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by
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1. Introduction

The main characteristic of spatial econometrics is that it allows for the presence of

spatial dependence in cross-sectional data. Spatial dependence can arise from spatial cor-

relation between non-observable explanatory variables (disturbance terms) or from spillover

e®ects that determine the behavioral structure of the model. An example of the ¯rst case

occurs when the disturbance in one observation, say in spatial unit i; is correlated with the

disturbance in other observations, say spatial units j: In this case the errors follow a spatial

autoregressive process. The second case occurs when the values of the dependent variable

for a given observation depend on the values it takes for other observations, creating models

with a spatially lagged dependent variable. The resulting speci¯cations are known as spatial

error and spatial lag models, respectively. In both models, a weight matrix plays the role of

a \spatial lag operator," which shifts the error term and the dependent variable in space,

resembling a lag or forward operator in the time series context. In addition, the presence of

both spatial e®ects, yields a spatial lag model with a spatial autoregressive disturbance.1

Because no consistent estimates of the parameters of these models can be obtained

from ordinary least squares estimation, the maximum likelihood approach has become the

most common method of estimation and speci¯cation testing. Alternatively, instrumental

variables (IV) estimation has sometimes been implemented, mainly for the estimation of the

spatial lag model. However, these methods of estimation have been rarely used in the estima-

tion of the spatial lag model with a spatial autoregressive disturbance, denoted hereafter the

\full spatial model." Exceptions are Case et al. (1993), and Kelejian and Robinson, (1993).

In part, this may be due to the di±culties that arise in the operational implementation of

maximum likelihood estimation of this spatial model, and to a potential problem of iden-
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ti¯cation of the spatial parameters that have been documented in the spatial econometrics

literature (see Anselin (1988a), Anselin and Bera (1996), and Anselin et al. (1996)).2

Speci¯cation testing in spatial econometrics has received considerable attention in this

literature. Since Cli® and Ord's (1972) extension of Moran's (1950) test for spatial autocor-

relation to regression residuals, there has been extensive work focused on the derivation of

di®erent speci¯cation tests. Examples are Burridge's (1980) test for spatial error autocor-

relation, Anselin's (1988b) tests for spatial lag dependence and for the joint hypothesis of

spatial lag and error dependence (for other available tests see Anselin and Florax (1995)).

The need for available estimators and test statistics that do not depend on stringent

distributional and functional form assumptions has generated an increasing interest in the

development of robust methods of estimation and speci¯cation testing in econometrics.3

This interest has also captured the attention of spatial econometricians, who have tried to

develop estimation methods which do not require distributional assumptions, and which

provide practitioners with methods of estimation that are less computationally challenging

than maximum likelihood. Examples of suggested methods of estimation that do not need

strong parametric assumptions are the general method of moments (GMM) estimator for the

spatial error components model of Kelejian and Robinson (1993), the generalized method

of moments estimator for a spatial error model of Kelejian and Prucha (1996), and more

recently, the generalized spatial two state least squares estimator for a spatial autoregressive

model with autoregressive disturbances of Kelejian and Prucha (1997).

This literature has also focused on the derivation of test statistics that are robust to a

variety of misspeci¯cations. Examples are the robust Lagrange multiplier tests for spatial lag

dependence and for error dependence by Anselin et al. (1996), and tests of spatial dependence

that are robust to heteroscedasticity of an unspeci¯ed form, by Anselin (1988b) (see also

Anselin (1990)). An interesting feature of these tests is that they can be constructed based

on least squares residuals.

Test statistics that do not require the speci¯cation of the distribution of the distur-

bances that are widely used in spatial econometrics are Cli® and Ord's (1972) version of

Moran's (1950) test for spatial dependence and Kelejian and Robinson's (1992) test for error

dependence. Another robust method, which is used in applied econometrics and that has
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been suggested for inference in spatial models, is the bootstrap method.4

The development of estimators that do not require stringent distributional assumptions

o®ers opportunities for the development of test procedures for spatial econometric models

within this framework. The availability of these tests procedures is of potential interest to

practitioners.

In this paper, we formulate GMM versions of the Wald, the Likelihood ratio and the

Lagrange multiplier test statistics (denoted hereafter WaldG; LRG; and LMG; respectively)

for spatial lag dependence in the spatial lag model with autocorrelated errors (ie. full spatial

model). The tests are based on the generalized method of moments (GMM) estimator

suggested by Kelejian and Robinson (1993), on the work of Kelejian and Prucha (1996) and

on the e±cient GMM tests formulated by Newey and West (1987). As Newey and West

show these tests are computationally simple, and as their maximum likelihood counterparts,

they are large sample tests that are asymptotically equivalent and distributed as chi-squared

random variables. In addition, under certain conditions, they are also numerically equivalent,

giving to practitioners some freedom in the choice of the test statistic (see Newey and West

(1987)).

We investigate the ¯nite sample performance of the LMG; the LRG; and the WaldG and

compare them with the robust test for spatial lag dependence of Anselin et al. (1996), in a

Monte Carlo simulation.5

The Monte Carlo experiments indicate that the small sample distribution of the tests is

well approximated by their asymptotic chi-squared distribution for relatively small sample

sizes, but for small values of the spatial error parameter. In addition, the empirical power

approaches one for low values of the spatial lag parameter under reasonable small sample

sizes. However, we ¯nd variations across di®erent spatial matrices for given sample size and

given values of the spatial error parameter.

The second part of the paper outlines Kelejian and Robinson's (1993) GMM estimators,

and Kelejian and Prucha's (1996) consistent estimator of the error parameters. Section

3 presents the GMM analogs of the Wald, likelihood ratio, and Lagrange multiplier test

statistics. Section 4 describes and presents the results from the Monte Carlo experiment,

and section 5 concludes.
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2. GMM estimators

We will consider test statistics of the null hypothesis of no spatial lag dependece in

a full spatial model and formulate GMM counterparts of the well known Wald, Lagrange

multiplier, and Likelihood ratio test statistics for this hypothesis. As in the maximum like-

lihood framework, the WG requires the unconstrained GMM estimator for its computation,

the LRG requires both the unconstrained and constrained GMM estimators, while the LMG

uses the gradient of the GMM criterion function, evaluated at the restricted parameter esti-

mator. The restricted and unrestricted GMM estimators are based on the work of Kelejian

and Robinson (1993) and Kelejian and Prucha (1996).

2.1 Kelejian and Robinson's (1993) Unconstrained GMM Estimator

Kelejian and Robinson (1993) consider the following spatial model:

y = ½My + X¯ + u; (1)

u = W´ + Ã; (2)

where y is a nx1 vector of observations on the spatial dependent variable, with its ith

observation corresponding to the ith region; ½ is the spatial lag parameter, which is assumed

to be less than one in absolute value; X is a nxk matrix of observations on the exogenous

variables; ¯ is a kx1 parameter vector; u is the regression disturbance vector, ´ and Ã are

nx1 vectors of random shocks; and M and W are nxn non-stochastic weight matrices, which

are known a priori. Unlike W , M has zeros in its main diagonal. Furthermore, the nonzero

elements of the ith row of M and W de¯ne the set of \neighbors" and the set of error terms

corresponding to the ith region, respectively.

Note that in this model, the error is composed of two stochastic shocks that are generated

within each region. The component Ã is speci¯c to each region, and the component ´ is

common to di®erent regions which are determined by W: These error vectors are assumed to

be independent of X and independent of each other. In addition, their ith elements ´i and Ãi

are iid. with zero means and variance ¾2
´ and ¾2

Ã; respectively. Therefore, E(´) = E(Ã) = 0;
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E(´´
0
) = ¾2

´In; and E(ÃÃ
0
) = ¾2

ÃIn: The error covariance matrix is given by

E(uu
0
) = §u = ¾2

´WW
0
+ ¾2

ÃIn; (3)

In the formulation of the GMM test statistics we will not consider (2). Instead, we will

assume the following autoregressive error process

u = ¸Wu + Ã; (2a)

where ¸ a scalar spatial autocorrelation parameter, which is assumed to be less than one

in absolute value, and Ã is as above. In addition, we note that in this formulation of the

model W has diagonal elements equal to zero. The di®erence between this and Kelejian and

Robinson's (1993) model is that we consider a disturbance that follows a spatial autoregres-

sive process, while they consider a disturbance with two error components. Both spatial

models are important in applied work. See for example, Anselin (1980), Brueckner (1997),

Brueckner and Saavedra (1998), Case (1991), Case et al (1993), Cli® and Ord (1981), and

Figlio and Reid (1998) for applications of both models.

As in Kelejian and Robinson (1993), we also assume that u is independent of X; and

that (I ¡ ½W ) and (I ¡ ¸W ) are non-singular for all j ½ j< 1; and j ¸ j< 1: In addition, we

assume that the weight matrices are the same, i.e. M = W: Rewriting equations (1) and

(2a), the model we consider can be written as

y = (I ¡ ½W )¡1X¯ + (I ¡ ½W )¡1u; (10)

u = (I ¡ ¸W )¡1Ã: (2a0)

The previous assumptions imply that the disturbance term has zero expectation, i.e. E(u) =

0; and variance-covariance matrix is given by

E(uu0) = §u = ¾2
Ã(I ¡ ¸W )¡1(I ¡ ¸W 0)¡1: (4)
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The assumptions also imply that E(y=X) = (I ¡ ½W )¡1X¯ and E(Wy u0 j X) = [¾2
ÃW (I ¡

½W )¡1(I ¡ ¸W )¡1(I ¡ ¸W 0)¡1] 6= 0: This last expression indicates that the parameters of

equation (1) cannot be consistently estimated by ordinary least squares.6

Going back to Kelejian and Robinson's (1993) setup, let Z = (Wy;X) and °0 = (½; ¯0):

Let H = (X; WX¤) denote a matrix of instruments of rank(H) = k + k¤, where X¤ is a

submatrix of X consisting of k¤ < k of its columns.7 Also, rewrite (1) as

y = Z° + u: (5)

Their e±cient GMM estimator is obtained by minimizing a criterion function that is

constructed from an orthogonality condition between the set of instruments H and the

disturbance term u: This orthogonality condition is given by

E[H 0u] = 0; (6)

which corresponds to the population moment condition. The sample counterpart of (6) can

be written as

Fn(°) = n¡1H 0u = 0; (60)

which is a (k + k¤) by 1 vector of error sample averages, with variance-covariance matrix

given by ­ = n¡2H 0§uH:

Their GMM estimator chooses °̂GMM so that Fn(°) is close to zero. Thus, °̂GMM

minimizes the criterion function given by

Qn(°) = u0H[H 0§uH]¡1H 0u; (7)

which corresponds to the general form of a GMM criterion function

Qn(°) = Fn(°)0¡Fn(°); (70)



8

where ¡ has been chosen to be the inverse of the covariance matrix ­; ie., ¡ = ­¡1: Due

to this choice of ¡; their proposed GMM estimator is optimal (i.e., e±cient) within the

considered class of GMM estimators. Note that a consistent estimator of ­¡1 is needed to

obtain °̂GMM : According to (3), a consistent estimate of ­ can be obtained from consistent

estimates of ¾2
´ and ¾2

Ã: After a consistent estimator of ­ is obtained and substituted in the

criterion function (7), the minimization of this function with respect to ° results in

°̂GMM = (Z0D̂Z)¡1Z0D̂y; (8)

where D̂ = H(H 0§̂uH)¡1H: As is shown in their paper, °̂GMM is asymptotically distributed

as
p

n(°̂GMM ¡ °) ! N(0; G0­¡1G); (9)

where G = E¢°Fn(°); and ¢° denotes the derivative with respect to °. From (5) and (6),

G = H0Z: Thus, the estimated asymptotic covariance matrix of °̂GMM is given by

V (°̂GMM ) = [Z0H(H 0§̂uH)¡1H0Z]¡1 (10)

In short, Kelejian and Robinson (1993) proposed GMM estimator is obtained by using

¯rst a set of instruments H in a two stage least squares procedure to obtain a consistent

preliminary estimate of °: Then, this estimate is in turn substituted in (5) to obtain estimates

of u; which are then used in a least squares regression to obtain consistent estimates ¾̂2
´ and

¾̂2
Ã: Finally, °GMM is obtained from (8). The following steps summarize the estimation

process:

(i) Regress Wy on H; and obtain ¯tted values Ŵy = H(H0H)¡1H 0Wy:

(ii) Obtain a preliminary consistent estimate of ° regressing y on Ẑ = (Ŵy; X):

(iii) Use the preliminary estimate °̂ in (5) to obtain estimates û of u:

(iv) To obtain consistent estimates of ¾2
´ and ¾2

Ã; regress û2 on the diagonal elements

of WW 0 as suggested by (3). Use these estimates to obtain §̂u:

(v) Finally, substitute §̂u in (7) and obtain °̂GMM as indicated by equation (8).8
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Because we consider the model given by equations (1') and (2a'), we need consistent es-

timators of ¸ and ¾2
Ã to implement our version of (8). Note that in our case, ­ = n¡2H 0§uH;

where §u is given by (4). According to (4), a consistent estimate of §u can be obtained

by using consistent estimates of ¾2
Ã and ¸: Observe that the di®erence between our model

and Kelejian and Robinson's (1993) model is that ours contains the parameter ¸; which is

not present in theirs, and ours does not contain the element ¾2
´; which is present in theirs.

Overall, this implies that step (iv) above needs to be modi¯ed. To estimate these error

parameters, we use Kelejian and Prucha's (1996) suggested generalized moments estimator,

which we describe next.

2.2. Kelejian and Prucha's (1996) Generalized Moments Estimator

Kelejian and Prucha (1996) consider a generalized moments estimator for the parameters

of a linear model with the error term following a spatial autoregressive process like the one

described by equation (2a), or equivalently, by (2a'). Using our notation, we brie°y describe

their estimator.

Let ¹u = Wu; ¹¹u = WWu; and ¹Ã = WÃ: Recall that Ãi is iid.(0; ¾2
Ã); and that the

diagonal elements of the weight matrix W are equal to zero, i.e., wii = 0: These assumptions

imply that:

(i) E[ 1
nÃ0Ã] = ¾2

Ã;

(ii) E[ 1
n

¹Ã0 ¹Ã] = ¾2
Ãn¡1Tr(W 0W ); and

(iii) E[ 1
n

¹Ã0Ã] = 0;

where Tr(:) denotes the trace operator. In addition, note from equation (2a) that u¡¸¹u = Ã;

and that ¹u ¡ ¸¹¹u = ¹Ã: Substituting these in (i), (ii), and (iii) we get the following system of

equations:

2
4

2n¡1E(u0¹u) ¡n¡1E(¹u0¹u) 1
2n¡1E(¹¹u0¹u) ¡n¡1E(¹¹u0¹¹u) n¡1Tr(W 0W )

n¡1E(u0¹¹u + ¹u0¹u) ¡n¡1E(¹u0¹¹u) 0

3
5

2
4

¸
¸2

¾2
Ã

3
5 ¡

2
4

n¡1E(u0u)
n¡1E(¹u0¹u)
n¡1E(u0¹u)

3
5 = 0 (11)

Letting µ = (¸; ¸2; ¾2
Ã); and ¨n = n¡1(E(u0u); E(¹u0¹u); E(u; ¹u))0; this system of three equa-

tions can be written as:

¤nµ ¡ ¨n = 0; (12)
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where ¤ is equal to the ¯rst bracketed expression in the left-hand side of (11). Assuming

that j ûi ¡ ui j! 0 the sample analog of (11) is given by

Jnµ0 ¡ jn = ºn(½; ¾2
Ã); (13)

where ºn can be seen as a 3 x 1 vector of residuals as suggested by these authors, and

Jn =

2
4

2n¡1 û0 ¹̂u ¡n¡1 ¹̂u0 ¹̂u 1
2n¡1 ¹̂¹u

0
¹̂u ¡n¡1 ¹̂¹u

0 ¹̂¹u n¡1 Tr(W 0W )
n¡1 (û0 ¹̂¹u + ¹̂u0 ¹̂u) ¡n¡1 ¹̂u0 ¹̂¹u 0

3
5 ; jn =

2
4

n¡1 û0û
n¡1 ¹̂u0 ¹̂u
n¡1 û0 ¹̂u

3
5 :

Kelejian and Prucha (1996) suggest the generalized moments estimator for ¸ and ¾2
Ã as the

non-linear least squares estimator

(^̧NLS;n; ¾̂2
ÃNLS;n

) = argmin
£
ºn(¸; ¾2

Ã)0 ºn(¸; ¾2
Ã) : ¸ 2 [¡a; a]; ¾2

Ã 2 [0; b]
¤
;

where a ¸ 1 and b < 1: They show that (^̧NLS;n; ¾̂2
ÃNLS;n

) ! (¸; ¾2
Ã) in probability, as

n ! 1:9

We use these generalized moments estimators to obtain estimates of ¸ and ¾2
Ã, and

consequently, of §u as indicated in (4). Therefore, in the derivation of the test statistics,

the unconstrained GMM estimator of ° is obtained as described by steps (i) through (v)

in section 2.1, but changing (iv) by the Kelejian and Prucha's (1996) GMM estimator, and

modifying (v) as is obvious.10

2.3. The constrained GMM estimator

A constrained GMM estimator can be de¯ned by optimizing the GMM criterion function

subject to the null hypothesis of the form Ho : a(°) = 0; where a(°) is a r x 1 vector. The

restricted estimator of °; denoted °̧GMM will be the solution to

Min°Qn(°) subject to a(°) = 0 (14)
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We are interested on testing the restriction ½ = 0; so the restricted model is

y = X¯ + u; (15)

u = ¸Wu + Ã; (16)

which corresponds to a linear model with spatial error autocorrelation. The same ¡ matrix

in used in both restricted and unrestricted minimization problems.11 The solution to (14)

for this speci¯c case gives

°̧GMM = (X 0D̂X)¡1X 0D̂y (17)

where D is as before.

3. GMM Test Statistics

Newey and West (1987) devised a counterpart for the GMM estimator of the Wald,

Lagrange multiplier and Likelihood ratio test statistics from the maximum likelihood es-

timation context. The model used in the derivation of the tests implies an orthogonality

condition, that in their notation, is given by

E[g(zt; bo)] = 0; (20)

where bo is a q x 1 vector of parameters, zt is a p x 1 data vector, and g(z; b) is a r x 1 vector

of functions of the data and parameters. Under the assumption that (20) is correct, the

sample moment gT (b) =
PT

t=1 g(zt; b)=T is close to zero when evaluated at b = bo: Solving

minbgT (b)WT gT (b); where WT is a positive semi-de¯nite matrix, gives a GMM estimator b̂T

of bo: They consider a general null hypothesis of the form

Ho : a(b) = 0; (21)

where a(b) is a sx1 vector. Because the null hypothesis implies a set of restrictions on

the parameters, a second \restricted" GMM estimator b̧T is obtained by solving the same
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criterion function, ie., minbgT (b)WT gT (b); but subject to (21). The test statistics that use

these two estimators are

WG = a(b)0[Â­¡1Â0]¡1a(b̂) (22)

LRG = [QT (b̧) ¡ QT (b̂)] (23)

LMG = [gT (b̧)0­¡1ĢT ](Ģ0
T ­¡1ĢT )¡1[Ģ0

T ­¡1gT (b̧)]; (24)

where A = @a(bo)=@b; Â = @a(b̂T )=@b; gT (bo) denotes the sample moment conditions, bo is

the vector of parameters, ĜT = @gT (b̂T =@b); ĢT = @gT (b̧T )=@b; QT (b) denotes the GMM

criterion function, ­¡1 is the inverse of the variance-covariance matrix of the moment con-

ditions, and hat and tilde refer to the unrestricted and restricted cases, respectively.

These test statistics have a similar interpretation to their maximum likelihood coun-

terpart. Thus, the WG can be interpreted as measuring the distance of the unrestricted

estimates from its null value. The LMG as measuring the distance of the gradient of the mo-

ment condition evaluated at the constrained estimates from zero, and the LRG as measuring

the distance between the criterion function evaluated at the constrained and unconstrained

estimates (see Newey and McFadden (1994) for a graphical representation of this interpre-

tation).

Newey and West (1987) show that these test statistics are asymptotically equivalent

and distributed in large samples as a chi-squared random variable with degrees of freedom

equal to the number of components of a(b): This result assumes that the test statistics are

based on the optimal GMM estimator, for which ¡ = ­¡1: As noted by these authors, the

choice of ¡ other than ­¡1 implies that a test statistic based on the di®erence of the criterion

functions at the restricted and unrestricted estimates is not asymptotically chi-squared.12

3.1 GMM Tests of Spatial Lag Dependence

Kelejian and Robinson's (1993) GMM estimator implies an orthogonality condition as

in (20), which in our notation, is written as:

H 0u = H0y ¡ H 0Z°: (25)



13

The GMM test statistics to test the null hypothesis of Ho : ½ = 0 based on the unrestricted

and restricted GMM estimators that minimize the squared distance of the sample moment

conditions in (25), are then given by

WG =
½2

V ar ½
(26)

LRG = u̧0H [H 0§̂uH ]¡1H 0u̧ ¡ û0H [H 0§̂uH]¡1H 0û; (27)

LMG
= [u̧0H(H0§̂uH)¡1H 0WY ]2

[J½]
(28)

where the notation is as above,

J½ = Y 0W 0H[H0§̂uH ]¡1H0WY ¡ Y 0W 0H [H 0§̂uH ]¡1H 0X[J¯½]¡1X 0H [H0§̂uH ]¡1H0WY;

and J¯½ = X 0H [H 0§̂uH ]¡1H 0X: These test statistics are distributed in large samples as a

chi-squared random variable with one degree of freedom.13

As noted before, the computation of the WaldG statistic requires the unconstrained

GMM estimator of ½: The statistic evaluates how close is ½̂ to its constrained value of zero.

The LMG requires the constrained estimator of ½; which corresponds to the estimator in (17).

This statistic evaluates how close to zero is the gradient of the criterion function evaluated

at ½̧: The LRG statistic requires the constrained and unconstrained estimator of ½: Similarly,

this statistic looks at how the values of the GMM criterion function di®er when evaluated

at the unrestricted and restricted estimators.

Note that all three statistics use the same estimate ­̂ of ¡: In addition, observe that the

orthogonality conditions are linear in the parameters °; which implies that Ĝn = Ģn = H 0Z:

This means that the derivatives of the moment conditions with respect to the parameter do

not depend on the parameters. Proposition 3 in Newey and West (1987) establishes that in a

case like this, the LMG and LRG test statistics are numerically equivalent, i.e. LMG = LRG:

Therefore, in our case the GMM Lagrange multiplier and the GMM Likelihood ratio test

statistics are also numerically equivalent. This numerical equivalence also holds for the

WaldGMM when the constraint is also linear (this is their Proposition 4), but does not hold
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when the test statistics use a di®erent estimator of the asymptotic covariance matrix of the

moment conditions. In our case we use the same estimator, and therefore all three tests are

numerically equivalent.

4 Small Sample Performance of GMM Tests for Spatial Dependence

We carried out a small Monte Carlo simulation to analyze the ¯nite sample properties of

the test statistics presented in the previous section. In this simulation exercise, we compare

the ¯nite-sample performance of these tests with an alternative test of spatial lag dependence,

which is based on maximum likelihood estimation. The test statistic is the LM¤
½ robust test

for spatial lag dependence of Anselin et al. (1996). This test statistic is easily computable

from least squares residuals of the restricted model, and is robust to local misspeci¯cation

of spatial error dependence. When the weight matrices in (1) and (2a) are the same, which

is our case, this test statistic is

LM¤
½ =

[u̧0Wy=¾̧2 ¡ u̧0Wu̧=¾̧2]2

nJ̧½:¯ ¡ Tr[W 2 + W 0W ]
; (28)

where u̧ = y ¡ X ¸̄ are the least squares residuals, ¾̧2 = u̧0u̧=n; nJ̧½:¯ = ¾̧2[(WX¯)0(I ¡
X(X 0X)¡1X 0)(WX ¸̄) + Tr[W 2 + W 0W ]]¡1; and Tr denotes the trace operator. This test

statistic has been shown to have good small sample properties (see Anselin et al. 1995).

4.1 Experimental Design

The design of the Monte Carlo simulation follows from the experimental design used by

Anselin and Florax (1995), which is standard in this literature. We study the small sample

performance of the tests under the null hypothesis Ho : ½ = 0: We consider values of ½ and

¸ greater than zero. The chosen values of these parameters are ½ = (0:1; 0:3; 0:5; 0:7; 0:9)

and ¸ = (0:1; 0:3; 0:5; 0:7; 0:9):14 The con¯guration of spatial lag and error dependence is

determined by 8 di®erent spatial matrices. Six of these matrices are contiguity matrices that

are built based on regular lattices using the rook and queen criterion.15 These matrices are

of size 49 (from a square 7x7 grid), 81 (from a 9x9 grid) and 121 (from a 11x11 grid). In

addition, we consider two \real" spatial matrices. The ¯rst corresponds to a distance matrix

built accordingly to the distance between the largest cities of each state of the United States,
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and the second matrix is built based on the distance between the cities and townships within

the Statistical Metropolitan Area of Boston (SMSA), Massachussets. These two matrices

are of size 51 and 110 respectively.

We explore the ¯nite-sample properties of the test under two distributions of the error

Ã: We consider errors Ãi that are i:i:d: N(0; 1); and errors Ãi that are i:i:d: LogN(0; 1):16

The matrix X has a column of constants and 2 columns corresponding to two variates

drawn independently from a uniform (0; 10) distribution. This matrix remains ¯xed in the

experiment. The dependent variable is then generated according to (1').

We consider a total of 400 cases that are determined by the combination of the two

chosen distributions for Ã, the ¯ve values of ½ and ¸; and the eigth weight matrices. For

each case, we compute the GMM and the LM¤
½ test statistics.17 Results are obtained based on

1000 replications. The properties of the tests are evaluated at ® = 0:05 and ® = 0:10 critical

values of their asymptotic chi-squared distribution with one degree of freedom. The empirical

size, de¯ned by the proportion of incorrect rejections, and the power of the tests, de¯ned by

the proportion of correct rejections, are reported. In addition, we report probability values

from the Kolmogorov-Smirnov (KS) test of the hypothesis of departures from the asymptotic

chi-squared null distribution of the test statistics.

4.2 Monte Carlo Results

Tables 1-4 summarize the results from the Monte Carlo exercises. Tables 1a through

1c present the empirical size of the tests under normal and lognormal errors for each of the

weight matrices considered in the experiments. Tables 2a through 3c report the empirical

rejections under the alternative hypothesis for ½ = (0:1; 0:3; 0:5; 0:7; 0:9) for the two error

distributions, respectively, and Tables 4a-c contain the P-values for the Kolmogorov-Smirnov

test statistic.18

Using the normal approximation to the binomial distribution, 95% con¯dence intervals

for the estimated empirical sizes are [0:0365; 0:0635] and [0:0814; 0:1186] respectively. Results

from the experiments show that there are considerable size distortions for both the GMM

and the Lagrange Multiplier tests under both distributions. Although the estimated size

distortions decrease with the sample size, they increase with the value of the spatial error
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parameter ¸: For the regular and irregular spatial matrices and under both error distribu-

tions, rejection frequencies of the tests are inside the estimated con¯dence intervals only for

sample sizes larger than 81 and for values of ¸ <= 0:3: For the \real" spatial matrices the

robust test shows better size performance than the spatial GMM tests. Rejection frequencies

for the GMM tests are outside the estimated con¯dence intervals for both spatial matrices,

while they are inside the estimated con¯dence interval for the robust test for the contiguity

matrix of SMSA cities in Massachusetts and for values of ¸ <= 0:5: An encouraging result

is that, for given values of ¸; the empirical rejections of the tests approach the estimated

con¯dence intervals as we increase the sample size. This is particularly the case for the queen

and the irregular weight matrices.

Furthermore, the empirical size of the GMM tests are similar under both error distribu-

tions for the rook and irregular weight matrices (mainly when N=110) and tend to be closer

to the con¯dence interval for the queen matrices. In contrast, the empirical size of the robust

Lagrange Multiplier test tend to be bigger when the error distribution is Lognormal (except

for the queen matrices). However, the di®erences decrease as the sample size increases.

Our experiments suggest that the GMM tests and the robust Lagrange Multiplier tests

have good size performance for relatively small sample sizes when using regular weight ma-

trices, but for low values of the spatial error parameter (¸).19 On the other hand, the GMM

tests must be used with caution when using irregularly shaped weight matrices, particu-

larly if the sample size is small. Under the speci¯c conditions of our experiment these tests

presented considerable size distortions for a sample size of 110 and for low values of ¸:

These results are consistent with those obtained from the Kolmogorov-Smirnov good-

ness -of-¯t test. P -values of the Kolmogorov-Smirnov statistic indicate rejection of the null

hypothesis that the empirical distribution of the GMM and robust Lagrange Multiplier tests

is equal to their asymptotic chi-squared distribution for small sample sizes (N = 49 and

N = 51) under the regular and irregular weight matrices. On the other hand, the test indi-

cates non-rejection for sample sizes N = 81; N = 110 and N = 121; but when ¸ takes small

values.

Overall, our experiments indicate that the small sample distribution of the GMM tests

and the robust Lagrange Multiplier tests is well approximated by their asymptotic chi-
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squared distribution for relatively small sample sizes, but only for small values of the spatial

error parameter (see Table 6a-c). When the \degree" of spatial error correlation is high (ie.,

the parameter takes values bigger than 0.5) the tests present considerable size distortions.

Analyzing the results from the empirical power computations, we ¯nd that, for the

regular weight matrices, all test statistics reach empirical rejection frequencies close to one

for relatively low values of the spatial lag parameter ½ under both distributions and for all

sample sizes. As expected, the rejection frequency approaches one as we increase the sample

size. However, we ¯nd important variations across error distributions and across these weight

matrices. For example, under normal errors, for the queen matrices and when ¸ is still small,

the empirical power of the tests reach one for values of ½ >= 0:3 and sample sizes N = 81

and N = 121: Except when ¸ = 0:9; power is always one for ½ >= 0:5: For the rook matrices,

independently of the value of ¸; power reaches one only for values of ½ >= 0:7: This implies

that for given sample size and given values of ¸; the tests have better power performance for

the queen matrices (relative to the the rook matrices).

On the other hand, for the irregular matrices, empirical rejections are higher for the

smaller weight matrix (N = 51) for given values of ½ and ¸. This is in contrast to the results

obtained for the regular lattices for which we ¯nd better power performance as sample size

increases. In addition, only for values of ½ = 0:9 both the GMM and the robust tests reach

empirical rejections close to 0.95. For all other considered values of ½ empirical rejections

were below this value and decreased as ¸ increased.

The results also suggest that the tests have better empirical power when the errors

are Lognormal (relative to normal errors) for both regular and irregular weight matrices.

The experiments show that the GMM and the robust Lagrange Multiplier tests have higher

empirical rejection frequencies for all considered values of ½: In addition, power decreases

as the value of the spatial error parameter increases but only for very low values of ½: For

instance, for the rook and queen matrices empirical rejections reached one for values of

½ >= 0:3 (except for the rook of size N = 49). Similar results are obtained for the irregular

matrices.

Unless some size distortion corrections are taken into account, it is not very meaningful

(or perhaps it is better to say \fair") to compare the power properties of test statistics that
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have di®erent size distortions. For example, the experiments show that the robust LM test

has a higher rejection frequency than the GMM tests under normal errors for the regular

matrices and for values of ½ <= 0:5 (for ½ <= 0:7 and ½ <= 0:9 empirical rejections are

similar for given values of ¸). On the other hand, for the irregular matrices we observe the

opposite. Empirical rejections tend to be higher for the GMM tests. Because we do not

control for size we cannot conclude that GMM tests have better power performance than

the robust LM test for irregular matrices or viceversa for regular matrices.

5. Conclusion

In this paper, we have formulated versions of the Wald, the Likelihood ratio and the

Lagrange multiplier tests based on GMM estimation to test the null hypothesis of non-spatial

lag dependence in a spatial lag model with a spatial autoregressive disturbance term. Based

on the work of Kelejian and Robinson (1993) and Kelejian and Prucha (1996), we obtained

restricted and unrestricted GMM estimators, which were used in the computation of the

test statistics. We also have presented some evidence of the small sample properties of these

tests from a Monte Carlo experiment.

These GMM estimators as well as the GMM test statistics are fairly easy to compute.

The tests statistics are asymptotically equivalent. In addition, they are numerically equiv-

alent. The numerical equivalence occurs because the derivatives of the moment conditions

with respect to the spatial lag parameter do not depend on the parameters and because the

imposed constraint is linear. However, this requires that we use the same estimator of the

asymptotic covariance matrix of the moment conditions in the computation of the tests.

The results from the Monte Carlo simulations indicate that the GMM and the LM tests,

despite their good power properties, present considerable high empirical size distortions,

particularly for high values of the spatial error parameter. In other words, these tests tend

to reject the null hypothesis of non-lag spatial dependence more frequently than expected

when the errors exhibit a high \degree" of spatial correlation. Size distortions decreased as

we increased the sample size. However, they increased as the value of ¸ increased.

Overall, the experiments indicate that the small sample distribution of the GMM tests

and the robust Lagrange Multiplier tests is well approximated by their asymptotic chi-
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squared distribution for relatively small sample sizes (their empirical size is close to the size

chosen for the test), but for small values of the spatial error parameter. In addition, the

empirical power approaches one for low values of the spatial lag parameter under reasonable

small sample sizes. However, we ¯nd variations across di®erent spatial matrices for given

sample size and values of the spatial error parameter.

The GMM tests for spatial lag dependence in the presence of spatial error dependence

constitute a good alternative to available test procedures in spatial econometrics. However, it

is important to note that further work in the study of their ¯nite sample properties is needed,

particularly for irregular (\real world") spatial structures while paying close attention to the

trade-o® between sample size and degree of spatial error correlation.
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Endnotes

1For other spatial models see Anselin (1988a).

2The computational complexities in the maximum likelihood approach arise from the spatial
weight matrix and from the Jacobian of the transformation of the log likelihood, which
involves the computation of the determinant of a non-triangular matrix. The use of the
eigenvalues of the weight matrix (as suggested by Ord (1975)) considerably simpli¯es
the procedure. In addition, a non-linear optimization of a concentrated log likelihood is
required to obtain the estimates of the spatial parameters (see also Anselin (1988a)).

3A good survey of this literature is Koenker (1982).

4See Anselin (1990) for an application of this re-sampling method to the spatial lag model.

5We tried to compare the LMG with its maximum likelihood counterpart LMA
½ (Anselin

(1988a)), however, we had problems with the minimization algorithm used to estimate
the restricted maximum likelihood estimators. We tried the nlminb Splus function, which
allows for the imposition of parameter constraints. However, we were not able to obtain
restricted maximum likelihood estimates of the parameters for 1000 replications. It is
important to note that there are no studies in the spatial econometrics literature that
have analyzed the small sample performance of this test statistic. This test has always
been excluded from other Monte Carlo experiments, because it's computation has a \high
computational burden" (See Anselin et. al. (1995)).

6This is also the case in Kelejian and Robinson's (1993) model, where, E[My u0 j X] =
M(I ¡ ½M)¡1§u 6= 0:

7The restriction on the rank of H rules out the case in which k = 1 and X is a constant
regressor. In addition, note that when X contains a constant regressor and W is row
normalized X¤ does not include the constant column of X.

8We have omitted the presentation of most of the regularity conditions assumed for the
consistency of these estimators. For this, and for the proofs of consistency, see Kelejian
and Robinson's (1993) paper.

9Using an over parameterization of (13), they also suggested an ordinary least squares
estimator ^µols = (^̧; ^̧2; ¾̂2

Ã) obtained from regressing jn on Jn: In our Monte Carlo exper-
iment we use these OLS estimators as the initial values for the non-linear least squares
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estimators.

10Note that we also use a consistent estimate of ­:

11A di®erent choice of the weighting matrix ¡ in the unrestricted and restricted criterion
functions would imply that a test statistic based on the di®erence of the criterion functions
at the restricted and unrestricted estimates will not be asymptotically chi-squared.

12The asymptotic properties of these test statistics are given in Newey and West (1987) and
the detailed proofs in Newey and West (1985). See also Newey and Macfadden (1994).

13A normalization of the criterion function by 1=2 implies equality between the Hessian
matrix and the asymptotic variance of the gradient of the criterion function. When GMM
estimators are optimal (ie., have minimum asymptotic variance matrix within their class)
this information equality property holds and the test statistics will have an asymptotic
chi-square distribution, with degrees of freedom equal to the number of components of
a(b) (see Newey and Macfadden (1994)).

14As in Anselin and Florax (1995), we did not consider negative values of ½: According to
Anselin and Rey (1991), complications arise when negative parameter values are consid-
ered.

15See Anselin (1988a) for a description of these and other spatial weight matrices based on
regular and irregular spatial con¯gurations.

16As in Anselin (1995), we use Ã = exp(0:69ei¡1:272) where ei is a standard normal random
variable.

17Because the GMM tests are numerically equivalent, we only report results for the LMG:

18Results of the empirical rejections under the alternative hypothesis at ® = 0:10 are not
reported, however, they are available upon request.

19This result is not surprising for the Lagrange Multiplier test, which is robust only to local
misspeci¯cation of the spatial error parameter.

20Our results of signi¯cant empirical size distortions of LM¤
½ ; which are in contrast to the

results obtained in Anselin et al. (1995), may be due to the high value of ¸ chosen in the
experiments. In addition, we note that in our Monte Carlo experiments, we are using rook
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weight matrices, which have been found to produce relatively poorer test performances
to those obtained from other weight matrices (for example weight matrices built based
on the queen criterion) for identical sample sizes. In future research, we will explore the
¯nite-sample properties of the tests using other weight matrices, and assuming di®erent
values for ¸.


