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Abstract
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1. Introduction

GARCH models are widely used for forecasting and characterizing the conditional

volatility of economic and (particularly) �nancial time series. Since the original contribu-

tions of Engle (1982) and Bollerslev (1986), the models have been estimated by Maximum

Likelihood (or quasi-ML) methods on observations at the frequency of interest. In the case

of asset returns, the frequency of interest is often the daily uctuation.

Financial data are often recorded at frequencies much higher than the daily. Even

where our interest lies in volatility at the daily frequency, these data contain informa-

tion which may be used to improve our estimates of models at the daily frequency. Of

course, following Andersen and Bollerslev (1998), higher-frequency data may also be used

to estimate the daily volatility directly.

The present paper considers two estimates of daily GARCH models which use infor-

mation about higher-frequency uctuations. The �rst uses the known aggregation relations

(Drost and Nijman, 1993) linking the parameters of GARCH models of high-frequency and

corresponding low-frequency observations. The second uses the observation of Andersen

and Bollerslev (1998) that the volatility of low-frequency asset returns may be estimated

by the sum of squared high-frequency returns. While the resulting estimate may be used

directly to characterize the process as in Andersen and Bollerslev or Andersen et al. (1999),

it is also possible to use the sequence of low- (daily-) frequency estimated volatilities to

obtain estimates of conditional volatility models such as GARCH models.

In section 2 we describe the models and estimators to be considered. Section 3 provides

asymptotic results on each of the estimators, while section 4 presents simulation evidence

on the �nite- sample performance of the estimators relative to that of standard GARCH
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estimates based on the daily observations alone.

2. GARCH model estimation using higher-frequency data

2.1 Processes and notation

We begin by establishing notation for the processes of interest. Consider a driftless

di�usion process fXtg such that

Xt = X0 +

Z t

0

�sXsdWs;

where fWtg is a Brownian motion process and �
2
s is the instantaneous conditional variance.

This is a special case of the structure used by, e.g., Nelson (1992), Nelson and Foster (1994).

The process is sampled discretely at an interval of time ` (e.g., each minute). We

are interested in volatility at a lower-frequency sampling, with sampling interval h` (e.g.,

daily), so that there are h high-frequency observations per low-frequency observation.

De�ne one unit of time as a period of length `:

We index the full set of observations by t and the lower-frequency observations by �;

so that � = h; 2h; : : : or �i = ih; i = 1; 2; : : : : Following Andersen and Bolleslev (1998),

estimate the conditional volatility at �i as the estimated conditional variance

�̂�i =
ihX

j=(i�1)h+1

r2j ;

with r2j = (xj � xj�1)
2: See Andersen and Bollerslev on convergence of �̂�i to

R �
��1

�sds:

Now consider ARCH and GARCH models at the lower-frequency observations:

�2� = �0 +
�X
i=1

�i"
2
��i; (2:1)

�2� = �0 +
�X
i=1

�i"
2
��i +

sX
i�1

�i�
2
��i; (2:2)
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where "� = y� � �� for a process y� with conditional mean �� ; or in the driftless case

"� = X� : So E("
2
t j ��i � �2� :

Models in the form (2.1), (2.2) are directly estimable if, as in Andersen and Bollerslev,

we have measurements of �2� : We return to this point in Section 2.3 below.

2.2 The aggregation estimator

Drost and Nijman (1993) showed that time aggregated GARCH processes lead to pro-

cesses of the same class, and gave deterministic relations between the coe�cients (and the

kurtosis) of the high frequency process and corresponding time-aggregated (low-frequency)

process for the GARCH (1,1) case. As Drost and Nijman noted, such relations can be used

to obtain estimates of the parameters at one frequency from those at another. In this sec-

tion we examine some properties of a low-frequency estimator based on prior high-frequency

estimates. Time aggregation relations of course di�er for stock and ow variables; here we

treat ows, such as asset returns.

Consider the high-frequency GARCH(1,1) process

�2t = �0 + �1"
2
t�1 + �1�

2
t�1; (2:3)

if "(h)� =
P�h

j=� (h�1)+1 "j is the aggregated ow variable. Then its volatility at the low

frequency follows the GARCH(1,1) process.

�2(h)� = �0 + �1"
2
(h)� + �1�

2
(h)��1: (2:4)

with �0; �1; �1 given by the corresponding formulae (13-15) for  ;�; � in Drost and Nijman

(1993), adjusting for notation.

We will show that the mapping0
@�0
�1
�1

1
A =  

0
@�0�1
�1

1
A (2:5)
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provided by these formulae is a continuously di�erentiable mapping; it is also analytic over

the region where the parameters are de�ned.

This implies that any consistent estimator of the high-frequency parameters (�0; �1; �1)

leads to a consistent estimator of the low-frequency parameters (�0; �1; �1); and simi-

larly that an asymptotically Normal estimator of the high-frequency parameters results in

asymptotic Normality of the low-frequency parameters.

Denote the vector

0
@�0
�1
�1

1
A by � and, correspondingly, let � =

0
@�0
�1
�1

1
A : Then  (�) = �:

Now denote by 
 2 R3 the region


 = f(�0; �1; �1) 2 R
3j �0 > 0; �1 � 0; �1 � 0; �1 + �1 < 1g;

that is, the region for which the GARCH(1,1) process is de�ned (see, e.g., Bollerslev 1986).

Theorem 1. For any estimator �̂ of � such that (i) �̂
p
!�; (ii) �̂

a
�N (�; V (�)), the

estimator �̂ =  (�̂) is such that for �̂ satisfying (i),

�̂
p
!�;

and for �̂ satisfying (ii),

�̂
a
�N(�; V (�̂));

where the asymptotic covariance matrix is V (�̂) = @ 

@�0
V (�)@ 

0

@�
:

Proof. It follows from (i) and consequently also from (ii) that since � 2 
;

P (�̂ 2 
) ! 1: Consider now the formulae for � =  (�) over 
 in Drost and Nijman

(1993). From (15) of D-N we can obtain �1 from a solution to a quadratic equation of the

form Z2 � cZ + 1 = 0; where

c = c(�0; �1; �1; �) (2:6)
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is obtained from the expression in (15) of D-N. For � 2 
 it follows that c > 2 and

therefore �1 =
c
2 �

�
( c2)

2 � 1
� 1
2 is such that 0 < �1 < 1: Moreover, it can be shown that

�1 < (�1 + �1)h and so �1 obtained from (13) in D-N also lies between 0 and 1.

The transformation  

0
@�0
�1
�1

1
A can be written as

 

0
@�0
�1
�1

1
A =

0
BB@

h�0
1�(�1+�1)

h

1�(�1+�1)

(�1 + �1)h �
c
2
+
�
( c
2
)2 � 1

� 1
2

� c
2
+
�
( c
2
)2 � 1

�1
2

1
CCA ;

where c is given by (2.6); it is de�ned and di�erentiable everywhere in 
: .

Note that (as follows from Drost and Nijman 1993), even if �1 = 0; �1 is non-

zero as long as � > 0: As h increases, �1 and �1 decline; given �1 and �1; conditional

heteroskedasticity vanishes for su�ciently large h: Therefore, for substantial conditional

heteroskedasticity to be present in the low-frequency (aggregated) ow process, �1 + �1

must be close to unity.

Suppose now that a standard quasi-Maximum Likelihood estimator is used with

the high-frequency data to obtain estimators of �: Its asymptotic covariance matrix is

V [�̂QML] = [W 0W ]�1B0B[W 0W ]�1; where

W 0W =

TX
t=1

�
gt

�2t

� �
gt

�2t

�
0

and B0B =

TX
t=1

�
"2t
�2t

� 1

�2 �
gt

�2t

� �
gt

�2t

�
0

;

with gt =
@�2

t

@� =

0
@ 1
"2t�1
�2t�1

1
A : The asymptotic variance of the estimator �̂ based on ow

aggregation is then

@ 

@�0
[W 0W ]�1B0B[W 0W ]�1

@ 0

@�
: (2:7)
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If �̂QML is the MLE this reduces to

@ 

@�0
[W 0W ]�1

@ 0

@�
: (2:8)

Now consider for comparison the results of standard estimation of � directly from low-

frequency data; the ML estimator �ML has the asymptotic covariance matrix [W
0

W ]�1;

where [W
0

W ]�1 =

T=hX
�=1

"
g�
�2(h)�

# "
g�
�2(h)�

#
0

; (2:9)

with g� =
@�2(h)�

@�
=

0
@ 1
"2(h)��1
�2(h)��1

1
A :

These expressions, (2.9) and (2.7) or (2.8), can be compared to determine the relative

asymptotic e�ciencies of the aggregation based estimates �̂ and the conventional low-

frequency estimates �ML:

Example 1. Let the high-frequency process be ARCH(1); aggregation then leads to

a ARCH(1,1) process for the low-frequency data. However, the asymptotic covariance

matrix for the estimator �̂ is of rank 2 rather than 3, since the middle part in (2.7) or (2.8)

is of dimension 2� 2: This indicates that there are cases where �̂ is clearly more e�cient

than �ML (or �QML), with covariance matrix of rank 3.

[General results not available yet]

2.3 The regression estimator

As noted above, models of the form (xx1) and (xx2) are directly estimable if we have

estimates of the conditional variance of the low-frequency observations, �2� ; for example

from the daily integrated volatility, as in Andersen and Bollerslev. However, we will not

follow Andersen and Bollerslev in treating the observation as exact. Instead, we introduce
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into the model the measurement error arising in estimation of �2� : Let et = �̂
2

� � �2� ; then

the ARCH and GARCH models become

�̂
2

� = �0 +

rX
i=1

�i"
2
��i + et; (2:10)

�̂
2

� = �0 +
rX
i=1

�i"
2
��i +

sX
i=1

�i�̂
2

��i �

sX
i=1

�ie��i + et: (2:11)

Both (2.10) and (2.11) are estimable as regression models. Nonetheless, there are

several di�culties, particularly with respect to the GARCH model (2.11). First, this

model has an error term with an MA(s) form; the coe�cients of this moving average

process, however, must obey the constraint embodied in (2.11) that the MA coe�cients

are the same as the coe�cients on lagged values of �̂
2

� : Estimation, whether by (quasi-)

ML or otherwise, must therefore be constrained beyond the constraints imposed by the

GARCH model. Second, the MA structure applying to fetg induces an MA error term in

the regression model if the sequence fetg is itself uncorrelated. If this is not the case{that

is, if there is autocorrelation in the errors of estimation of daily volatility{then the error

term in (2.11) may follow a more general time series process.

We will �rst consider estimation of (2.11) by constrained quasi-ML, so that an asymp-

totic covariance matrix for the estimator follows from standard results.
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