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Abstract 
 
We incorporate a renewable resource into an overlapping generations model with 
standard, well-behaved utility and constant returns to scale production functions. 
Besides being a factor of production the resource serves as a store of value. We 
characterize dynamics, efficiency and stability of steady state equilibria and show that 
the nature of steady state equilibrium depends on the value of the intertemporal 
elasticity of substitution in consumption. In particular, if that elasticity is at least half, 
but differs from one, then stationary equilibria are saddle points. For smaller values of 
intertemporal elasticity of substitution we use a parametric example to demonstrate the 
existence of Flip bifurcations and stable spiral equilibria. This result is possible only for 
inefficient economies. Hence, an overlapping generations economy with a renewable 
resource can display indeterminacy even in the absence of externalities or imperfect 
competition.     
 
 
Keywords: overlapping generations, renewable resources, bifurcations. 
JEL classification: D90, Q20, C62. 
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1. Introduction 

 

The stability properties of overlapping generations models have been subject to a fairly 

large amount of research since the mid 1980’s. It has been shown how idealized 

business cycles may appear in a purely endogenous fashion even though 

“fundamentals” of the system, i.e., tastes, endowments and technologies or economic 

policies, do not vary over time. Endogenous business cycles have been known to be 

possible in overlapping generations models since Gale (1973). To mention a few more 

recent examples, Farmer (1986) and Reichlin (1986) have shown using slightly 

different models the existence of limit cycles (Hopf bifurcations) in planar systems, 

especially in the one-sector overlapping generations model of capital accumulation. 

Grandmont (1985) has shown by applying the theory of Flip bifurcations how in a 

particular version of this class of models periodic equilibria can occur. Grandmont 

(1998) presents an intuitive survey of some recent developments which have utilized 

geometric methods. For a comprehensive survey of the field, the reader may consult 

Azariadis (1993). 

Another issue associated with the properties of dynamic systems is 

indeterminacy. It has been shown more recently that, for instance, a one-sector real 

business cycle model with sufficient aggregate increasing returns to scale or a 

multisector model that have constant returns to scale and market imperfections may 

exhibit indeterminate steady state (i.e. sink) that can be exploited to generate business 

cycles driven by “animal spirits”.1 Benhabib and Farmer (1999) provide a recent survey 

of this literature from the macroeconomics viewpoint.   

To demonstrate either bifurcation or indeterminacy in an overlapping 

generations model, or in a real business cycle model one usually has to make either 

quite specific assumptions about the fundamentals or to postulate either increasing 

returns to scale or externalities.  

These stability and indeterminacy issues have not been studied carefully in 

models with renewable resources like forests or fisheries. Traditional theories of 

renewable resource use assume an infinitely lived agent or a social planner, and 

demonstrate that there is one steady state equilibrium, which is a saddle. Equilibrium is 
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a function of resource price and exogenous real interest rate (for economics of forestry 

and fisheries, see e.g. Clark 1990 and Johansson and Löfgren 1985). These models do 

not account for the fact that in practice renewable resources are important stores of 

value between different generations.2 Hence, one can ask whether this standard 

renewable resource analysis is robust in an overlapping generations economy, where 

agents have a finite life but resource stock may grow forever, and where the real 

interest rate is endogenously determined. 

Recent studies (Kemp and Long 1979, Löfgren 1991, and Mourmouras 1991, 

1993) focusing on the sustainable use of renewable resources within the overlapping 

generations framework have established the generally well-known fact that competitive 

equilibria in overlapping generations economies may be inefficient.3  These papers 

share the common feature that they study the steady state equilibrium without 

analyzing its transition dynamics and thereby the stability properties. This is an 

unfortunate drawback for several reasons. First, it is not obvious what the dynamic 

properties of a steady state equilibrium are, in particular when the model includes a 

renewable resource which has its own dynamics. Second, one may argue that stability 

properties of the renewable resource exploitation are important especially for policy. If 

the utilization of the resource tends to be unstable, competition may more easily lead 

to the destruction of the whole resource, which naturally necessitates a more careful 

resource management.4 

Our purpose is to examine the dynamic properties of a conventional 

overlapping generations economy augmented with a renewable resource which serves 

both as a factor of production and as a store of value. Because a renewable resource 

has its own dynamics and growth function, we will get a planar system with harvesting 

                                                                                                                                       
1 Also the terms “sunspots” and “self-fulfilling beliefs” are used interchangeably in the literature to refer to 
the same phenomenon. 
2 Tobin (1980), for instance, pointed out that “land and durable goods, or claims upon them are principal 
stores of value” (p. 83). 
3 Kemp and Long (1979) demonstrate that a competitive economy with constant population may 
under-harvest its renewable resources as a consequence of the resource being inessential for 
production. In a different vein, Mourmouras (1993) shows that both a low rate of resource 
regeneration relative to population growth and a low level of saving may lead to unsustainable use of 
renewable resources, so that consumption declines over time. 
 
4 In addition to the above references, see e.g. Amacher et al  (1999) for an analysis of the effects of forest 
and inheritance taxation on harvesting stand investment and timber bequests in an OLG model with one-
sided altruism. 
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and the resource stock as dynamic variables. We characterize the steady state 

equilibrium of this overlapping generations economy, compare competitive and 

efficient solutions, and in particular study its stability properties, which has not been 

studied in the literature.  

We construct a general equilibrium overlapping generations model where 

agents live two periods and there is no population growth. The young are endowed 

with one unit of labor and earn a competitive wage, which can be consumed or save in 

the financial asset or buy the available stock of the renewable resource from the firm. 

During the first period of their lives the young inelastically supply labor to firms, which 

transforms labor and resource, which they buy from the old, into output by constant 

returns to scale technology. As the focus is entirely on the extractive use of resource, 

we omit amenity services provided by the resource. The resource stock may be 

interpreted as either forests or fisheries (with well-defined property rights over fishing 

stocks). Unlike Kemp and Long (1979) and Mourmouras (1993), who make the 

unrealistic assumptions of constant and linear growth, respectively, we utilize a general 

strictly concave resource growth function, which captures in a better way the essential 

features of renewable resources. 

To anticipate our results, we demonstrate that the nature of steady state 

equilibrium depends on the value of the intertemporal elasticity of substitution in 

consumption. In particular, if the size of the intertemporal elasticity of substitution is at 

least half, but differs from one (the case of the logarithmic utility function), then 

stationary equilibria are saddle points. Interestingly, for smaller values of the 

intertemporal elasticity of substitution, however, we use a parametric example to show 

the existence of Flip bifurcation and stable spiral equiliria, which are inefficient. 

Obtaining indeterminacy from a model with standard well-behaved utility function and 

constant returns to scale production function in the absence of externalities or 

imperfect competition is, as far as we know, a new result. 

We proceed as follows: The elements of a conventional overlapping 

generations economy augmented by dynamics and growth of a renewable resource is 

presented, and the equilibrium conditions of the economy characterized in section 2. 

Conditions for unique steady states and their efficiency properties are described in 

section 3. In section 4 we study dynamic equilibria of a planar system consisting of 

harvesting and stock of a renewable resource, and end up with a characterization under 
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which conditions all the stationary equilibria are saddle points. Since saddle point 

equilibria may not hold if the intertemporal elasticity of substitution in consumption is 

low enough, in this case less than one half, section 5 turns to study what happens in 

this case. Flip bifurcation and stable spiral equilibria are shown to occur under certain 

parametric constellations. Finally, section 6 summarizes our findings.     

 

2.  The Model and the Equilibrium Conditions 

 

We consider an overlapping generations economy where agents live for two periods. 

There is no population growth.  Agents maximize the following intertemporally 

additive lifetime utility function 

 

(1) )()( 21
tt cucuV β+= , 

 

where ci
t  denotes the period i (=1,2) consumption of consumer-worker born at time t 

and 1)1( −+= δβ  with δ being the rate of time preference. We assume that 0>′u , 

0<′′u  and the Inada conditions, i.e. 0)('lim =
∞→

cu
c

 and ∞=
→

)('
0

lim cu
c

. The young 

are endowed with one unit of labor, which they supply inelastically to firms in 

consumption goods sector. The labor earns a competitive wage. The representative 

consumer-worker uses the wage to buy consumption good and to save. He can save in 

the financial asset or buy the available stock of the renewable resource. 

 The firms in the consumption good sector have a constant returns to scale 

technology, ),( tt LHF , to transform the harvested resource ( tH ) and labor ( tL ) into 

output. This technology can be expressed in factor intensive form to give 

)(/),( tttt hfLLHF = , where th  (= tt LH / ) is the per capita level of the harvest. The 

per capita production function has the standard properties: 0>′f  and 0<′′f . 

Furthermore, we assume ∞=′→ )(0
lim

th hf .  

 The renewable resource in our model has two roles. It is both a store of value 

and an input in the production of consumption good. The market for the resource 

operates in the following manner. At the beginning of the period the old agents own 
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the stock, and also receive that period’s growth of the stock. They sell the stock 

(growth included) to the firms, which then decide how much of that resource to 

harvest and use as an input in the production of the consumption good. The firm will 

sell the remaining stock of the resource to the young at the end of the period. 

Alternatively we could think of the old deciding how much to harvest of the resource 

and how much to sell to the young. 

 The growth of the resource (the growth function) is )( txg , where tx  denotes 

the beginning of period t stock of the resource. )( txg  is assumed to be a strictly 

concave function, i.e. 0<′′g . Besides owning the stock the current old generation 

(generation t-1 in period t) will also get its growth, i.e. the stock they have available 

for trading is )( tt xgx + . Furthermore, we assume that there are two values 0=x  and 

xx =  for which 0)()0( == xgg . Consequently, there is a unique value x̂  at which 

0)̂( =′xg .  Hence, x̂  denotes the level of stock where the growth rate is maximized, 

providing the maximum sustained yield (MSY), and x  is the level at which the stock is 

so large that growth is zero. It is the maximal stock that the natural environment can 

sustain. For instance a quadratic growth function ( 2)2/1()( bxaxxg −= ) reflecting 

logistic growth for renewable resources fulfills these natural assumptions. 

 The transition equation for the resource is 

 

(2) )(1 tttt xghxx +−=+ ,  

 

where th  denotes that part of the resource stock which has been harvested for use as 

an input in production. The initial stock and its growth, )( txg , can be conserved for 

the next period’s stock or used for this period’s harvest.  

 In addition to trading in the resource markets, the young can also participate in 

the financial markets by borrowing or lending, the amount of which is denoted by ts .  

The periodic budget constraints are thus 

 

(3) tttt
t wsxpc =++ + 11  
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(4) [ ] ttttt
t sRxgxpc 11112 )( ++++ ++=  

 

where tp  is the price of the resource stock in terms of period t’s consumption, tw  is 

the wage rate, and 11 1 ++ += tt rR  is the interest factor. The young generation buys an 

amount 1+tx  of the resource stock from the representative firm. The firm has harvested 

an amount th  of the stock, and 1+tx  has been left to grow. According to (4) the old 

generation consumes their savings including the interest, and the income they get from 

selling the resource next period to the firm, [ ])( 111 +++ + ttt xgxp .  

 The periodic budget constraints (3) and (4) imply the lifetime budget constraint 

 

(5) 
[ ]

1

11111

1

2
1

)(

+

+++++

+

−++=+
t

tttttt
t

t

t
t

R
xpRxgxp

w
R
c

c  

  

Maximizing (1) subject to (5) and to the appropriate nonnegativity constraints (which 

we do not have to worry about because of our assumptions on the utility, production 

and growth functions) leads to the following first-order conditions for ts  and 1+tx  

 

(6) )(')(' 211
t

t
t cuRcu β+=  

 

(7) [ ] )(')('1)(' 2111
t

tt
t

t cuxgpcup β++ += . 

 

 These conditions have straightforward interpretations. (6) is the Euler equation 

which says that the marginal rate of substitution between today’s and tomorrow’s 

consumption should be equal to the interest factor. According to (7) the marginal rate 

of substitution between consumptions in two periods should be equal to the resource 

price adjusted growth factor. (6) and (7) together imply the arbitrage condition for two 

assets 

 

(8)  [ ]
t

t
tt p

p
xgR 1

11 )('1 +
++ += , 
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according to which the interest factor is equal to the resource price adjusted growth 

factor. Using (8) we can rewrite the lifetime budget constraint as 

 

(9) 
[ ]

1

1111

1

2
1

)(')(

+

++++

+

−+=+
t

tttt
t

t

t
t

R
xxgxgp

w
R
c

c . 

 

The term in the square brackets is positive, since the growth function is strictly 

concave. 

 After presenting the elements of the model, we turn next to characterize the 

equilibria and dynamical system of the model. The competitive equilibrium is defined as 

follows. 

 

Definition. A sequence of a price system and a feasible allocation, 

   { }∞=−
1

1
21 ,,,,,, ttt
tt

ttt xhccwRp  is a competitive equilibrium, if 

 (i) given the price system consumers maximize subject to their budget 

 constraints 

 and 

 (ii) markets clear for all t = 1,2,...,T,... 

 

Market clearing conditions are 

  

(10a) )(1
21 t
tt hfcc =+ −    

(10b) )(1 tttt xgxhx +=++  

(10c) 0=ts  

(10d) tt phf =′ )(  

(10e) tttt whfhhf =′− )()(   

 

(10a) is the resource constraint for all t, and (10b) is the transition equation for the 

renewable resource stock. The fact that there is only one type of a consumer per 

generation and no government debt forces the asset market clearing condition to be 
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such that saving st = 0  for all t. Equations (10d) and (10e) in turn are the first-order 

conditions for profit maximization, and determine the evolution of prices, tp  and tw . 

 Market clearing condition (10b) and the first-order condition (7) for the 

resource stock and harvesting imply the following planar system that describes the 

dynamics of the model. 

 

(11)  )(1 tttt xghxx +−=+  

 

(12) [ ]=−− + 1)(')(')(')(' tttttt xhfhhfhfuhf  

 [ ][ ])('1))()(('')(' 11111 +++++ ++ ttttt xgxgxhfuhfβ  

 

We have used the periodic budget constraints (3) and (4), and the equilibrium 

conditions (10d) and (10e), to arrive at equation (12). Equations (11) and (12) are the 

main objects of our study. Before analyzing the qualitative properties of this system we 

characterize the stationary equilibrium. 

  

3. Stationary Equilibria and Efficiency 

 

In the steady states ( 0=∆ th  and 0=∆ tx ) the following equations hold 

 

(13) )(xgh =  

 

(14) [ ] [ ][ ])('1))()(('')(')(')(' xgxgxhfuxhfhhfhfu ++=−− β . 

 

Given the properties of the growth function, the curve defined by (13) is not 

monotonic. Totally differentiating (14) we get 

 

(14a) 0
)('')('')(''

'')('')'1(')('''')('

1

2
2

22 >
+−+−

+++=
hxfhxfcu

fcugfcugcu
dx
dh

β
ββ

. 
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This means that the Euler equation is an increasing curve in the hx -space. Next we 

show that the curve defined by (14) goes through the origin in the hx -space. 

 

Lemma. The point { }0,0 == xh  fulfills equation (14). 

 

Proof. Suppose the Euler equation does not go through the origin. Since the curve is 

upward sloping, there are two possibilities for the limiting behavior. First, if we let 

0→x , then h  must go towards some positive number. Secondly, if we let 0→h , 

then x  must approach some positive number. In the first case the right-hand side of 

(14) approaches infinity (if )(' xg approaches infinity when x  approaches zero, this 

effect will reinforce the argument), because ∞=→ )('0
lim cuc , but the left-hand side 

approaches some finite number. Thus equation (14) cannot hold. In the second case 

when 0→h  the right-hand side approaches zero, since 0)('lim =∞→ cuc , but the 

argument for the left-hand side (the first period consumption) approaches a negative 

number, which is not a feasible solution to the consumer’s optimization problem. 

Q.E.D. 

 

 It is quite straightforward to see that the steady state in our model is not 

necessarily unique. When the growth rate is 0)(' >xg , the upward sloping Euler 

equation can cross the growth curve in many points. If it cuts the growth curve from 

below in the steady state, then the steady state is unique, but if it cuts the growth curve 

from above, there are more than one equilibrium. For growth rate 0)(' ≤xg  the 

stationary equilibrium is necessarily unique because of decreasing resources growth 

curve. In the subsequent analysis we will concentrate on the nontrivial unique steady 

state.5 

 We will describe the loci 0=∆ tx  and 0=∆ th  in the hx -space. The slope of 

the locus, )( tt xgh = , evaluated at the steady state is 

 

                                                
5 It can also be the case that the only point where the curves cross is the origin, especially, since we have not 
imposed Inada conditions on the growth function. 
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(15) )('
0

xg
dx
dh

txt

t =
=∆

. 

The slope of the locus (derived in Appendix 1) determined by equation (12), and 

evaluated at the steady state is 

 

(16)

[ ])'1(')('')'1)(('''')(')('')(''')(''
)'1(')('')'1('')(')'1(')(''

2211

3
221

0
gfgxfgcugcugxfcufcu

gfcuggcugfcu
dx
dh

tht

t

+−++−++−
+++++=

=∆ ββ
ββ

 

The slope in (15) can be positive, zero or negative. The slope in (16) is always positive 

given our assumptions on the utility function and the fact that '1 g+  needs to be 

always positive, because in the stationary equilibrium '1 g+  equals the interest factor 

(c.f. arbitrage equation (8)). 

 The fact that we concentrate on the unique steady state means that the 

following holds in the stationary equilibrium  

 

(17) 
00 =∆=∆

>
tt xt

t

ht

t

dx
dh

dx
dh . 

 

This means that Euler equation cuts the growth curve from below, see Figures 1 and 2. 

 To summarize, we have argued that a unique stationary equilibrium exists, 

when the growth rate, )(' xg , is nonpositive, or when it is positive and the upward 

sloping Euler equation cuts the resource growth curve from below. But the steady 

state consists of multiple equilibria if )(' xg  is positive and Euler equation cuts the 

resource growth curve from above. 

Are the stationary equilibria efficient? It is a well-known fact that the 

competitive equilibria in overlapping generations models can be inefficient. Keeping in 

mind that )(' xg  is the rate of interest in a steady state and the population growth rate 

is zero in our model, we conclude that all those steady states for which 0)(' ≥xg  are 

efficient. This is the case where the real interest rate exceeds population growth rate. 

Steady states in which 0)( <′xg  are inefficient, since consumption could be 

increased for every generation by harvesting some of the resource stock during any 
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period. This case corresponds to the situation where the real interest rate is less than 

the population growth rate. This overaccumulation is inefficient.6 

  

4.  Dynamical Equilibria: Saddles 

 

To study the qualitative properties of our model we start by considering paths for 

which tt xx ≥+ 1  and tt hh ≥+ 1 . It follows from (11) 

 

(18) tttttt xxghxxx ≥+−⇔≥+ )(1 tt hxg ≥⇔ )( . 

 

This means that x  is increasing below the growth curve, and it is decreasing above the 

curve. 

 Considering paths for which tt hh ≥+ 1 , requires more work. In Appendix 1 

(equation A.3) we derive the following expression (evaluated at the steady state) for 

the derivative of the right-hand side of equation (12) with respect to 1+th  (denoted also 

by A ) 

 

(19) A
c

ufg
h

RHS

t

≡



 −+=

∂
∂

+ )(
11''')'1(

21 ρ
β , 

 

where )(cρ  ( [ ])(''/)(' ccucu−= ) is the reciprocal of the elasticity of the marginal 

utility of consumption. This quantity is also known as the intertemporal elasticity of 

substitution, and it depends inversely on the curvature of the periodic utility function. 

We can see that given the values of tx  and th , the right-hand side of equation (12) is 

an increasing  (decreasing) function of 1+th , if ρ  is less (greater) than unity.7  

 If 1>ρ  we get from (12) 

 

                                                
6 Efficiency outside steady states is a more involved problem. One can study the efficiency of nonstationary 
paths by modifying the criterion developed by Cass (1972) to the needs of the model at hand. 
7 When the utility function belongs to the class of constant relative risk aversion (CRRA) functions, the 
inverse of the relative risk aversion measure is the intertemporal elasticity of substitution. See e.g Deaton 
(1991) for further discussion. 
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(20)  [ ]≤−−⇔≥ ++ 11 )(')(')(')(' tttttttt xhfhhfhfuhfhh  

 [ ][ ])('1))()(('')(' 111 +++ ++ ttttt xgxgxhfuhfβ  

 

Equation (20) is equivalent to the following statement 

 

(21) 
[ ]

[ ][ ] 1
)('1)()((''

)(')(')('

111

1 ≤
++

−−
+++

+

tttt

ttttt

xgxgxhfu
xhfhhfhfu

β
 

 

If 1<ρ , the inequalities in (20) and (21) are reversed. All this means that the motion 

of h  on both sides of the curve, where tt hh =+ 1 , depends on the value of intertemporal  

elasticity of substitution. This fact points out to the possibility that dynamics of the 

system can drastically change when ρ  passes through unity.  When 1=ρ , the 

preferences are logarithmic.8 The crucial role of ρ  is illustrated in Figures 1 and 2. In 

Figure 1, where the intertemporal elasticity of substitution is greater than one, the 

arrows indicate a possibility of saddle point equilibrium.9 In this section we give a 

formal proof for this intuition. In Figure 2, where the intertemporal elasticity of 

substitution is less one, the arrows describing the motion of harvesting are reversed. 

This suggests a possibility for a stable equilbrium. One should notice, however, that 

orbits in discrete dynamical systems are sequences of points in the relevant state 

spaces. This qualitative information drawn from discrete phase diagrams is quite 

tentative and must be confirmed analytically, which we will do in detail in the next 

section. 

 

                                                
8 With logarithmic preferences we can see that 1+th  disappears from the Euler equation (12), which 

then yields a relationship between th  and tx . We can thus reduce our planar system to the first-order 

nonlinear difference equation in x . Once the evolution of x  is determined, the behavior of h  can 
then be determined from equation (12). It is rather straightforward to show that the model with 
logarithmic preferences can have stable equilibria. 
 
9 The direction of h on both sides of the hh  curve in diagrams 1 and 2 can be obtained as follows. 
Consider equation (20) as an equality. Differentiate both sides with respect to h  keeping x  fixed. E.g . in 
the case of  1>ρ , the left-hand-side decreases and the right-hand side increases, which means that above 

the curve, h  is increasing and below it is decreasing (c.f. equation (20) again). Analogously, it can be 
shown that the arrows go the other way round when ρ <1. 
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hh
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Figure 1. Elasticity of intertemporal substitution greater than one
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x

xx

hh

h

∗xx̂
Figure 2. Elasticity of substitution less than one

 
 In order to study formally the stability properties of dynamical equilibrium, we 

first rewrite equation (11) as follows 

 

(22) ),()(1 tttttt hxGxghxx ≡+−=+  

 

Substituting the RHS of (11) for 1+tx  in (12) gives an implicit equation for 1+th , 

 

(23) ),(1 ttt hxFh =+  

 

The planar system describing the dynamics of the renewable resource stock and 

harvesting consists now of equations (22) and (23). The Jacobian matrix of the of the 

partial derivatives of the system (11)-(12) can be written as 

 

(24) 










 −+
=






=

A
B

A
C

g

FF
GG

J
hx

hx
1'1

, 
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where A  has been derived above in equation (19) and B  and  C  are the partial 

derivatives of equation (12) with respect to h  and x  respectively, and have been 

derived in Appendix 2. By defining 
1

ˆ
−

=
ρ
ρρ  the two ratios in the Jacobian matrix can 

then be expressed as 

 

 

(25) ρ
β

ˆ
''
'''
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)('''
)('''

2

2
2

2

2

1
2









−+−−=
f
gf

cuf
gcuf

cuf
cuf

A
C

 

 

 

(26)  ρ̂
)'1(''
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)('''
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)('''
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1
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2
2
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1
2

1
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


+
+++++−=
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cuf
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cuf
cuf

cu
hxcuf

A
B

, 

 

where we can see the importance of the magnitude of the intertemporal elasticity of 

substitution for the stability analysis. These elements of the Jacobian change signs 

whenever ρ  passes through unity, since the bracketed term in AC /  is negative and in 

AB /  is positive. 

 The trace and determinant of the characteristic polynomial of our system can be 

calculated as 

 

(27)  






 +−+=

)('
))(('''

1ˆ)'1(
1

1

cu
hxcuf

gD ρ  

(28)
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hxcuf

gT . 

 

Armed with these calculations (see Appendix 2 for details) we get the following 

Proposition 
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Proposition. If the intertemporal elasticity of substitution is at least one half, and 

differs from unity, all the stationary equilibria are saddle points. 

 

Proof. See Appendix 3. 

 

 Stationary equilibria are saddle points for a wide range of the values for the 

intertemporal elasticity of substitution. Empirical evidence on the size of this elasticity 

does not, however, necessarily coincide with the parameter values stated in 

Proposition, but often points out to lower values.10  It is therefore of interest to study 

also the characteristics of equilibria when 2/1<ρ .11 Next we turn to examine this 

case. 

 

5.  Dynamical Equilibria: Indeterminacy and Flip Bifurcations 

 

In the above discussion we found that when 1>ρ , the determinant (D) and the trace 

(T) of the system are positive, and furthermore that D-T+1 < 0. Stationary equilibria 

are thus saddles (these equilibria are in area C in Figure 3 in which we have reproduced 

the familiar graphical description of dynamical equilibria in a planar system, see e.g. 

Azariadis 1993). Thus complex roots are not possible in our model, which in turn 

means that we cannot get Hopf bifurcations. 

 When 1<ρ , the determinant of the system becomes negative, and D-T+1 

positive. This means that the saddle-node bifurcations (they require among other things 

that D-T+1 = 0) are not possible. We already proved that stationary equilibria are 

saddles for 2/11 ≥> ρ . Since D+T+1 cannot be unambiguously signed, it is possible 

to have Flip bifurcations in our model (see areas A and B in Figure 3). 

 In the following we assume 2/1<ρ  (i.e. 0ˆ<ρ  and 1ˆ <ρ ). Inspecting the 

general case above seems to point out that it is possible to get stable equilibria and Flip 

                                                
10 See the discussion e.g. in Deaton (1991, pp. 63-75). 
11 It is interesting to note that Grandmont (1985) showed in a different overlapping generations 
model with money that no cycles can exist when the Arrow-Pratt relative risk aversion is smaller than 
or equal to 2 This is equivalent to the condition that the intertemporal elasticity of substitution is 
greater than or equal to one half. 
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bifurcations. Since 0ˆ<ρ , we consider the case where D < 0. We have also established 

in the proof of Proposition that, when 2/1≥ρ  (and 1≠ρ ) D-T+1 > 0. To get 

stability, we need to have D+T+1 > 0 as well.  Because we have rigorously shown the 

existence of saddles when D < 0, we can also show the existence of Flip bifurcations, if 

we can show the stability of equilibria.  

 

D

T

D+T+1=0D-T+1=0

A

B

C

1

-1

2-1 1-2

Figure 3. Characteristics of stability in a planar system

 
 To proceed we rewrite D+T+1 as follows 

 

(29)  { }1ˆ)'1( ++= MgD ρ  

 

 

(30)  { }1ˆ)'1( ++++= NMgT ρ , 

where 
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Using this shorthand notation we can express D+T+1 after some manipulation 

 

(31)    D+T+1 = )̂1)('2(ˆˆ)'2( ρρρ +++++ gNMg . 

 

This shows that at least in principle D+T+1 can be zero or positive, if the last term, the 

only positive term in the expression, dominates. Note that when D <0, D-T+1 > 0 and 

D+T+1 = 0 we have a Flip bifurcation.  

 Since the existence of a Flip bifurcation cannot be proved analytically in our 

model we consider a parametric example. We use the following standard explicit 

functional forms:  
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Note that ρ  in the utility function is exactly the intertemporal elasticity of substitution. 

In the stationary equilibrium 2)2/1( bxaxh −= .  Using this expression for h , the Euler 

equation and budget constraints, we end up with the following expression (see 

Appendix 4) for the stock of the renewable resource in a stationary equilibrium 

 

(32) αα
β ρρ −=

−
+

−++
1

2
1)1(1

1

bxabxa
. 

 

 

A straightforward but tedious calculation yields the expression for D+T+1 
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 In the sequel we undertake a numerical analysis for a calibrated version of the 

parametric example of our model. We assume the following values for parameters of 

the growth function and the discount factor: 1== ba  and 2/1=β .12 The values for 

growth parameters mean that 1ˆ=x  and 2=x , and furthermore that the condition 

0)('1 ≥+ xg  holds for all 20 ≤≤x . Economically more interesting parameters are the 

marginal product of resource (α ), which determines the price elasticity of resource 

demand, and the intertemporal elasticity of substitution ( ρ ). For this reason our focus 

will be to find out for what values of these parameters we will get stability and Flip 

bifurcations. 

 Solving α  from equation (32) and plugging that value into (33) we find out for 

what combinations of x  and ρ  D+T+1 is greater or less than zero or exactly zero. 

Solving α  from (32) we get 

 

(34) 

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

−++−+
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−= ρρ β
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Plugging this relationship (34) into (33) gives the following relatively complicated 

expression 

 

                                                
12 If we want to interpret literally the length of the period in our overlapping generations economy to 
be around 25 years, then the annual discount factor 0.975 (or the rate of time preference about 2.6 
percent) means that the discount factor for 25 years should be around ½.  
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 To get a more precise idea where to look for stable equilibria, note that the 

only positive term in that expression (35) is the second term. Combining this term and 

the first term we get after rearranging 

 

(36) [ ]ρρ βρ
ρ

)1()21(
1

2 bxabxa −+−−





−
−+ . 

 

As we have already mentioned, we assume that 2/1=β  and 2/10 <<ρ . Consider first 

the efficient allocations, which lie on the left-hand side of the maximum sustained yield, 

i.e. bax /0 ≤≤ . It is quite straightforward to see that the term in the square brackets 

of (36) is negative. This means that all the stationary equilibria are saddles. Therefore, 

we should look for possible stable equilibria from the right-hand side of the MSY, 

where equilibrium is inefficient. 

 The stationary equilibrium condition (32) indicates that there is an inverse 

relationship between α  and x. Because we will now concentrate on such allocations 

for which bax /> , the value of α  must be relatively small for equation (32) to hold. 

 Our approach will be the following. We will first graph the plane defined by 

equation (35) in the (D+T+1) ρx - space. Then we set D+T+1 = 0, and graph those 

values of x  and ρ  for which D+T+1 = 0 holds.  
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  FIGURE 4. D+T+1. 

 

Figure 4 is the three dimensional graph of equation (35) (when α  has been substituted 

in for the expression of D+T+1). It points out to the fact that D+T+1 will be positive 

only for extremely high (i.e. values which are close to x  (= 2) levels of the renewable 

resource stock. 

  
 FIGURE 5. Characterization of Flip Bifurcations 
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In Figure 5 we have projected those values of the resource stock x  and the 

elasticity of intertemporal substitution ρ  for which D+T+1 is exactly zero, i.e., for 

which we have Flip bifurcations. Values of x  and ρ , which lie on the right-hand side 

of the curve depicted in Figure 5, will yield stable equilibria, and for the values of x  

and ρ  on the left-hand side we have saddlepoint equilibria. 

 

 

 
 

 FIGURE 6. Equation (34). 

 

 In Figure 6 we have depicted α , x  and ρ  in the same diagram, i.e. we have 

graphed equation (34). This figure indicates that to get stable equilibria and Flip 

bifurcations the value of α  needs to be quite small. E.g. if 01.0=α  and 03.0=ρ  we 

get the level of the stationary equilibrium stock to be 1.95664. We also get 

00119886.01=++ TD . And if we let 011.0=α , we get the equilibrium stock to be 

1.95228, and 00373852.01 −=++ TD . 

 We have shown that there is a nontrivial set of values for parameters α  and 

ρ , for which our parametrized economy exhibits stable equilibria and Flip bifurcations. 
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This means that there can be endogenous cycles in our model, since the characteristic 

roots are of different sign.13 The dynamics of our model is thus rather rich.  

 The parameter values for the intertemporal elasticity of substitution for which 

we get stability and Flip bifurcations are empirically quite plausible. The parameter 

values for the production function parameter (α ), for which we obtain stability and 

bifurcations, are quite small. The parameter α  measures the share of natural resources 

in total output. It varies across countries and can be relatively low.  

 

6.  Conclusions 

 

The stability properties of an overlapping generations model with capital accumulation, 

like periodic equilibria and indeterminacy of equilibria, have been subject to a fairly 

large amount of research since the mid 1980s. These issues have not, however, been 

studied carefully in models with renewable resources like forests or fisheries. Our 

purpose in this paper has been to do just that. We have examined the dynamic 

properties of an overlapping generations economy under the standard assumptions 

about the utility and production functions, but augmented with a renewable resource. 

In addition to a factor of production it serves as a store of value. Because a renewable 

resource has its own growth function and dynamics, we get a planar system consisting 

of harvesting and the resource stock. After having characterized the steady state 

equilibrium and efficiency we turned to our main focusing to studying the stability 

properties of our model. 

We showed that the nature of steady state equilibrium depends on the value of 

intertemporal elasticity of substitution in consumption. In particular, if the 

intertemporal elasticity of substitution is at least one half, but different from unity (the 

case of the logarithmic utility function), then stationary equilibria are saddle points. 

Interestingly, for smaller values of the intertemporal elasticity of substitution, which 

are equally plausible on the basis of empirical evidence from consumption behavior, we 

use a parametric example to demonstrate the existence of Flip bifurcation and stable 

                                                
13 Interestingly, Grandmont (1985) has shown in a different overlapping generations model with 
money that a succession of Flip bifurcations may occur when the Arrow-Pratt relative risk version 
exceeds two, which is equivalent to the condition that the intertemporal elasticity of substitution is 
smaller than one half. 
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spiral equilibria. This result is possible only for inefficient economies. Hence, an 

overlapping generations economy with a renewable resource may display 

indeterminacy and stable spiral equilibria under standard well-behaved utility and 

constant returns to scale production functions without externalities or imperfect 

competition as is usually required to get bifurcations and indeterminacy from stability 

analyses. 
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Appendix 1. The slope of equation [16] and the RHS of equation [12] as a 
  function of  1+th  
 
• The right-hand side of equation (12) as a function of 1+th . 
 
The RHS of (12) is 
 
A.1 [ ][ ])('1))()(('')(')( 111111 ++++++ ++= tttttt xgxgxhfuhfhRHS β  

 
Differentiating this with respect to 1+th  we get (dropping the arguments) 
 
A.2 [ ]))(('')(''')'1(''')'1()(' 21 xgxfcufgufghRHS t ++++=+ ββ  
          [ ]''))(('''')'1( uxgxfufg +++= β  
 
Keeping in mind that ))(('2 xgxfc +=  we get 
 

A.3 



 −+=+ )(

1
1''')'1()('

2
1 c

ufghRHS t ρ
β  

 

where 
)(''
)(')(

ccu
cuc −=ρ . In the case of constant Arrow-Pratt relative risk aversion utility 

functions )(cρ  is exactly the inverse of elasticity of intertemporal substitution. From 
A.3 it is now easy to see that )0(0)(' 1 <>+thRHS when )1(1)( <>cρ . 
 
• The derivation of the slope of equation (16) 
 
We first rewrite equation (12), and take into account the fact that we consider paths, 
where tt hh =+ 1  for all t  but tx  may vary.   
 
A.4 [ ] [ ] ))('1())()(('')(')(')(' 1111 ++++ ++=−− ttttttttt xgxgxhfuxhfhhfhfu β  
 
Totally differentiating A.4 and taking into account equation (10) we get 
 
A.5 { [ ] −+++− + )('')(''))(('')('' 121 t

t
tt

t xgcufxgxfcu β  
 
 [ ] } ttttt

t dhxgxgfxgxfcu ))('1()('1('))(('')('' 11112 ++++ ++++β   
 = 
 { ++++ + ))('1)(('')(')('1(')('' 121 tt

t
t

t xgxgcuxgfcu β  
 
 [ ][ ] } ttttt

t dxxgxgxgxgfcu ))('1())('1)((')('1')('' 112 ++ ++++β . 
 
Rearranging and evaluating A.5 at the stationary point, tt hh =+ 1  and tt xx =+ 1 , yields 
equation (16) in the text. 
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Appendix 2. Development of the Jacobian Matrix of the Partial Derivatives 
 
For the purposes of stability analysis we develop the Jacobian matrix, its determinant 
and trace. 
 
A.6 ),(1 ttt hxGx =+  
 
A.7 ),(1 ttt hxFx =+  
 
The stability of the steady-state depends on the eigenvalues of the Jacobian matrix of 
the partial derivatives 
 

 
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FF
GG
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Calculating the partial derivatives of the Jacobian matrix we first obtain 
 
 )('1),( tttx xghxG += , 1),( −=tth hxG . 
 
To get the partials of ),(1 ttt hxFh =+ we first do the implicit differentiation in the 
following manner 
 
A.8 ttt CdxBdhAdh +=+ 1 , 
 
where A, B and C  are appropriate partial derivatives to be presented in a moment. 
Calculating these we take into account the other dynamical equation of our system: 

)(1 tttt xghxx +−=+ . Given the definitions of A, B and C  we will then have  
 

 
A
ChxF ttx =),( , 

A
BhxF tth =),( . 

  
As for A (as evaluated at the steady state) we get from A.3 
 

A.9 
ρ

ρβ 1)(''')'1( 2
−+= cufgA , 

 
where ρ  has been defined in the text. For the future developments we define 

1
ˆ

−
=

ρ
ρρ . Clearly, 0)(<>A , as 1)(><ρ . Totally differentiating (12) with respect to 

th  (again taking into account the transition equation) we obtain 
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and totally differentiating (12) with respect to tx  (again taking into account the 
transition equation) we have 
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Next we evaluate A, B and C at the steady state. By taking into account the Euler 
condition at the steady state )(')'1()(' 21 cugcu β+= , we get 
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Clearly, 0)(/ <>AC  when )1(1 ><ρ , and 0)(/ <>AB  when )1(1 <>ρ .  
 We can now rewrite the Jacobian as follows 
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The determinant (D) and the trace (T) of the Jacobian matrix, J, are D = 

A
C

A
Bg ++ )'1( and T = 

A
Bg ++ '1 respectively.  Using equations A.9, A.10 and A.11 we 

have the following expressions 
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Appendix 3. Proof of Saddle-Point Stability 
 
We analyze the stability of system (22) and (23) on the basis of (11) and (12). 
 
The characteristic polynomial associated with the system (22) – (23) expressed in 
terms of D and T is 
 
A.16 0)( 2 =+−= DTp λλλ  
 
It is known from the stability theory of difference equations (for an elementary 
treatment, see e.g. Azariadis, 1993, pp. 63-67) that for a saddle point the roots of 

0)( =λp  need to be on both sides of unity. Thus for a saddle we need that D-T+1 < 0 
and D+T+1 > 0 or D-T+1 > 0 and D+T+1 < 0.  
 
When ρ̂  is positive, i.e. 1>ρ , it is easy to conclude that both the determinant and the 
trace in A.14 and A.15, respectively, are positive, which also means that that D+T+1 > 
0 holds. Making inferences about the sign of D-T+1 requires more work. A 
straightforward calculation yields 
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A.17 cannot be signed yet for 0ˆ>ρ  (i.e. 1>ρ ). To get the sign of D-T+1 we use the 
assumption that our steady state is unique. This is assured by comparing slopes of the 
curves, where tt hh =+ 1  and tt xx =+ 1 . We develop the condition 
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Multiplying both sides of A.19 by the denominator (negative sign) on the left-hand side 
we get 
 
 
A.20 <+++++ 3

221 )'1(')('')'1('')(')'1(')('' gfcuggcugfcu ββ  
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 ')('')'1)((''''')(''''))(('''')('' 2211 ghxfgcuggcugfhxcugfcu ++−++− ββ  
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2 gfgcu ++ β . 

 
and collecting terms A.20 can be re-expressed as 
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Now we multiply both sides by )'1/(' gf +  (>0) to get 
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Rearranging and taking into account the definition of ρ̂  yields 
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If 0>̂ρ  (i.e. 1>ρ ) we get by multiplying with ρ̂  
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Note that this is exactly D-T+1, which means that we have a saddle when 1>ρ .  
 If 0ˆ <ρ  (i.e. 1<ρ ) we get by multiplying with ρ̂  
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which means that D-T+1 is positive. To get a saddle in this case, we need to have 
D+T+1 to be negative. To explore this possibility we check the sign of D+T+1 when 

0<̂ρ  (i.e. 1<ρ ). To make this calculation more transparent we rewrite D and T as 
follows 
 
A.27i  { }1ˆ)'1( ++= MgD ρ  
A.27ii  { }1ˆ)'1( ++++= NMgT ρ , 
where 
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Using this shorthand notation D+T+1 can be expressed after some manipulation 
 
A.28 D+T+1 = )̂1)('2(ˆˆ)'2( ρρρ +++++ gNMg . 
 
Note that, we are now considering the case, where 0ˆ <ρ  (i.e. 1<ρ ). The first two 
terms in (A28) are negative. The third term is also negative when 0ˆ1 <+ ρ . This 
happens when 2/1>ρ . So we have a saddle in this case, too. This completes the proof 
of Proposition. Q.E.D. 
 
   
 
Appendix 4. Derivation of equation (32)  
 
Given the assumed functional forms, the Euler equation can be written 
 
A.29 [ ] 12 )'1( cgc ρβ+= . 
 
Plugging this into the equilibrium condition, )(21 hfcc =+  and using the budget 
constraint ))()(('2 xgxhfc += gives  
 

 [ ]
ρρ

α

β)1(1
))2/1((

1 bxa
bxaxc

−++
−=  and  [ ][ ]

))2/1((
)2/1(1))2/1((
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bxabxaxc

−
−+−=

αα . 

 
If we plug these expressions for consumption back into the equilibrium condition we 
get equation (32) in the text. 
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 FIGURE 1. Elasticity of intertemporal substitution greater than one 

 

 

 

 

 

 

 

 

 

 

 

 

 FIGURE 2. Elasticity of intertemporal substitution less than one 
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