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Abstract

We study problems of identification of an econometric model for empirical games
in the most general way. Global identification results have already been found for
example in some specific auctions. We work with local identification principle,
which enable us to write general identification results. In our framework we have
symmetric players and iid private information. The benchmark model is a one with
the distribution of the private information and an additionnal dissociated parameter
(e.g. parameter of risk aversion) as parameters of interest. Eventually we extend
the study to the case of partial observability.

1 Introduction

The problem of identification in empirical games is an already existing issue but which
did not find any satisfactory answer. What has not been done and seems interesting is to
find a general framework, applicable to any structural model of games with I players, an
observable z;, i = 1,1, as the result of a transformation ¢; of an unobservable &;, which
is an iid private information with a distribution Fy and of an additional parameter A;.

Ti = Qg (fz', Fy, )\)

In our framework we have symmetric players and iid private information. This is
a strong limitation with respect to what we can see from the real life, but we recall
that no general identification conditions have been established until now, and it seems
obvious to start with this benchmark model. Moreover we face here a problem of local
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identification. One could argue that some works have already be done which establish
global identification results. This is true and well done for example in Laffont, Hossard
and Vuong, Campo, Perrigne and Vuong, Donald and Paarsch, but this is at the cost of
generality. With local identification we can establish results for a broad class of games.

In the work of Florens, Protopopescu and Richard (FPR), two conditions was found
to establish the possibility to identify Fy when we assume symmetry among players, in
the parametric case or in the nonparametric one.

Our work goes a little bit further in two ways. First, we give an identification condition
for any parameters of the transformation ¢ (for example a parameter of risk aversion)
and not only parameters of the distribution function. Second, this condition is valid in
the parametric as well as in the nonparametric case.

We begin with a general theorem which states the first identification condition. Some
illustrations follow. The first is IPV (Independent Private Value) Dutch and first-price
sealed-bid auction. We consider the case of potential bidders who are identical ex ante,
who are potentially risk averse w.r.t. winning the object, and who have the same HARA
(Hyperbolic Absolute Risk Aversion) utility function. Here, our parameters of interest
are then § = F and A the coefficient of risk aversion. We establish that there is no
identification. In the parametric case there is two applications. The parameters of interest
are A and 6 the vector of the parameters associated to Fjy. First, we show that in a
procurement model with the cost as private information we have identification. Then we
study a model of duopoly for which we find that there is no identification.

In the last section we have an extension of the general theorem to the case of partial
observability. Two examples, which are inspired by the models studied for example by
Wolak or Lavergne and Thomas, illustrate the case of partial observability with exclusion.
We conclude with an application which is a simpler version of the model by Florens, Hugo
and Richard for procurements in the space industry.

2 General framework

Following FPR work , we consider that the I players draw iid private signals &;, i =
1,1, following a distribution Fy which is assumed to be common knowledge to all and
completely determined by 6.

Let & € 5= [£E], Fy € Fp,

F, =F N D, with F the subset of distribution function in C?(Z) and D,, an appro-
priate vector subspace of C'? (=) (in order to guarantee the monotonicity of ¢ in £ given
Fy).

The ¢, are then transformed into observable actions (bids) z; by means of a transfor-
mation ¢;, say x; = @; (&, Fp, \) -



In our study the function ¢ : 2 x C?(Z) x R" is common to all players (the game is
symmetric)
z; = ¢ (&, Fo, \)
Let @ denote the operator
® : OXR —CI(E);0x\— ®(0,))
®(0,2) (&) = @(&0,0) = poa(§)

dr ®r (H) denotes the Fréchet differential of ® (F,.) in the direction of H,
dA® () denotes the Fréchet differential of ® (., A) in the direction of f.
In practice Fréchet differentials can be computed as Gateaux differentials, i.e.

d
dp®r (H) = lim, 5@ (F+ AH, A)

(under some conditions verified by assumption)

3 General identification principle

The parameters of interest are (6,\) € © x R, while the observations (x;), i = 1,n are
iid.
Let defined © as a open subset of a Banach space (in order to have the differentiability).

Remark 1 6 = F' corresponds to the nonparametric case, let say semiparametric because
of A, and 0 € RP to the parametric one.

Definition 1 The parameters (61, A1) and (62, \2) are observationaly equivalent (61, A1) ~
(92, )\2)) Zﬁ G1 == GQ where Gz = ng 9 gO;veli’Ai (Z == 1,2)

Definition 2 the parameters (0,\) € © x R" are globally identified iff
YV (0iy As) €O X R, (04, M) ~ (0,A) = (0., \) = (6,))

Definition 3 The parameters (,\) € © x R" are locally identified iff there ezists a
neighborhood V(6, X) of (0, }) in © x R" relative to the norm |||y 0 such that

V (0., As) €V(0,X), (0, )\) ~ (0,) = (0,,0) = (0, )
Lemma 1 (0,5, A2) is observationaly equivalent to (01, A1) iff

F92 —Gio PFpohg = 0 (1)



Proof. (1) if (92, )\2) ~ (491, )\1) then Gl = G2 and Gl O PFyo,x0 = G2 O PFpo,ha = Fgg
(ii) from equation (1) it follows that G = Fpp 0 ¢p) ,, =G, R

Theorem 2 The model (¢,0, ) is locally identified if the operator : Ty, = doFy +
L (dgPy ) — drPy ) is one to one V (0,)).€ © x R.

0o,
Proof. consider the application

A : (OXR)x(OxR)— D,
[(07 )‘) ; (0*7 )‘*)] — A ((97 >‘) ) (0*’ A*)) = Fp. — GF)\ O PFy.,Ax

Note that A ((0,A);(0,))) = 0. It follows from the implicit function theorem that, if the
Fréchet differential of A w.r.t. (6., \,) is invertible at ((6,\); (6,))), then there exists
a neighborhood V(0, ) of (6,) such that (6.,\.) = (6,A) is the unique solution to
the equation A ((6,\); (0., X)) = 0 for (6., As) € V(6,)), in which case it follows from
Lemma 1 that (0, ) is locally identified. The Fréchet differential of A w.r.t. (6,,\,) at
((8,X);(6,X)) is characterized by the operator

doFy— <3GF(M o SOF(,,,\) (dgPyr — drPy.»)

4 The Nonparametric Case

Our parameters of interest are then § = F' and .
IPV Dutch and first-price sealed-bid auctions represent a quiet general type of auctions
and it is interesting to see what type of result we get.

4.1 IPV Dutch and First-Price Sealed-Bid Auctions

Following Donald and Paarsch , we consider the case of potential bidders who are identical
ex ante, who are potentially risk averse w.r.t. winning the object, and who have the same
HARA (Hyperbolic Absolute Risk Aversion) utility function

UY) =AYV where A > 1

In our case, we take as a parameter the coefficient of risk aversion .
A > 1 and take values in R.



Dutch and first-price sealed-bid auctions are also strategically equivalent. Following
Donald and Paarsch we have in both case

3
/6 F™ (v) dv
prp () =€ — NG

(F,\) € D, x R and we actually face a semiparametric identification problem.

4.1.1 Computation of dp®p ), (H)

We recall that
dr®ry (H) :/\li%ﬁr di}\q; (F'+AH,A)
W (F+AH, ) (§) = o (6, F +AH, N

/: [F (v) + AH (v)]™ dv

50

[F (&) + AH (&)™

_ d
= é'_

/; [F(v) + \H (v)]mk dv (—mAH (§)) /5: mAH (v) [F (v) + \H (v)]mA—l do

0

[F(€) + AH (" [F(€) + AH (O
Then we find .- . .
i (1) (©) = = {1 [P )= P (©) [ 1 0) 7 1)}

4.1.2 Computation of d\®y
We have d\® 5, (/) :/\lirgl+ 2P (F, A+ \P)

K2 (F,X+28) (6) = fo (6, FA+AB)
/; [F (v)]mO‘H‘ﬂ) dv

[F (&)™

_ d
= é'_

mBIn F (§) /; [F ()]
) F O™
/: mBIn F (v) [F (v)]"* dy

[F (&)™



Then we find

drx®ra (B) (§) = mp

[F (&)™

4.1.3 Computation of Tr, (H, ) (§)

{lnF(f) /&f [F (v)]™ dv — glnF(v) [F (v)]™ dv}

o

We can compute

F™ (€)
™ (8)

dppa(§) = %‘PF,A € =1+ %1((% /5: ™ (u) du —

VG,
_ me(g)/&p (u) d

and then deduce

f
8‘10F,>\

F(§)
3
/ [F (0)]™ dv

&o

2 dm,mm(g)”ﬁ)ﬂ{lnmg) : }

1 /£ H (v) F™ (v) dv

&o

qu)F,A (H) (f) =H (f) -

. 590F,,\

Finally we find :

Tra (H, B) (§)
=H(§) - H (&) 5
InF (v) [F (v)]™ dv
+—¢ F©) — ;H(v) Fm2=1 () dv—F(i)ﬂ {lnF(f) _ 2o z — }
S E @) [ @i
F (&)

B /f: [F (v)]™ dv

X {/: H (v) F™ ! (v) dv — § llnF (&) /: [F (0)]™ dv — ; In F (v) [F (v)]™ dv]}

Remark 2 We need A # 0. Here, because we have a parameter of risk aversion, A > 1
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In order to determine if the model is identified in the semiparametric case, we need to
study the injectivity of Tr (H, 3) .

Actually we can show that it is not injective. To see this let take the Ker of this
operator. This correspond to the set Ker [Tr (H,5)] = {(H,5) /Trx (H,B) (§) = 0}.

Trx (H,B)(€) = 0 BC(F.€) =\ /5 jH(v) F™1 (1) do 2)
with C (F,¢) = InF(¢) / 5 [F (0)]™ dv — ; InF (v) [F (v)]™ dv
Any H and [ verifying (2) must also verify %TEA (H,p) () = 0. This imply 5%0 (F,¢) =
MH (£) F™ =1 (€) . Rewriting it we have
Q) = s 5 (PO )
in 2 R o a ) mA _ mA
with agC(F, £) = /’f‘g[F( " d Ff%?) +In F (&) {[F (O™ = [F ()™}
= e [F (’l))]m dvm

It follows from (3) that V3, 3H (§) s.t. (H,B3) € Ker[Tr,(H,()]. This implies that
dim {Ker [Tr, (H, )]} > dim {3} =1 and then that Tr (H, 3) is not injective'.
Then we have shown the following result :

Proposition 3 In an IPV Dutch or First-Price Sealed Bid model of auction, with F' the
distribution of private information and A the parameter of risk aversion as parameters
of interest, the semiparametric identification is not possible.

5 The Parametric Case

Here, the parameter of interest is (6, \) € RP'".
If we take the same type of auction than in the semiparametric case, this only means
that we have to specify a parametric distribution F).

5.1 IPV Procurement

We are interested in the distribution of the cost c. Being in a parametric case we specify
a distribution Fy fully characterized by the parameter 6.

" Ker [Tp,, (H,3)] has a huge number of elements”
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In the case of a procurement the participants will play

/;OO [1— Fy(v)]™ dv
PFy,N (g) = g - FrmA (f)

Let take a general form for the distribution as an exponential : ¢ ~ £(6), 6 > 0,
c>0.
Then Fy (§) =1 —exp (—6£) and f (§) = fexp (—0) and we find

1

PFp,A &) =¢— DN

5.1.1 Computation of dyF (é)

Here this term is not reduced to the identity.

doF (HA) (&) = exp (a—gﬁm)\f) -0 = —mAEexp (—OmAE) O

5.1.2 Computation of dy® , (é)

~

R 0 ~ 0
daq’a,,\ (9> (f) = SDF#A(S) 0= 02m\

5.1.3 Computation of d,® , (\)

B A
© Om2

drx®ox (N) (§)

5.1.4 Computation of Ty, (H,[3) (§)

f (&)
aSOFo,/\ (g)

Here we simply have

Then

= [ (&) = Oexp (=0¢)

~

[ N A
02mX  Om?

Ty (é, )\) (&) = —mAE exp (—OmAE) 0 + [ ] 0 exp (—6¢)

As in the nonparametric case, we study the set Ker [T@ A (é, )\)] .

Ty (6,1) (€) =0 & &0 =

Om2)\2 A

exp (BmAE) [0 A
el



If we differentiate twice w.r.t. £ we obtain

+5=0

D
0
then we have § = A\ = 0 which leads to the injectivity of the operator Tj .
In the TPV procurement model with a cost ¢ ~ £ (0), 6 and the parameter of risk
aversion A are identified.

5.2 The Duopoly Case

Not only the auction models are of interest. A good illustration could be then this one :
two firms with private costs ¢; (i = 1,2) compete in a Cournot game. The private costs
are iid and follow a normal distribution, ¢; ~ A (1, 02). The cost functions are linear :

¢ (Qz) = ¢;Q;
the quantity to choose are supposed to be an affine function of the cost :
Qi =g — he;

and the inverse demand function is written :

P=a-b(Q1+Q>)

For firm ¢ the program is to maximize its expected revenue :
%@x E[PQ; — C(Q))]

—b h 1
After the first order condition we find :Q); = % + —p— =c;
In this case, our parameters of interest are the ones of the distribution, ¢ and o, and
only one of the coefficient, b.
By analogy with the previous presentation we can say that § = (u, o) and A = b.
To facilitate the notation we will note ¢; as ¢ and we will denote ¢ as the response

function of the firm,
(c) = a—bg n h 1
L I LT

We recall that the distribution function is

}W@:7%/iim«—§>ﬁ




5.2.1 Computation of dyF (é)

o (7) 0 =258 e 5

1 Lie—p?\ [ B (c—p) .
- \/27reXp<_2[ o ] ){_a_ 2 7
5.2.2 Computation of dy® , (é)

. 0 h
@%@ﬂdz%%gﬁzaﬁ

-0

5.2.3 Computation of d,® , (\)
_ 990 () ;_ la—o)p

0b 2b?

drx o (A) ()

5.2.4 Computation of Ty, (H,f3) (§)

Here we simply have aLc)() =—f(c)2b
Prg A \C
Then
Ty (6) (o)

- e (AT [£ e 20y

we study the set Ker [Tg (é)} .

)

Tg(é)(c):()———>3:—5 (4)

Then the Ker is not reduced to (0,0,0), Ty is not injective.
In this duopoly model with private cost ¢ ~ N (u,0?) and the coefficient term b of
the inverse demand function, as parameters of interest, there is no identification.

Remark 3 If all the parameters (a,b, g, h) of the quantity response are to be identified,
there is no chance to have identification either.

Remark 4 If only the parameters (u, o) of the distribution function are to be identified,
there is identification.
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6 Partial Observability

Generally speaking, it seems that in the semiparametric case we don’t have easily identi-
fication.
One way to identify and to generalize our theorem is to take into account the case of
partial observability.
Actually we consider the case where &;, x; and ¢ can be partitioned in the following
way :
— i _ _ Yi _ Py (nia Zis )‘)
&'—(zi = (& A) = s )T 2
where z; € R? is observable as the realizations of a variable z.
to facilitate the notation the indexes ”¢” will not be written
F can be decomposed in F), the distribution of the z’s and F* the distribution of 5
conditional on z
F = F,F*

Let M and C fully characterize respectively F, and F~.

Remark 5 In the parametric case, M and C would correspond to the parameters of the
distributions F, and F?. In the semiparametric case, M and C would correspond to F,
and F*.

Our parameter of interest is then 6 = (M,C, \) .

From this point we can proceed in the same way than in the general identification
part, with some changes in the arguments.

G, the joint distribution of the observables (y;, z;) , can be written

G = F.G*

Note that G (§,2) = (F.G*) o (§,2) = F.(2)G*(§,2) = F.(2) F* (¢ 1 (9,2)) =
(F.F?) o (¢ 1(§,2)), the last equality because w.r.t. z, ¢ ! corresponds to the iden-
tity.

Then a short version of the Lemma is now

O, ~0 <= FF,, —Gow,=0 (5)

Theorem 4 The model (¢, 0) is locally identified if the operator Ty = F?dy F,+ F.dc F*+
5‘%619@9 18 one to one V0.€ ©O.

11



Proof. consider the application

A Ox60-—D,
0;6,] — A(6;6,,)=F’F,,—Gop,

Note that A (6;60) = 0. It follows from the implicit function theorem that, if the Fréchet
differential of A w.r.t. 6, is one to one at ((6,7);(6,7n)), then there exists a neighborhood
V(0) of 6 such that 6, = 6 is the unique solution to the equation A (6;6,) = 0 for 6, € V(0),
in which case it follows from (4) that 6 is locally identified. The Fréchet differential of A
w.r.t. 0, at (6;0) is characterized by the operator

d@ (FZFZ) - (aG O QO) (d@@g)

fz

. Then H
Op/0n

Moreover, we know that g o ¢ =

7 Partial Observability with Exclusion

Here we are in the case where z is decomposed in two observables z; and zs.

n Y oy (0,2, A, F*2)
E=| 2 |€EEXRh xR o= 2 | = 2 € Rx RF x Rk,
Z9 29 zZ9

We recall or establish the following assumptions :

¢y 1s monotone increasing in 7

AER

F* is the conditional law of 1 knowing z» with a density f** (n) = f (n/z2)

The most important points are that 7 is independent of z; conditionally on zy, and z
and 2, are measurably separated?. This actually state the exclusion.

Our parameter of interest is 6 = (\, F*?)

Remark 6 z; is not necessarily continuous. If it is a discrete variable, then we should
take differences instead of differentials for the calculus. Concerning A, we could generalize
the result to the case where this parameter is not a real number. This just a way to simplify
the presentation.

Lemma 5 In the case of partial observability with exclusion, 65 is observationally equiv-
alent to 0 iff

F02_G1 ((10’!1 (77327)\27@22) /2) =0 (6)

2V (22) differentiable function of zo, a(z2) =0 a.s. in the sens of the law of Z

9
621
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Proof. (i) if 63 ~ 6, then G; = Gy and G 0 ¢p,, = Gy 0 ¢F,, = Fpo
(ii) from equation (4) it follows that Gy = Fpy o go};MQ =G, 1

Theorem 6 The linear operator of interest is Ty (5) = 8% [dgq)g (5)] %—%da@g (5) .
1 1

If Ty (5) = 0 implies X = 0 and if the model is locally identified with X known, then the
model 1s locally identified.

Proof. We have
Gy/2,2) =Py <j/a=220=
=P (Sﬁy (77727)‘7 FZQ) < g/zl = 21722
=P (n<1/z=17)
= F*2 (7))
Consider the application

I N

2)
52) = P(?’] S 77/21 = 51’22 == 52)

A : Ox60-—D,
[9; 9*] — A(9>9*) = Fi. _G(SO?J (U’Z’A*’F:Q)/glaZQ)

Note that A (0;0) = 0. It follows from the implicit function theorem that, if the
Fréchet differential of A w.r.t. (6.,7.) is one to one at ((6,7);(6,7n)), then there exists
a neighborhood V() of (f) such that 6, = 6 is the unique solution to the equation
A(6;0,) = 0 for 0, € V(), in which case it follows that () is locally identified. The
Fréchet differential of A w.r.t. f.at (6;60) is characterized by the operator

dno (A) + di=a Ay (F2) = %g (0y) A+ dp= Gy (F2) g (p,) — F™ (7)

/=
Moreover, we know that go ¢ = ——
d¢/0n

Then if we have

Doy~ f2 o o
by dpa®y (F2) =L _ 2=l — X =0, = =
{mAaw/an* ra® (F7) 52 Op=A=017=0 @

the Fréchet differential of A w.r.t. 6, at (6;0) would be one to one, in which case it follows
from Lemma 2 that 6 is locally identified.
The idea now is to differentiate (6) w.r.t. z;. Then the condition now is

0 &Py~ - 890:1/ Y -
N L 4 dpy®y (F2) ) /L2 = Aoo0, F2 =
{alea,\ + dpa @y ))/877 0l — X=0 0

13



with the notation 6 = (\, F*?) we can rewrite it as

0 A 690?4 . o
{azlldeq)e(e) an]_o}:w_o

which leads finally to

0 ~10 0? -
8—21 [daq)g (9)} ai;;/ - Wgﬁ?deq’e (9) =0

and if this implies that A= 0, we face an already known problem. H
Example 1 Let take this type of model :
Yy = m(Zl,)\) + v (77an2) = Py (nazu)‘anz)

then the identification condition is written

0 ~ *m - T 2
{a—ZIdMI)e (6) = aZIaAA_O}:)\—F =0

which leads to
9°m

8218)\

and we end with a reasonable condition to establish that A = 0.and then to face a common
problem.

£0

Example 2 What happens now when we face a complete nonparametric problem of this
type :
y=m(z)+ ¥V (n,F?)= ¢y (0,27 F?)

with 0 = (m, F*) . In this case the identification condition is

{% [dmtﬁg () + dp= Py (FZQ)] = o} —0=0

the left hand side equals aim (z1) = 0, then we end with i (z;) = cst = 0 = 0. Actually
21

with m (z1) = cst, we face now a much more simplified problem.
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7.1 Application to a Semiparametric Model of Procurement

A good application for this section is a model of procurement as in the work of Florens,
Hugo, Richard. The interest here is that it takes into account the number of participants
(as usual) and the quality of the projects. Theses variables are supposed to be known at
least ex-ante. In our presentation the number of participants N corresponds to z; and
the quality Qg to 2.

We suppose that all the firms are qualified and that their strategical choice is the price
P of their offer, depending on their private cost ¢, its distribution conditionally on Qg
F(¢/Qo) ,the number of participants N, and the parameter of risk aversion A. We can
deduce the symmetric equilibrium P = ¢, (c) :

» /CESNA (v/Qo) dv
ST

with S (¢/Qo) =1 — F (¢/Qo) . Here our parameter of interest is = (), .S).

For the ease of notation we will denote S (¢/Qq) by S (¢).

We are in the case where z; is a discret variable. Let denote B(N) the left hand side
of (8 )as a function of N. the identification condition must be true for every N. Then an
equivalent left hand side term in the identification condition is B(N) = B(1),which leads
after computation to the following identification condition :

% {/:SN/\ (v)In S (v/Qo) dv /CCS/\ (v) dv — /:S’\ (v/Qo) In S (v) dv /CCS,\N (v) dv}
_ /cc S () du /:5*(@) S (0) do — /cc S (v) du /ccg(v) SN (1) d
— {A=0,5=0}
I will show that there is no identification. For this I will just show a counter-example.
Let take any (5\, S) which verify

S(v)=8(v)— %S (v)In S (v)

we can check that these (5\, 5’) verify B(N) = B(1), but (5\, 5’) is not necessarily equal
to (0,0).

Proposition 7 In the semiparametric model of procurement defined above with the pa-
rameter of risk aversion A and S (¢/Qq) the survival function of ¢ conditionnally on the
quality as parameters of interests, there is no identification.
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