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1. INTRODUCTION

The main goal of this paper is to relax the classical single crossing property
(SCP) which has extensively used in the literature to characterize the solution of
the adverse selection problem.

In the one-dimensional parameter case, the SCP is by de�nition the mono-
tonicity of the marginal rate of substitution between the decision taken by the
agent and the money transfer given by the principal with respect to the parameter
(the asymmetric information).

The SCP permits the second order approach for the problem since the feasible
set is a convex set: in the presence of positive (respectively negative) SCP, a
decision path is implementable if and only if it is non-decreasing (respectively
non-increasing) in the parameter.

The SCP enables also a full characterization of the optimal solution: in the
presence of the SCP, if the optimal decision is strictly monotone in the parameter,
then it should be equal to the relaxed solution.1 Moreover, a maximal interval
where it is constant is such that the marginal virtual surplus of the principal (i.e.,
the social surplus minus the informational rent) should be zero. These properties
are suÆcient to provide an algorithm allowing the computation of optimal solutions
(see Guesnerie and La�ont (1984)).

The question studied in this paper is what happens when the SCP is not valid
anymore? In this case, there are at least two regions in the plane of the parameter
versus the decision variable: the positive and the negative single crossing regions.
An implementable decision path should preserve the monotonicity property in each
region and it can cross or not the curve that separates the two regions (the frontier).
If the decision path crosses the frontier, what are the necessary conditions for the
incentive compatibility? First, the decision path crosses the frontier in a U -shaped
form (or an bell-shaped form) because of the monotonicity. Besides, we prove that
a necessary condition is: if two types have the same decision, then their marginal
rate of substitution should be the same. In economic terms, if two types are pooling
in a given contract, then the principal guarantees truth telling only if the marginal
rate of substitution of the two types is the same. We will call this condition the
marginal rate of substitution identity. Moreover, there exist an analogous marginal
condition with respect to the type (the marginal rent identity). In general, these
conditions are not suÆcient for incentive compatibility, but they are suÆcient in
a particular setup that we will examine.2

We use the second order condition of the incentive compatibility (IC) re-
striction and the marginal rate of substitution identities as the constraints of the

1
This solution is obtained by imposing the �rst order condition of incentive compatibility constraint

to reduce the problem only to the decision variable.
2
The more general case is not �nished. The diÆculty of the complete characterization is that even if a

decision path does not cross the two regions, the monotonicity condition is not suÆcient to characterize

the implementable decisions.
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adverse selection problem and derive the �rst order conditions for the optimal con-
tract. The constraints will be of equality and inequality type one and our problem
is not concave anymore, but we still can compute the optimal contract in some
cases.

Chassagnon and Chiappori (1995) studied the insurance market competitive
equilibrium with adverse selection and moral hazard where the SCP is not valid.
However, they studied the two type case and the second order approach remains
true in the continuous version of their model. We will use the same idea of simul-
taneous adverse selection and moral hazard to provide the example below without
the SCP and where the second order approach is not valid.

Example. (Owner-manager relationship under moral hazard and adverse selec-
tion)

Suppose that an owner (the principal) of a �rm has to hire a manager (the
agent) to deliver a product for him. Assume that the manager can choose between
two types of technologies and the manager is more or less productive depending
on his type and on the technology chosen by him. The owner has to design the
reward schedule.

Let x be the units of output, � be the manager's productivity, y be the
worker's e�ort and t be the salary. Each type of manager has a comparative
advantage in one of the technologies. More precisely, the technologies are described
by T 2 fT1; T2g:

T1 : x = (1� �)y; � 2 �

T2 : x = �y; � 2 �

where � = [0; 1] is the set of types and the distribution of the manager's type is
represented by a density function p: �! R++ .

The manager's utility function is

V = t� y2

and the owner is risk neutral with utility function given by:

U = x� t:

De�ne also the manager's utility function given the technology choice and as
a function of the output:

V (x; t; � j T1) = t�
�

x

1� �

�2
and

V (x; t; � j T2) = t�
�
x

�

�2
:
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It is clear that V (x; t; � j T1) � V (x; t; �; T2) if and only if � � 1=2 , i.e.,
the low (high) types have comparative advantage in technology T1 (T2). It follows
that the manager with characteristic � close to 0 (repectively 1) is a specialist in
technology T1 (repectively T2). We also say that types � close to 1=2 are generalist
(they are the bad types).

The principal's problem is to maximize his expected utility over all the con-
tracts fx(�); t(�)g given the participation constraints and, in the case of asymmetric
information, the incentive compatibility constraints, i.e.,

max
fx(�);t(�)g

E�[x(�)� t(�)]

subject to incentive compatibility and participation constraints3.
Depending on the informational structure, we have di�erent problems. Con-

sider the following cases:

1) First Best: T and � are observable and veri�able, i.e., the owner can put the
manager's type and the technology choice as part of the contract. This is the full
symmetric information case. It is very easy to compute the optimal solution (see
section 4)

TFB = T1(T2) i� � � (�) 1=2

xFB(�) =

8>><>>:
(1� �)2

2
; if � 2 [0; 1=2]

�2

2
; otherwise

tFB(�) =
xFB(�)

2
; for all � 2 [0; 1]:

This solution has the well known properties: it is Pareto eÆcient and the
manager has zero rent.

2) Second Best with the technology choice information: � is not observable, but T
is observable and veri�able. In this case the optimal contract can be contingent
only to the technology choice. Therefore the owner designs two types of contracts
(one for each chosen technology)�

(xi(�); ti(�))
	i=1;2
�2[0;1]

such that it satis�es, for i = 1; 2,

� 2 arg max
�̂2[0;1]

V (xi(�̂); ti(�̂); � j Ti); 8 � 2 [0; 1]; (ICi)

3
Assume that the manager's reservation utility is zero.
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The manager with productivity � chooses T1 (T2) if and only if

V (x1(�); t1(�); � j T1) � (�)V (x2(�); t2(�); � j T2)

and the owner has to take this last inequality into consideration to compute his
expected utility.

However, since the type � has a comparative advantage in T1 (T2) if and only
if type � � (�) 1=2, then, in equilibrium, the optimal contract should induce type
� � (�)12 to choose T1 (T2) when the distribution is symmetric with respect to
1=2. Therefore, the employer will design fx1; t1g (fx2; t2g) shutting down each
type � < (>) 1=2 in equilibrium, i.e., the IR will not hold for this type. This
implies that type 1=2 will have zero rent in equilibrium. We can say that the
owner will use the technology choice as signal of the manager's type (since he can
control this choice).

Conditioning in each technology, the principal's problem is going to be a
standard adverse selection with the SCP. The optimal decision is going to be
U -shaped and to have the same properties of separating or continuous pooling
equilibrium. In section 4, we will compute explicitly the solution and introduce
also lotteries in the technology choice to improve the expected pro�t of the owner.4

3) Second Best without the technology choice information: neither � nor T are ob-
servable. In this case the optimal contract can not be contingent to the technology,
i.e., the owner can not use the technology choice as a signal of the manager's type.
Therefore, the owner will face a manager that has the utility function

V (x; t; �) =

8>>><>>>:
t�

�
x

1� �

�2
; if � 2 [0; 1=2]

t�
�
x

�

�2
; otherwise

It is easy to see that the derivative of the marginal rate of substitution with re-
spect to the type changes its sign exactly at the type 1=2. Therefore the principal's
problem is going to be an adverse selection one without the SCP.

As we explained above, we have to consider now the marginal rate of substitu-
tion identity to characterize the solution. In this case, this identity is equivalent to
the symmetry with respect to 1/2, i.e., the implementable decisions x are going to
be U -shaped symmetric with respect to 1/2 (see section 4 for the details). There-
fore the optimal decision will also have this property. Since the owner can not
see the technology choice, he will never know this choice in equilibrium because
for each output decision, there are exactly two types of managers using di�erent
technologies and delivering it. (This is what we call discrete pooling equilibrium.)

4
The intuition here is that, by using lotteries, the principal can threat the risk averse agent and extract

more rent from him. We will show that lotteries on the level of production choice do not help.
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The impossibility of observing the choice made by the agent transform the
bidimensional second best problem (in (T; �)) with information into a one dimen-
sional problem (in � only) without the SCP. We can use this method to generate
several examples. The key point is that there is a \countervailing" e�ect between
technology choice and productivity: the principal guarantees truth telling only if
he equalizes marginal utilities of the agents that choose the same output.

Another example to be considered in this paper is a natural extension of
the nonlinear pricing models studied by Mussa and Rosen (1978) and Maskin
and Riley (1984) where the SCP is relaxed. Suppose that a monopolist faces
di�erent types of demand with �nite elasticity. More precisely, the demands are
linear and the market size is decreasing with the type and the maximum price
where there exists positive demand is increasing in the type. This means that
the market for the low types (in the sense of wiliness to pay for the good) is
the large market. In this case the SCP fails to hold and the optimal contract is
going to be non-decreasing for the low types and non-increasing for the high types
(the bell-shaped curve). The reason is that the monopolist wants to extract the
maximal rent as in the single crossing case, but now he has to deal with the trade
o� between the size of the market and the wiliness to pay of the consumer: he will
not extract as much rent as before of the low type because he wants to sell more the
good and at the same time he wants to extract the rent of the high type without
breaking the IC constraints. Therefore the condition is that the low and high
type consumers that are pooling in the same quality or quantity have to have the
same marginal valuation (the competitive price) for the good, i.e., in equilibrium
they are treated as the same. This leads to a discrete pooling equilibrium again.
The same aspects of countervailing and one dimensional \path" of a bidimensional
problem are repeated here.

We also analyze a regulation model a la La�ont and Tirole (1993). In their
basic model the cost function depends on a non observable parameter (the eÆ-
ciency) and e�ort of the �rm's manager in cutting cost. The cost function is one
dimensional in the sense that there is just one source of activity that the manager
can cut cost. Suppose, however, that there are two kinds of activities that the
manager can put his e�ort to cut cost and the regulator can only observe the ag-
gregate cost, i.e., there are two subcosts that are not observable by the regulator
and the sum of them are contractile. Moreover, these activities are substitutes in
the manager's point of view (i.e., the manager's disutility in e�orts has positive
cross derivative) and there is a decreasing relation between the parameters that
characterize the subcosts. We show that this kind of interaction will result in
non single crossing and again we will have the same kind of message that we had
explained in the examples above.

Finally, a labor market model where workers have a vector of two character-
istics (unknown for the �rm) that is mixed in a veri�able signal (schooling). The
�rm is pro�t maximizer and its technology depends on this vector of characteris-
tics: one of the characteristics has a multiplicative e�ect over the worker's e�ort
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and the other one is constant. There is a con
ict of interest between the �rm and
the worker because e�ort is costly (and not observable) and the abilities of the
worker are not totally captured by the signal. This is a standard adverse selection,
however depending on the parameters of the model the SCP does not hold. In this
case, discrete pooling equilibrium may appear and indicates that di�erent workers
with respect to the pro�le of their characteristics may be treated as the same in
equilibrium.

Page (1991) shows a general existence result when the contracts are lotteries
for principal-agent problems. Athey (1997) shows the existence of a pure strategy
equilibria in games with incomplete information under a generalized single crossing
condition. The strategies can be monotone or have \limited complexity" form
(i.e., they have a �nite number of peaks). These properties have a straightforward
relationship with our case, but Athey (1997) does not characterize the equilibrium.
We provide an existence result of deterministic optimal contract in our particular
case.

The paper is organized as follows. In section 2 we present the adverse selec-
tion model. In section 3 we characterize the solution of adverse selection problems
without the SCP. Section 4 presents some examples. In section 5 we gives exten-
sions and �nal conclusions.

2. THE ADVERSE SELECTION MODEL

The relationship between the principal and the agent(s) involves only two
types of variables: The �rst type is associated with a decision (or action) variable,
denoted by x which is observable. The variable of the second type, denoted by t
has generally the meaning of money transfer from the principal to the agent.

The principal and the agent interact through these two variables and the
asymmetry of information can be described as follows: there is an one-dimensional
parameter � which is known to the agent but unobservable to the principal. This
parameter belongs to some compact interval � = [�; �] � R. The principal has
some a priori probability distribution on � which is associated to a continuous
density p: � ! R++ . We can interpret this function as the principal's subjective
assessment of the probability of � when there is only one agent or the objective
distribution of their types when there are many agents.

The principal's utility function is U : I�R�� ! R, where I � R is an interval,
U(x; t; �) = u(x; �)�t and u is C3 . The agent's utility function is V : I�R�� ! R

such that V (x; t; �) = v(x; �) + t and v is C3.
A mechanism (contract or allocation) is a pair of functions (x; t): �! R

2 . A
mechanism can be viewed as a procedure giving the decision to the principal who
commits himself to a decision rule relating the choice of x and t to messages sent
by the agent. By the revelation principle (see Fudenberg and Tirole (1991)), any
mechanism can be mimicked by a direct truthful one in the sense that there is no
loss of welfare to the principal.
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A decision function x: �! R is implementable if there exists a money transfer
function t: �! R such that the allocation x(�) 2 I, for all � 2 � and satis�es the

incentive compatibility constraint if for all (�; �̂) 2 �2,

V (x(�); t(�); �)� V (x(�̂); t(�̂); �) (IC)

We will say that the allocation (x; t) is implementable or truth telling or
that x implements t. In other words, given an implementable allocation (x; t),
the announcement of the truth is an optimal strategy for the agent whatever the
truth.

We say that an allocation (x; t) satis�es the individual-rationality constraint
if for all � 2 �,

V (x(�); t(�); �)� 0 (IR)

An implementable allocation that satis�es the IR constraint is called feasible.
We assume that the agent's reservation utility is independent of his type5 and,
without loss of generality, we normalize it as zero.

The principal's (or the adverse selection) problem is to choose a feasible allo-
cation with the highest expected payo�, i.e., the principal maximizes his expected
utility subject to the agent's IR and IC constraints:

max
x;t

E�[U(x(�); t(�); �)]

s.t.

V (x(�); t(�); �)� V (x(�̂); t(�̂); �); 8 (�; �̂) 2 �2 (IC)

V (x(�); t(�); �)� 0; 8 � 2 � (IR)

where E� is the expectation with respect to the prior.

De�nition: Let C be the set of all c�al�ag contracts, i.e., the space of all x: � !
R right continuous and such that lim

~�!�
~�<�

x(~�) exists for each � 2 � (and, in this

case, it will be denoted by x�(�)), with the topology of pointwise limit at every
continuous parameter of the limit decision function (this is the weak topology in
the distributional sense).

Below we present the classical �rst and second order conditions of the incentive
constraints extended to c�adl�ag contracts.

Lemma 2.1

5
We do this for simplicity. However, we can consider the case where the agent's reservation utility

depends on the type. See Maggi and Rodriguez-Clare (1995), for instance.
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(i) Let x be a bounded decision such that the set of its discontinuity points has
zero Lebesgue measure. If t implements x, then the agent's value (or rent) function
of x is given by6

Vx(�) = v(x(�); �) + t(�) = Vx(�) +
Z �

�

v�(x(~�); ~�)d~�; 8� 2 �:

(ii) If x is a bounded c�adl�ag implementable decision, then x is non-decreasing on
the region where vx� > 0 (respectively non-increasing on the region where vx� < 0).

Proof: See the appendix.

Lemma 2.1 (i) shows that for each implementable c�adl�ag x, there exist a
unique c�adl�ag money transfer that implements x de�ned by

t(�) = Vx(�)� v(x(�); �); 8� 2 �:

Then, we de�ne

�x(�; �̂) = V (x(�); t(�); �)� V (x(�̂); t(�̂); �)

=

Z �̂

�

� Z x(�̂)

x(~�)

vx�(~x; ~�)d~x

�
d~�

and, after an integration by parts, the virtual surplus (i.e., the social surplus minus
the informational rent) times the probability is

f(x(�); �) =
�
u(x(�); �) + v(x(�); �)

+
(P (�)� 1)

p(�)
v�(x(�); �)� Vx(�)�p(�)

where P (�) =
R �
�
p(~�)d~� is the cumulative distribution.

If v� � 0, then the rent function Vx assume its minimum at � and since money
transfer is costly for the principal, the IR constraint will be binding at the optimal
contract for �, i.e., Vx(�) = 0. If v� � 0, Vx(�) = 0 and

f(x(�); �) =
�
u(x(�); �) + v(x(�); �) +

P (�)

p(�)
v�(x(�); �)

�
p(�):

Otherwise, Vx can assume its minimum at some point in � depending on x (except
in special cases such as the example in the introduction where this point is 1=2

6
The sub index in the function represents the partial derivative of the function with respect to that

sub index. Also, the superior order derivative will be represented in a multi-index notation.
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for every decision x). Therefore, in the general case one would need a Lagrange
multiplier for the IR constraint in the problem that follows. For the sake of
simplicity, let us assume that v� has a constant (positive) sign (see the remark 3
after theorem 3.5).

The principal's optimization program becomes

max
x2C

E�

�f(x(�); �)
p(�)

�
s.t. �x(�; �̂) � 0; 8�; �̂ 2 � (P)

If we ignore the IC constraint, then the problem is called the relaxed problem
and also its solution (�rst order approach). The �rst order condition of the relaxed
problem is given by

fx(x(�); �) = 0; for all � 2 �

when x(�) is in the interior of I.
It is well known in the literature of adverse selection problems that suÆcient

conditions for implementation is the constant sign of the partial derivative of the
marginal rate of substitution with respect to the parameter:

@�

�
Vx
Vt

�
= vx� > 0 on I ��; (CS+)

or

@�

�
Vx
Vt

�
= vx� < 0 on I ��: (CS�)

This is known as the single crossing property (SCP) or sorting condition. This
property implies that the indi�erence curves of two di�erent types cross only one
time.

In the presence of CS+ (respectively CS�), it is easy to show (see the proof of
lemma 2.1) that if a c�adl�ag decision is non-decreasing (respectively non-increasing),
then it is implementable. Therefore the adverse selection problem is equivalent to

max
x2C

E�

�f(x(�); �)
p(�)

�
s.t. x is non-decreasing (respectively non-increasing)

This problem is known as the second order approach because, under the SCP,
the monotonicity of the decision is equivalent to the local second order condition
of the IC constraint. Using the Hamiltonian approach, as in Guesnerie and La�ont
(1984), one can obtain a full characterization of the solution.

3. RELAXING THE SINGLE CROSSING
ASSUMPTION
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Now we will introduce a natural generalization of the SCP. Assumption A1
below separates the plane �x into two regions: CS+ and CS�. From the local sec-
ond order condition of the IC constraint we know that an implementable decision
that crosses from one region to the other has to have a U -shaped form or presents
continuous pooling. This will give us this kind of large scale pooling equilibrium
(even under monotone hazard rate property).7

Formally:

A1. vx�(x; �) = 0 de�nes a function x0 of � on �; vx2� < 0 and vx�2 � 0 on I ��.

By the Implicit Function Theorem and A1, x0 is C
1 and increasing:

_x0(�) = �vx�2(x0(�);�)
vx2�(x0(�);�)

Moreover, if x < x0(�), vx�(x; �) > 0 (CS+) and if x > x0(�), vx�(x; �) < 0 (CS�),
for all � 2 � (see �gure 1 below). Therefore, the assumption A1 generalizes the
SCP, because � � I is separated into two parts: above (respectively below) x0,
vx� > (respectively <) 0 on I ��.

Changing the sign of x or �, there are more three other cases: vx2� > 0 and
vx�2 < 0, with x0 increasing and reverting the regions where vx� > 0 and vx� < 0;
vx2� < 0 and vx�2 < 0; vx2� > 0 and vx�2 > 0, for the respective cases where x0 is
decreasing.

Figure 1

We can relax the second part of A1: instead of assuming that x0 is increasing,
we could say that x0 has a �nite number of peaks. However, the analysis would
be more diÆcult without any substantial gain in the results.

The next lemma shows when we can extend the de�nition of an implementable
c�adl�ag to the associated correspondence. In what follows, a ^ b = minfa; bg and
a _ b = max fa; bg.

Theorem 3.1 Let x be a bounded implementable c�adl�ag decision and de�ne
X(�) = [x�(�) ^ x(�); x�(�) _ x(�)], for all � 2 �, the associated correspondence
and de�ned below.

(i) If �; �̂ 2 �, � � �̂, then �X(�; �̂) � 0, i.e.,Z �̂

�

� Z y

x(~�)

vx�(~x; ~�)d~x

�
d~� � 0; 8y 2 X(�̂):

7
Chapter 9 of La�ont and Tirole (1993) studies the repeated regulation game without commitment

and the \ratchet e�ect". They show that in equilibrium there may exist substantial pooling in every

continuation equilibrium. In particular, their de�nition of pooling over a large scale for a continuation

equilibrium is equivalent to our discrete pooling notion.
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(ii) x is in the closure of the set of all continuous implementable decision if and
only if X is implementable.

Proof: See the appendix.

Observe that x is discontinuous where its inverse x�1 is constant and vice-
versa. This represents a kind of duality between the variables x and �.

If X is implementable, then x crosses x0 in a continuous way one time at
most. In this case x must be non-increasing or non-decreasing or U -shaped. From
now on, we will consider only the decision x 2 C such that the associated X is
implementable. We do this for the following reasons:

(i) economic meaning: if x is discontinuous at � 2 �, then it does not matter
how x is de�ned in � between x�(�) and x(�).

(ii) tractability: if we relax this assumption, there are implementable decisions
that cross x0 many times in a discontinuous way.

(iii) when the SCP is valid, this set is the same of the implementable decisions.

(iv) discrete approximation: Theorem 3.1 says that an implementable decision
can be approximated by the continuous one. But we can also prove that
an implementable decision can be approximated by the \step" decisions, i.e.,
implementable decisions (in sense that it coincides with its associated corre-
spondence) that are piecewise constant. This corresponds to a situation of
�nite types where each type has a range of decision and there is no disconti-
nuity between the ranges8.

The next theorems will give the necessary and suÆcient conditions for the
feasibility. First, we say that x is right increasing at � 2 � if x(�) < x(� + �), for
every suÆciently small � > 0. Analogously, we de�ne left increasing and right and
left decreasing.

Theorem 3.2 (Necessary conditions for implementability) Assume A1. If x is an
implementable c�adl�ag decision, then

(a) If x is right (left) increasing at �̂ and �x(�; �̂) = 0, then

vx(x(�̂); �̂) �
(�)

vx(x(�̂); �):

and reverting the inequalities when x is right (left) decreasing.

(b) If �x(�; �̂) = 0, then

v�(x(�̂); �) � v�(x(�); �) and v�(x(�̂); �) � v�(x�(�); �)

8
This corresponds to the partition equilibrium in the of the ratchet e�ect in La�ont and Tirole (1993).

See the last footnote.
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and with equality when x is continuous at � and � > �.

(c) If x is right or left increasing at �̂ and y 2 X(�) \X(�̂), then

vx(y; �̂) = vx(y; �):

Moreover, x is continuous at �̂ (i.e., y = x(�̂) = X(�̂)).

Proof: See the appendix.

Remark 1. The item (b) can be interpreted as the dual condition of (a) when we
interchange � by x, i.e., instead of looking the direct decision (x as a function of
�), we look the inverse function (� as a function of x) and it can be interpreted as
the marginal rent equality of a type that is considering his designed choice and
an indi�erent choice. Also, we can use the duality between x and � and vx�2 > 0
to show that �x(�; �̂) � 0 need to be checked only in extremities of an interval
where x is constant.

Remark 2. We have the following economic interpretation for lemma 2.1 (ii) and
theorem 3.2 (c): In order to provide truth telling, the principal should o�er a
contract that

(1) is non-decreasing (respectively non-increasing) in � if the marginal rate of
substitution is decreasing (respectively increasing) in �.

(2) if two agents (� and �̂) choose the same contract and the agents cannot locally
misrepresent their types, then the principal should equalize the marginal rate of

substitution of the two agents (MRS� = MRS�̂).

Figure 2

Remark 3. Every implementable decision x should not decrease (respectively in-
crease) on CS+ (respectively on CS�). This property is a direct consequence of
the local second order condition of the IC constraint.

If x hits the curve x0, then it should cross x0 in a constant way or preserving
the marginal utility for the types that choose the same level of x.9 This last
condition is new and, when the SCP is not valid, it can play an important role in
order to characterize the optimal solution of the adverse selection problem as the
examples of section 4 will show. We will call this condition the marginal rate of
substitution identity.10

9
If x was identical to x0 in an interval, then the IC constraint would not hold locally.

10
Observe that the marginal rate of substitution identity is equivalent to vx be constant on every

level set of a feasible decision x.
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Observe that, if (x; t) is feasible and x(�) = x(�̂), then t(�) = t(�̂). Thus,
if two types are pooling in a feasible contract, then they should have the same
marginal rate of substitution or a continuum of types between them should also
pool.

Remark 4. Theorem 3.2 is also valid for a more general agent's utility functions.
This is why we are calling our condition the marginal rate of substitution identity
and not marginal utility identity.

It is important to note that we are dealing with a non-concave problem be-
cause the set of feasible decision for the agent is not a convex set when the agent's
utility function does not satisfy the SCP. (The SCP guarantees concavity: the IC
constraint is substituted by its second order condition).

A natural question is whether the conditions above are suÆcient for the char-
acterization of an implementable decision. Theorem 3.3 gives a partial answer of
this question.

Theorem 3.3 Assume A1. Let x be a bounded c�adl�ag decision that satis�es the
necessary condition of lemma 2.1 (ii) and theorem 3.2 (c). If x(�) � x(�), then x
is implementable.

Proof: See the appendix.

The suÆcient conditions for implementability of a decision x such that x(�) <
x(�) is more diÆcult and is under investigation. However, theorem 3.3 can be used
to solve some problems. In what follows, we show that when the relaxed solution
is non-increasing, the optimal decision satis�es the assumption of theorem 3.3 and
a full characterization of the optimal decision is possible.

The Existence and The Optimality Conditions

We will investigate the necessary conditions for optimality. First, we will
characterize the relaxed solution. Let x1 be the relaxed solution for (P). By the
Maximum Theorem, x1 is a continuous function of �. Let us assume that:

A2. x1 has a �nite number of peaks on �; if x < x1(�), fx(x; �) > 0 and if
x > x1(�), fx(x; �) < 0 for all � 2 �.

The assumption A2 is a standard one and a suÆcient condition for the �rst
part of A2 (besides the concavity of u and v) is vx2� > 0. If x1(�) belongs to the
interior of I, then fx(x1(�); �) = 0.

Under A2, the principle of optimality for the adverse selection problem is to
�nd an implementable decision \as close as possible" to x1. The �nite number
of peaks of x1 is to provide an analytical treatment of the problem and it is well
known in the literature (see Guesnerie and La�ont (1984)).

A natural question is the existence of an optimal contract. Page (1991) pro-
vides a general result for the existence of an optimal contract in the case where the
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contracts are lotteries. In the case of deterministic contracts, Athey (1997) gives
the existence of a pure strategy equilibrium for games with incomplete information
under a generalized single crossing property or a limited complexity condition (i.e.,
the strategies have a �nite number of peaks as a function of the parameter). In
our case, we have the following:

Theorem 3.4 Assume that A1 and A2 hold. Then, there exist a solution of
(P) in the set of all decision x 2 C such that the associated correspondence X is
implementable.

Proof: See the appendix.

The next theorem gives the characterization of the optimal decision in a spe-
cial case. Let x� 2 C be an optimal decision for (P).

Theorem 3.5 Assume that A1 and A2 hold. If x�(�) � x�(�), let �0 be the
minimum parameter for x� and �1 � �0 such that x�(�) 2 X�(�1). Then

(a) If x� is right and left decreasing at �̂, then

fx(x; �)

vx�(x; �)
= Æ

fx(x; �̂)

vx�(x; �̂)

where x = x�(�̂) and if �̂ < �1, then Æ = 0 and if �1 � �̂ � �0, then Æ = 1,

vx(x; �̂) = vx(x; �) and x = x�(�).

(b) If [a; b] � [�; �0] is a maximal interval where x� is constant, thenZ b

a

fx(x; �)d�+ Æ

Z â^�

b̂

fx(x; �)d� = 0

where x = x�(�̂) and if b < �1, then Æ = 0 and if �1 � a � �0, then Æ = 1 and, in

the integral, â and b̂ are de�ned by the equality vx(x; �̂) = vx(x; �), where � = a
or b, respectively.

Proof: See the appendix.

The hazard rate is by de�nition:

M(�) =
P (�)� 1

p(�)
:

In the following corollary assume that x� crosses x0 in a continuously di�er-
entiable way. For instance, this will be the case when the hazard rate is continuous
at the crossing point. However, as it is shown in the examples 4.1 and 4.3, this
condition may not be true. Besides, even under monotone hazard rate condition
(MHRC), i.e., M(�) is increasing, the relaxed solution is not monotone.
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Corollary (The geometry of the curves) Under the same assumptions of theorem
3.5, if x� crosses x0, then x0, x1, x

� and the �rst best solution cross at the same
point and x� is in between x0 and x1. Moreover, x1 is above (below) the �rst best
solution when it is above (below) x0 and, under MHRC, the relaxed solution is
U-shaped.

Figure 3

Remark 1. ^vx�
vx�

is the Lagrange multiplier of marginal rate of substitution identity

and we can rewrite the condition of theorem 3.5 (a) as

fx(x; �)

fx(x; �̂)
= Æ

vx�(x; �)

vx�(x; �̂)

with the following meaning: the rate of the virtual surplus between type � and �̂
is equal to the rate of the marginal rent between these two types.

For an illustration of the distortion e�ect in the case of no SCP, suppose that
the principal's utility function does not depend on the agent's type. Omitting the
argument of the functions and putting a hat over the function when it is evaluated
at �̂ and nothing when it is evaluated at �, the �rst order condition given by
theorem 3.5 when discrete pooling occurs is

ux + vx
vx�

+M =
ux + v̂x

^vx�
+ M̂:

Remark 2. The part (b) is the analogous ironing principle (see Mussa and Rosen
(1978)). However, in our case the ironing principle may be disconnected.

Remark 3. Rent extraction versus distortion

As we observed in section 2, if v� changes its sign, then we have to consider
a Lagrange multiplier for the (IR) constraint. An alternative way to deal with
this problem is to de�ne ~v(x; �) = v(x; �) +K� where K > 0 is such that ~v� > 0
and replace v by ~v. In order to have an equivalent problem, we have to assume
now that the reservation utility of type � is K� . This kind of situation has been
studied in the literature (see Maggi and Rodr��guez-Clare (1995) or Jullien (1997)
for a complete treatment) and one could apply the same method to treat this
problem here.

For instance, suppose that v�� < 0 and that the curve in the plane (�; x)
de�ned by v� = 0 is in the region where vx� > 0. Thus this curve is increasing
and it separates the plane into two regions: above this curve v� > 0 and below
it v� < 0. Moreover, assume that the optimal decision crosses this curve just one
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time at �0 2 �. Fixing �0 and proceeding in a similar way, we will end up with
the same theorems except that the objective functional will change to

f(x; �) = u(x; �) + v(x; �) +M(�)v�(x; �)

where

M(�) =

( P (�)�1
p(�) if � 2 [�0; �]

P (�)
p(�)

if � 2 [�; �0]

In this case, the type �0 is the only one to have zero rent. The economic
intuition is the same of \countervailing incentives" of Lewis and Sappington (1989)
(see also Maggi and Rodr��guez-Clare (1995)). The di�erence is that in our case it
comes from the no SCP and in their case it is based on the type dependence of
the agent's outside opportunities.

At last, if the optimal decision crosses the curve v� = 0 on an interval (�0; �1),
then along this interval f(x; �) = u(x; �) + v(x; �) and the IR constraints are
binding on (�0; �1).

Let us consider a particular case of the assumption A2.

Theorem 3.6 If the relaxed solution x1 is U -shaped and x1(�) � x1(�), then the
optimal solution x� for (P) is:

x�(�) =

�
x1(�); if � < �1

xu(�); it � � �1

where xu is characterized by theorem 3.5 (a) and �1 is such that xu(�1) = xu(�).

Proof: See the appendix.

The new feature of the solution that appears in theorem 3.5 is the possibility
of discrete pooling or pooling of large scale, i.e., in the optimal solution some
isolated types can choose the same level of the contract. In the literature there
exist just two types of equilibria: separating or continuous pooling equilibrium.
In the former the agent's type is known ex-post by the principal and in the last
the principal knows a range of types where the agent is. When the SCP does not
hold, one can have discrete pooling equilibria besides separating and continuous
pooling. In this case the principal does not know the true type between two types
or between two ranges of types. Therefore the optimal solution can have these
three characteristics: separating and continuous or discrete pooling.

Under SCP, the pooling interval of the optimal contract is characterized by
the marginal welfare of the principal to be zero along this interval. Theorem 3.5
shows that this property is no longer valid when there exists discrete pooling.

The SCP obligates the principal only to check the upstream or downstream
types in the case of CS+ or CS�, respectively (i.e., to check the second order con-
dition or the monotonicity). However, the no SCP case obligates the principal to
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check also the marginal rate of substitution identity (the cross-stream condition).
Therefore the IC constraint is less restrictive in the former case than in last one
and, thus, the rent extraction is less powerful when there is no SCP.

4. EXAMPLES

4.1 Corporate Finance

Returning to the example in the introduction, de�ne:

u(x; �) = x

v(x; � j T ) =

8>><>>:
�x2

(1� �)2
; if T = T1

� x2

�2
; if T = T2

In what follows we characterize the �rst and the second best solutions (with
and without the technology choice information):

1) First Best: (xFB; tFB; TFB)

TFB(�) =

�
T1 ; if � 2 [0; 1=2]

T2 ; otherwise

ux(x
FB(�); �) + vx(x

FB(�); � j TFB(�)) = 0

tFB(�) = �v�xFB(�); � j TFB(�)�
which implies that

xFB(�) =

8>><>>:
(1� �)2

2
; if � 2 [0; 1=2]

�2

2
; otherwise

2) Second Best with information: As we explained in the introduction, the
veri�ability of the technology choice allows the principal to extract more rent
from the agents with less distortion such that only a middle type will have zero
rent. The intuition is straightforward: a generalist (bad type) will have zero rent
and the specialist will have positive rent.

More striking, if the principal can commit to use lotteries on the technology
choice, he can threat a group of middle risk averse agents and extract all the rent
from them and improve even more his pro�t.
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Formally, de�ne the expected utility function of the agent with type � on the
bundle (�; x1; x2; t):

~V (�; x1; x2; t; �) = t+ �v(x1; � jT1) + (1� �)v(x2; � jT2)

where � 2 [0; 1] is the probability that the principal will recommend the use of T1
with production x1 and the probability 1� � with production x2.

Now a contract is de�ned by (�; x1; x2; t): � ! [0; 1] � R+
2 � R (since the

agent's utility function is linear on transfer, t represents the expected transfer of
the lottery).

To avoid extra diÆculties, assume the standard monotone hazard rate condi-
tions:

MHRC: M1(�) =
P (�)
p(�) and M2(�) =

P (�)�1
p(�) are non-decreasing on �.

Let us introduce some notation:

~v(�; x1; x2; �) = �[�(1� �)�2x1
2 + (1� �)��2x2

2]

is the agent's expected cost function on the lottery, and

~u(�; x1; x2) = �x1 + (1� �)x2

is the principal's expected revenue. Thus, ~V (�; x1; x2; t; �) = t+ ~v(�; x1; x2; �).

Proceeding in an analogous manner, the relaxed functional is

~f(�; x1; x2; �) = ~u(�; x1; x2) + ~v(�; x1; x2; �) + V(�;x1;x2)(�)

where V(�;x1;x2)(�) =
R �
0 ~v�(�(~�); x1(~�); x2(~�); ~�)d~� + V(�;x1;x2)(0) is the type �

agent's rent function. Finally, consider the following special cases of the certain
lotteries:

f i(xi; �) = ~u(2� i; x1; x2) + ~v(2� i; x1; x2; �) + V(2�i;x1;x2)(�)

for i = 1; 2. Thus, after an integration by parts,

f i(xi; �) = u(xi; �) + v(xi; � jTi) +Mi(�)v�(xi; � jTi):

First, let us treat the case where the principal is prohibit to randomize11, i.e.,
� is equal to 0 or 1. The game works as follows: the principal designs a reward

11
If there is no commitment in using lotteries, i.e., after knowing the agent's type (ex-post) the

principal can bias the lottery when it is pro�table and this is not veri�able, then lotteries does not

help ex-ante.
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schedule based on the technology choice: Ti ! (xi; ti); i = 1; 2. The agent accept
or reject the schedule. If he accepts, he announces the veri�able technology he
will use and the truthful type. Given the technology choice Ti, the principal's
objective function will be f i(xi; �).

Conditioning on the technology choice, the problem is a standard adverse
selection with the SCP. Therefore x1 (respectively x2) is implementable if and
only if it is non-increasing (respectively non-decreasing).

The principal provides two contracts (one for each technology choice) and
decides where to shut down in each contract and take this into consideration to
determine his objective function, i.e., when the agent is going to choose T1 or
T2. Since v�( � ; � jTi) has constant sign, the rent function is monotone (given Ti).
Therefore there exist a unique �i where the contract (xi; ti) is shut down, i.e., if
i = 1 (respectively i = 2), then the rent function for all types � > �1 (respectively
� < �2) is negative on the contract (xi; ti). We have the following cases:

1. �1 < �2. The IR constraint on the interval (�1; �2) is not satis�ed in both
contracts what is not possible.

2. �1 > �2. Denote Vi the rent function on the contract (xi; ti). Since V1 is
decreasing, V2 is decreasing, V1(�1) = 0 < V2(�1) and V2(�2) = 0 < V1(�2), then
there exist a unique �0 2 (�2; �2) such that

V1(�0) =
Z �1

�0

v�(x1(�); � jT1)d� =
Z �0

�2

v�(x2(�); � jT2)d� = V2(�0) > 0:

This implies that the principal can extract this rent by subtracting it from t1
and t2 and raise his pro�t.

What we have just proven is that a pair of contracts is feasible if only if case
2 is true and they are weakly dominated by one where �1 = �2. Now it is very
easy to characterize the second best contract (xSB1 ; xSB2 ; �). The necessary (and
suÆcient) �rst order conditions are:

f1x(x
SB
1 (�); �) = 0 if � 2 [0; �0]

f2x(x
SB
2 (�); �) = 0 if � 2 [�0; 1]

and

� =

�
1 if � 2 [0; �0]

0 if � 2 [�0; 1]

This means that �0 is determined by the intersection of the relaxed solutions
and it is the only type that has zero rent. And it is optimal to make all types
� < �0 (respectively � > �0) use technology T1 (respectively T2). Observe that
MHRC implies that xSB1 is decreasing and xSB2 is increasing. Thus, this pair of
contract are implementable for the second best problem. If this was not the case
we would have to consider the \ironing principle".
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Let us return to the case that the principal can commit to use lotteries.
Taking the derivative of ~f with respect to xi, it is easy to see that non trivial
lotteries12 will be used on the intervals where the IR constraints are binding, i.e.,
where the rent function is null. For the rest of the interval the optimal contract is
characterized by:

f ix(xi; �) = 0

when � = 2� i.
Therefore we have to characterize the intervals where the rent function is

null. However, if the rent function is constant on (�1; �2) along an implementable
contract (�; x1; x2), then

~v�(�(�); x1(�); x2(�); �) = 0; 8� 2 (�1; �2):

This implies that (omitting the dependence of the contract on �):

� =
��3x22

(1� �)�3x21 + ��3x22

on the interval (�1; �2).
Plug this last equation in the objective function of the principal, on the in-

terval (�1; �2), it is going to be

	(x1; x2; �) =
x1

�(�)3
�
x1
x2

�2
+ 1

+
x2

�(�)�3
�
x2
x1

�2
+ 1

� (x1x2)
2

�3x21 + (1� �)3x22

where �(�) = �
1�� .

It is immediate to show that 	( � ; � ; �) is a concave functional and that
	(x1; x2; �) = 	(x2; x1; 1 � �), for all (x1; x2; �). Therefore if (x�1(�); x

�
2(�)) is

the optimal for a given �, then x�1(�) = x�2(1� �), for all � 2 [0; 1].
The �rst order condition gives that x�1 = x�2 = x� and consequently

x�(�) =
1

2

� 1

�(�)3 + 1
+

1

�(�)�3 + 1

�
[�3 + (1� �)3]

and

��(�) =
1

�(�)3 + 1

for all � 2 (�1; �2).
The �rst order condition that determines �i (i = 1; 2) is

u(xi(�); �i) + v(xi(�i); �i) +Mi(�i)v�(xi(�i); �i) = ~u(x�(�i); �i) + ~v(x�(�i); �i)

12
A trivial lottery is the one that � is 0 or 1.
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Therefore �i is determined by the continuity of the principal's ex-post pro�t
when pasting from randomization to non-randomization. Moreover, the decision
where to randomize or not depends on whether the right hand side of the last
equation is greater than the left hand side or not, respectively.

In general, many intervals can appear in the optimal contract and it is not
easy to determine them. However, the symmetric case is very simple to deal with.
If the distribution is symmetric with respect to 1=2, then it is easy to prove that
those intervals are determined by intersection of x� and xSB and randomization
occurs if and only if x� is above xSB .

We have to check that this randomized relaxed contract is incentive compat-
ible in order to conclude that it is the second best solution. Let us answer this
question in the symmetric distribution case. For simplicity, assume that there is
just one interval where randomization occurs: (�1; �2) (thus, �2 = 1��1). Formally,
we have to check that

~�xSB (�; �̂) � 0; 8�; �̂ 2 [0; 1]

on the randomized relaxed solution, where ~�x corresponds to the function ~v. There
are several cases to consider:

1. �; �̂ 2 [0; �1] or �; �̂ 2 [�2; 1]: The incentive compatibility is an immediate
consequence of monotonicity of xSB1 and xSB2 and the SCP.

2. �; �̂ 2 [�1; �2]: Note that

~v�(x
�(�̂); �) = �2[��(�̂)(1� �)�3 � (1� ��(�̂))��3]x�(�̂)2

and, by the de�nition of �� and ~v�(x
�(�); �) = 0, we have that � > �̂ if and only

if ~v�(x
�(�̂); �) < 0. Thus

~�xSB (�; �̂) =

Z �̂

�

~v�(x(�̂); ~�)d~� �
Z �̂

�

~v�(x(~�); ~�)d~�

=

Z �̂

�

~v�(x(�̂); ~�)d~� � 0

This implies that the IC constraint is satis�ed.

The remaining cases reduce to these two.

If p � 1 and randomization is not possible, then �0 =
1
2 and

xSB(�) =

8>><>>:
(1� �)3

2(1 + �)
; if � 2 [0; 1=2]

�3

2(2� �)
; otherwise
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When randomization is possible, the solution was described above.

If p(�) = 2�, for all � 2 �, then �
4=3
0 + �0 = 1 and

xSB(�) =

8>><>>:
(1� �)3

2
; if � 2 [0; �0]

�4

2
; otherwise

3) Second Best without information: (xTB; tTB)

De�ne now

~v(x; �) =

8>><>>:
�x2

(1� �)2
; if � 2 [0; 1=2]

�x2
�2

; otherwise

Because the principal can not monitor the technology choice, he will face an
agent with utility function ~v (and not v). Therefore we can use theorem 3.5 in
order to characterize the second best solution. Here, x0 is de�ned by � = 1=2.

Since ~v�(x; �) <
>

i� � >
<

1
2 , the IR constraint will be binding at 1

2 on the

optimal contract. Thus, de�ne

f(x; �) = u(x; �) + ~v(x; �) +M(�)~v�(x; �)

where

M(�) =

�
M1(�) if � 2 [0; 1=2]

M2(�) if � 2 [1=2; 1]

Observe that ~vx(x; �) = ~vx(x; �̂) if and only if �̂ = 1 � � and ~vx�(x; �) =
�~vx�(x; 1� �) . Thus, theorem 3.5 gives

fx(x
TB(�); �) + fx(x

TB(�); 1� �) = 0; � 2 [0; 1=2]:

The IC constraints de�ne a convex set and the objective function is concave.
Therefore the use of lotteries on production does not improve the principal's wel-
fare (what depends strongly on the symmetry of this example).

If the distribution is symmetric with respect to 1=2, then it is straightforward
to check that the second best problem without information is equivalent to the
second best one with information when randomization is forbidden. Therefore the
pro�t loss caused by non veri�ability of information is equal to the one caused by
the lack of of commitment in using lotteries when information is available.

In particular, if p � 1, (xSB; tSB) is the second best solution without infor-
mation (xSB is symmetric with respect to 1

2 ).
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If p(�) = 2�, for all � 2 �, then

xTB(�) =

8>><>>:
(1� �)4

2� �
; if � 2 [0; 1=2]

�4

1 + �
; otherwise

and

tTB(�) =

Z �

1=2

~v�(x
TB(~�); ~�) d~� � ~v(xTB(�); �):

The basic intuitions behind this example are the following. First, when we
moved from the second best problem with information to the one without, we
moved from a bidimensional problem in (T; �) to an one dimensional problem in �
making T a function of �. Finally, the incapacity to commit to the announcement
of the technology makes the principal to equalize the marginal utilities of the
pooling types in order to guarantee truth telling. This is exactly what explains
the \countervailing" incentives in our case.

One may claim that this example is very particular in the sense that it is
symmetric. However, we can make a perturbation of this model and obtain the
same qualitative results. One way to do that is to consider (di�erent) sunk costs
for each technology.

The second best problem without information was inspired in Chassagnon and
Chiappori (1995). However, in that paper (if we consider the continuous version
of their model), the cross derivative of the agent's utility function does not change
the sign, it only changes its magnitude, i.e., indi�erence curves of the agent has a
kink. This is enough to produce multiple crossing of the indi�erence curves of two
distinct types, but not to destroy the second order approach.

Include here Figure 4

Figure 4

4.2 Nonlinear Pricing

This example follows the same setup of Maskin and Riley (1984) (see also
Mussa and Rosen (1978)). A monopolist produces a single product at a cost of
cx2 for x units. A buyer of type � 2 [0; 1] has preferences represented by the utility
function

V (x; t; �) =

Z x

0

�(~x; �) d~x� t
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where x is the number of units purchased from the seller and t is the price paid for
x. The function �( � ; �) is the inverse demand function of the group of consumers
with taste characterized by �. The monopolist does not observe the type, but
knows P ( � ), the distribution of type, with density function p( � ).

We assume that the inverse demand has the following form:

�(x; �) = � � 2�(�)x

where, � is thrice continuously di�erentiable, �(0) = 0, _� > 0, �� > 0.

The assumption �� > 0 implies that
�(�)

�
is increasing in �, since

d

d�

�
�(�)

�

�
=

_�(�)� � �(�)

�2
> 0

if and only if
_�(�) > �(�)=� ; 8 � 2 (0; 1]

and this last inequality is true because � is convex. And �=2�(�) is the market size
of the type � demand (i.e., the number of units bought at price zero). Therefore
what we are assuming is that the market size decrease with � and � is the supreme
of prices for which there exist a positive demand. This assumption will imply no
SCP and it is in contrast with the monotonicity assumption of �(x; � ) in Maskin
and Riley (1984).13

De�ne

v(x; �) =

Z x

0

�(~�; �) d~x = (� � �(�)x)x

u(x; �) = �cx2

M(�) =
P (�)� 1

p(�)
; � 2 [0; 1]

f(x; �) = u(x; �) + v(x; �) +M(�)v�(x; �):

Therefore,

vx�(x; �) = 1� 2 _�(�)x S 0 i� x T x0(�) =
1

2 _�(�)
;

for all � 2 [0; 1].
Since �� > 0, x0 is decreasing and

1

2 _�(�)
<

�

2�(�)
<

�

�(�)
; 8 � 2 [0; 1]

13
This is equivalent to assume that the marginal utility of consumption increases for low types and

decreases for high types.
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what implies that the SCP fails to hold here. (Observe that vx(x; �) � 0 i� x �
�

�(�) .) Moreover, observe that vx(x; �) = vx(x; �̂) if and only if �(x; �) = �(x; �̂),

i.e., two types are pooling in the same contract if they have the same marginal
valuation for the good.

The relaxed solution is given by

x1(�) =
1

2

�
� +M(�)

c+ �(�) + _�(�)M(�)

�+
where [x]+ = maxfx; 0g.

Assume that:

a1. _M(�) > 0, for all � 2 [0; 1].

a2. c+ _�(�)M(�) + �(�) > 0, for all � 2 [0; 1].

Assumption a1 is the well known monotone hazard rate condition and as-
sumption a2 holds for c large enough. Assumption a2 implies that f( � ; �) is a
concave function, for all � 2 [0; 1].

If x1 does not cross x0 , then the second best solution is going to be x1 .
Observe that

x1(�) S
1

2 _�(�)
i� c T � _�(�)� �(�):

Therefore, we guarantee that x1 crosses x0 if we assume

a3. c < _�(1)� �(1)

because � _�(�)� �(�) is increasing in � (since �� > 0).
Under a1, a2 and a3, theorem 3.5 and 3.6 can be applied in order to char-

acterize the second best solution. Observe that x1 will be bell-shaped and that
v�(x; �) = (1 � _�(�)x)x � 0 i� x � 1= _�(�). Thus, the second best solution is
bell-shaped and it is such that the lowest type 0 has zero rent.

Consider the particular case that satis�es a1-a3:

p � 1; c =
1

2

�(�) = �2

In this case v(x; �) = ~v(�x), where ~v(y) = y � y2.

Therefore the relaxed solution is

x1(�) =

�
2� � 1

1� 4� + 6�2

�+
and

x0(�) =
1

4�
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Using theorems 3.5 and 3.6, the bell-shaped part of the solution is given by

x�(�) =
3� +

p
3�2 � 1

2(6�2 + 1)

Figure 5

4.3 Regulation Problem

We are going to present a simple model of regulation of a �rm like in La�ont
and Tirole (1993), chapter 1. Suppose that there exist a project with social value
of S that can be implemented by a �rm that has the following cost structure:8><>:

C = C1 + C2

C1 = �1 � e1

C2 = �2 � e2

where the cost C is observable (C1 and C2 are not), �1 and �2 are the cost pa-
rameters known only to the �rm, e1 and e2 are unobservable actions of the �rm
representing the e�orts to reduce the subcosts C1 and C2, respectively.

The non-monetary disutility of e�ort is given by  (e1; e2). We assume that
it is thrice di�erentiable, the �rst and second derivatives of  are positive, i.e.,
D = ( 1;  2) > 0 and

D2 =

�
 11  12
 21  22

�
is a positive de�nite matrix (where the subindex represents the partial derivatives).

The �rm's problem with characteristic vector (�1; �2) and total cost C is to
minimize the disutility of e�ort:

max
C1;C2�0

 (�1 � C1; �2 � C2)

s.t.

C1 + C2 = C

Assuming an interior solution, the �rst order condition is

 1(�1 � C1; �2 � C2) =  2(�1 � C1; �2 � C2):

Following Lewis and Sappington (1989), we can introduce countervailing in-
centives into the model by allowing the �rm's subcost parameter of production �2
to be a function of the subcost parameter �1: �2 = �(�1) twice di�erentiable. This
countervailing incentive will be associated to no SCP in two cases:14

14
In the other two cases, the SCP is valid.
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(a) substitute e�orts and negative correlation between the subcosts:  12 > 0 and
_� < 0.

(b) complement e�orts and positive correlation between the subcosts:  12 < 0 and
_� > 0.

Let us consider the case (a). This means that there is countervailing incentive
in the e�ort allocation for subcost reduction since these activities are substitute
and the cost parameters move in opposite directions. For instance, a family of
examples are given by � a convex decreasing function and

 (e) = AT e+ eTBe+ �(e)

where e = [e1; e2], A > 0, B is a de�nite positive matrix and �(e) = �1e
3
1+�12e

2
1e2+

�21e
2
2e1 + �2e

3
2 is the third order terms with �i � 0, �ij � 0, i; j = 1; 2.

The consequence is that the SCP may not hold. Indeed, de�ne the �rm's
surplus as

V = t�  (�1 � C1; �2 � C2)

where t is the net money transfer from the regulator to the �rm and fCi =
Ci(�1; C)g1;2 are the optimal decisions of the �rm given its �rst subcost parameter
and observable aggregate cost. If

v(C; �1) = � (�1 � C1; �2 � C2)

then, by the Envelope Theorem,15

vC =  1

and
v�1 = �( 1 +  2 _�) = � 1(1 + _�)

Thus,

v�1 T 0 , 1 + _� S 0

and, consequently, if � is a concave decreasing function, the IR constraint will be
binding at the parameter �01 such that 1 + _� = 0. From now on assume that this
is the case.

Finally, the cross derivative of v is given by:

vC�1 =  11 +  12 _� + ( 11 �  12)
@C2
@�1

and, since  12 _� < 0, the sign of vC�1 can actually change (see the speci�c example
below).

15
To simplify the notation we will omit the arguments of the functions.
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The social welfare function is

W = S � (1 + �)(t+ C) + V = S � (1 + �)(�v + C)� �V

where

V(�1) =
Z �1

�0
1

v�(C(~�; ~�)d~�

is the �rm's rent function and � > 0 is the \shadow price of public funds" (see
La�ont and Tirole (1993) for the details).

The relaxed functional is

F =
�
S � (1 + �)(�v + C) + �Mv�1

	
p

where

M =

�
P=p if � � � � �01

(P � 1)=p if �01 < � � �

is the hazard rate (that depends on the sign of v�1).
The �rst order condition of the relaxed problem

 1 = 1 +
�

1 + �
MvC�1

By theorem 3.5, if �1 and �̂1 are pooling on the same aggregate cost, then

FC
vC�1

=
F̂C
v̂C�1

and vC = v̂C

where the hat symbol means that the functions are calculated at the �̂1 allocation.
And, after some trivial manipulations, we have

 1 = 1 +
�

1 + �
(M � cM)

�
v�1C�1 � dvC�1�1	�1

and
 1 = b 1

Comparing the �rst order condition of the relaxed program with the second-
best one, we see that the incentive correction term depends on the marginal rent
of the type (for the former) and depends on an \average" of the marginal rent of
the types that are pooling (for the last).

Let us take a particular example (the symmetric case): The type set is � =
[0; 1] with the uniform distribution and

 (e1; e2) = (e1 + e2)
2
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�2 = �(�1) = 1� �21

Thus the �rm's minimization e�ort program has the following solution: C1 = �1
and C2 = C � �1 (since C2 � 1� �21 for C � 1).

We have the curve that separates the regions where the sign of vC�1 changes

is �1 � 1=2 and vC = cvC if and only if b�1 = 1 � �1. Solving the equations of the
�rst order conditions of the second-best program we get

C�(�1) =

(
1
2
+
�
1� �

1+�

�
�1 �

�
1� 2�

1+�

�
�21 if 0 � �1 � 1=2

1
2
+
�
1� �

1+�

�
(1� �1)�

�
1� 2�

1+�

�
(1� �1)

2 if 1=2 � �1 � 1

This is also the relaxed of the regulator's program when he can contract on
the subcosts, i.e., in this case the non-observability of the subcosts does not distort
the regulatory solution. However, if the distribution is not symmetric, then the
distortion will exist. For instance, when the distribution is given by p(�) = 2�, the
relaxed solution is:

C1(�1) =

( 1
2 +

�
1� �

2(1+�)

�
�1 �

�
1� �

1+�

�
�21 if 0 � �1 � 1=2

1
2 +

�
1� �

2(1+�)

�
�1 �

�
1� �

1+�

�
�21 +

�
2(1+�)

1�2�1
�1

if 1=2 � �1 � 1

and the second best solution is:

C�(�1) =

( 1
2 +

�
1� �

2(1+�)

�
�1 �

�
1� �

1+�

�
�21 +

�
2(1+�)

�1
1��1

if 0 � �1 � 1=2

1
2 +

�
1� �

2(1+�)

�
(1� �1)�

�
1� �

1+�

�
(1� �1)

2 + �
2(1+�)

1��1
�1

if 1=2 � �1 � 1

Figure 6

The economic interpretation of the result is immediate: the subcost reduc-
tions are substitute activities and the subcost structure presents a countervailing
property: the extreme types correspond to the specialist in each activity and the
middle type is a \bad" generalist in both activities. Thus, the optimal contract is
such that two di�erent specialists are choosing the same aggregate cost in equilib-
rium (and each one is going to cut the subcost that is more ineÆcient); the middle
type (�1 = 1=2 = �2) is the only one that has zero rent.

4.4 Labor Market

Cavallo, Heckman and Hsee (1998) presents evidence on the GED16 as a mixed
signal of cognitive and non-cognitive abilities. Comparing the GED recipients and
other dropouts, there is not wage di�erential between them.

16
GED is an exam taken by American high school dropouts to certify their equivalence with high

school graduates.
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We present a very simple model where workers have a veri�able signal s
(schooling) that is the aggregation of two unknown personality characteristics: �
(\cognitive characteristic") and � (\non-cognitive characteristic"):

s = � + �

where � 2 [�; �] with cumulative distribution P and density function p. Given the
schooling s, we can also determine the distribution of �.

If the �rm hires the worker with a pro�le of characteristic (�; �), then this
worker will produce an output x following the technology:

x = �e+ ��

where e is the e�ort of the worker (unknown to the �rm) and � is the shadow
price of the non-cognitive ability for the �rm. The �rm maximizes its pro�t

U = �x� t

where t is the salary paid for the worker and � is the price of x. This means
that the �rm uses the cognitive and non-cognitive abilities of a worker, but in a
di�erent manner they are presented in the signal: � is productive with e�ort while
� is constant.

The �rm will use the signal, salary and output as a mechanism device to
extract the worker's rent. However, since e�ort is costly, for a given signal there
exists a con
ict of interest between the �rm and the worker. Moreover, the school-
ing s is a mixed signal of � and � and the �rm can not infer the correct abilities
of the worker ex-ante.

The worker's disutility of e�ort is given by  :< ! <. For simplicity, we
assume that  is quadratic, i.e.,  (e) = e2. For a given schooling s, the necessary
e�ort for a worker with characteristics (�; s� �) to produce x is

e = �� ��1y

where y = �s� x.17 Thus, we can express the type � worker's quasi-linear utility
function in terms of the veri�able variables (x; t) and the characteristic �:
V = t� v(x; �), where

v(x; �) = �[�� ��1y]2

If we take the cross derivative of v with respect to x and � we get

vx�(x; �) = 2��2[e� ��1y]

17
Observe that e � 0 if and only if x � �s.
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This means that the SCP does not hold: the curve x0 is given by

x0(�) = �s� �

2
�

Thus the discrete pooling equilibrium may happen. The discrete pooling
condition is given by vx(x; �) = vx(x; �̂), where vx(x; �) = �2��1e. In this case

�̂ = �(x; �) = (�y�1 � ��1)�1

Since v� = �2��2ey, the marginal rent of the worker is negative if and only if
x � �s. Then, since vx2�(x; �) = 4��3 is positive and vx�2(x; �) = 2��3[6��1y�2�]
is negative, an implementable contract that cross the curve x0 is U -shaped.

Let us consider a particular example: � = [1; 2] with the uniform distribution.
It is easy to see that the relaxed solution crosses x0 at �� = �=�. Thus, if

�=� 2 (1; 2), the relaxed solution is given by:

x1(�) = min f�s; �s+ 2�� ��2

2(� � 2)
�g

Using theorem 3.5 we can calculate the U -shaped part of the second best con-
tract: it is going to be one of the roots of the following third degree polynomial:18

���
2

4
+ ���1

��
2
+ ���1

�
y � ��2

��
2
+ 2���1

�
y2 + ��4y3 = 0

Therefore, the optimal contract presents the following properties:

Figure 7

� discrete pooling: two di�erent workers with di�erent pro�le of characteristics
for a given s is choosing the same contract. This property captures the idea
that a worker with high cognitive ability and low non-cognitive ability can not
be distinguished from a worker with low cognitive ability and high non-cognitive
ability in equilibrium.

� the �rm o�ers the same contract for an interval of high � workers to extract all
their rent. These types provide the highest output.

� The worker �� (a middle type) provides the lowest output and has the highest
rent.

� The rent extraction and distortion trade o� takes into consideration the new
conditions for feasibility.

18
The monotonicity condition eliminates the other roots.



33

5. CONCLUSIONS AND EXTENSIONS

In this paper we studied a generalization of the SCP. The characterization of
the IC constraint depends on a new condition: the marginal rate of substitution
identity. When the SCP does not hold a new type of equilibrium appears: the
discrete pooling equilibrium. Four examples illustrated the pooling equilibrium: a
principal-agent problem with simultaneous adverse selection and moral hazard, the
nonlinear pricing problem, subcost observation in a regulation problem and mixed
signal in a labor market model. In all examples multidimensional characteristics
and countervailing incentives are presented.

Some extensions about the cases that were not covered follow:

(1) More general agent utility function: Assume that the agent's utility function
can be any C2 function with the same assumptions of section 2 except the quasi-
linearity one. Given a feasible contract (x; t) continuously di�erentiable piecewise

denoted V (x(�̂); t(�̂); �) by V (�̂; �), for simplicity. Then

V (�; �) =

Z �

�

V�(~�; ~�)d~� + V (�; �) and

V (�̂; �) =

Z �̂

�

[Vx(~�; �) _x(~�) + Vt(~�; �) _t(~�)]d~� + V (�; �):

By the �rst order condition of (IC),

_t(�) = �Vx(�; �)
Vt(�; �)

_x(�):

Then

V (�; �)� V (�̂; �) =

Z �

�̂

�
Vx(~�; �)� Vt(~�; �)

Vx(~�; ~�)

Vt(~�; ~�)

�
_x(~�)d~�:

If �; �̂ 2 � is such that V (�; �) = V (�̂; �), then the derivative of the above

expression with respect to �̂ should be zero, i.e.,

_x(�̂)

 
Vx(�̂; �)� Vt(�̂; �)

Vx(�̂; �̂)

Vt(�̂; �̂)

!
= 0:

If _x(�̂) 6= 0, then

�Vx(�̂; �)
Vt(�̂; �)

= �Vx(�̂; �̂)
Vt(�̂; �̂)

:

This condition means that if the agent � is indi�erent between his bundle
(x(�); t(�)) and the �̂ bundle (x(�̂); t(�̂)) and the agent �̂ can not locally misrepre-

sent his type ( _x(�̂) 6= 0), then agents � and �̂ should have the same marginal rate

of substitution at the bundle (x(�̂); t(�̂)).
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(2) Multidimensional decision: Assume that x is n-dimensional vector and � is
one-dimensional. A similar argument as above shows that

_x(�̂) �
 
�Vx(�̂; �)
Vt(�̂; �)

!
= _x(�̂) �

 
�Vx(�̂; �̂)
Vt(�̂; �̂)

!

for all �; �̂ 2 � such that V (�; �) = V (�̂; �). However, observe that the dot in the
above equation is the inner product of the respective vectors. The interpretation
is that if the type � is indi�erent between his bundle and the type �̂ bundle, then
the covariation of the marginal increasing of type �̂ in x with his marginal rate
of substitution at the bundle (x(�̂); t(�̂)) should be equal to the covariation of the
same marginal increasing with the marginal rate of substitution of type � at the
same bundle.

Observe also that the second order condition of the IC constraint is

d

d�

�
Vx(�; �)

Vt(�; �)

�
� _x(�) � 0; 8� 2 �:

(3) Discontinuous crossing when x0 is constant: If we allows us to discontinuous
crossing, the solution can be improved by a discontinuous contract. The example
is the following19

� = [0; 1]; p � 1; c = 0

u(x; �) = (1� �)x� x2

2

v(x; �) =
�

2
(x� x2)

where we are considering quasi-linear utility functions for the principal and for the
agent.

The relaxed solution is x1(�) = 1�� and x0(�) = 1=2, for all � 2 �. If we only
admit continuous crossing, the optimal solution will be x�(�) = 1=2. However, if
discontinuous crossing is possible, then the optimal solution will be

x�(�) =

8><>:
1� � it 0 � � < 1

4
3
4 if 1

4 � � < 1
2

1
4 if 1

2 � � � 1

APPENDIX

19
The parameter is observable but not veri�able.
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Proof of Lemma 2.1: The IC constraint implies that for � > �̂

v(x(�); �)� v(x(�); �̂)

� � �̂
� Vx(�)� Vx(�̂)

� � �̂
� v(x(�̂); �)� v(x(�̂); �̂)

� � �̂

Since v is C3 and x is bounded, the inequality above shows that V is a Lipschitz
function. Moreover, if x is continuous at �, then

d

d�
Vx(�) = v�(x(�); �):

By the Fundamental Theorem of Calculus, we get (i). �
(ii) From (i), t(�) = Vx(�)�v(x(�); �), for all �; �̂ 2 �. Thus, it is easy to see that

V (x(�); t(�); �)� V (x(�̂); t(�̂); �) =

Z �

�̂

�Z x(~�)

x(�̂)

vx�(~x; ~�)d~x

�
d~�

for all �; �̂ 2 �.
Let �̂0 2 [�; �) such that vx�(x(�̂0); �̂0) > 0. By the right continuity, x restrict

to a small interval I = [�̂0; �0) has its graphic on CS+. Let A = (a; b) be a maximal

interval in I such that x(�̂0) > x(�), for all � 2 A. If a = �̂0, then the double

integral above will be negative when �̂ = a and � = b. If a > �̂0, then the left
limit of the double integral will be also negative when �̂ = a and � = b (since

x�(a) � x(�̂0)). In both cases we have a contradiction with the (IC) constraint.

Therefore, x(�̂) � x(�), for all � 2 I. �

Proof of Theorem 3.1:

(i) De�ne the function

'(y) =

Z �̂

�

�Z y

x(~�)

vx�(~x; ~�)d~x

�
d~�

for y 2 X(�̂). Taking the second derivative, we have

'00(y) = vxx(y; �̂)� vxx(y; �):

Thus, �̂ � � and vx2� < 0 implies that '00(y) � 0, for all y 2 X(�̂). Since

'(x�(�̂)) � 0 and '(x(�̂)) � 0, we have that '(y) � 0, for all y 2 I�̂.
(ii) Let (xn) be a sequence of continuous implementable decisions such that

xn ! x in the weak topology. In particular, xn ! x almost surely. By the
dominated convergence theorem (see Rudin (1974)),Z �

�̂

Z y

x(~�)

vx�(~x; ~�)d~xd~� � 0 ((*))
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when y = x(�̂) or y = x�(�̂).

Given y in the interior of X(�̂), for n suÆciently large, let �̂n 2 � such that

xn(�̂n) = y (such �̂n exists because xn assume values close to x�(�̂) and to x(�̂)

for large n). Then, by the monotonicity of xn, we can choose �̂n such that �̂n ! �̂.
Again, by the dominated convergence theorem, (�) is also true for such y.

Conversely, if x is such that the associated correspondence X is imple-
mentable, x can cross continuously from CS� to CS+ one time at most. Thus,
lemma 2.1 (ii) implies that x is non-increasing or non-decreasing or U -shaped.

If a discontinuity occurs outside the U -shaped part, we can substitute this
discontinuous part by a monotone part making the decision continuous and im-
plementable (this is possible because we can do a preserving area modi�cation of
the the decision such that the IC constraints are satis�ed). If the discontinuity
occurs in the U -shaped part, it should be on the left side of the \U" because of
the proof of theorem 3.2 (c) and we can substitute this discontinuity by a contin-
uous part and the right side of the discontinuity such that the resulting contract
is continuous. In both cases, the modi�cation can be done as close as one wants
to the original decision in the weak topology sense. �

Proof of Theorem 3.2:

(a) De�ne a local inverse for x at �̂. Applying Fubini's Theorem (as we did in

lemma 3.1) and taking the right (left) derivative at x(�̂) and observing that x(�̂)
is a minimum point for ', we get our result.

(b) Observe that if we �x �̂, � is a minimum point of �x(�̂; �). Then, the result
is a direct consequence of the �rst order conditions.

(c) Observe that if y 2 X(�) \X(�̂), with �; �̂ 2 �, then

�X(�̂; �) =

Z �

�̂

�Z y

x(~�)

vx�(~x; ~�)d~x

�
d~�

= �
Z �̂

�

�Z y

x(~�)

vx�(~x; ~�)d~x

�
d~� = ��X (�; �̂):

From (i), this means that both integrals above are zero, i.e., �X (�; �̂) = 0,
i.e., Z �̂

�

�Z y

x(~�)

vx�(~x; ~�)d~x

�
d~� = 0; 8y 2 X(�) \X(�̂):

If x is right and left increasing at �̂, applying (a), we get the result. If x is just

right (or left) increasing at �̂, use the continuity of vx and the previous case to
conclude the proof.

I claim that x is continuous at �̂. Otherwise, y(�) de�ned implicitly by the

equality in (c) would be increasing in CS� for a �xed �̂ 2 � where x is discontin-
uous (see also the proof of theorem 3.3). �
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Proof of Theorem 3.3:

Let �0 2 � be the minimum point of x and �1 2 � such that x(�) 2 X(�1).

Consider the following cases for �̂; � 2 �:

(1) �1 � � � �0 � �̂ � � such that x(�̂) 2 X(�).

Using Fubini's Theorem,

�x(�; �̂) =

Z x(�̂)

x0

�Z '2(~x)

'1(~x)

vx�(~x; ~�)d~�

�
d~x

where x0 = x(�0) and '1; '2 are the two inverses of x on [x0; x(�)], where '2(x) =
�, for all x 2 [x(�); x(�)].

From theorem 3.2 (c), vx(~x; '1(~x)) = vx(~x; '2(~x)), for all ~x 2 [x0; x(�̂)]. Thus,

�x(�; �̂) = 0.

(2) � � �̂

If x(�) < x(�̂), then �̂ � �0 or '1(�̂) � � � �0 � �̂. In the �rst case,

�x(�; �̂) = �
Z �̂

�

�Z x(~�)

x(�̂)

vx�(~x; ~�)d~x

�
d~�;

and since the region delimited in the integral is negative, we have that �x(�; �̂) � 0.
In the second case, using Fubini's Theorem again and (1) above

�x(�; �̂) =

Z x(�̂)

x(�)

�Z '2(~x)

�

vx�(~x; ~�)d~�

�
d~x

=

Z x(�̂)

x(�)

[vx(~x; '2(~x))� vx(~x; �)]d~x:

Since the function vx(~x; �) is U -shaped and '1(~x) � �,

vx(~x; '2(~x)) � vx(~x; �), for all ~x 2 [x(�); x(�̂)]. Thus, �x(�; �̂) � 0.

If x(�) � x(�̂), then �̂ � �0 or � � '1(�̂) � �0 � �̂. With an analogous proof,

�x(�; �̂) � 0.

(3) � > �̂

If x(�) > x(�̂), then �0 � �̂ < � or �1 � �̂ � �0 < �. The proof is analogous to

the case (2). If x(�) < x(�̂), then, using Fubini's Theorem and (1),

�x(�; �̂) = �
Z x(�̂)

x(�)

�Z �

'1(~x)

vx�(~x; ~�)d~�

�
d~x

= �
Z x(�̂)

x(�)

[vx(~x; �))� vx(~x; '1(~x))]d~x:
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If ~'1 is identical to '1 on [x0; x(�)] and vx(~x; '1(~x)) = vx(~x; '2(~x)), for all
~x 2 [x(�); x(�)], then '1(~x) � ~'1(~x), for all ~x 2 [x0; x(�)]. Since vx(~x; �) is U -
shaped, vx(~x; '1(~x)) � vx(~x; ~'1(~x)) � vx(~x; �). Thus, �

x(�; �̂) � 0. �

Proof of Theorem 3.4: Consider the topology of the pointwise convergence at the
continuous points of the limit, i.e., xn converges to x if and only if xn(�)! x(�)
for every � 2 � where x is continuous. It is well known that every bounded and
closed set in C is compact with respect to this topology (see Billingsley (1986)).

Let x and x be an inferior and superior bound for x1. It is easy to see that
if x 2 C is implementable, then y de�ned by y(�) = x _ x(�) ^ x, for all � 2 � is
implementable and the principal weakly prefers y than x.

It is easy to see that if xn is a sequence of implementable decisions converg-
ing to x such that the associated sequence Xn is also implementable, then the
associated X is implementable. In particular, if x crosses x0, it should cross in
a continuous way. Therefore, the space of implementable decision such that the
associated correspondence is also implementable is closed.

Finally, the objective function of (P) is continuous with respect to the con-
sidered topology. Then, by Weierstrass Theorem, there exist an optimal contract
for (P) as described in the theorem. �

Proof of Theorem 3.5: From theorem 3.2 and 3.3, we can rewrite (P) as

max
x

Z �1

�

f(x(~�); ~�)d~� +

Z �0

�1

�
f(x(~�); ~�) + f(x(~�); '(x(~�); ~�))gx(~�)

�
d~�

where x: [�; �0] ! R is non-increasing and ' is implicitly de�ned by vx(x; �) =
vx(x; ') as a function of x and �, for � 2 [�; �0] (such that ' = � for � 2 [�; �1])
and

gx(~�) = 'x(x(~�); ~�) _x(~�) + '�(x(~�); ~�)

comes form the theorem of change of variable in the integral. From the Implicit
Function Theorem

@'

@x
(x; �) =

vxx(x; �)� vxx(x; '(x; �̂))

vx�(x; '(x; �))

and
@'

@�
(x; �) =

vx�(x; �̂)

vx�(x; '(x; �))

In order to get the �rst order conditions, we have to take the Gateaux deriv-
ative of functional de�ned from the maximization problem above.

Fix an interval [�1; �2] with �2 � �0 and the respective (optimal) decision
x�(�i) = xi, i = 1; 2. De�ne the space of the admissible decision:

X = fx: [�1; �2]! <; x(�i) = xi; i = 1; 2; and x is decreasing g
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and the space of admissible perturbations:

H = fh: [�1; �2]! <; h(�i) = 0; i = 1; 2; and x� + h is decreasing g
and the objective functional:

F (x) =

Z �2

�1
f(x(~�); ~�)d~� +

Z '(x1;�1)

'(x2;�2)

f(x(~�); ~�)d~�

=

Z �2

�1
ff(x(~�); ~�)� ['x(x(~�; ~�) _x(~�) + '�(x(~�); ~�)]f(x(~�); '(x(~�); ~�))gd~�

The �rst order condition gives (omitting the arguments of the function and
putting a hat when the function is calculated at ')

ÆhF (x) =

Z �2

�1
[fxh� ['xx _xh+ 'x�h+ 'x _h]f̂ � ['x _x+ '�](f̂xh+ f̂�'xh)]d� = 0

By an integration by parts we have

�
Z �2

�1
[f̂'x _h]d� =

Z �2

�1

_
(f̂'x)hd�

=

Z �2

�1
f[f̂x _x+ f̂�('x _x+ '�)]'x + f̂('xx _x+ 'x�)ghd�

Plug this last equation into the �rst order condition, we get( R �2
�1
fxhd� = 0 if [�1; �2] � [�; �1) � [�1; �0]R �2

�1
(fx � f̂x'�)hd� = 0 if [�1; �2] � [�1; �0]

Thus,

A = fx � vx�
^vx�
f̂x = 0

what is equivalent to
fx
vx�

=
f̂x
^vx�

The non-decreasing condition can be identi�ed as dx � 0 (in a distributional
sense). It is easy to see that the interiority condition for the existence of a Lagrange
multiplier is satis�ed. Then using the same approach of Guesnerie and La�ont
(1984), we have our result. �

Remark. Fix �: if x is suÆciently small, A > 0 and if x is suÆciently large, A < 0.
This prove that the �rst order condition of the U-shaped part is also suÆcient
when it is the unique critical point for each �.

Proof of Theorem 3.6: This is an immediate consequence of the remark above and
theorems 3.3-3.5. �
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