2 Under the conditions 6.1 and 6.1.1, 1% (c1) and F%(cy) are decreasing functions

X . 0; 0;
m c{’AI with dld—c(lcl) > —§ and dFd—cgcl) > —6.

Proof.
F?%(¢y) is such that OUs (K0 (Cl)ngwi(cl)’ei) + BUQ(F%(Q)’?SHF%(Cl)’ei) = 0. If we differentiate
0, _‘92U2 @22 82Uy
this equality with respect to ¢/ ,we have dFd;CEQ) = —0. 62U28C’;6;2U26S oy = 0y <
aC3 T2oc50: T 52 903 T TasZ
0 given the hypothesis 6.1 too on the strict concavity of Us. Note that A (e1) > —6.1

dcy
By the lemma 1, we deduce the results on I%(c;) as well.
It seems to be logical that in period 2 it is optimal to compensate an increasing in ¢; by
a decreasing in c;. Note that the decreasing in ¢y is lower than the increasing in stock

induced by the increasing in c;.

Lemma 3 Under the hypothesis 6.1, 6.1.1, J'(c1,60;) are J¥(c1,0;) decreasing functions

in ¢y and if moreover the condition 6.1.1 holds, then they are concave.

Proof.
dJI(Cl,ei) o oUs (Ie'i (Cl),(SClJrIei (01),91) + 8U2(19'i (01)76014»191 (Cl),ei) drf (Cl) + 6 8U2(19i (cl),6c1+l‘9¢ (01),91)
de - Oca s dey : s

Given optimality conditions, the first term of the right hand-side expression is null.
Indeed, either the irreversibility constraint doesn’t bite at the optimum and the term

between brackets is nil, or it bites and so it is the second term which is nil. Since
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9% > (,in I%(c;) then 22 < 0 and so

Oca Os
(61,91) - 8U2(Iel (01),(501+1 1(01),91)
dc1 = 6. ds < 0.

d2J%(c1,0;)) _ 82Uy di%(c1) dI%(c1) dI dI%(c1) | 82U
dcg1 = 6. 80255 dcy 6 + dcy 88 =06 + c1 s N

d2JI(Cl,97;)
d—C% S 0. .

and since 6 + % > 0, the concavity of U, implies
Given the negative intertemporal externalities problems and the irreversibilities problems

we formalise, it is natural to have negative effects of ¢; on the well-being in period 2.

Consider functions J¥(¢;) = Min J(c1,0;) and JF(c;) = ]\%inJF(cl, 6;) which are the

value functions that the agent ant1c1pates when he expected to receive a perfect learning.

Lemma 4 Under the conditions 6.1, 6.1.1 and 6.1.1, J'(c1) and J*(c1) are decreasing

and concave functions in c¢q

Proof.

The decreasing of the functions J?(c;) and J¥(c;) is due to the decreasing of the functions
J(c1,0;) and J¥(c1,0;) and to their definition. They are continue too.

The concavity of the functions JZ(cy,6;) and J¥(cy,6;) implies the piecewise concavity
(on the intervals where J?(c;) = J!(cy,0;) for the same 6; and J¥(c;) = J¥(¢ey,0;) for
the same 6, ).

In a point where J/(¢1) = J'(e1,0;) = J(c1,0),

JI(c)) = JH(c),0;) on the left side of ¢, JI(c}) = JI(c],0_;) on the right of ¢,

then necessarily 0 > dﬂéi’ei) > d‘ﬂ(;;’g*i)
side of J'(cy) is higher than the derivative on the right side, it is the proof that J'(c;) is

concave on its entire field.

which means that the derivative on the left

The proof is similar for J%(c;) B
Now we are sure that in period 1 the problem is to optimise the sum of two concave

functions.One of them is strictly concave, so the optimal solution will be unique.

6.1.2 Optimal choices in period 2 in the case of no learning.

In the case of no learning, we note in the same way 1992 (c,), F®92(c,), J!(cy,0;,6,) and

J¥(c1,01,05) the optimal choices and the value functions.
J ey, 01,05) = n”éin{Ug(191792(cl),561—|—191’92(cl) D} = Ma:z: {Mm{Ug(CQ,(Scl—I—cQ, )}
J(e1,61,602) = Trzin{Ug(F91’92(cl),601—|—F91’92(cl) )} = Ma:z: {Mzn{U2(62,601+62, )}

The irreversibility constraint induces the same features on the optimal choices than

ones in case if perfect learning.
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Lemma 5 Under the hypothesis 6.1,
.[91’92(01) =0« F91’92(Cl) < 0 and F91’92(Cl> >0 = .[91’92(01) = F91’92(Cl) fOT’
1=1,2

The Max-min criterion we use in this total uncertainty framework has particular
consequences'? on the optimal choice in period 2 in the case of no learning :
- either it corresponds to one of the optimal choices in one of the states of the world,

- or it is between the two possible optimal choices in perfect learning.

Lemma 6 Under the hypothesis 6.1,

(Z) If JI(01,01> S UQ(IGl(Cl),(SCl —+ 191(01),02> (Tesp. JF(cl,Ql) S UQ(F91(01>,501 +
F%(cy),05)) then 1992 (c)) = 1% (cy) and J (c1,01,02) = Ji(c1,01) = TréinJI(cl,Qi) (resp.
F91’92(Cl) = Fel(cl) and JF(01,01,02) = JF(cl,Ql) = mmJF(cl,Ql))

k3

(ii) If J'(c1,02) < Us(I(cr), 61 + 17(c1),601)  (resp. J"(c1,02) < Ua(F*(c1),bc1 +
F%(cy),01)) then 199%(cy) = I1°(cy) and J!(cy1,01,02) = J(c1,02) = n”gfnJI(cl,Hi) (resp.
FO92(c)) = F%(c;) and J¥(c1,01,02) = JF(c1,05) = n}inJF(cl,@i))

(111) In the other situations, %énfei(cl) < I9%2(c)) < né?xfei (c1) (resp.meanei(cl) <
Fo02(c)) < I%?XFei(cl)) and

J(cr,01,05) = Uy(199%2(cy), 6c; + 19492(cy),0,) = Us(1992(cy), bcy + 19992(cy),0,) <
%fnjl(cl,ﬁi) (resp. JF(c1,01,05) = Us(F*%2(cy), 5ci+F%%(cy),0,) = Uy(FO%(cy), ber+
Fo192(cp) 0,) < %EnJF(cl,Qi))

Proof. (i)Vecs > 0 Tré_inUg(Igl(cl),(Scl + 1% (cy),0;) = Us(I%(cy), 6¢1 + 1% (cy), 01)

> Us(cg, 6c1 + ¢2,604) ZZ n’ebinUg(CQ, bc1 + ¢, 6;)

that shows that 191:%2(c;) - I%(cy) et JH(ey,01,02) = J(c1,01). Besides, Ji(ci,0s) =
Us(1%(cy), 8¢y + 1%2(cy), 02) > Us(1%:(cy), 8¢ + 1% (cy), 02)

> Us(I%(cy),6c1 + 1% (cy), 01) = J (e, 61)

() idem

(iii) Reasoning by absurde, if we had for instance Us(19292(cy),bc; + 19992(cy),0,) <
Us(192:92(cy), 6y + 19192(cy), 0), since we aren’t in the case (i), I92%2(c;) # I°(c;) . There
is ¢, standing between 19%2(c)) and I (c1), ¢y # I19%2(c;),such as Uy(ca, 6c1 + ¢y, 6;) <
Us(ca, 6¢1+cy,05) and the strict concavity of U, implies Us (19292 (c,), ¢y +19192(cy), 01) <
Us(ca, 6¢1 + ca,05). Moreover, since Uy (19492(cy), 6c; + 19992(cy),0,) = Us(19492(cy), bcy +

I9192(c)), 05) and we are neither in the case (i), nor in the case (ii), we have necessarily

12 A comparer avec le cas Bayésien, ou le choix de seconde période en absence d’information se situe
entre les deux choix optimaux possibles en information parfaite.
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.[91’92(01) §£ 191(01) and 191’92(61> §£ 192(01>. T‘hU_S7 JI(01,91,02> = UQ(IGLOQ(Cl),(SCl +
19992(¢y),0,) < Uy(I% (1), 6¢1 + I (¢1),0:) = JX(c1,0;), V0.
The hypothesis 6.1 implies %infei (c1) < I%%2(c)) < n;ax[ai (¢1) too.

(Demonstration for flexible decisions is identical). B

In the two first cases, there is a "bad” state of the world. The Max-min criterion leads
in the case of no learning to focus on this state and to make the corresponding optimal
choice. In the third case, the optimal choice is a compromise solution.

What is the effect of the decision in period 1 on the well-being in period 2.7

To see this, consider the following conditions.

oUsy (CQ 7(501 —+co ,91')

s is independent

Marginal utility with respect to ¢y is independent of 6; (i.e
of ;).

For instance, it seems natural for the problem of global warming : the utility obtained
directly by the consumption in period 2 doesn’t depend on the state of the world.

If Us(ea,6¢1 + ¢2,61) = Us(ca, 6c1 + c2,05) then 6U2(02’601+02’91) £ U 02’601+02’92)

It is a differentiation hypothesis : if the well-being is smnlar in the two state of the

world, nevertheless the marginal impact of the stock s is different.

Lemma 7 Under the conditions 6.1, 6.1.1, 6.1.1, 6.1.2 and 6.1.2, then J'(cy,01,05)

and J¥ (c1,01,05) are decreasing and concave functions in c;.

Proof. Results of lemma 6 show that points for which we can not derivate are possible
of the J!(cy,60;,60) function because of the non derivability of 19:%2(c;) function. Firstly,
let’s show it is a decreasing function, then a piecewise concave function.

If we are in the case (i) or (ii) given in the lemma 6, then the decreasing and the concavity
are deduced from the decreasing and the concavity demonstrated in the lemmas.

If we are in the case (iii) given in the lemma 6, then

Jl(e1,01,05) = Uy (1992 (cy), 8¢ + 19992(cy),01) = Us(1992(cy), 6c1 + 1992 (cy), 65).

: : . 1,AI :
If we differentiate with respect to ¢, , we obtain :
Al (c1,01,05) _ 0Us(19102(c) b1 +1°1:92(cy), 91) 1192 (cy) _I_(8U2(1917‘92 (01),601+191>92(01),91))(d191’02 ()

dey dea des s de; +
6)
_ aUz(Iglﬂz(cﬂggmlﬁ%(cnﬁz),dﬁlﬁ(el) 4 (8U2<1"1’92<c1>,68c81+191’92(c1> 92: )e(dleljf(cl) +6).
Given hypothesis 6.1.2and 6.1.2, this equality is true only if M = —4.(We have

demonstrated that when Us(cg, 6¢1 +c¢2,61) = Us(cz, 6¢1 4 c2,02) then bc; +co = o where

a is a constant).

. dJ(c1,01,0 AU (191:92 bc1+191:92 61)
Finally, we have —(210’11’ 2) — _g U (c1). aiﬁ (c1).01) <0.
d2J1(c1,01,0 82U, (191-92 Scq+101:92 01) .
Moreover (2(1:& 102) _ §207Us( (01)622? (@)91) () from the hypothesis 6.1.
1

Until now we have supposed differentiability. We note non differentiability points when

we go from case (i) or (ii) to case (iii), that is to say when 34 such as Us(I%(cy), 61 +
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I%(cy),0,) = Us(1%(cy), 6e1+1%(cy), 65) (ie(501+19‘(01) = a)and ["%(¢;) = I%(c;). In

one hand, we have dJIC(lZl’Q') 5. 2% (1), %CS”I (e)%) and on the other hand W =
— . Sl Lt e iy (1%(cy), ey + 1% (cr)).

Two cases are possible :

- either the irreversibility constraint does not bite in 1% (c; ) and the optimality conditions

8U2(19 (Cl) 661+10'L(01) 0; ) 8U2(I‘91(cl) 601+19 (Cl) 0; ) o dJI(Cl,Qi) o
Do + o = 0 and so we have =—2% =

dCl
W in (I%(cy),6c; + I%(cy)) that means that necessarily the right and left

derivatives of J¥(cy, 01, 05) are equal in the non differentiability point,

are so

- or the irreversibility constraint bites and in this case the decreasing of 19492 (c;) and
the irreversibility constraint imply that 1°:%2(c;) = I%(c;) = 0on the left-side dicontinuuity

point and that we are in the case (iii) on the left. The right derivative of J'(cy,61,62) is

6 oUs (Ie'i (Cl),(SClJrIei (01),91) 6 8U2(I‘91 (01) 601+19 (01) 0; )
: Os

and the left derivative is

BUQ(Ie (Cl):;z;—i-fe (Cl) ) + BUQ(IG (Cl) lj;;—‘rIGQ (Cl) 9) < 0 Wthh

equal to

The optimality constraint is then
shows that the left derivative is upper than the right derivative.

We have conditions on derivatives assuring the concavity of J?(cy, 61, 63) on its all definition
field. m

Under our hypothesis, we have good properties for the maximization problem in period

1 in the case of no learning. Besides, the optimal solution is unique.

6.2 Proofs of propositions of decisionnal irreversibilities.

Hypothesis 6.1.1, 6.1.1 and 6.1.2 are of course confirmed. Hypothesis 1-bis and 5-bis imply
that hypothesis 6.1 and 6.1.2 hold. one can use the previous demonstrated results for the

general model.

Proof. of proposition 1.

Without irreversibilities constraint, the optimal choice in period 2 always gives the maximum

reachable utility : we have d‘]chccl’ei) = dJF(illc’el’HZ) = 0. Results of lemma 4 and 7, hypothesis

FAT PIP  FAI AT FIP 1IP
6.1 lead to c;"" = c1 > ¢y and ¢ > .

Lets’s show that %Z 210’191’92) > dec(fl) (in case of differentiability). Either we can find i =

1,2 such as Ji(c1,0;) < Us(I%(cy), 6c1+ 1% (c1),0 ;) and then JZ(c;) = J¥(c1,01,02) =

J1(c1,0;) and in this case #2192 — d7(e1) Oy it doesn’t exist such a ¢ and if 22 (c01.02)

deq deq deq
dJ’ (e1,01,0
exists and then % = —%Lc;? = 0 (cf proof of lemma 7). Thus necessarily
dJ(c1,61,0 dJ! I,AI I,IP
(210’11’ 2) > dc(lcl) and we deduce c1 > n

Proof. of proposition 2.
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we give an example in which ¢ > ¢! (p). Given the utility functions Uy (¢;) =

3.c; — & (maximum of Uyin ¢; = 3/2) and U (cy+¢3,0;) = 4. (c1 + ¢y +0; )= (c1 + ¢o + 6; )2

with#; = 0 et 8, = 1. Function ]\/éinUg (¢1 + ¢2,0;) reachs its maximum in ¢; +¢; = 3/2,

so [992(c;) = 3/2 — ¢,if ¢ < 3/2, IP%(c;) = 0 otherwise and d‘ﬂ(cdl—c’fl’%) = 0if
a < 3/2, dJI(izlc’thQ) = 8U2§§1’92) = 2 — 2.¢if ¢; > 3/2. Consequently, ¢ =3/2.Or

for example, for p = 1/4, function 1/4.Us (c; + co,01) + 3/4.Us (¢1 + ¢2,02) reachs its

maximum in ¢; + ¢; = 5/4 and one can check that ¢ (p) = 11/8 < =3/2. =

Proof. of proposition 3.

a) So we are in the case where for instance, V6; I%(ci'") = F%(c'") > 0Owith

dJi (T g dJF (1T g, avi (1P avy (1P IIP
(f B) _ 4l (a0 — g apd so P ) — Mg ) — () Consequently, ¢¥ =
dcy dep ’

dcy dc1
¥ On the other hand, we have seen in the demonstration of the lemma 6 we have ever
Trémlei (c1) < I%%2(c;) < max[ei (1) and n”émFGi (c1) < Fo%(cp) < rréaxFei (1) and

1
_dIF (e 01,09)

consequently 19002 (cl"P) = F91’92( P > O with dJI(C{;lIZ’Ql’OZ) = = = 0,
and so cI 7 is a solution as well to the problems in case of no learning, given the unicity,
in total ¢ = A = LIP = BIE

If we consider a bayesian situation, p.%{f’m) + (1 — p).%{f’ez) = 0Oand
so ' = " (p) = """ (p). Since irreversibility constraints don’t bite, la fonction

p.Va (PP 4 ¢,01) + (1 —p).Va (' + ¢2,0,) reachs its maximum in ¢, > 0, and so
dh{gm{pvz (e +e2,01) + (1-p).Va (C{’IP-&-Czﬁz)H

- = 0 we deduce then c{’IP = C{ Al (p) =
FAI
G (p) 1, IIP
b) Idem demonstration of the case a) we notice then I%(c!'*) = 0o, 29~ %) (301 & =

0and 7rgm.79 (c1) < I9%%2(c;) < n%axle (c1) = I9%(c1"P) = 0.

¢) In the described situation, 36; such as I%(c]"™") = 0, 1% (") > O,Withm

deq

I 1P 3 I/, . 1,IP

0 and d”lcld—ﬁ = 0, since 24 01 ) + 0 but &2 (Cl D # Ezccll ) = 0, necessarely
I IP s

JH Py = JI(P'P9;) and a7 Eiccll R (dq ).In a Bayesian framework, in case of
perfect learning, in c{’IP the derivative of the value function in period 2 isthus Vp; €

dJi (TP 0, drf e oy dJi (P 0,) dJi (P 0,)
10, 1[1,152-. ﬁ + piT— g = i o > T and consequently
Mila ) | 4] (21;1 > 0 which shows that ¢]""" < ¢"""(p). m

deq

Proof. of proposition 4.
In cI AP , we are in a situation in which 36, such as I% (c{’IP) =0, Ie—i(c{’lp) > 0,with
IIP IIP dJi (It it o, . IIP I,IP
JH ') = JHep'™,6;) and ((iccll ) = (2101 ) < 0 and to obtain ¢ (p) = ¢!
we must have p; = 1. But then we have as well ¢/ (p) = ¢*(p) which implies ¢I* (p)

1A IIP 1,AI
#+ M since e < M. m
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6.3 Proofs of propositions for intertemporal externalities.

Proof. of proposition 5 :
The only case is : J(cy1,0;) < Us(F%(cy),8c1 + F%(cy),0;) with 6, < 6;.
Indeed, if we consider : 01 < 0y, JF(c1,05) < Us(F%(cy), 6c1 + F%(cy), 61) everytime.

So we have : n%)inJF(cl,Hi) = J(c1,05) = J¥(c1,01,05). The expected information
structure has no effect on current decisions : cf AL — cf 1P

Concerning irreversible decisions, we have always : J!(cy,02) < Uy(1%2(cy), Se1+1%2(cy), 61)
with 6, < 6,.
So : TréinJI(cl, 0;) = J!(c1,09) = J (c1,01,02). Thus the expected information structure

. LAI _ IIP
has no effect on current decisions : ¢;""" = ¢}’

In case of perfect learning and no learning, since value functions are similar,

Fle, F(e ,
decg ) _ & (di’fl b2) — 50, (6c1 + FO(cy),05)

dJ;c(fl) - djl(idléfh%) = —60,D'(6c1 + 192(01),92)
If F%(c;) > 0,1%(c1) = F%(c;) and so £ = 22 {e), )
If F2(c;) < 0,1%(c;) = 0 and so d‘]d(ffl = —605D'(6¢1,02) and d‘]d—c(lcl) = —60,D'(6c; +

F%(cy),0,). D'(6c1 + F%(c1),05) < D'(6cy,02) because 6c; + F%(c;) < be; and D is

ch(lcl) > d‘];c(fl) and the U; concavity implies

: : : d
increasing, convex. Whatever c; is, we have

FAI IAI FIP I,IP
> cy >c A

Proof. of proposition 6 :
Firstly, let’s remark that hypothesis 6.1,6.1.1,6.1.1,6.1.2 and 6.1.2 hold.
a) The pur irreversibility effect : the case of perfect learning.

Let’s consider at first the case of perfect learning :

1P

Let 6; (resp. 6;) be the state for which value function is minimum in ¢}"’* in case of

reversible decisions (resp. irreversible).
1) If ; = 6;, then
- if Fo (™) >0,

PP F,IP ,
dJI(IZC(lc )) _ clJI(céc1 ’93) _ —6.D/(6Cf’1P+Iej(CfJP),0]) _5 D/(6 FIP+F9 ( FIP),ej) _

dJF (1P 0,) FIP . . .

——4— > and s0 ¢, is an optimum in the case of irreversible decisions too. Thus

FIP _ LIP

G- =4

FIP FIP dJI(1% (1P dJI (I IE g FIP

-if FO(ef™) <0, I%(cf'") = 0 then PG D) = &%) — 5 Dr(scy ", 0;) <
F ’ .

—6.D' (6T 4+ FOi (e, 0,) = W.Thus > et

2) If 0, # 0;, then necessarily

FOi (Y < 0. So : 1%(c51P) = 0

- If 1% (™) > 0 then F9‘( DY = 1% (") and FO (ep'") > 1% (e '),

dJF(Fej(cf’I ),0; (SV/(FQ ( FIP)) N (SV/(IQ ( FIP)) > dJI(Igi(cf’IP),Q.L) dJt (1% c FIP))

deq deq deq

Since
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FIP
then necessarily c;’

S If 1% (') = 0 and F%(ci"") < 0, then 3 ¢, ¢ [F9 (1P, O} such as D(6ci"" +
c2,0;) = D(6ci™" 4 9, 60;) with D(6c]™ + o + €,0;) < D(6c)™ + ¢a + €,0;) and
D6 + ¢y — €,0;) < D(6c¢™ + ¢y — €,8,) for asmall € > 0. So D' (6¢t"™" 4 ¢5,6;) <
D' (6™ + 2, 6;)

Either ¢, < F9 i (e Py < 1% (') and so

> (1P

dJF(F J(cl )7 _ —(SV,(FQ ( FIP)) >
dcy
_SVI(FO(PITY) = —6D/ (ST FO (1), 0,) > —8D/ (8¢PIF 419 (P17, 9,) = d‘ﬂ(cé—c’lﬁi)

1P FIP
and so ¢, < ¢

0, FIP\ 5
Or FY% (™) < cyand then I (F j;;l 201 > —6D'(6c1'F + ¢3,0;) > —6D'(6c)'F +

¢,0;) > —6D' (6™ + 1%(1), 0,) = W thus ¢]'F < 7,

Now, let’s consider the cas of no learning :

FAT FAT FALy dJl(c4 0,6 dJF (e 01,0
If FO192 (") > 0, then [9092(c) ™) = FOu02(c ) (" O182) _ dJ7(ey " 6162) o9
1 ) 1 1 ) dey dey

G =4
If Fouf2(cE4TY < 0, then Iel’QQ(Cf’AI) = 0 and necessarlly 36, such as I% (54 = 0,
J](Cf,AI,el,QQ) _ J[(Cf,AI,ei) and dJI( - 91 ,02) _ clJI(cC}c1 ,0:) _ —(SD,((S fAI,ei)- On

the other hand,

- either 36;such as ;[F( PAL0,,0,) = TP 0;), FoOul (A = RO (AT
and (o 01.62) = 0100) _ I 0;) (dq b)) — —6.D' (65 + F91’92(cf’A1),0j) and if 0, = 0,
then —8.D' (8¢ M 4 For02(IANY 9.y > — 5. D'(5¢M | 6;), otherwise Jep € | FOv02(cAT) 0

1 1 j 1 1
such as D(6ch ™ +¢5,0,) = D(6c¢E 4 ¢5,6;) and D/ (8¢ +¢5,0;) < D'(6c +¢,,0:)
and so —8.D'(8chM 4 FoLo2 (A ) > —8.D' (8¢ 4¢y,0;) > —6.D' (6 4¢y,0,) >
—6.D'(6¢!,6;) which implies ¢/ < A

A
- or W = —6.V)(F91b (cf’A])) and 36;such as Fou02 (cF’AI) > FY (cvaI),
1£ ; = 0; and thus L0 - 5 (R0 () >~ VY(F ()
Al
= =D (6N + PO (M), 05) > —o.D/(scfM 0) = LTS and so <

FAT
a’.

If §;, # 6;,that means that F% (cP*) > FO0%2(c4) > F9 () and necessarily
D(6cM + FO02 (Y 46 0,) > D(6chM 4+ FO%2 () 4 €, 6;) for € > Osmall (e
: 0;is the bad state of the world on the left side of sl 4 Foua (A1) Byt that is
0;the bad state of the world in 8¢, Consequently Je¢, € [F 01.92 (¢ F’AI),O} such as
D(6cEM 4 ¢5,0;) = D6 + ¢3,0;) and D' (8¢5 + ¢3,60,) < D'(6¢7" + ¢5,6;) So
W00 5 D6 4 FO (), 0,) > —8.D/ (6T + ¢0,0;) >

FIP FAI dJ (4 91 ,09) 1Al FAT
—0.D'(6¢]"" + ¢9,0;) > —6.D'(6¢,7,0;) = % thuse;™ < .

b) Informationnal effect does not hold necessarily.

o If D(6¢; + FP(cy),0;) > D(6¢5Y + Foi(ey),0_;) in ¢ or "7 then we are in the
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case (i) or (ii) of lemma 6, thus J (¢;) = J¥(¢1,6;) = J¥ (c1, 01, 65)
FAI _ FIP

i.e. the information structure has no effect on the current decisions : ¢, = ¢}’

e Let’s consider now the case (iii) of lemma 6 :

If in ¢ 2 JF(EM0,) < JE (Y 0-,) and FO () > FO-i () then %}jm) =

W e o) _ <j;cf” D — 5 VI(F% (A1) and —d“’F@f(;:ﬁlﬁQ) - —v'(FMQ (A1), Since FO02 (A1) <
F%(cFT) we have JFC(ZZF RN dJF(Cf;f’gl’eZ) = P > AL informationnal effect does
not hold. (one can construct examples to have this situation).

If in ™5 JF (A 6) < JF (M 6.,) and FO(PT) < Fo-s (1), then 2500 <
%ﬁ’el’e?) = P < P informationnal effect holds.

We have demonstrated the case whre theres is not informationnal effect. One can
produce a similar demonstration for the case of irreversible decisions and we have the

same formal characterisation.

¢) Irreversibility informationnal effect holds..

We proceed by a demonstration by the absurde. Suppose that the informationnal effect
holds for the case of reversible decision but does not hold for the case of irreversible
decisions. Let 6;, be the state in which the value function is minimal for the case of
irreversible decisions in ¢;”"". Given the formal characterisation in b) for the absence of
informationnal effect, we must have 1% (c"") > 19:92(c["F). > 19~ (cP"") and necessarily
1% > 0, 50 1% (™) = F%(cl'"), which implies that in case of reversible decisions,

1,1P 1IP _ FIP
in ¢, the minimum is reached in 6;.S0 ¢;”" =¢;"" .

If 19092 (c11F) > 0, then 1992 (7Y = FO102 (¢117) and we should have ¢I*'” > "4 which
is conflicting with the postulate of the beginning.

If 19292(D1FY = 0, then 19092(ch'F) = 0 = I1%9-(<]'F) and necessarily 6_; is the ”bad”
state of the world incl™” which is contradictory with the postulate of the beginning.

In fact, I% (ci"") > 19292 (c"P) > 19~ (¢1"") does not hold. Le. informationnal irreversibility

effect necessarily holds.

|
Proof. of proposition 7

The reader can easily check the pure irreversibility effect.

The quadratic example proposed by Ulph et Ulph in order to demonstrate that
informationnal effect isn’t systematic is good for the general model.

Let’s suppose ¢ (p) > ¥ (p) which is similar to the fact that —6.p.D' (8¢, +
Fo (™ (p),61) = 8.(1 = p).D'(8e1 + (e (). 0:)

< —6.p.D' (ber+FP(cE M (p)), 01) —6.(1—p). D' (6c14+FP (¢ (p)), 62, where FP(¢5"* (p)) denotes
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the optimal choice in period 2 in the cas of no learning. Either the constraint does not

bite in case of no learning and then ¢ (p) = ¢ (p) > 7 (p) > 7 (p). Or it bites

and so I7(c**(p)) = 0 and necessarily I7(c*(p)) = 0 too. Since Vel Fr(ch4) e

min(Fo (A1), Fo2 (A1) max(F9 (c4Y), FP2 (c{’AI))} necessarily min(1% (¢2 (p)), 1% (¢ (p)))
0.1 1%(cy™ (p)) = min(I” (™ (p)), 1% (e1™ (p))) then —D'(8ey + I%(c;™ (p) . 0) =

—D'(6er + IP(c;™ (p)), 0). T I%(c™ (p)) = max(1” (e (p)), I%(c1™ (p))) = 0 =

I°(cH4 (p)) then —D'(8¢y + 1% (¢ (p)) ,0;) < —D'(6¢y 4 IP(c-* (p)) , 0;). Consequently
—0.p.D'(8e1 + 17 (e (p)), 61) — 8.(1 = p).D'(bcs + F(c;™ (p)), 62)

< —6.p.D'(6c; + FP(cM (), 0,) — 6.(1 — p).D'(6¢; + FP(cE* (p)),6s), which implies

a™(p) =" (p). W
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