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Abstract

This paper considers computer intensive methods for inference on
cointegrating vectors in maximum likelihood analysis. It investigates
the robustness of LR , Wald tests and an F¡type test for linear re-
strictions on cointegrating space to misspeci…cation of the number of
cointegrating relations. In addition, since all the distributional results
within the maximum likelihood cointegration model rely on asymp-
totic considerations, it is important to consider the sensitivity of in-
ference procedures to the sample size. In this paper we use bootstrap
hypothesis testing as a way to improve inference for linear restriction
on the cointegrating space. We …nd that the resampling procedure is
a very useful device for tests that lack the invariance property such as
the Wald test, where the size distortion of the bootstrap test is small
even for a sample size T = 50. Moreover, it turns out that when the
number of cointegrating vectors are correctly speci…ed the bootstrap
succeeds where the asymptotic approximation is not satisfactory, that
is, for a sample size T < 200. The only valid alternative to the re-
sampling procedure is the F -type test proposed by Podivinsky (1992).
However, when the number of cointegrating vectors is over-…tted re-
lying on the asymptotic approximation is misleading, since the tests
considered exhibit sizes very far from the nominal size. In this sit-
uation the bootstrap test is much more robust to misspeci…cations.
The analysis of the power reveals that the procedures have power.
However, it is di¢cult to evaluate the power properties without inves-
tigating the asymptotic power, so further work is needed.
Keywords: Bootstrap tests, linear restrictions, cointegration, mis-

speci…cation, small sample corrections.
JEL classi…cation: C15, C32.

¤Partial grant under E.S.R.C. grant R00429924070 is gratefully acknowledged

2



1 Introduction
The …rst procedure for testing cointegrating relationships was proposed by
Engle and Granger (1987). After their seminal paper cointegration has be-
came an extremely intensive …eld of research, and in the literature many
alternatives to their procedure have been developed.
Among them the Johansen (1988, 1991,1992, 1995) and Johansen and

Juselius (1990) procedure for estimation and testing of cointegrating relation-
ships is widely used in applied econometric research. This method applies the
maximum likelihood procedure to a multivariate vector autoregressive model
written in the error correction form. Maximizing the Gaussian likelihood
function leads via reduced rank regression to the analysis of eigenvalues and
eigenvectors. To test for linear restrictions on the cointegrating vectors and
their weights Johansen (1988) and Johansen and Juselius (1990) proposed
likelihood ratio and Wald tests. However, it has been established that the
asymptotic Â2 distributed tests are quite heavily a¤ected by the sample size.
Accordingly, Podivinsky (1992) proposed an alternative approximate F -type
test. Monte Carlo evidence in Psaradakis (1993) indicates that the applica-
tion of Podivinsky’s (1992) test is worthwhile, since improvements are shown
with respect to the size properties of Johansen’s (1988) LR andWald tests.
In addition, Psaradakis (1993) proposed a small sample adjustment for LR
criterion and the Wald test.
This paper proposes the use of bootstrap hypothesis testing to improve

Johansen’s (1988) inference for linear restrictions on the cointegrating space
in an experimental design where at most two cointegrating vectors are possi-
ble. The analysis conducted on the tests considered above allows for potential
over-…tting and under-…tting of the number of cointegrating vectors included
in the restricted model and particular attention will be given to the study of
small samples properties of the tests.
The general idea on which bootstrapping is based is to use the single data

set to design a sort of Monte Carlo experiment in which the data themselves
are used to generate an approximation to the distribution of the statistics
in which we are interested. However, as Veall (1998) suggests there are
two main stages in the development of bootstrap theory. The …rst stage
is related to its introduction by Efron (1979) as a computer-based method
for evaluating the accuracy of a statistic by using the bootstrap algorithm
for estimating standard errors or con…dence intervals. This procedure can be
useful when the …nite-sample distribution of the statistics we are analysing is
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not known or a good asymptotic approximation is not available. The second
stage of the bootstrap literature concerns the case where asymptotic analytic
tools are available but in which bootstrap re…nements are used to improve
…nite-sample performance. Good references in this sense are Horowitz (1994)
where the bootstrap method is applied to the information matrix tests. For
an excellent discussion based on the Edgeworth expansion see Hall (1992).
These and other studies have found that bootstrap provides a higher-order
asymptotic approximation to critical values based on “smooth” statistics.
This means that for bootstrap-based critical values the size distortion (that is
the di¤erence between the nominal level and its actual rejection probability)
decreases more rapidly with increasing the sample size than if the critical
values obtained from …rst-order asymptotic theory are used.
Davidson and MacKinnon (1999) investigate this issue and they claim

that the size distortion of a bootstrap test is of order T¡1=2 smaller than
that of the corresponding asymptotic test. A further re…nement of the order
T¡1=2 can be obtained in the case of an asymptotically pivotal statistic,
(i.e. a statistic whose limiting distribution is asymptotically independent of
unknown nuisance parameters). As far as the consistency of the bootstrap in
unit root contest is concerned the debate is still open and more theoretical
results are needed since second order improvements have been shown only in
the case of stationary time series regressions (see Bose (1988)).
For the non-stationary processes in the literature the asymptotic validity

of the bootstrap for least squares estimate of the parameter of an explosive
AR(1) process has been established by Basawa et al. (1989). However, Ba-
sawa et al (1991a,b) show that in unit root models the asymptotic bootstrap
distribution of the estimator does not converge to the distribution that would
be obtained from repeated sampling from the population. Therefore, in this
case the standard bootstrap least square estimator is asymptotically invalid.
To get around this problem they presented a modi…ed sequential bootstrap
which work in this situation. More recently, the paper by Ly and Xiao (1999)
demonstrate the asymptotic validity for cointegrating regressions and the re-
gression t-ratio statistic (see also Harris (1992)). To our the best of our
knowledge, there are not yet theoretical results on the second order re…ne-
ments in the case of non-stationary time series. One reason for this is the
lack of a higher-order asymptotic theory. In fact, non-stationary processes
depend on the underlying functional central limit theorem, and developing
high order extensions of this theorem is not an easy task.
In this paper we follow the proposal of Gredenho¤ and Jacobson (1998)
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and we use the bootstrap hypothesis testing as a way to reduce the size
distortion of the tests for linear restrictions on the cointegrating space. As
far as the results are concerned, we …nd that the resampling procedure is
a very useful device for tests that lack the invariance property such as the
Wald test, where the size distortion of the bootstrap test is small even for
a sample size T = 50. Moreover, it turns out that when the number of
cointegrating vectors are correctly speci…ed the bootstrap succeeds where
the asymptotic approximation is not satisfactory, that is, for a sample size
T < 200. The correction factors introduced by Psaradakis (1993) help to
reduce the size distortion for the Wald and also for the LR test. However,
the only valid alternative to the resampling procedure is the F -type test
proposed by Podivinsky (1992).
If the number of cointegrating vectors is under-…tted the size distortion

is not very di¤erent from the one we observe when the model is correctly
speci…ed (that is the di¤erence between the empirical and the nominal size
asymptotically vanishes). By contrast, if the number of cointegrating vectors
is over-…tted relying on the asymptotic approximation is misleading since all
the tests considered above exhibit sizes very far away from the nominal size.
In this situation the bootstrap test is much more robust to misspeci…cations.
The outline of this paper is the following. Section 2 brie‡y introduces the

Johansen maximum likelihood estimation and, in particular the likelihood
ratio and Wald tests for linear restrictions as well as Podovinsky’s (1992)
F -type test and Psaradakis (1993) corrected LR and Wald tests. Section 3
describe the bootstrap test. Section 4 describes the data generating process
and the Monte Carlo experimental design. In section 5 we compare the
powers under certain misspeci…cations. A brief concluding section o¤ers some
recommendation for applied work.

2 Johansen’s MaximumLikelihood Procedure
Johansen considers a general vector autoregression in error correction form,

¢Yt = ¹+ ¡1¢Yt¡1 + : : :+ ¡k¡1¢Yt¡k+1 +¦Yt¡k + ²t; (2.1)

where Yt , and ²t are (p£ 1) vectors, and ¡1 through ¡k are (p£ p) matrices
of coe¢cients. ¢Yt = Yt ¡ Yt¡1 . ²t v NID(0;§).We specialise to the case
k = 1 , so
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¢Yt = ¹+¦Yt¡1 + ²t; (2.2)

The matrix ¦ determines whether or not, and to what extent, the system
(2.2) is cointegrated.
We assume …rst that the eigenvalues of I + ¦ lie on or inside the unit

circle. Suppose that ¦ has rank r. If r = 0 , and thus ¦ is a null matrix,
Yt is a vector of random walks related only through the covariances of their
innovations ²t . If r = p, Yt is stationary. If 0 < r < p (2.2) can be interpreted
as an error correction model. The hypothesis of r cointegrating vectors ¯ can
be written as:

H0 : ¦ = ®¯
0;

where ® and ¯ are (p£ r) matrices. The rows of ¯0 can be interpreted as
the distinct cointegrating vectors of Yt (i.e. such that the linear combinations
¯0Yt are I(0)) and the elements of ® represent the weights of each of these r
cointegrating relations in the p component equations (2.2).
Johansen (1988) shows that maximising the likelihood function involves

solving the eigenvalue problem

¯̄
¸Skk ¡ Sk0S¡100 S0k

¯̄
= 0;

to give p ordered eigenvalues ^̧1 > : : : > ^̧
p > 0 and corresponding

eigenvectors V̂ = [v̂1 : : : v̂p] normalised such that V̂ 0SkkV̂ = I . The matrices

Sij = T¡1
TP
t=1

RitR
0
jt; i; j = 0; k , where R0t and Rkt , are the residuals

obtained by regressing ¢Yt and Yt¡k on, in general, ¢Xt¡1; : : : ;¢Xt¡k+1; Dt
and 1. In our case the Sij are just mean adjusted moment matrices. A
basis for the space spanned by the cointegrating vectors is estimated by
^̄ = [v̂1 : : : v̂r] . The corresponding estimate of ® is given by ®̂

³
^̄
´
= S0k ^̄ .

A test for the number r of cointegrating vectors can be based on the
p eigenvalues ^̧1 > : : : > ^̧

p > 0. Johansen (1988) derives a likelihood
ratio(LR) test of the hypothesis that there are at most r cointegrating vectors
by testing that the (p¡ r) smallest eigenvalues ¸r+1; : : : ; ¸p are zero against
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the assumption that ¸i ¸ 0 for i = 1; : : : ; p . The LR test statistic for this
is known as the trace test, de…ned as

LR(trace)r = ¡T
pX

i=r+1

ln
³
1¡ ^̧i

´
;

where ^̧i are the estimates of the ¸i calculated from the maximum likelihood
estimator of ¦. In addition, the maximum eigenvalue test statistic is given
by

LR(max)r = ¡T ln
³
1¡ ^̧r+1

´
and can be used to test the null H0(p) : rank(¦) = r against the alternative
H1(p+ 1) : rank(¦) = r + 1.
The values of r chosen using the LR tests determine the matrices ® and

¯ : both are (p£ r) . It is then possible to test linear restrictions upon the
elements of ® and ¯ .
Now we can brie‡y outline the proposed tests for linear restrictions on the

cointegrating vectors. Under the hypothesis H0 : ¦ = ®¯
0 , the maximised

value of the concentrated likelihood function satis…es

L̂¡2=T = jS00j
rY
i=1

³
1¡ ^̧i

´
;

where S00 and ^̧i were de…ned earlier. Johansen and Juselius (1990) use this
to develop LR tests of linear restrictions on the matrices ® and ¯ . Here we
will consider only the case ¯ = H' .
To understand how this test is derived, recall that only the ranges of the

columns of ® and ¯ are identi…ed. If we set ®¤ = ®B0 and ¯¤ = ¯B¡1 than
®¤¯¤0 = ®¯0 = ¦ . Therefore, ® and ¯ are identi…ed only up to a non-
singular transformation B(r £ r). Now, what enters the model is ¯0yt¡k, r
linear combinations of the p elements in Yt¡k . Restricting

¯(p£r) = H
(p£s)

'
(s£r)

implies that ¯ 0yt¡k = '0H 0yt¡k and if Yk is a matrix whose tth row is y0t¡k ,
the column space of YkH is now s dimensional.
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The maximised value of the concentrated likelihood function subject to
the restriction is

~L¡2=T = jS00j¦ri=1
³
1¡ ~̧i

´
where ~̧1 > : : : > ~̧s are the s > r eigenvalues obtained from solving¯̄

¸H 0SkkH ¡H 0Sk0S¡100 S0kH
¯̄
= 0:

The LR test of ¯ = H' can be obtained from the concentrated likelihood
functions above, and is

LR (¯) = ¡2 ln
³
~L=L̂

´
= T

rX
i=1

ln
h³
1¡ ~̧i

´
=
³
1¡ b̧i´i :

Johansen (1988) shows that the asymptotic distribution of the LRr trace test

is

tr

0B@ 1Z
0

dBB0

24 1Z
0

BB0du

35¡1 1Z
0

BdB0

1CA ;
where B (u) is an (p¡ r)-dimensional Brownian motion with covariance ma-
trix I. He tabulates simulated values of selected percentiles of this asymptotic
distribution for a range of values of (p¡ 1) = 1; 2; 3; 4; 5: These tabulated val-
ues serve for testing r = 0; r · 1; : : : ; r · (p¡ 1) when p ranges from 2 to
5.
Alternatively, Johansen and Juselius (1990) propose a Wald test. Con-

sider the following null hypothesis H0 : K 0¯ = 0 where K is an (p£ (p¡ s))
matrix of full rank, then the W statistic for testing H0 is:

W (¯) = Ttr

µ·
K 0 ^̄

³
¤̂¡1 ¡ Ir

´¡1
^̄ 0K

¸ h
K 0V̂¤V̂ 0¤K

i¡1¶
(2.3)

where ¤̂ = diag
³
^̧
1; : : : ; ^̧r

´
and V̂¤ = [v̂r+1; : : : ; v̂p] . Since the limiting

distribution of ^̄ is a Gaussian mixture, LR(¯) andW (¯) are asymptotically
distributed as Â2 (r (p¡ s)) under the hypotheses ¯ = H' and K 0¯ = 0
respectively:
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It may help to relate the two forms of the restrictions. Given ¯
(p£r)

=

H
(p£s)

'
(s£r)

, we order the rows of ¯ so that

H =
s

(p¡ s)
·
H1
H2

¸
has H1 of full rank. So partitioning conformably

s
(p¡ s)

·
¯1
¯2

¸
= H' =

·
H1'
H2'

¸
:

Then

¯1 = H1') ' = H¡1
1 ¯1:

Substituting in ¯2 = H2'

¯2 = H2H
¡1
1 ¯1:

Hence ¯ = H' implies

·
¡ H2
((p¡s)£s)

H¡1
1

(s£s)
I(p¡s)

¸ ·
¯1
¯2

¸
= 0

((p¡s)£r)
:

This is one way of obtaining

K 0
((p¡s)£r)¯(p£r) = 0;

i.e. (p¡ s) common linear restriction on the columns of ¯:
Similarly, given an arbitrary K, and K 0¯ = 0 we can write

h
K1

((p¡s)£s)
K2

((p¡s)£(p¡s))

i · ¯1
¯2

¸
= 0;

hence, if we order the rows of ¯ so that K2 is invertible then

K1¯1 +K2¯2 = 0) ¡K1¯1 = K2¯2 ) ¯2 = ¡K¡1
2 K1¯1:
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Thus ·
¯1
¯2

¸
=

"
I

¡K¡1
2 K1

((p¡s)£s)

#
¯1
(s£r)

=

·
I

¡K¡1
2 K1

¸
H1H

¡1
1 ¯1

(s£s)

=

·
H1

¡K2K
¡1
1 H1

¸
' =

·
H1
H2

¸
' = H':

Thus to move from H =

·
H1
H2

¸
to K 0, we have to set

K 0 =
£¡K2H2H

¡1
1 : K2

¤
;

where K2 is an arbitrary non singular (p ¡ s) £ (p ¡ s): In the same way,
to move from K 0 =

£
K1 K2

¤
to H1 we have to set H =

·
H1

¡K¡1
2 K1H1

¸
,

where H1 is an arbitrary non singular (s£ s)matrix.

2.1 Podivinsky and Psaradakis corrections to the tests
for linear restrictions: “A variation on a theme ”

The Johansen (1988) simulated critical values are based on the percentiles of
the appropriate asymptotic distribution, and may not be appropriate when
used with relatively small sample sizes. In the literature a lot of work has
been done on the procedure for inference in cointegrated systems. Podivinsky
(1992) and Psaradakis (1993) investigated the adequacy of these asymptotic
critical values in moderately sized samples.
They consider a simple DGP with limited number of lags, and just one

cointegrating vector. Their simulation analysis indicate that the asymptotic
Â2 distributed LR tests are quite heavily a¤ected by the size of the sample.
Accordingly, they proposed small sample adjustments respectively for an F -
type test and for the LR criterion and the Wald test.
First, consider the Podivinsky (1992) approximate F -type test. If again

we denote estimation under the null by tilde, and unrestricted estimation by
a circum‡ex, and

bS = ¦ri=1 ³1¡ b̧i´ ;
10



eS = ¦ri=1 ³1¡ ȩi´ ;
then the F -type statistics for testing the linear restriction hypothesis ¯ = H'
is

F (¯) =

³
~S ¡ bS´ = (r (p¡ s))bS= (T ¡ l)

where l is the number of parameters estimated subject to the maintained
hypothesis ¦ = ®¯0. In our case l = 2pr¡ r2+ p, when estimating ®; ¯; and
¹. Then F (¯) is approximately distributed as F (r (p¡ s) ; T ¡ l) .
Psaradakis (1993) proposes the application of LR and Wald tests ad-

justed by certain correction factors. Letting

C (¯) = (l=p) + (1=2) [p¡ r (p¡ s) =p+ 1] ;
the modi…ed statistics are de…ned as

LRc (¯) = LR (¯) [T ¡ (l=p)] =T;
LRa (¯) = LR (¯) [T ¡ C (¯)] =T;
Wc (¯) = W (¯) [T ¡ (l=p)] =T;

where the LRc(¯) and Wc(¯) are obtained by replacing T by T ¡ (l=p) in
standard likelihood ratio test.
Monte Carlo evidence in Podivinsky (1992) indicates that the application

of the modi…ed F -type test is worthwhile, since improvement are shown with
respect to the size properties of LR tests proposed by Johansen (1988). These
results are mainly con…rmed by Psaradakis (1993), but in addition he shows
that the small-sample behavior of LR statistics may be improved by the use
of simple scale corrections as indicated above.
More recent work in the literature points out that the problem of size

distortion can be substantial when more complex DGP are considered (i.e.
when r > 1; and more lags and seasonal dummy are inserted), see for in-
stance Fachin (1997), Jacobson and Gredenho¤ (1998). As Nielsen (1998)
suggests the problem arises because the …nite sample distribution of the
LR test depends continuously on the nuisance parameters so the test is not
asymptotically similar.
To improve the approximation to the asymptotic Â2 distribution Bartlett

adjustment of the likelihood ratio test statistics has recently received interest
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in this contest.( See for instance Johansen (1999) and Nielsen (1998) Jacobson
and Larsson (1996)). However, although Bartlett correction is quite e¤ective
in correcting the size distortion of the test, it is not addressed to increase the
power of the tests, and it may lead to a loss in power.
Instead of modifying the test statistic an alternative method is consider-

ing a corrected distribution which is closer to the true null distribution of our
test statistic than the …rst order limiting distribution. This is usually done
by replacing the critical values of the limit distribution with transformations
of critical values obtained from the Edgeworth expansions of the distribution
function. Larsson (1999) applies multivariate saddlepoint techniques to ap-
proximate small sample corrections of the lower tails of the distributions for
the LR statistic.
However, this approach is analytically rather demanding. In this sense

estimating critical values using simulated-based method is a plausible nu-
merical alternative.

3 The bootstrap test
A key objective in the classical testing of statistical hypotheses is achieving
good power while controlling the size of the tests. As seen above the …rst-
order asymptotic approximation can be very inaccurate when we are dealing
with small samples. One reason is that for the asymptotic theory to be valid
it is necessary that p-value function does not depend on the DGP , which is
not usually the case in small samples. As a result, the true and the nominal
probabilities that a test rejects a correct H0 can be very di¤erent when the p-
value is obtained from the asymptotic distribution of the test statistic. Since,
the bootstrap distribution is able to mimic possible skewness of the …nite
sample distribution it may account for deviations of the actual distribution
from the Â2 distribution. Therefore, it can be used to approximate the …nite-
sample distribution of the tests considered above.
As seen above, the LR and W test proposed by Johansen (1988) and

Johansen and Juselius (1990) enable a researcher to test for linear restrictions
on ¯ after having accepted cointegration among variables and Podivinsky
(1992) and Psaradakis (1995) propose small sample adjustment for these tests
and for an F¡type test. In this paper, we investigate on the size distortion
of these tests in …nite sample. Moreover, we are interested in analysing
the robustness of the bootstrap test to misspeci…cation in the number of
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cointegrating relationships. In particular we evaluate the bootstrap tests via
Monte Carlo simulation experiments in situations where there is a possible
mismatch between the number of cointegrating vectors entering the restricted
model and the number of cointegrating vectors entering the DGP (i.e. the
number of cointegrating relationship is under…tted or over…tted).
The model estimated is a V AR(1) de…ned by

¢yt = ¦yt¡1 + ¹+ ²t; (3.1)

where yt; and yt¡1 are (4£ 1) vectors, ¹ is a vector of intercepts and ²t ¼
i:i:d:N (0; I)
When testing for linear restrictions on cointegrating vectors, the true

DGP is not known. Since the null model, and consequently the DGP is
unknown, the estimated DGP is used. In our case the estimated error cor-
rection model is

¢yt = b®b̄0yt¡1 + ¹̂+ "̂t (3.2)

where b® and b̄ are the restricted estimates.
The idea behind the parametric bootstrap is to approximate the …nite

sample distribution of the cLR;cW; bF¡type tests by drawing several B boot-
strap realizations

ndLRi¤o ;ncWi

¤o
;or
nbFi¤o for i = 1; 2; :::; B bootstrap sam-

ples
©¡
¢y¤; y¤t¡1

¢
i

ª
. In order to do this we re-sample the residuals ("̂1; :::; "̂t)

from (3:2). Denote the bootstrap sample ("¤1; :::; "
¤
t ) : The bootstrap algorithm

can be summarised as follows:

1) Estimate the error correction model given by (3:2) and compute cLR; cW;bF¡type as described in Section 2.
2) Re-sample the residual from ("̂1; :::; "̂T ) independently with replace-

ment to obtain a bootstrap sample ("¤1; :::; "
¤
T ) . Generate the bootstrap

sample (y¤1; :::; y
¤
T ) recursively from y0 = 0 and ("

¤
1; :::; "

¤
t ) using the estimated

restricted model

¢yt = ~®~̄
0
y¤t¡1 + ¹̂+ "

¤
t

where ~® and ~̄ denote the restricted estimates under the null hypothesis
¯1 = 0 .
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3) Compute the bootstrap replication of
ncLR¤o ;ncW ¤

o
;or
nbF ¤o, using

(y¤1; :::; y
¤
t )

4) Repeat steps 2-4 B times. De…ning the bootstrap p¡values function
by the quantity

p¤
³
µ̂
´
= B¡1

BX
i=1

I
³
µ¤ ¸ µ̂

´
(3.3)

where i = 1; :::B; µ is the test statistic considered, and I(¢) is the indicator
function that equals one if the inequality is satis…ed and zero otherwise.
6) Reject the null hypothesis if the selected signi…cance level exceeds

p¤
³
µ̂
´
:

Therefore, in this way we approximate the distribution of T 1=2
³
µ̂ ¡ µ

´
by the bootstrap distribution of T 1=2

³
µ̂
¤ ¡ µ̂

´
: Asymptotic validity of the

bootstrap requires that with probability one the asymptotic distribution of
T 1=2

³
µ̂
¤ ¡ µ̂

´
conditional on fFt : t ¸ 1g equals the distribution of T 1=2

³
µ̂ ¡ µ

´
:

In the literature it has been established that the bootstrap provides a
higher-order asymptotic approximation to critical values based on “smooth”
statistics. A further re…nement of the order T¡1=2 can be obtained in the case
of an asymptotically pivotal statistic. As seen before LR (¯) and W (¯) are
asymptotically pivotal since they asymptotically distributed Â2. Therefore,
the we may expect re…nements of order T¡1.

4 Design of the Monte Carlo experiments

This section deals with the design of simulation experiments. In order to keep
an high degree of experimental control the DGP used are simple VAR(1)
processes with small dimension. We consider three di¤erent DGP , the …rst
is given by: DGP1 :

¢y1t = ²1t;

¢y2t = ²2t;
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where ²t =
£
²01t ²02t

¤0 ¼ i:i:d:N (0;P), y2t;y1t are (2£ 1) vectors andP is
a (4£ 4) matrix. The variance-covariance matrix of the disturbances is set
to a unit matrix throughout. So, we have four unrelated random walks and
r = 0.
The second GDP is given by DGP2 :

¢y1t = ²1t;

¢y2t = ²2t;

¢y3t = ²3t;

y4t = ¯23y2;t¡1 + ¯33y3;t¡1 + ¯43y4;t¡1 + ²4t;

with ¯23; ¯33;¯43 < 1; and ²t =
£
²1t ²2t ²3t ²4t

¤0 ¼ i:i:d:N (0; I) : So that
we have one cointegrating vector

£
0 ¯23 ¯33 ¯43 ¡ 1

¤0
.

The third is given by DGP3 :

¢y1t = ²1t;

¢y2t = ²2t;

y3t = ¯22y2t¡1 + ¯32y3t¡1 + ¯42y4t¡1 + ²3t;

y4t = ¯23y2t¡1 + ¯33y3t¡1 + ¯43y4t¡1 + ²4t;

with ²t =
£
²1t; ²2t ²2t; ²3t

¤0 ¼ i:i:d:N (0; I) : So that we have two cointe-
grating vectors.
Two possible situations are investigated:
a) The model is correctly speci…ed:

-DGP is DGP2 and in model estimated r = 1
-DGP is DGP3 and in model estimated r = 2

b) The number of cointegrating vectors is over-…tted or under-…tted:
-DGP is DGP1 but we are assuming r = 1
-DGP is DGP2 but we are assuming r = 2
-DGP is DGP3 but we are assuming = 1

All simulations were carried out on 400MHz Pentium PC using the ma-
trix programming language GAUSS Version 3.2.32. The random numbers
were generated by the function rndns. For each sample we calculated the
six tests considered above in a VAR(1) model with intercept and we gen-
erated B = 400 bootstrap samples according to the algorithm given in the
previous section. Then the bootstrap is evaluated by Monte Carlo, and each
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Monte Carlo experiment is based on 1,000 replications. Obviously, the level
of accuracy of the experiment could be improved using a larger number of
bootstrap replications and a larger number Monte Carlo replicates, (a 95%
con…dence interval around a 5% nominal size is [3:6¡ 6:4] for 1,000 repli-
cates). However, 1,000 replications with B=400, T =800, uses 3.2£108 ran-
dom deviates of the 4£109 distinct deviates available from rndns: For the
non-bootstrapped tests, 100,000 Monte Carlo replications were used. The
random number generator was restarted for each T value.
According to Davidson and MacKinnon (1996b), in some situations B =

400 is the smallest number of replications that guarantees a reasonable trade
o¤ between the gains in power and computational costs. However, increas-
ing the number of bootstrap replications involves increasing computational
costs, consequently it is necessary to reduce them to a number that min-
imizes the loss of power. To explore the sensitivity of the estimated size
to the number of bootstrap replications we made a pilot experiment for
B 2 f100; 200; 400; 600; 800; 1200g (the results are reported in Appendix 2)
and this simulation con…rms that B = 400 is adequate for our purposes.

5 Preliminary Monte Carlo Results
In Table 1-5 we report the results of the Monte Carlo experiment with respect
to the sizes of the tests. The notation is the following: T is the sample size,
LR is the uncorrected likelihood ratio test; LCc and LRa are the likelihood
ratio tests adjusted by Psaradakis (1993) correction factors; W and Wc are
respectively the uncorrected and corrected Wald tests; F is the F -type
test proposed by Podivinsky (1992). Therefore, from column 2 to column 7
we report the Monte Carlo estimated sizes, and column 8 and 9 report the
bootstrap corrected likelihood ratio and the bootstrap Wald tests. These
results are preliminary, and the conclusions thus tentative; so far we have
only investigated a few points in parameter space.
The …rst thing it is important to note is that the empirical sizes ofBootLR

are equal to those for BootF; the bootstrap corrected F statistic, as the F
statistic is a one to one function of the LR statistic. Hence, the columns of
BootF have been omitted.
We …nd the poorest performance for both the W and Wc versions of the

Wald statistic. A reason for this may be the non-invariance property of the
Wald test.
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The invariance properties states that the decision reached by the hypoth-
esis testing procedure should remain unchanged under transformation of the
parameters. So, the Wald statistic varies with the parametrisation of the null
hypothesis being tested and its numerical value can vary greatly according
to the speci…cation of H0 that is being used. As a result, the …nite sample
level of the Wald test can be greatly di¤erent from the nominal level, and
using the asymptotic distribution of theWald statistic can be misleading. In
this sense the bootstrap provides a better approximation to the …nite sam-
ple distribution than …rst order asymptotic theory and therefore smaller size
distortion. The problem of the non invariance of the Wald test has been
discussed by Gregory and Veall (1985), Lafontaine and White (1991) and
Horowitz (1997).
A second issue is the following: since for practical purposes any bootstrap

procedure involves computational costs, might an investigation avoid resam-
pling methods and rely on the application of LR andWald tests adjusted by
the correction factors proposed by Psaradakis (1993) or on the Podivinsky’s
(1992) F -type test?
Monte Carlo evidence in Table 1 and 2 in some sense con…rms their

results in the case where the number of cointegrating vectors is correctly
speci…ed and this is particularly true for the F -type. For the Wc test the
actual signi…cance level is much higher then the 5% nominal level, and as a
consequence the true null hypothesis will be rejected too often.
The overall impression is that when the number of cointegrating relation-

ships is correctly speci…ed the size distortion asymptotically vanishes, and
the asymptotic theory is uniformly satisfactory for T ¸ 200. However, for
T < 200 the only tests that provide nearly exact ® level is Podivinsky’s
(1993) F -type test, BootLR and BootW .
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Table 1.
Sizes for tests of ¯1;1 = 0 assuming correct cointegrating rank of 1.
T LR LRc LRa W Wc F BootLR BootW
50 0.1000 0.0907 0.0827 0.1860 0.1740 0.0611 0.046 0.050
75 0.0804 0.0747 0.0699 0.1290 0.1230 0.0567 0.055 0.05
100 0.0711 0.0672 0.0642 0.1040 0.0994 0.0549 0.050 0.049
150 0.0639 0.0614 0.0594 0.0835 0.0810 0.0539 0.049 0.048
200 0.0607 0.0590 0.0576 0.0746 0.0725 0.0532 0.050 0.048
400 0.0544 0.0537 0.0529 0.0605 0.0598 0.0510 0.044 0.043
800 0.0511 0.0507 0.0504 0.0543 0.0538 0.0496 0.052 0.05
DGP2 : ¯23 = 0:5; ¯33 = 0:4; ¯43 = 0:1

Table 2.
Sizes for tests of [¯11; ¯21] = [0; 0] assuming correct cointegrating rank of

2
T LR LRc LRa W Wc F BootLR BootW
50 0.1000 0.0906 0.0824 0.171 0.160 0.0597 0.045 0.047
75 0.0804 0.0749 0.0705 0.125 0.118 0.0574 0.062 0.061
100 0.0738 0.0699 0.0664 0.105 0.101 0.0570 0.055 0.059
150 0.0666 0.0640 0.0620 0.0868 0.0841 0.0560 0.048 0.051
200 0.0621 0.603 0.0589 0.0772 0.0752 0.0545 0.054 0.059
400 0.0567 0.0558 0.0552 0.0640 0.0632 0.0532 0.049 0.052
800 0.0529 0.0523 0.0519 0.0564 0.0560 0.0510 0.058 0.058
DGP3 : ¯23; ¯33; ¯43 as Table 1, ¯22 = 0; ¯32 = 0:9; ¯42 = 0:1
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Table3.
Probability of rejecting ¯1;1 = 0 when true but assuming r = 1 when

r = 0.
T LR LRc LRa W Wc F BootLR BootW
50 0.412 0.394 0.379 0.681 0.673 0.327 0.132 0.191
75 0.405 0.393 0.383 0.674 0.668 0.351 0.124 0.176
100 0.406 0.398 0.390 0.672 0.668 0.367 0.152 0.215
150 0.401 0.395 0.390 0.670 0.667 0.375 0.138 0.172
200 0.399 0.395 0.391 0.669 0.667 0.380 0.138 0.205
400 0.398 0.396 0.394 0.666 0.665 0.388 0.122 0.204
800 0.397 0.396 0.396 0.664 0.664 0.393 0.134 0.211

DGP1

Table 4.
Probability of rejecting ¯1;1 = 0 when true, but assuming r = 1 when

r = 2.
T LR LRc LRa W Wc F BootLR BootW
50 0.0998 0.0817 0.0727 0.189 0.165 0.0345 0.045 0.044
75 0.0792 0.0685 0.0636 0.130 0.117 0.0403 0.061 0.062
100 0.0703 0.0630 0.0591 0.105 0.0961 0.0424 0.061 0.057
150 0.0631 0.0583 0.0560 0.0843 0.0787 0.0453 0.051 0.05
200 0.0603 0.0569 0.0554 0.0758 0.0716 0.0476 0.052 0.047
400 0.0535 0.0520 0.0513 0.0606 0.0590 0.0478 0.042 0.043
800 0.0519 0.0510 0.0506 0.0550 0.0543 0.0488 0.056 0.054
DGP3; as Table 2

Table 5.
Probability of rejecting [¯11; ¯21] = [0; 0] when true, but assuming r = 2

when r = 1.
T LR LRc LRa W Wc F BootLR BootW
50 0.375 0.337 0.318 0.706 0.691 0.207 0.103 0.179
75 0.357 0.332 0.319 0.689 0.679 0.252 0.108 0.154
100 0.351 0.333 0.323 0.681 0.673 0.274 0.100 0.163
150 0.342 0.330 0.324 0.677 0.671 0.293 0.100 0.158
200 0.338 0.329 0.324 0.673 0.669 0.301 0.090 0.165
400 0.334 0.330 0.328 0.668 0.666 0.317 0.098 0.168
800 0.332 0.330 0.329 0.666 0.665 0.323 0.123 0.162
DGP2, as Table 1
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Tables 3-5 report the Monte Carlo sizes for the tests considered in sit-
uations where the number of cointegration vectors is over-…tted or under-
…tted. The overall impression is that the bootstrap tests appear to be robust
to misspeci…cations, whereas the asymptotic tests in most occasions is not
satisfactory. For example, in Table 3 the LR test has empirical sizes that
vary between 39.7% and 41.2%. In this case the BootLR though still a¤ected
by size distortion has 12:2% · ® · 15:2%:
As far as the Podivinsky’s test (1992) and Psaradakis (1993) corrections

to Johansen’s (1988) and Johansen and Juselius (1990) tests are concerned
they are heavily a¤ected by misspeci…cations, so in this case the F -type test
cannot be considered as an alternative inference procedure to the bootstrap
test.
The same considerations above apply for the Wald test, where the reduc-

tion is particularly remarkable, since in the over-…tting case the Monte Carlo
estimated sizes are between 66.4% and 68.1% in Table 3 and between 66.6%
and 70.6% in Table 5:
The size distortion caused by over…tting is so large that it calls into

question the use of the tests. A size greater than:0:5 implies that one is more
often wrong than right when using the test.
One explanation of the excessive size of the Wald test when over…tting the

cointegrating rank is as follows. In the case of a single constraint, ¯11 = 0,
K 0 =

£
1 0 ¢ ¢ ¢ 0

¤
;with r = 1 assumed, one can write the Wald test in

the form

cW = b̄211b¾21= pX
j=2

bv21j
where

V =
h b̄

1 bv2 ¢ ¢ ¢ bvp i
b̄
11 is the …rst element of b̄1and

¾21 =
b̧
1=(1¡ b̧1):

If r = 0, the properties of b̄211 change: it becomes an Op(T¡1=2) estimator of
0, rather than Op(T¡1) under H0 : K 0¯ = 0: Thus b̄11 is more variable, andb̄2
11 on average larger, if r = 0:While the other two terms in cW also change,
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both being on average smaller when r = 0, in simulations it seems that the
e¤ect on b̄211 dominates by an order of magnitude.
Considering the general case of cW as de…ned in (2.3) , this intuition

suggests that over…tting can be regarded as misclassifying the columns of
V . If one assumes that the rank of ¦ is r + 1 when it is r, one erroneously
regards bvr+1 as b̄r+1 and includes it in the ‘numerator’ of cW rather than
the ‘denominator’. As it is Op(T¡1=2) rather than Op(T¡1); and its ‘square’
enters cW; this shifts the distribution of cW to the right.
This only explains the behaviour of the likelihood ratio directly insofar ascW and cLR are correlated. Turning to the bootstrap tests, when over…tting

their size is around 10%, and does not converge to the correct value. Why
does boostrapping fail?
In the correctly speci…ed ¯ 0yt¡1 and ®¯ 0yt¡1are stationary. If we over…t,

we include in b̄0yt¡1 linear combinations of yt¡1 which are not stationary,
and when generating ¢y¤t from the resampled residuals ¢yt ¡ b®b̄0yt¡1 both
the residuals and ¢y¤t will be I(1): Thus bootstrapping fails. The size is not
as distorted as the non-bootstrapped tests, but there is no reason to think
the power properties will be desirable.
One might try to recover the situation by using the parametric bootstrap.

If one does so, the residuals are replaced by independent and identically dis-
tibuted Normal vectors, and ¢y¤t has the properties implied by the cointe-
grating rank r assumed and ¯1 = 0: However, the test statistic, cW or cLR;
being compared with this bootstrap distribution is calculated from data with
a smaller r, and the equivalent of Table 5 for the parametric bootstrap shows
sizes from 23% to 63%.
When under…tting, as in Table 4, the performance of 5 of the 6 tests is

much better, the exception being the F test. This suggests that the boostrap
tests should always be calculated.

5.1 Response surface regressions

As was seen in the previous section Johansen’s test for linear restrictions are
heavily a¤ected by misspeci…cation in the number of cointegrating relation-
ships. However, the size distortion when under…tting is not very di¤erent,
either for magnitude or direction, from the size distortion when the model
is correctly speci…ed. This suggests that the di¤erence between the nominal
and the empirical size is more likely to be due to …nite sample e¤ects than to
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misspeci…cation. In fact, in both cases the size of the tests depends on the
sample size and on the many parameters of the model, and in both cases this
dependence asymptotically vanishes (even though the adjustment is quite
slow).
By contrast, when over…tting the asymptotic theory does not help. How-

ever, Johansen (1999) derives a Bartlett correction factor1 for the likelihood
ratio test for linear hypotheses on the cointegrating space which depends on
the sample size and the parameters of the model. Since we are interested
in analysing situations where the rank test is giving incorrect answers we
calculate Johansen’s correction factor for the model with DGP = DGP2 to
identify regions of the parameter space where this error is likely.
The correction factor for the hypothesis ¯ = H' is given by

E [¡2 logLRj®0?"]
r (p¡ s) =

1 +
1

T

·
(pd + kp) +

1

2
(p+ 1 + s¡ r)

¸
+
1

Tr
[(p¡ 2r + s+ 2pd ¡ 1) v + 2c] ;

where p is the dimension, k is the lag length, r the cointegrating rank, pd
the number of deterministic trends,

v =
¡®0¯ (2 + ®0¯)
¯0­¯®0­¡1®

;

c = ¡2®
0¯ (1 + ®0¯)
¯ 0­¯®0­¡1®

;

1‘Bartlett’or ‘Bartlett-type’ correction provides a better approximation to the limiting
distribution of a statistic by adjusting the statistic so that its …nite sample distribution
has the same mean as the limiting distribution. Johansen’s (1999) correction factor is
based on two ideas:
1) Inference on ¯ is asymptotically independent of inference on ®. So calculation can

be done …xing the parameter ®:
2) Since ^̄ is asymptotically mixed Gaussian and the asymptotic inference involves

conditioning on the asymptotic common trends, he conditions on the common trends
when making inference. See Johansen (1999) for more details.
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and for DGP = DGP2 in the previous section the correction factor is given
by

E [¡2 logLRj®0?"]
r (p¡ s) = 1 +

1

T

·
8 +

14 + 9¯43
¯223 + ¯

2
33 + ¯

2
43

¸
for ®0 =

£
0 0 0 1

¤
and ¯0 =

£
0 ¯23 ¯33 ¯43

¤
; the matrix ®0¯ re-

duces to the scalar ®0¯ = ¯43: So that the parameter ¯43 is the most in‡u-
ential.
In DGP2; in the original simulation ¯23; ¯33; ¯43; were set as ¯23 =

0:5; ¯33 = 0:4; ¯43 = 0:1: In order to evaluate the sensitivity of the empirical
sizes to variations of the parameter values and the sample size of the DGP
we estimate the response surface regression of size = f(¯33; ¯43; T ): However,
before doing it we need to analyse the constraint on the parameters in order
to preserve the stability of the system. Hence, we calculate the characteristic
polynomial for DGP = DGP2:

A (z) = I (1¡ z)¡ ®¯ 0z =

=

0BB@
1¡ z 0 0 0
0 1¡ z 0 0
0 0 1¡ z 0
0 ¡¯23z ¡¯33z 1¡ (1 + ¯43) z

1CCA ;
such that jA (z)j = (1¡ z)3 (1¡ (1 + ¯43) z) = 0 if and only if

z =

½
1 or 1= (1 + ¯43) ; if ¯42 6= ¡1
1; if ¯43 = ¡1

¾
Therefore, if ¯43 is in the interval (¡2; 0] , then the process Yt is I(1): (In the
case ¯43 = 0 , the process is a pure I(1) process which does not cointegrate.
For ¯43 < ¡2 or ¯43 > 0 the process Yt is explosive).

SECTION TO BE FINISHED
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5.2 Power

In this section we consider the power of the bootstrap tests. Since, in 1,000
Monte Carlo replications, the bootstrapped procedure has power 1 if T ¸ 75,
we report in Table 6 the rejection frequencies at 5% level only for T = 50
and DGP = DGP3:

Table 6. Rejection frequencies for ¯1 = 0;conditional on acceptance of
one or two cointegrating vector, Max and Trace tests

T = 50 H0 : r = 0 H0 : r = 1 H0 : r = 2
BootLR 1 0.943 0.996
BootW 0.999 0.995 0.720.

An inspection of the table above seems to reveal that BootLR and BootW
have power. However, an informative investigation of parameter space re-
quires the use of asymptotic theory.

SECTION TO BE COMPLETED

6 Conclusion
This paper propose the use of bootstrap hypothesis testing as a way of im-
proving inference for linear restriction on cointegrating space. We analyse
the sensitivity of the LR , Wald; and F¡type to misspeci…cation on the
number of the cointegrating vectors, and both the cases of over-…tting and
under-…tting have been considered. Particular attention has been given to
the analysis of small sample properties of these tests.
The Monte Carlo evaluation of the bootstrap tests show that the resam-

pling procedure provides empirical sizes which are much closer to the nominal
size. This is particular true when T < 200: One reason for this might be the
poor correspondence in the small and moderate size between the exact distri-
bution of the test statistic and its reference distribution. In addition, we …nd
that the size distortion of the bootstrap Wald test converges to zero even
for a sample size T = 50: Therefore, for practical purposes the bootstrap
procedure for this test is strongly recommended.
Such a partial Monte Carlo investigation makes any conclusions provi-

sional. What is suggested is that if there is any uncertainty about the coin-
tegrating rank r, tests on ¯ should be conducted under di¤erent assumptions
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about r: If the conclusions change when r is increased, especially if the boot-
strap test results start to diverge from the those of the asymptotic tests,
then only the results for smaller r should be relied upon. This is in contrast
to the suggestion in Podivinsky (1998), that “possible overspeci…cation of
the number of variables in a model has less serious consequences” (then un-
derspeci…cation): we (provisionally) argue that overestimating cointegrating
rank seriously biases tests on ¯: Be generous with the variables, by all means,
but over…tting r leads to failure of the testing procedure.
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Appendix 1: Computation details

The implementation of Johansen’s cointegrating tests was not conducted
using Johansen original algebra, but using QR and singular value decom-
position as employed in O’Brien (1996). So, in this appendix we show how
Johansen cointegration analysis can be rewritten in term of QR decomposi-
tion 2.
For easy of notation we report here the model in Section 3

¢yt = ¦1yt¡1 + ®t + ²t

where yt and is yt¡1 are (4£1), ®i is a vector of intercepts, and ²t t N(0; I):
The V AR(1) model can be rewritten as

w0t =
£
®0t; y

0
t¡1;¢y

0
t

¤
; (A.1)

which forms the t¡th row of the matrixW . Then a QR decomposition of the
matrixW yields a Cholesky factorisation3 R such that such thatR0R =W 0W
. We partition

R =

24 R11 R12 R13
0 R22 R23
0 0 R33

35
where R11 has p(k ¡ 1) + q rows and columns, while R22and R33 are each
(p£ p).
Using the Cholesky factorisation we can estimate ¦̂ in a reasonably

straightforward way. First note that if R0R = W 0W; W = [WA;WB]; and R

is conformably partitioned into
·
RAA RAB
0 RBB

¸
then,

R0AARAA =W
0
AWA; (A.2)

R0AARAB =W
0
AWB; (A.3)

and

R0ABRAB +R
0
BBRBB =W

0
AWB: (A.4)

2For further details see O’Brien (1996).
3If A is a positive de…nite (m £ m) matrix there exists a lower triangular matrix P

such that or A = P 0P . The decomposition A = P 0P is called a Cholesky decomposition.
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Thus from (A:3) solving for RAB

RAB = (RAA)
¡1W 0

AWB; (A.5)

solving (A:4) for R0BBRBB and substituting (A:5) in (A:4) we get

R0BBRBB = W 0
BWB ¡R0ABRAB (A.6)

= W 0
BWB ¡

£
(RAA)

¡1W 0
AWB

¤0 £
(RAA)

¡1W 0
AWB

¤
=W 0

BWB ¡W 0
BWA (R

0
AARAA)

¡1
W 0
AWB

= W 0
BWB ¡W 0

BWA (W
0
AWA)

¡1
W 0
AWB:

Identifying RAA with R11; and
·
R22 R23
0 R33

¸
with RBB, and conformably

partitioningW =
£
W1 W2 W3

¤
so thatW2 and W3 each have p columns,

we can rewrite (A:4) as·
R22 R23
0 R33

¸0 ·
R22 R23
0 R33

¸
= [W2;W3]

0
h
I ¡W1 (W

0
1W1)

¡1
W 0
1

i
[W2;W3]

which in Johansen’s notation is the product moment matrix

T

·
Skk Sk0
S0k S00

¸
:

Thus,

R022R22 = TSkk; R
0
22R23 = TSk0; R

0
23R23 +R

0
33R33 = TS00: (A.7)

Using the latent root of ^̧i and the latent vector ²i of C¡1Sk0S¡100 S0k (C
0)¡1 ;

where CC 0 = Skk, then de…ning E = [e1e2:::er] and S =
£
Ir
O

¤
;we have

^̄ = (C 0)¡1ESr

and

® (¯) = S0k¯ (¯
0Skk¯)

¡1
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this gives us³
^̄0Skk ^̄

´
= S 0rE

0C¡1Skk (C 0)
¡1
ESr = S

0
rE

0IkESr = S 0rSr = Ir

and

®
³
^̄
´
= S0k ^̄:

Identifying
p
TC with R022 from equation (A:7)

C¡1Sk0S¡100 S0k (C
0)¡1 = (R022)

¡1
R022R23 (R

0
23R23 +R

0
33R33)

¡1
R023R22R

¡1
22(A.8)

= R23 (R
0
23R23 +R

0
33R33)

¡1
R023

= I ¡
h
I +R23 (R

0
33R33)

¡1
R023
i¡1

Using the singular value decomposition, let

R23R
¡1
33 = U§RV

where U 0U = Ik = V 0V and §R is diagonal with the singular values ¾i of
R23R

¡1
33 as its diagonal elements. Thus

R23R
¡1
33

¡
R23R

¡1
33

¢0
= U§2RU

0

and

R23 (R
0
33R33)

¡1
R023(U

0)¡1 = U§2R

so if u is a column of U; and ¾ the corresponding diagonal element of §R;

R23 (R
0
33R33)

¡1
R023u = ¾

2u

so that ¾2; u are the eigenvalues and the eigenvectors of R23 (R033R33)
¡1R023

respectively. Thus rearranging equation (A:8) we have

n
I ¡ (I +R23

¡
R33R

¡1
33

¢¡1
R023)

¡1
o
u =

n
1¡ ¡1 + ¾2¢¡1ou
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so that u is a latent vector and
n
1¡ (1 + ¾2)¡1

o
u = ¾2

1+¾2
a latent root of

R23 (R
0
33R33)

¡1R023: Thus the Johansen required quantities are ^̧i =
¾2i
1+¾2i

;

and ^̄ = (C 0)¡1ESr =
p
TR¡122 USr;with

®̂ = ®
³
^̄
´
= S0k =

p
T (R022R23)

0 ^̄ = 1=
p
TR023USr:

Moreover, for the LR likelihood test of H0 : ¯ = H', where ¯ = H' is a set
of restrictions, with H(p£ s), we can again use a QR decomposition. First,
adapting equation (A:1) we have:·

R22H R23
0 R33

¸
(2p£(s+p))

so that·
R22H R23
0 R33

¸0 ·
R22H R23
0 R33

¸
= T

·
H 0SkkH H 0Sk0
S0kH S00

¸
(A.9)

then we can perform a QR decomposition of this matrix to produces, R¯ =·
R¯22 R¯23
0 R¯33

¸
where R¯22 is (s£s) , and R¯33 is (p£p). Then if we replaces

R22, R23 and R33 in our initial analysis with R¯22 , R¯23 , and R¯33 this will
yield ¸i; '̂0 ,

^̄ = H'̂
0
and b®. Tests on ® are handled in a similar way.
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Appendix 2: Supplementary simulations

Alternative values for B in Table 1.

Table A1. Sizes(%) for tests of ¯1 = 0 assuming correct cointegrating
rank of r = 1 and N = 1000.
BootLR
T n B 100 200 400 600 800 1000 1200
50 5.1 4.8 4.7 5.1 5.0 5.2 5.7
75 4.9 6.5* 5.1 5.1 4.7 4.9 6.0
100 5.6 5.2 5.0 6.3 4.7 4.3 5.1
150 5.2 4.7 5.6 4.3 4.7 3.7 5.2
200 4.3 4.3 5.3 4.4 5.0 5.7 5.5

BootW
T n B 100 200 400 600 800 1000 1200
50 6.9* 6.0 5.6 5.2 5.6 5.5 6.1
75 5.0 6.3 5.6 5.2 4.9 5.4 6.0
100 5.7 5.2 5.2 6.3 5.1 5.1 4.6
150 4.9 5.3 6.0 4.6 4.8 3.4* 5.2
200 4.6 4.6 5.4 4.6 5.1 5.6 5.8

Monte Carlo precision §1:35%; values marked * are signi…cantly di¤erent
from the nominal size of 5% when testing at a 5% level of signi…cance. Time
required, 18.5 hours (400 MHz Pentium).

For the bootstrapped likelihood ratio (BootLR); B = 400 is only slightly
improved on by B = 800: The results for the bootstrapped Wald test,
BootW , also suggest B = 400 is a reasonable compromise.
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Table A2
Probability of rejecting [¯11; ¯21] = [0; 0] when true, but assuming r = 2

when r = 0.
T LR LRc LRa W Wc F BootLR BootW
50 0.573 0.532 0.510 0.880 0.872 0.371 0.14 0.203
75 0.564 0.535 0.520 0.878 0.872 0.438 0.128 0.190
100 0.565 0.543 0.532 0.877 0.872 0473 0.152 0.206
150 0.559 0.545 0.538 0.874 0.871 0.500 0.117 0.171
200 0.556 0.546 0.541 0.875 0.873 0.513 0.145 0.201
400 0.553 0.548 0.545 0.875 0.874 0.533 0.145 0.176
800 0.553 0.551 0.549 0.874 0.873 0.543 0.145 0.196

DGP1

Table A3. Parametric bootstrap
Probability of rejecting ¯1 = [¯11; ¯21]

0 = 0 (2 £ 1) = 0 when true, but
assuming r = 2 when r = 1.

T LR LRc LRa W Wc F BootLR BootW
50 0.392 0.357 0.333 0.728 0.713 0.221 0.226 0.467
75 0.370 0.345 0.335 0.698 0.682 0.265 0.238 0.489
100 0.357 0.335 0.324 0.669 0.664 0.269 0.228 0.507
150 0.313 0.307 0.297 0.671 0.668 0.265 0.232 0.557
200 0.348 0.338 0.332 0.681 0.672 0.300 0.259 0.567
400 0.315 0.310 0.304 0.655 0.653 0.292 0.268 0.586
800 0.338 0.336 0.333 0.675 0.674 0.327 0.304 0.631
DGP2, as Table 1
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