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Abstract

We consider an economy with a finite number of agents, a contin-
uum of states and incomplete markets where individuals do not keep
their promises contrary to the Arrow-Debreu model of general equilib-
rium with complete markets(GE) and the general equilibrium model
with incomplete markets(GEI) where they do keep them by assump-
tion. We show that in addition to usual assumptions on utilities and
endowments the equilibrium for this economy must exists if sales of
assets is backed by some nonzero collateral.
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1 Introduction

In the Arrow-Debreu model of general equilibrium with complete markets(GE)
and likewise in the general equilibrium model with incomplete markets(GEI)
agents keep all their promises by assumption. It is well known that in the
later, without the lower bound on short sales, the equilibrium can fail to exist,
see Hart (1975). However, Duffie and Shafer (1985) prove that Hart‘s exam-
ple is held only on a null set, i.e. the equilibrium exists generically. Later
Dubey et al. ( 1989, 1990) extend the GEI model to another where agents are
not obligated to keep promises and they prove that the equilibrium always
exists for this model whenever there exist a lower bound on short sales. As al-
ways this bound is necessary to guarantee the existence. On the other hand,
when these models were extended for a continuum of states - see Mas-Collel
and Monteiro (1996), Monteiro (1995, 1996) - in addition to the hypothesis
of the lower bound short on sales it is required that ex-post endowments be
nonnegative, this assumption is much stronger but indispensable, see Mas-
Colell and Zame (1996) and Monteiro (1996). Aratijo, Monteiro and Pascoa
(1997) eliminate this requirement by introducing default subject to utility
penalties, in the set-up of Dubey et al. (1989).

The aim in this paper is to extend the pioneering study of collateral by
Dubey-Geanakopolos-Zame(1995), where results on existence of equilibria
are provided, for exogenously given collateral coefficients. We model the
second period uncertainty by considering a probability space without atoms.
Specifically, we consider S = [0, 1] as the set of states of nature equipped
by the sigma algebra of Lebesgue and of course the measure of Lebesgue.
Moreover we make some simplifications which will not alter the arguments
used in the proof on existence. For instance, we allow for each debtor ( seller
of assets ) to hold the full collateral that secure the sale of asset, we also

assume that the collateral, as well as any consumption good is durable. This



durability is measured by a linear transformation depending on the state of
nature that has been solved in the second period.

Penalties play nowadays a small deterrence role in the default world.
Moreover in the presence of utility penalties, adverse selection problems may
arise, since lenders do not know the default likelihood of borrowers, which
depends on the comparison between marginal penalties and marginal utilities
of income, in each state of nature. This asymmetric information context is
richer but also harder to deal with than the anonymous model of collateralize
promises without utility penalties.

The existence argument uses a finite-dimensional approximation and ap-
plies Fatou’s lemma to a uniformly bounded sequence of equilibrium vari-
ables of the truncated economies. This mathematical approach of existence
of equilibria with a continuum of states was already used in the non-default
model of Hellwig ( 1996) and Monteiro (1996). This sequence of equilibria
variables of truncated economic includes prices, allocations, portfolios and
marginal utilities of income, as required to establish market clearing and op-
timality conditions in the limit economy. We prove that the only condition to
guarantee the existence of the equilibrium, in addition to usual assumptions
on utilities and endowments, is that the sales of assets should be backed by
durable physical commodities (collateral). Essentially what happens is that
this assumption helps to find a lower bound on short sales since the collateral
is fixed. Collateral has the advantage that the lender need not bother with
the reliability or even the identity of the borrower, but can concentrate en-
tirely on the future value of the collateral. Collateral thus retains anonymity
in market transactions. As we are assuming a model without penalties to
defaulting, then every borrower will deliver the minimum of what he owes in
every state and the value of the collateral he puts up to secure his promises.

The paper is organized as follows: in the next section we describe the



model and state our result on existence of equilibria, in the section 3 we
define the truncated economy which has equilibrium assumptions imposed
by Dubey-Geanakopolos-Zame(1995). For each individual problem Slaters
condition implies the existence of Lagrange multipliers, which will be shown
to be bounded. Finally, in the last section I give the proof of the main

theorem.

2 The Model

The economy has a finite number H of agents and two periods. The uncer-
tainty in the second period is modeled by a Lebesgue measure space (S, S, \).

There are L commodities and J assets. In the first period each agent
chooses a consumption vector z € RfL and a portfolio of assets z = 6 — ¢,
where ; > 0 is the number of units of asset j that consumer buy and @;
is the number of units he sell. This sale should be backed by collection of
goods (collateral) which will be put aside at the moment that assets are sold,
even if the delivery is not scheduled for much later, and will be held by the
borrower.

In the second period, consumption becomes given by a random variable
¢: S +— RY and the asset returns are given by a random variable A : S —
R7*". The collateral is even available in this period but depreciated. This
depreciation is measured by mean of the random variable Y : § — RfLXL or
equivalently Vi € L, Y': S — RY, where Y/ represents the column the of
matrix Y, € RY*% which will be assumed to be nonsingular diagonal.

Each agent is characterized by an initial endowment, w” = (e, ") with
el € R and e" : S — RY measurable and an utility function which is defined

to be separable:

UMz, ¢) = up(x) + /Suh(s, cs)\(ds),Yh € H
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being ul(z) and [gu"(s,cs)ds his pleasures derived from consumptions x €
RY in the first period, and u”(s,.) : R? — R in the second period respectively.

Let A,—; be the n - simplex in R*. Suppose that (p, ¢, 7) is the price
system of the economy. More precisely, p € Ay_; is the commodity-price
vector in the first period; ¢ : S — A 1 is a random variable representing
the prices of commodities at second period, and finally 7 € A ;_; asset-price
vector.

The borrower debt will be g;AZp". Of this debt, he pays D! which is
defined by D? := min{gsA?, ¢;[Y;C;]} that is the total delivery of money on
asset j in state s. Similarly, each lender should expect to receive only the
minimum between the claim and the value of the collateral. That is, D?.

Thus, Our economy is defined by
€= ((Uha wh)heHa (Aja Cj)jer, (Yl)leL)
In this setting each agent h € H faces the following problem:

max Utz + > Cjepj,0),

h
(z,c,0,0)€B"(p,q,m) jeJ

where B"(p,q, ) is the budget set defined by all the (z,c,0,¢) € RE x
L>*(S,RY) x R] x R] satisfying the following:

pr+ 70+ > pCip; < pel + o (1)
jed
and
gscs + Y Diph < e + 3" DI + q.V,z + Y ¢[V,Cllpj ae.  (2)
jed jeJ jeJ
Next, we will define the concept of equilibrium for this economy and then

we will statement our main result.



Definition 1 An equilibrium for € is a vector of prices (p,q,m) and an al-
location (x",ch, 0%, o")nerr such that the markets clear and the choice is op-

timal, that is:

1. Yhen(a" + Celh) = Thenel.
Sher Co = Shen (62 + ZjeH[Yst]SO? + st) a.e.
ZhEH Hh = ZheH QDh-

2. (zh, ", 0" ") mazimizes UM on B(p,p, )

Theorem 1 (Main Theorem) We suppose that for all asset j, there is C; # 0

and:

1. ut(s,.): RfL — R s concave, continuous and strictly monotone, for all

s€eS;ul: RY — R is concave, continuous and strictly monotone.
2. 36 > 0 such that e > (6,...,6),Vh € H a.e. and ey € RL |
3. ul(.,v) is bounded random variable Vv € RF

4. Al eh Y : S — RY are bounded r.v.; Vi € J,Vh € H,
vVie L.

Then £ has equilibrium.

In the next section we define the truncated economy. The existence of equilib-
rium for this economy follows from the Geanakopolos - Dubey -Zame (1995).
In this way we have a sequence of equilibria. Our goal is to show that its limit
is an equilibrium for £. The idea is to apply Fatou’s Lemma n- dimensional.
For that it sufficient that the truncated economy equilibrium sequence is uni-
formly bounded. The only problem to establish the optimality condition in
the limit economy is to control the Lagrange’s multipliers associated to each

individual problem. We bound them in lemmas 4 and 5 below.
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3

The truncated economy

EN = ((UhN,eZN, " Ve, (AjN’CfV)jEJ’ (YNl)lEL) :

1.

Utilities
UrN  RYTYY 5 R s defined by

UM (), (@) )pen) = ub (aN) + S0, [8, ul(s, 2Y)ds.
N

. Endowments

(e’O’N, (eZN)neN) where

hN ._ h
€, =e,,

n
N._ N[N
e = Nf,f;’;l elds.

. Asset promises and collateral levels

AIN .= N (¥ Aids
N
ol = ¢,

. Durabilities of goods

VIN =N [X Yids. Hence YN e RYE; YV : N RYEie VN is a
N

matrix whose columns are YV € Rl VI € L.

. Prices

(pév’ (p’r]:[)RENa WN) € Agjll X AJ*I

. Delivery

n

D = min{pY ALY, pYNC;} € R

Lemma 1 The four hypothesis of the main theorem imply that EN has equi-
lerzum7 that Z’S, 3 ((pf'l.v)n:()alﬂ'“:N’ ﬂ-N’ ((x'ZN)n:Oal:“-;N’ 0hN7 (th)hEH) 6 Aivj_ll X

Aj_q x (RETDE « R} x R{)# such that is satisfied the following:

1The equilibrium for this economy is the same as before with n for s
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1. ZhEH[ N4 et C](p] ] 2heH e}ola
ZhEH ‘r - ZhEH ( n + ZjEJ[YnNCj](p?N + YaniolN) ,VTL EN
YoheH N = 2heH "N

2. (M, (&) pen, 0, ") mazimizes U on B"(pY, (pN )nen, )

Proof: The hypothesis 1, 2, 3 and 4 of the theorem 1 imply the hypothesis

required for the existence of the equilibrium for £V .2

Lemma 2 Lemma 1 implies there are Lagrange multipliers (uV),—o 1. .~ €

RY*! such that:

L b {pd (b — ehN) + 7N (0" — ") 4 p) ¥jes OV} =0
N o (N = Y NabN — V) + Sy (DI = pN VN Ol — Tjes DIVOIN} =
0,Vn € N.

2. ub(zN +C M) —ul ("N +C N )+ 0 f%[uh(s,xﬁy)—uh(s,lev)]ds <

N {pY (@ — bN) + 7NN — V) — (0" — oMV + ey Y Cy( — oY)}
+ N NN (o N ) —pN YN (o — N )43 (DIN—pN [V, C))) (0 —

PNy — z,-e.] DIN (Y — 62V}

for all, x >0, ( )n€N>O 6N >0, (p >0

Proof: 1 and 2 are direct consequences of the Kunh-Tucker theorem and

Slater’s condition (the null vector satisfy this condition).

Lemma 3 The following inequality is true:

n

/ [u"(s,z) — u"(s,2pV)]ds < pVpN (z — 22), 2 e RY ,n=1,...,N

N

2See Dubey, Geanakoplos and Zame (1995)



Proof:
Fix m € N, then substituting 6V = "N oV = "N gV = zhN and 2V =
hN Yn # m. in the item 2 of the Lemma 2 we obtain

[ [ (s, ) = (s, 2t ds < b ply (e — a)

m—1 m pm
N

Since m is arbitrary we obtain the desired inequality.

Lemma 4 pNh = Noifse[®t, n),ne N, then {u"N}y is a sequence

of uniformly bounded functzons.

Proof:

Applying Y,V in the first equality of the item 1 of the lemma 1 and then by
replacing Ypem Xjes Yo Oy, in the second equality of the item 1 of the
same lemma we have Y ,cpy iV = Y, p(efN 4+ Y Nel). Therefore 2N <
Sher (et + Y, Nel) which is bounded, say by 8 € RY, since e" and Y*
are bounded. Without loss of generality we can suppose that u(s,0) = 0,
then by replacing x = 0 in the inequality of the lemma 3 and by using the

monoticity of u”(s,.) we have

pVpat < [T (s, ot N)ds < [T ut(s, B)ds (3)
=~ =~
From the second equality of the item 1 of the lemma 2 follows that

N py ek = PN erN 4N pl VN ahN 4 PN {DY M+ (p) Y, C— DY )"}

Vn = 1,2,..., N. The right hand side is greater than p""pNelVN since the
other terms are positive. Hence p"VpNetN < y"NpNzhN and therefore (3) is

transformed in
N pepv < / (4)



Now, using the fact that e > (4,...,d) € R}, and e’V := Nfi elds one
N

obtains e’ > (4,...,6) € RY,. Using this fact and multiplying by & in

both sides of (3) we have

N n
N < S [T (s, 2ty ds. (5)

Therefore, for each s € [%, %) one has

n h
i < ¥ (s, gyas < MPees U 5)

Lemma 5 The sequence {u™}y is bounded.

Proof:

In the item 2 of the lemma 2 we replace z¥ = z"VVn € N, zl¥ = 0,0Y =0
and oV = 0. So u”(0) — uh(zhN + CphN) < _MIOLN{péV BN | N (ghN gOhN)
+Ejerf>VCj<P§bN} + a1 1y { R Y ap — 3 (DN — p V.Y Cil)e)

Sjes DINOIY

Now, using the item 1 of the lemma 2 we have
ug(0) — g (5" + CQ™) < =M pgeg™ + 3o (@™ — ).

After moving terms and using e = e? and the fact that zfy, + CpY <
Sp(@tN + CphN) =3, et one has

upNpyer™ <ug(zp + Co™) — ug(0) + Z pp N pp (i — el )
<up(d_en) —ug(0) + Z uZprf N
h
<ul(del) —up(0)+ > /
h nenN
Therefore

mme <u €, —ul —|—su U
u ,U ; 0 seg (5)
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Hence
up (T el) — ug(0) 4 sup,e g u™ (s, B)
minger, egl

phV < 2

as desired.

4 The Proof of the Main Theorem

Without loss of generality we can suppose that:

(™, N, 0N oM N ) = (7, g, 0", ", 2", p) when N — oo since all
these sequences are bounded. We also define the following sequences of simple
functions:
1 n 1 n
hN N .
= f = f
ce ISE[N N)q pnISE[N N)
-1 —1
e .= thfse[ n)A]N A]lese[ N ;)and
1
YN —YleSE[ N N) for all N € N with n € N.
The assumption 4 of the theorem 1 implies that sequences ¢, eV, AN and

YN defined above are bounded. Therefore the expression ¥, (e + Y Neh) is
bounded as well. On the other hand, the two first equalities of the item 1 of
the lemma 1 imply that 2V < 37, ("N + Y Neh). So the simple function "V
defined above is bounded. All this facts imply that the function fy : S — RY,

(G is not specified) defined by

fN = (:u’hN, hN: qNa ,U/thNAgV’ :uthNYNa 6hN)h€H,j€J

is uniformly bounded, hence the hypothesis of the stronger version of Fatou’s

lemma are satisfied. Therefore 3f : S — RY integrable such that:

fs € cl{fn(s)} for a.e s, (7)

and

[ $(s)ds = tim [ fu(s)ds. ®)

11



Coordinate by coordinate f is given by (u", c", q, u"q A%, uhqY, e" pen jes
Next, we will prove that (p, g, 7, (", ¢*, 0" ©")ncy) is a equilibrium for €. In

fact:

Claim 1
Markets clear in £
Proof:
We know that ((p,]:’)nzo,l,__,,N, ™ (@M )pzo 1., O, gohN)heg) is a equilib-
rium for £V, therefore in particular holds the following:
Shen ToN = Yhem(ehy — Xjes Cie").
Then T8 = Shen (8 + Syes VY CIAY + Y ebY) Vn € N
Sher " = Chen o™V
By taking limit when N — oo, we have that (p,q,, (2", c", 0" ©")phen)
verify 1 and 2 of the definition of the equilibrium for £. It remains to prove

that the choice is optimal, more precisely we have

Claim 2
For each h, (z",c", 6", o) maximizes U" on B"(p,q, 7).
Proof:
Let (x,c,0,0) € B"*(p,q,7) be any arbitrarily feasible allocation, i.e., x €
RY,c e L>(S,RY), (6, ¢) € R3 such that (1) and (2) are satisfied, then we
should verify that:
U(z+ Y Cipj,c) <UMa"+ > Cipl, ")
JjeJ jeJ
ie.
ub(z+ Y Cpy) — uhlah + 3 Cpt) + [ u(s,e)ds — [ ul(s,cl)ds <0

jeJ jeJ S s

Let {2}, {0"},{©"} be arbitrary sequences such that zY — z, 0V —

o

0, 0N — .

12



c is an integrable function since it is bounded and S has finite measure.
By using this ¢, we define, for all N € N, ¢V an L Cods, if s € [P 2.
Let us denote this number by c. Therefore Leguesgue s derivation theo-
rem implies that ¢¥ — ¢, a.e. on S what implies that ¢V — ¢ in measure.
Therefore the hypothesis of the Lemma 6 ( see appendix) are satisfied. So
u(.,cV(.)) = u(.,¢(.)) in measure what implies that there exists a conver-

gence subsequence, that is, u(.,ci(.)) = 3u(.,c(.)) a.e. on S

The fact ¢ € L*°(S) implies that ¢V is bounded by ||c||c. As u(s,.) is
monotone and u(.,v) is bounded for all v € R it follows that {u(s,c)}
is uniformly bounded, therefore uniformly integrable and as u(.,c"(.)) —
u(.,c(.)) a.e. on S one has

/u(s c)ds = lim [ u(s,cN)ds

N—oo

thus

/u(s cs)ds = lim Z/

N—oo

Now, by using the last equality, continuity of the u? and then applying

the item 2 of the lemma 2 to the expression ( the second line below ) that is

3later we avoid the sub-indices for simplifying the notation
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inside the brackets, we have:
ul(z 4+ Cz) — ul(z" + C2") + / [u(s, c5) — u(s, c]ds
s

N n
T h(. .N N h(..hN hN Noroh N h hN
= ]\}g?)o{uo(ﬁo + ) - Uo(xn +Cz ) + ngl/nT_l [U (S,Cn) -—u (Sawn )]ds}

< Jlim g™ {pg (g — a6™) + 7O — 0"7) — (¢~ — "Y)]

~ N-ooo 0
N
+ JZE;in Ciley =g )b+ Jim 3 g™ o (o — ™) = Vo (w5 = 25")
+ 2 (DY = P [V Ol (@) — o3™) = > DiN(67 — 63™)}
jes jeJ
The first limit on the right side hand is zero for both (x, 8, ) and (2", 8", ")

satisfy the first budget constraint, is that, they satisfy (1). In the second

hN ghN

limit the only that we can use is the feasibility of (z,", 6]

RN
)y P Jnen- More

precisely satisfies the truncated second budget constraint. Therefore

n

+2(DFY =Py [V G = > DiYe}

jeJ jeJ

N
UMz + Cz,c) — Uta" +C2", ") < A}im S NN (e — etV — Y Nz)
—>oon:1

After multiplying N and dividing % simultaneously in the right hand side

of the last inequality we obtain
N .
lim Y NV (e — eV — YNy + (DI — N[Ol
n=1 jeJ

- 1
- Y DM}

JjeJ

Now, By definition of functions p*V,¢",CV, e and YV one has that

14



the previous expression is equal to

N n
. N hNy N(_.N hN N, N N N N N
dim 3 [ e = =) 4 D - )
n= jeJ
iN nN
- ZDg ej }
jeJ

— 1 AN{ N(.N _ N _ N, N iN _ N[y N1y, ,N
= Jim [ g (e — bV - Y, )+ L0 - a1 Gy

-2 Do}

jeT
Finally, using (8) and after the feasibility of (z, ¢, 6, ¢) one has that the right
hand side of the last equality is

/ M?{qs(cs - eg - Y;.’E) + Z(Dg - QS[Y;’C]'])QDJ' - Z Dgej} < 0.

S jeT jes
Hence
Uz + 3 Cjpj¢) < UMa" + X0 (Ciel, ),

jeJ jeJ

as desired.

5 Appendix

In the proof of the main theorem we used a result of measure convergence

involving a function u(s,z) with s € S and # € R? having the following
conditions?:
1. u(s,.) : RE — R is continuous for almost all s € S and

2. u(.,z) : S — R is measurable for all z € RL.

4This condition are called Caratheodory conditions.
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Lemma 6 Let the operator £ defined on the set of all functions c: S — ]Rfr
by the equation fc(s) = u(s, c(s)) where u(.,.) satisfies the Caratheodory con-
ditions. Then the operator f transforms every sequence of functions which
converges in measure {c"(s)} into a sequence of functions which also con-

verges N measure.

Proof: The lemma follows from the lemma 2.1 in Krasnosel’skii (1964, p.
20)
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