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Abstract

It is well known that most of the standard speci¯cation tests are not valid when the
alternative hypothesis is misspeci¯ed. This is particularly true in the error component
model, when one tests for either random e®ects or serial correlation without taking ac-
count of the presence of the other e®ect. In this paper we study the size and power of the
standard Rao's score tests analytically and by simulation when the data is contaminated
by local misspeci¯cation. These tests are adversely a®ected under misspeci¯cation. We
suggest simple procedures to test for random e®ects (or serial correlation) in the pres-
ence of local serial correlation (or random e®ects), and these tests require ordinary least
squares residuals only. Our Monte Carlo results demonstrate that the suggested tests
have good ¯nite sample properties and are capable of detecting the right direction of
the departure from the null hypothesis. We also provide some empirical illustrations to
highlight the usefulness of our tests.
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1 Introduction

The random error component model introduced by Balestra and Nerlove (1966) was ex-

tended by Lillard and Willis (1978) to include serial correlation in the remainder distur-

bance term. Such an extension, however, raises questions about the validity of the existing

speci¯cation tests such as the Rao's (1948) score (RS) test for random e®ects assuming no

serial correlation as derived in Breusch and Pagan (1980). In a similar way doubts could be

raised about tests for serial correlation derived assuming no random e®ects. Baltagi and Li

(1991) proposed a RS test that jointly tests for serial correlation and random e®ects. One

problem with the joint test is that, if the null hypothesis is rejected, it is not possible to

infer whether the misspeci¯cation is due to serial correlation or to random e®ects. Also, as

we will discuss later, because of higher degrees of freedom the joint test will not be optimal

if the departure from the null occurs only in one direction. More recently, Baltagi and Li

(1995) derived RS statistics for testing serial correlation assuming ¯xed/individual e®ects.

These tests require maximum likelihood estimation of individual e®ects parameters.

For a long time econometricians have been aware of the problems that arise when the

alternative hypothesis used to construct a test deviates from the data generating process

(DGP). As emphasized by Haavelmo (1944, pp. 65-66), in testing any economic relations,

speci¯cation of a given ¯xed set of possible alternatives, called the priori admissible hypoth-

esis, ­0; is of fundamental importance. Misspeci¯cation of the priori admissible hypotheses

was termed as type-III error by Bera and Yoon (1993). Welsh (1996, p. 119) also points out

a similar concept in the statistics literature. Typically, the alternative hypothesis may be

misspeci¯ed in three di®erent ways. In the ¯rst one, which we shall call \complete misspeci-

¯cation," the set of assumed alternatives, ­0, and the DGP, ­0, say, are mutually exclusive.

This happens, for instance, if one tests for serial independence when the DGP has random

individual e®ects but no serial dependence. The second case occurs when the alternative

is underspeci¯ed in that it is a subset of a more general model representing the DGP, i.e.,

­0 ½ ­0: This happens, for example, when both serial correlation and individual e®ects

are present, but are tested separately (one at a time). The last case is \overtesting" which

results from overspeci¯cation, that is, when ­0 ¾ ­0. This can happen when, say, Baltagi

and Li (1991) joint test for serial correlation and random individual e®ects is used when

only one e®ect is present. [For a detailed discussion of the concepts of undertesting and
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overtesting, see Bera and Jarque (1982)]. In this paper, we study analytically the asymp-

totic e®ects of misspeci¯cations on the one-directional and joint tests for serial dependence

and random individual e®ects. These results compliment the simulation results of Baltagi

and Li (1995). Then, applying the modi¯ed RS test developed by Bera and Yoon (1993),

we derive a test for random e®ects (serial correlation) in the presence of serial correlation

(random e®ects). Our tests can be easily implemented using ordinary least squares (OLS)

residuals from the standard linear model for panel data.

The plan of the paper is as follows. In the next section we review a general theory

of the distribution and adjustment of the standard RS statistic in the presence of local

misspeci¯cation. In Section 3, the general results are specialized to the error component

model. In Section 4, we present two empirical illustrations. Section 5 reports the results of

an extensive Monte Carlo study. These results, along with the empirical examples, clearly

demonstrate the inappropriateness of one-directional tests in identifying the speci¯c source

of misspeci¯cation(s), and highlight the usefulness of our adjusted tests. Section 6 provides

some concluding remarks.

2 E®ects of misspeci¯cation and a general approach to test-
ing in the presence of a nuisance parameter

Consider a general statistical model represented by the log-likelihood L(°;Ã; Á). Here, the

parameters Ã and Á are taken as scalars to conform with our error component model, but

in general they could be vectors. Suppose an investigator sets Á = Á0 and tests H0 : Ã = Ã0

using the log-likelihood function L1(°;Ã) = L(°;Ã; Á0), where Á0 and Ã0 are known values.

The RS statistic for testing H0 in L1(°;Ã) will be denoted by RSÃ. Let us also denote

µ = (°0; Ã0; Á0)0 and eµ = (e° 0; Ã00; Á00)0, where e° is the maximum likelihood estimator (MLE)

of ° when Ã = Ã0 and Á = Á0. The score vector and the information matrix are de¯ned,

respectively, as

da(µ) =
@L(µ)

@a
for a = °;Ã; Á

and

J(µ) = ¡E
"

1

n

@2L(µ)

@µ@µ0

#
=

2
64

J° J°Ã J°Á
JÃ° JÃ JÃÁ
JÁ° JÁÃ JÁ

3
75 ;
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where n denotes the sample size. If L1(°;Ã) were the true model, then it is well known

that under H0 : Ã = Ã0,

RSÃ =
1

n
dÃ(eµ)0J¡1

Ã¢°(eµ)dÃ(eµ) D¡! Â2
1(0);

where
D¡! denotes convergence in distribution and JÃ¢°(µ) ´ JÃ¢° = JÃ ¡ JÃ°J¡1

° J°Ã. And

under H1 : Ã = Ã0 + »=
p
n,

RSÃ
D¡! Â2

1(¸1); (1)

where the noncentrality parameter ¸1 is given by ¸1 ´ ¸1(») = »0JÃ¢°». Given this set-up,

asymptotically the test will have correct size and will be locally optimal. Now suppose

that the true log-likelihood function is L2(°; Á) so that the alternative L1(°; Ã) becomes

completely misspeci¯ed. Using a sequence of local values Á = Á0 + ±=
p
n, Davidson and

MacKinnon (1987) and Saikkonen (1989) obtained the asymptotic distribution of RSÃ under

L2(°; Á) as

RSÃ
D¡! Â2

1(¸2); (2)

where the non-centrality parameter ¸2 is given by ¸2 ´ ¸2(±) = ±0JÁÃ¢°J
¡1
Ã¢°JÃÁ¢°± with

JÃÁ¢° = JÃÁ ¡ JÃ°J¡1
° J°Á. Due to this non-centrality parameter, RSÃ will have power in

the model L(°;Ã; Á) even when Ã = Ã0; and, therefore, the test will have incorrect size.

Notice that the crucial quantity is JÃÁ¢° which can be interpreted as the partial covariance

between dÃ and dÁ after eliminating the e®ect of d° on dÃ and dÁ. If JÃÁ¢° = 0, then the

local presence of the parameter Á has no e®ect on RSÃ .

Turning now to the case of underspeci¯cation, let the true model be represented by

the log-likelihood L(°;Ã; Á): The alternative L1(°;Ã) is now underspeci¯ed with respect to

the nuisance parameter Á; leading to the problem of undertesting. In order to derive the

asymptotic distribution of RSÃ under the true model L(°;Ã; Á), we again consider the local

departures Á = Á0 + ±=
p
n together with Ã = Ã0 + »=

p
n. It can be shown that [see Bera

and Yoon (1991)]

RSÃ
D¡! Â2

1(¸3); (3)

where
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¸3 ´ ¸3(»; ±) = (±0JÁÃ¢° + »0JÃ¢°)J¡1
Ã¢°(JÃÁ¢°± + JÃ¢°»)

= ¸1(») + ¸2(±) + 2»0JÃÁ¢°±:

Using this result, we can compare the asymptotic local power of the underspeci¯ed test

with that of the optimal test. It turns out that the contaminated non-centrality parameter

¸3(»; ±) may actually increase or decrease the power depending on the con¯guration of the

term »0JÃÁ¢°±:

The problem of overtesting occurs when multi-directional joint tests are applied based

on an overstated alternative model. Suppose we apply a joint test for testing hypothesis

of the form H0 : Ã = Ã0 and Á = Á0 using the alternative model L(°;Ã; Á). Let RSÃÁ

be the joint RS test statistic for H0: To ¯nd the asymptotic distribution of RSÃÁ under

overspeci¯cation, i.e., when the DGP is represented by the likelihood either L1(°;Ã) or

L2(°; Á), let us consider the following result, which could be obtained from (1) by replacing

Ã with [Ã0; Á0]0. Assuming correct speci¯cation, i.e., under the true model represented by

L(°;Ã; Á) with Ã = Ã0 + »=
p
n and Á = Á0 + ±=

p
n;

RSÃÁ
D¡! Â2

2(¸4); (4)

where

¸4 ´ ¸4(»; ±) = [»0 ±0]

"
JÃ¢° JÃÁ¢°
JÁÃ¢° JÁ¢°

# "
»

±

#
:

Using this fact, we can easily ¯nd the asymptotic distribution of the overspeci¯ed test.

Consider testing H0 : Ã = Ã0 and Á = Á0 in L(°;Ã; Á) where L1(°;Ã) represents the true

model. Under L1(°;Ã) with Ã = Ã0 + »=
p
n, we obtain by setting ± = 0 in (4)

RSÃÁ
D¡! Â2

2(¸5); (5)

where ¸5 ´ ¸5(») = »0JÃ¢°»:

Note that the non-centrality parameter ¸5(») of the overspeci¯ed test RSÃÁ is identical

to ¸1(») of the optimal test RSÃ in (1). Although ¸5 = ¸1; some loss of power is to be

expected, as shown in Das Gupta and Perlman (1974), due to the higher degrees of freedom

of the joint test RSÃÁ.
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Using the result (2), Bera and Yoon (1993) suggested a modi¯cation to RSÃ so that the

resulting test is valid in the local presence of Á. The modi¯ed statistic is given by

RS¤Ã =
1

n
[dÃ(eµ)¡ JÃÁ¢°(eµ)J¡1

Á¢°(eµ)dÁ(eµ)]0

[JÃ¢°(eµ)¡ JÃÁ¢°(eµ)J¡1
Á¢°(eµ)JÁÃ¢°(eµ)]¡1

[dÃ(eµ)¡ JÃÁ¢°(eµ)J¡1
Á¢°(eµ)dÁ(eµ)]: (6)

This new test essentially adjusts the mean and variance of the standard RSÃ. Bera

and Yoon (1993) proved that under Ã = Ã0 and Á = Á0 + ±=
p
n RS¤Ã has a central Â2

1

distribution. Thus, RS¤Ã has the same asymptotic null distribution as that of RSÃ based on

the correct speci¯cation, thereby producing an asymptotically correct size test under locally

misspeci¯ed model. Bera and Yoon (1993) further showed that for local misspeci¯cation

the adjusted test is asymptotically equivalent to Neyman's C(®) test and, therefore, shares

the optimality properties of the C(®) test. There is, however, a price to be paid for all these

bene¯ts. Under the local alternatives Ã = Ã0 + »=
p
n

RS¤Ã
D¡! Â2

1(¸6); (7)

where ¸6 ´ ¸6(») = »0(JÃ¢° ¡ JÃÁ¢°J¡1
Á¢°JÁÃ¢°)». Note that ¸1 ¡ ¸6 ¸ 0, where ¸1 is given

in (1). Result (7) is valid both in the presence or absence of the local misspeci¯cation Á =

Á0 + ±=
p
n, since the asymptotic distribution of RS¤Ã is una®ected by the local departure of

Á from Á0. Therefore, RS¤Ã will be less powerful than RSÃ when there is no misspeci¯cation.

The quantity

¸7 = ¸1 ¡ ¸6 = »0JÃÁ¢°J
¡1
Á¢°JÁÃ¢°» (8)

can be regarded as the premium we pay for the validity of RS¤Ã under local misspeci¯cation.

Two other observations regardingRS¤Ã are also worth noting. First, RS¤Ã requires estimation

only under the joint null, namely Ã = Ã0 and Á = Á0. Given the full speci¯cation of the

model L(°;Ã; Á) it is, of course, possible to derive a RS test for Ã = Ã0 in the presence

of Á. However, that requires MLE of Á which could be di±cult to obtain in some cases.

Second, when JÃÁ¢° = 0, RS¤Ã = RSÃ. In practice this is a very simple condition to check.

As mentioned earlier, if this condition is true, RSÃ is an asymptotically valid test in the

local presence of Á.
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3 Tests for error component model

We consider the following one-way error component model introduced by Lillard and Willis

(1978), which combines random individual e®ects and ¯rst order autocorrelation in the

disturbance term:

yit = x0it¯ + uit; i = 1; 2; : : : ;N; t = 1; 2; : : : ; T;

uit = ¹i + ºit;

ºit = ½ºi;t¡1 + ²it; j½j < 1; (9)

where ¯ is a (k £ 1) vector of parameters including the intercept, ¹i » IIDN(0; ¾2
¹) is a

random individual component, and ²it » IIDN(0; ¾2
² ). The ¹i and ºit are assumed to be

independent of each other with ºi;0 » N(0; ¾2
² =(1 ¡ ½2)). N and T denote the number of

individual units and the number of time periods, respectively. For the validity of the tests

discussed here, we need to assume that the regularity conditions of Anderson and Hsiao

(1982) are satis¯ed. Also, testing for ¾2
¹ involves the issue of the parameter being at the

boundary. Although for the nonregular problem of testing at the boundary value, both

the likelihood ratio and Wald test statistics do not have their usual asymptotic chi-squared

distribution, the RS test statistic does [see, e.g., Bera, Ra and Sarkar (1998)].

Let us set µ = (°;Ã; Á)0 = (¾2
² ; ¾

2
¹; ½)

0. Consider the problem of testing for the existence

of the random e®ects (H0 : Ã = 0) in the presence of serial correlation (Á6= 0). To derive

our RS¤Ã , which will now be denoted as RS¤¹, we note that it is su±cient to consider the

scores and the information matrix evaluated at µ0 = (°0; Ã0; Á0)0 = (¾2
² ; 0; 0)0 because of

the block-diagonality of the information matrix involving the ¯ and µ parameters. These

quantities have been derived in Baltagi and Li (1991):

@L

@¾2
²

= d° = ¡NT
2¾2

²

+
u0u
2¾4

²

;

@L

@¾2
¹

= d¹ ´ dÃ = ¡NT
2¾2

²

·
1¡ u0(IN ­ eT e0T )u

u0u

¸
;

@¹

@½
= d½ ´ dÁ = NT

µ
u0u¡1

u0u

¶
; (10)

where IN is an identity matrix of dimension N , eT is a vector of ones of dimension T ,

u0 = (u11; : : : ; u1T ; : : : ; uN1; : : : ; uNT ) and u¡1 is an (NT £ 1) vector containing ui;t¡1. To
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have simplify notation, here the score for the parameter ¾2
¹ is denoted as d¹. We will continue

to follow this convention for the elements of the information matrix and for expressing our

test statistics. Denoting J = (NT )¡1E(¡@2L=@µ@µ0) evaluated at µ0, we have

J =
1

2¾4
²

2
64

1 1 0

1 T 2(T¡1)¾2
²

T

0 2(T¡1)¾2
²

T
2(T¡1)¾4

²
T

3
75 :

This implies that

J¹½¢° = JÃÁ¢° =
T ¡ 1

T¾2
²

;

J¹¢° = JÃ¢° =
T ¡ 1

2¾4
²

;

J½¢° = JÁ¢° =
T ¡ 1

T
; (11)

where ° stands for the parameter ¾2
² . Since J¹½¢° > 0, indicating the asymptotic positive

correlation between the scores d¹ and d½, the one-directional test for the random e®ects

reported in Breusch and Pagan (1980) is not valid asymptotically in the presence of serial

correlation. For this case our RS¤¹ can be easily constructed, from equation (6), as

RS¤¹ =
NT (A+ 2B)2

2(T ¡ 1)(1¡ 2
T )
; (12)

where A and B denote, as in Baltagi and Li (1991),

A = 1¡ eu0(IN ­ eT e0T )eu
;

eu0eu

and

B =
eu0eu¡1

eu0eu :

Note that eu are the OLS residuals from the standard linear model yit = x0it¯ + uit

without the random e®ects and serial correlation. Also notice that A and B are closely

related to the estimates of the scores d¹ and d½, respectively. It is easy to see that the RS¤¹
adjusts the conventional RS statistic given in Breusch and Pagan (1980), i.e.,

RS¹ =
NTA2

2(T ¡ 1)
; (13)
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by correcting the mean and variance of the score d¹ for its asymptotic correlation with d½.

To see the behavior of RS¹ let us ¯rst consider the case of complete misspeci¯cation,

i.e., ¾2
¹ = 0 but ½6= 0. Using (2) and (11), the noncentrality parameter of RS¹ for this case

is:

¸2(½) = ±0J½¹¢°J¡1
¹¢°J¹½¢°± = ½2 2(T ¡ 1)

T 2
; (14)

where for simplicity we use ½ in place of ±. In this case, the use or RS¹ will lead to

rejection of the null hypothesis ¾2
¹ = 0 too often. For local departures RS¤¹ will not have

this drawback when ½6= 0 since under ¾2
¹ = 0, RS¤¹ will have a central Â2 distribution. Let

us now consider the underspeci¯cation situation i.e., when we have both ¾2
¹ > 0 and ½6= 0,

and we use RS¹ to test Ho : ¾2
¹ = 0. From (1), (3) and (11), we see that the change in the

noncentrality parameter of RS¹ due to nonzero ½ is given by

¸3(»; ±)¡ ¸1(») = ¸2(½) + 2»0J¹½¢°±

= ½2 2(T ¡ 1)

T 2
+ 2¾2

¹½
T ¡ 1

T¾2
²

=
2(T ¡ 1)

T

"
½2

T
+
¾2
¹½

¾2
²

#
; (15)

where we use ¾2
¹ in place of ». From (15), it is easy to see that when ½ > 0, the presence of

autocorrelation will add power to RS¹; but when ½ < 0 it can loose power if the individual

e®ect is very high and ¾2
² is low. In this situation, the noncentrality parameter of RS¤¹ is

not a®ected. From (7) and (11), the noncentrality parameter of RS¤¹ under ¾2
¹ > 0 and

½6= 0, can be written as

¸6 ´ ¸6(¾2
¹) = ¾4

¹(J¹¢° ¡ J¹½¢°J¡1
½¢°J½¹¢°)

= ¾4
¹

"
T ¡ 1

2¾4
²

¡ (T ¡ 1)2

T 2¾4
²

T

T ¡ 1

#

=
¾4
¹

¾4
²

(T ¡ 1)(
1

2
¡ 1

T
); (16)

which does not depend on ½. There is, however, a cost in applying RS¤¹ when ½ is indeed

zero. From (8) the cost is

¸7 ´ ¸7(¾2
¹) = ¾4

¹J¹½¢°J
¡1
½¢°J½¹¢° =

¾4
¹

¾4
²

T ¡ 1

T
: (17)
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Note that this cost is present only under ¾2
¹ > 0. That is, there is a cost only in terms of

the power of RS¤¹; the size is una®ected. Later we will provide an interesting interpretation

of this cost of RS¤¹ in terms of the behavior of the unadjusted test RS½ under ¾2
¹ > 0.

As mentioned before, Baltagi and Li (1995) derived a RS test for serial correlation in

the presence of random individual e®ects. Naturally, the test requires MLE of ¾2
¹: Our

procedure gives a simple test for serial correlation in the random e®ects model. In this

situation RS¤½ is obtained simply by switching ¾2
¹ and ½ to yield

RS¤½ =
NT 2(B + A

T )2

(T ¡ 1)(1¡ 2
T )
: (18)

If we assume that the random e®ects are absent throughout, then RS¤½ in (18) reduces to

RS½ =
NT 2B2

T ¡ 1
: (19)

This conventional RS statistic (19) is also given in Baltagi and Li (1991).

As we have done for RS¹, we can also study the performance of RS½ under various

misspeci¯cations. When there is complete misspeci¯cation, i.e., when ½ = 0 but ¾2
¹ > 0,

the noncentrality parameter of RS½ is

¸2(¾2
¹) = »0J¹½¢°J¡1

½¢°J½¹¢°» =
¾4
¹

¾4
²

T ¡ 1

T
; (20)

where we have used ¾2
¹ in place of ». Therefore, RS½ will reject H0 : ½ = 0 too often when

¾2
¹ > 0. Similarly, when there is underspeci¯cation, i.e, ½6= 0 with ¾2

¹ > 0, the change in

the noncentrality parameter due to the presence of the random e®ect, is

¸3(»; ±)¡ ¸1(±) = ¸2(¾2
¹) + 2±0J½¹¢°»

=
T ¡ 1

T

¾2
¹

¾2
²

"
¾2
¹

¾2
²

+ 2½

#
: (21)

Therefore, we have an increase in (or a possible loss of) power when ½ > 0 (or ½ < 0). The

noncentrality parameter of RS¤½ will not be a®ected at all under ¾2
¹ > 0. On the other hand,

we do, however, pay a penalty when ¾2
¹ = 0 and we use the adjusted test RS¤½ . The penalty

is

¸7(½) = ½2J½¹¢°J¡1
¹¢°J¹½¢° = 2½2T ¡ 1

T 2
: (22)
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Due to this factor the power of RS¤½ will be somewhat less than that of RS½ when ¾2
¹ is

indeed zero; the size of RS¤½ , however, remains una®ected. It is very interesting to note that

¸7(½) = ¸2(½) (23)

given in (14). Similarly, from (17) and (20)

¸7(¾2
¹) = ¸2(¾2

¹): (24)

An implication of (23) is that the cost of using RS¤½ when ¾2
¹ = 0 is the same as the cost of

using RS¹ when ½6= 0. Similarly, (24) implies that the loss in the noncentrality parameter of

RS¤¹ when ½ = 0 is equal to the unwanted gain in the noncentrality parameter of RS½ when

¾2
¹ > 0. We will explain these seemingly unintuitive phenomena after we ¯nd a relationship

among the four statistics, RS¤¹, RS¹, RS¤½ , and RS½. It should be noted that the equalities

of equations (23) and (24) are not speci¯c for the error component model, and they hold in

general. This can be seen by comparing ¸2(±) below (2) with ¸7 in equation (8), where Ã

swaps position with Á and » is replaced by ±.

Baltagi and Li (1991, 1995) derived a joint RS test for serial correlation and random

individual e®ects which is given by

RS¹½ =
NT2

2(T ¡ 1)(T ¡ 2)
[A2 + 4AB + 2TB2]: (25)

Under the joint null ¾2
¹ = ½ = 0; RS¹½ is asymptotically distributed as Â2

2: Use of this will

result in a loss of power compared with the proper one-directional tests when only one of

the two forms of misspeci¯cation is present, as we noted while discussing (5). For example,

when ½ = 0 and ¾2
¹ > 0, the noncentrality parameter of both RS¹ and RS¹½ is [see (1) and

(5)]

¸1(¾2
¹) = ¾4

¹J¹¢° =
¾4
¹

¾4
²

T ¡ 1

2
: (26)

Since for RS¹ and RS¹½ we will use respectively Â2
1 and Â2

2 critical values, RS¹½ will be less

powerful. An interesting result follows from (12), (13), (18), (19) and (25), namely,

RS¹½ = RS¤¹ +RS½ = RS¹ +RS¤½ ; (27)
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i.e., the two directional RS test for ¾2
¹ and ½ can be decomposed into the sum of the

adjusted one-directional test of one type of alternative and the unadjusted form for the

other one. Using (27) we can easily explain some of our earlier observations. First, consider

the identities in (23) and (24). From (27), we have

RS½ ¡RS¤½ = RS¹ ¡RS¤¹: (28)

Let us consider the case of ¾2
¹ = 0 and ½6= 0. Then the left-hand side of (28) represents the

\penalty" of using RS¤½ (instead of RS½) while the right-hand side amounts to the \cost" of

using RS¹. (28) implies that these penalty and cost should be the same, as noted in (23).

A reverse argument explains (24). Secondly, the local presence of ½ (or ¾2
¹) has no e®ect

on RS¤¹ (or RS¤½); therefore, from (5) and (27), we can clearly see why the noncentrality

parameter of RS¹½ will be equal to that of RS½ (or RS¹) when ¾2
¹ = 0 (or ½ = 0).

4 Empirical illustrations

In this section we present two empirical examples that illustrate the usefulness of the pro-

posed tests. The ¯rst is based on a data set used by Greene (1983, 1997). The equation to

be estimated is a simple, log-linear cost function:

lnCit = ¯0 + ¯1 lnRit + uit;

where Rit is measured as output of ¯rm i in year t in millions of kilowatt-hours, and Cit

is the total generation cost in millions of dollars, i = 1; 2; : : : ; 6, and t = 1; 2; 3; 4. The

second example is based on the well-known Grunfeld (1958) investment data set for ¯ve

US manufacturing ¯rms measured over 20 years which is frequently used to illustrate panel

issues. It has been used in the illustration of misspeci¯cation tests in the error-component

model in Baltagi, Chang and Li (1992), and in recent books such as those by Baltagi

(1995, p.20) and Greene (2000, p.592). The equation to be estimated is a panel model

of ¯rm investment using the real value of the ¯rm and the real value of capital stock as

explanatory variables:

Iit = ¯0 + ¯1Fit + ¯2Cit + uit;

where Iit denotes real gross investment for ¯rm i in period t, Fit is the real value of the ¯rm

and Cit is the real value of the capital stock, i = 1; 2; : : : ; 5, and t = 1; 2; : : : ; 20.
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We estimated the parameters of both models by OLS and implemented the following

¯ve tests based on OLS residuals: the Breusch-Pagan test for random e®ects (RS¹), the

proposed modi¯ed version (RS¤¹), the LM serial correlation test (RS½), the corresponding

modi¯ed version (RS¤½), and the joint test for serial correlation and random e®ects (RS¹½).

The test statistics for both examples are presented in Table 1; the p-values are given in

parentheses.

All of the test statistics were computed individually, and the equalities in (28) are

satis¯ed for both data sets. In the example based on Greene's data the unmodi¯ed tests for

serial correlation (RS½) and, to some extent, for random e®ects (RS¹) reject the respective

null hypothesis of no serial correlation and no random e®ects, and the omnibus test rejects

the joint null. But our modi¯ed tests suggest that in this example the problem seems to be

serial correlation rather the presence of both e®ects. For Grunfeld's data, applications of

our modi¯ed tests point to the presence of the other e®ect. The unmodi¯ed tests soundly

reject their corresponding null hypotheses. The modi¯ed version of the random e®ect test

(RS¤¹) also rejects the null but the modi¯ed serial correlation test (RS¤½) barely rejects the

null at the 5% signi¯cance level. It is interesting to note the substantial reduction of the

autocorrelation test statistic, from 73.351 to 3.712. So in this example the misspeci¯cation

can be thought to come from the presence of random e®ects rather than serial correlation.

As expected, the joint test statistic is highly signi¯cant.

In spite of the small sample size of the data sets, these examples seem to illustrate

clearly the main points of the paper: the proposed modi¯ed versions of the test are more

informative than a test for serial correlation or random e®ect that ignores the presence of

the other e®ect. In the ¯rst case, serial correlation spuriously induces rejection of the no-

random e®ects hypothesis, and in the second case the opposite happens: the presence of a

random e®ect induces rejection of the no-serial correlation hypothesis. The joint test RS¹½

rejects the joint null but is not informative about the direction of the misspeci¯cation.

RS¹½ provides a correct measure of the joint e®ects of individual component and serial

correlation. The main problem is how to decompose this measure to get an idea about

the true departure(s). From a practical standpoint if RS¹½ = RS¹ + RS½ does not hold,

that should be an indication of the presence of an interaction between random e®ects and

serial correlation; and the unadjusted statistics RS¹ and RS½ will be contaminated by the

presence of other departures. For example, for the Grunfeld data
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RS¹ +RS½ ¡RS¹½ = RS¹ ¡RS¤¹ = RS½ ¡RS¤½ = 69:638:

This provides a measure of the interaction between ¾2
¹ and ½, and is also equal to the

correction needed for each unadjusted test.

It is important to emphasize that the implementation of the modi¯ed tests is based solely

on simple OLS residuals. It could be argued that a more e±cient testing procedure could be

based on the estimation of a general model that allows for both serial correlation and random

e®ects, and could then test the hypothesis of no-serial correlation and no-random e®ects as

restrictions on this general model (either jointly or individually). But this would require

the maximization of a likelihood function whose computational tractability is substantially

more involved than computing simple OLS residuals. Hsiao (1986, p.55) commented that

the \computation of the MLE is very complicated." For more on the estimation issues of

the error component model with serial correlation see Baltagi (1995, pp. 18-19), Majumder

and King (1999) and Phillips (1999).

5 Monte Carlo results

In this section we present the results of a Monte Carlo study to investigate the ¯nite sample

behavior of the tests. To facilitate comparison with existing results we follow a structure

similar to the one adopted by Baltagi, et al. (1992) and Baltagi and Li (1995).

The model was set as a special case of (9):

yit = ®+ ¯xit + uit; i = 1; 2; : : : ; N; t = 1; 2; : : : ; T

uit = ¹i + vit;

vit = ½vi;t¡1 + "it; j½j < 1;

where ® = 5 and ¯ = 0:5: The independent variable xit was generated following Nerlove

(1971):

xit = 0:1t+ 0:5xi;t¡1 + !it;

where !it has the uniform distribution on [¡0:5; 0:5]. Initial values were chosen as in

Baltagi, et al. (1992). Let ¾2; ¾2
¹; ¾

2
v and ¾2

" represent the variances of uit; ¹i; vit and "it,
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respectively, and let ¿ = ¾2
¹=¾

2; which represents the \strength" of the random e®ects.

Here, ¾2 = ¾2
¹ + ¾2

v , and we set ¾2 = 20: ¿ and ½ were allowed to take seven di®erent

values (0; 0:05; 0:1; 0:2; 0:4; 0:6; 0:8); and three di®erent sample sizes (N;T ) were considered:

(25; 10); (25; 20) and (50; 10): Since for each i; vit follows an AR(1) process, ¾2
v = ¾2

"=(1¡½2):

Then, according to this structure, the random e®ect term and the innovation were generated

as:

¹i » IIDN(0; 20(1¡ ¿))

"it » IIDN(0; 20(1¡ ¿)(1¡ ½2)):

For each sample size the model described above was generated 1,000 times under di®erent

parameter settings. Therefore, the maximum standard errors of the estimates of the size

and powers would be
p

0:5(1¡ 0:5)=1000 ' 0:015. In each replication the parameters of the

model were estimated using OLS, and ¯ve test statistics, namely, RS¹; RS¤¹; RS½; RS
¤
½ and

RS¹½, were computed. The tables and graphs are based on the nominal size of 0.05. Our

simulation study was quite extensive; we carried out experiments for all possible parameter

combinations for the three sample sizes. We present here only a portion of our extensive

tables and graphs; the rest is available from the authors upon request.

Calculated statistics under ¿ = ½ = 0 were used to estimate the empirical sizes of the

tests and to study the closeness of their distributions to Â2 through Q¡ Q plots and the

Kolmogorov-Smirnov test. From Table 2 we note that both RS¹ and RS¤¹ have similar

empirical sizes, but these are below the nominal size 0.05 for N = 25; T = 10 and N =

25; T = 20: However, when N increases to 50 with T = 10, the sizes are higher than 0.05

but are still within acceptable limits. The results for the other three tests RS½; RS
¤
½ ; RS¹½

are not good. All of them reject the null too frequently, and the empirical sizes do not

improve as we increase N and T . The performances of RS½ and RS¤½ are quite similar. This

will enable us to make a valid power comparison between them.

The results of Table 2 are consistent with the Q-Q plots in Figure 1 for N = 25, T = 10.

To save space ¯gures for the other two combinations of (N;T ) are not included. From the

plots note that the empirical distributions of the test statistics diverge from that of the Â2
1

at the right tail parts. For RS¹ and RS¤¹ the points are below the 45o line, particularly

for the high values, and that leads to sizes being below 0.05 as we just noted from Table
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2. However, the number of points (out of 1,000) that are far away from the 45o line at

the tail parts are not many. For RS½ and RS¤½ we observe a higher degree of departure

from the 45o line in the opposite direction, and this leads to much higher sizes of the tests.

Results from the Kolmogorov-Smirnov test, not reported here, accept the null hypothesis

of the overall distribution being the same as Â2 for all ¯ve statistics. For the true sizes of

the tests, however, it is only the tail part, not the overall distribution, that matters.

Let us now turn into the performance of tests in terms of power. For N = 25 and

T = 10, the estimated rejection probabilities of the tests are reported in Table 3, and are

also illustrated in Figures (2a)-(2d). Let us ¯rst concentrate on RS¹ and RS¤¹, which are

designed to test the null hypothesis H0 : ¾2
¹ = 0. When ½ = 0, RS¹ is the optimal test.

This is clearly evident looking at all the rows in Table 3 with ½ = 0; RS¹ has the highest

powers among all the tests. The power of RS¤¹ is less than that of RS¹ when ½ = 0. The

losses in power are, however, not very large, as can also be seen from Figure 2(a). When ¿

exceeds 0.2 (or ¾2
¹ exceeds 4, since we set ¾2

¹ = 20¿) both tests have power equal to 1. The

amount of loss in using RS¤¹ when ½ = 0 was characterized by (17) in terms of the decrease

in the noncentrality parameter. That loss increases with ¿(¾2
¹). However, the overall power

of RS¤¹ is guided by the noncentrality parameter in (16):

¸6(¾2
¹) =

¾4
¹

2¾4
²

(T ¡ 1)¡ ¾4
¹

¾4
²

T ¡ 1

T
;

where the second term is the amount of penalty in using RS¤¹ when ½ = 0, and it is given

in (17). Since the ¯rst term dominates, the relative value of the loss is negligible. While

RS¤¹ does not sustain much loss in power when ½ = 0, we notice some problems in RS¹

when ¾2
¹ = 0 but ½ 6= 0. RS¹ rejects H0 : ¾2

¹ = 0 too frequently. For example, when

¿ = 0 (i.e., ¾2
¹ = 0) and ½ = 0:4, RS¹ has a rejection probability 0.860. For other values

of ½ the proportion of rejections of ¾2
¹ = 0 (when it is true) can be seen in Figure 2(b).

As we discussed in Section 3, this unwanted power is due to the noncentrality parameter

¸2(½) in (14), which is \purely" a funtion of the degree of departure of ½ from zero. RS¤¹
also has some unwanted power but the problem is less severe. For the above case of ¿ = 0

and ½ = 0:4, RS¤¹ has power 0.356. Figure 2(b) gives the power of RS¤¹ when ¿ = 0 for

di®erent values of ½. As we mentioned earlier, RS¤¹ is designed to be robust only under

local misspeci¯cation, i.e, for low values of ½. From that point of view, it does a very good

job|its performance deteriorates only when ½ takes high values.
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From Table 3 and Figure 2(c), we note that when ¿ > 0, an increase in ½(> 0) enhances

the power of RS¹. For example, when ¿ = 0:05 the powers of RS¹ for ½ = 0:0 and 0:2

are, respectively, 0.307 and 0.702. This can be explained using the expression (15), which

gives the changes in the noncentrality parameter of RS¹ due to ½. From (16) we see that

the noncentrality parameter of RS¤¹ does not depend on ½. This result is, of course, valid

only asymptotically and for local departures of ½ from zero. Figure 2(d) shows that there

is some gain in power of RS¤¹, but it is prominent only when ½ = 0:4.

As we indicated earlier there could be some loss of power of RS¹ when ½ < 0. We

performed a small-scale experiment for this case, results of which are reported in Table 4.

First note that when ¿ = 0, an increase in the absolute value of ½ leads to an increase in

the size of RS¹. For example, when N = 25, T = 10 and ¿ = 0, the rejection frequencies

for ½ = 0 and ½ = ¡0:4 are, respectively, 0.040 and 0.573. This is due to the noncentrality

parameter (14) which is a function of ½2. When ¿ > 0 (¾2
¹ > 0), the changes in the

noncentrality parameter could be negative, and there could be a substantial loss in power

of RS¹. For instance, for the above (25,10) sample size combinations, and ¿ = 0:05, the

powers of RS¹, for ½ = 0:0 and -0.4 are, respectively, 0.307 and 0.039. RS¤¹ does not su®er

from these detrimental e®ects as we see from Table 4. Its size remains small for all ½ < 0,

and power even increases as the absolute value of ½ becomes larger.

In a similar way, we can explain the behavior of RS½ and RS¤½ using Table 3 and Figures

3(a)-3(d). From Table 3 we note that, as expected, when ¾2
¹ = 0, RS½ has the highest

powers among all the tests. The powers of RS¤½ are very close to those of RS½. Therefore,

the premium we pay for the wider validity of RS¤½ is minimal.

The real bene¯t of RS¤½ is noticed when ½ = 0 but ¿ > 0; the performance of RS¤½
is quite remarkable, as can be seen from Figure 3(b). RS½ rejects H0 : ½ = 0 too often,

whereas, quite correctly, RS¤½ does not reject H0 so often. For example, when ¿ = 0:2 and

½ = 0, the rejection proportions for RS½ and RS¤½ are 0.766 and 0.046, respectively. Even

when we increase ¿ to 0.8, the rejection proportion for RS¤½ goes up to 0.084 only whereas

RS½ rejects 100% of the time. In a way, RS¤½ is doing more than it is designed to do, that

is, not rejecting ½ = 0 when ½ is indeed zero even for large values of ¿ .

From Figure 3(c), we observe that the power of RS½ is strongly a®ected by the presence

of random e®ects, while there is virtually no e®ect on the power of RS¤½ as seen from Figure

3(d) even for large values of ¿ . This performance of RS¤½ is exceptionally good. For negative
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values of ½ in Table 4, we see that the presence of ¿ has a less detrimental e®ect on RS¤½ .

For example, when ½ = ¡0:10, powers of RS½ are 0.396 and 0.184 for ¿ = 0:0 and 0.05,

respectively; for the same situations, the powers of RS¤½ are, respectively, 0.346 and 0.314.

Comparing the performance of RS¤½ and RS¤¹, we see that the former is even more

\robust" in the presence of ¿ , both in terms of size and power, than is the latter in the

presence of serial correlation. To see this from a theoretical point of view, let us consider

(17) and (22), which are, respectively, the penalties of using RS¤¹ and RS¤½ . From (17),
¾4
¹

¾4
²

T¡1
T , the penalty in using RS¤¹, also depends on ½ through ¾2

² = 20(1¡ ¿)(1¡ ½2), while

(22), 2½2(T ¡ 1)=T 2, is a function of ½ only and is of smaller magnitude in terms of T .

Finally, we discuss brie°y the performance of the joint statistic RS¹½ in the light of our

results (4) and (5). This test is optimal when ¾2
¹ > 0 and ½ 6= 0. As we can see from

Table 3, in this situation RS¹½ has the highest power most of the time. However, when

the departure from ¾2
¹ = 0; ½ = 0 is one-directional (say, ¾2

¹ > 0; ½ = 0); RS¹ and RS¹½

have the same non-centrality parameter [see (26)]. Since RS¹½ and RS½ use the Â2
2 and Â2

1

tests, respectively, there will be a loss of power in using RS¹½. For example, when ¿ = 0:05

and ½ = 0, the powers for RS¹ and RS¹½ are 0.307 and 0.248, respectively. Similarly,

when ¿ = 0; ½ = 0:2; the power of RS½ and RS¹½ are respectively, 0.863 and 0.813. These

results are consistent with those of Baltagi and Li (1995). Although RS¹½ has overall good

power, it cannot help to identify the exact source of misspeci¯cation when there is only a

one-directional departure.

The qualitative performance of all the tests do not change when we increase the sample

sizes to N = 25; T = 20; and N = 50; T = 10 and they further illustrate the usefulness of

our modi¯ed tests. These results are not presented but are available from the authors upon

request.

6 Conclusions

In this paper we have proposed some simple tests, based on OLS residuals for random e®ects

in the presence of serial correlation, and for serial correlation allowing for the presence of

random e®ects. These tests are obtained by adjusting the existing test procedures. We have

investigated the ¯nite sample size and power performance of these and some of the available

tests through a Monte Carlo study. We have also provided some empirical examples. The

Monte Carlo study, along with the examples, clearly show the usefulness of our procedures
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to identify the exact source(s) of misspeci¯cation. One drawback of our methodology is

that we allow for only local misspeci¯cation. For non-local departures, e±cient tests could

be obtained after estimating full model(s) by maximum likelihood; that, however, will loose

the simplicity of our tests using only OLS residuals.
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TABLE 1

Empirical illustration
Tests for random e®ects and serial correlation

Data RS¹ RS¤¹ RS½ RS¤½ RS¹½ RSO¹ RSO¤¹
Greene 5.872 0.269 15.569 9.966 15.838 2.423 0.518

(0.015) (0.604) (0.000) (0.002) (0.000) (0.007) (0.3020)
Grunfeld 453.822 384.183 73.351 3.712 457.535 21.303 19.605

(0.000) (0.000) (0.000) (0.054) (0.000) (0.00) (0.000)
Note: p-values are given in parenthesis.

TABLE 2
Empirical size of tests
(nominal size=0.05)

Sample Tests
size RS¹ RS¤¹ RS½ RS¤½ RS¹½ RSO¹ RSO¤¹

(25,10) 0.047 0.048 0.087 0.072 0.062 0.045 0.051
(25,20) 0.050 0.051 0.060 0.056 0.057 0.052 0.058
(50,10) 0.043 0.040 0.065 0.062 0.059 0.046 0.053



TABLE 3: Estimated Powers of Di®erent Tests
Sample size: N=25; T=10

¿ ½ RS¹ RS¤¹ RS½ RS¤½ RS¹½ RSO¹ RSO¤¹
0.00 0.00 0.047 0.048 0.087 0.072 0.062 0.045 0.051
0.00 0.05 0.053 0.050 0.143 0.141 0.122 0.085 0.039
0.00 0.10 0.123 0.080 0.381 0.333 0.342 0.187 0.061
0.00 0.20 0.322 0.158 0.869 0.788 0.818 0.416 0.128
0.00 0.40 0.847 0.325 1.000 0.999 1.000 0.888 0.354
0.00 0.60 0.998 0.776 1.000 1.000 1.000 0.998 0.804

0.05 0.00 0.344 0.298 0.153 0.072 0.308 0.435 0.373
0.05 0.05 0.442 0.301 0.351 0.118 0.423 0.530 0.402
0.05 0.10 0.514 0.296 0.598 0.326 0.605 0.591 0.359
0.05 0.20 0.734 0.364 0.949 0.789 0.932 0.776 0.428
0.05 0.40 0.955 0.576 1.000 1.000 1.000 0.971 0.641
0.05 0.60 0.998 0.867 1.000 1.000 1.000 1.000 0.890

0.10 0.00 0.752 0.691 0.371 0.047 0.702 0.808 0.760
0.10 0.05 0.759 0.630 0.563 0.123 0.728 0.818 0.707
0.10 0.10 0.830 0.644 0.792 0.301 0.852 0.876 0.723
0.10 0.20 0.907 0.648 0.990 0.794 0.980 0.937 0.710
0.10 0.40 0.988 0.790 1.000 0.999 1.000 0.991 0.830
0.10 0.60 1.000 0.933 1.000 1.000 1.000 1.000 0.949

0.20 0.00 0.983 0.968 0.802 0.042 0.977 0.988 0.982
0.20 0.05 0.977 0.962 0.906 0.139 0.981 0.984 0.973
0.20 0.10 0.987 0.967 0.966 0.300 0.988 0.992 0.975
0.20 0.20 0.991 0.942 0.997 0.785 0.998 0.994 0.958
0.20 0.40 0.999 0.954 1.000 0.999 1.000 0.999 0.964
0.20 0.60 1.000 0.990 1.000 1.000 1.000 1.000 0.992

0.40 0.00 1.000 1.000 0.995 0.045 1.000 1.000 1.000
0.40 0.05 0.999 0.999 0.999 0.125 0.999 1.000 0.999
0.40 0.10 1.000 1.000 0.999 0.321 1.000 1.000 1.000
0.40 0.20 1.000 1.000 1.000 0.774 1.000 1.000 1.000
0.40 0.40 1.000 1.000 1.000 0.998 1.000 1.000 1.000
0.40 0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.60 0.00 1.000 1.000 1.000 0.045 1.000 1.000 1.000
0.60 0.05 1.000 1.000 1.000 0.156 1.000 1.000 1.000
0.60 0.10 1.000 1.000 1.000 0.311 1.000 1.000 1.000
0.60 0.20 1.000 1.000 1.000 0.739 1.000 1.000 1.000
0.60 0.40 1.000 1.000 1.000 0.998 1.000 1.000 1.000
0.60 0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000



TABLE 4
Estimated Powers of Di®erent Tests

¿ ½ RS¹ RS¤¹ RS½ RS¤½ RS½;¹
Sample size: N = 25; T = 10
0.00 -0.05 0.039 0.031 0.173 0.170 0.118
0.00 -0.10 0.044 0.019 0.396 0.346 0.285
0.00 -0.20 0.162 0.016 0.902 0.857 0.833
0.00 -0.40 0.573 0.048 1.000 1.000 1.000
0.05 -0.05 0.254 0.289 0.097 0.130 0.269
0.05 -0.10 0.202 0.340 0.184 0.314 0.365
0.05 -0.20 0.097 0.369 0.680 0.830 0.770
0.05 -0.40 0.039 0.679 0.997 1.000 1.000
Sample size: N = 25; T = 20
0.00 -0.05 0.041 0.025 0.247 0.217 0.168
0.00 -0.10 0.049 0.025 0.640 0.600 0.520
0.00 -0.20 0.136 0.010 0.999 0.999 0.992
0.00 -0.40 0.610 0.018 1.000 1.000 1.000
0.05 -0.05 0.652 0.707 0.090 0.200 0.665
0.05 -0.10 0.613 0.758 0.244 0.557 0.806
0.05 -0.20 0.507 0.829 0.882 0.987 0.992
0.05 -0.40 0.303 0.963 1.000 1.000 1.000


