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Abstract

In this paper, we first give a direct proof of the existence of Edgeworth
equilibria for exchange economies with (possibly) unbounded below con-
sumption sets. The key assumption is that the individually rational utility
set is compact. It is worth noticing that the statement of this result and
its proof do not depend on the dimension or the particular structure of
the commodity space. In a second part of the paper, we give conditions
in order to decentralize Edgeworth allocations by continuous prices in a
finite dimensional and in an infinite dimensional setting.
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1 Introduction

Since Hart (1974) [12], one knows that the existence of equilibrium in exchange
economies with unbounded below consumption sets requires some nonarbitrage
condition. For exchange economies consisting of a finite number of agents and
defined on a finite dimensional commodity space, different variants of such a
condition and different concepts of arbitrage have been formulated in [14], [21],
[13], [15], [16]. The relations between these conditions are studied in [7], [16],
[2]. All in turn imply the compactness of the individually rational utility set1

when the preferences of agents are derived from utility functions. The few papers
dealing with the equilibrium existence in an infinite dimensional setting ([5], [4],
[6], [8]) assume the compactness of this set. Cheng [5],, Chichilnisky and Heal
[6], Dana et al. [8] give also sufficient conditions on the primitives of the economy
for this condition to be fulfilled.

This nonarbitrage condition is the central assumption of this paper. In order
to model asset markets, we consider an exchange economy consisting of m agents,
defined on a vector commodity space. Each agent is given with a (possibly un-
bounded below) consumption set, a utility function representing his preferences
on his consumption set, an initial endowment. Our first concern is a direct proof
of the existence for such models of Edgeworth equilibria as classically defined
by Aliprantis et al. [1]. Since the set of attainable allocations needs not be
bounded, this existence cannot be deduced from Debreu and Scarf’s theorem or
its extensions to an infinite dimensional setting ([1] and [10]). However, given
the nonarbitrage condition, this existence is guaranteed under mild assumptions
stated independently of the dimension of the commodity space or its particular
structure.

The proof of this result is based on an extension to fuzzy coalitions of Scarf’s
theorem on the nonemptiness of the core of a nontransferable utility game game.
The arguments of this preliminary result are inspired by a nice paper of Vohra
[20]. The notion of balancedness for such a fuzzy game is borrowed from Floren-
zano [10]. The preliminary result is then applied to a proof (for any integer r)
of the nonemptiness of the core of a fuzzy game appropriately associated to the
r-replica of the exchange model. Finally, the existence of Edgeworth equilibria
is proved using the compactness of the individually rational utility set.

A direct proof of the existence of Edgeworth equilibria open a room for us-
ing core-equilibrium equivalence theorems for proving the existence of Walras
equilibria. The second part of the paper is devoted to some core-equilibrium
equivalence theorems and to their consequences for the existence of Walras equi-
libria in asset market models.

1The individually rational utility set, sometimes simply called Utility set, is the set of utility
vectors in which every agent receives no less than the utility of his initial endowment and no
more than the utility of his consumption in a same attainable allocation.
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Recall that the purpose of core-equilibrium equivalence theorems is to show
that Edgeworth allocations can be supported as quasiequilibria by continuous
prices. While the Edgeworth equilibrium existence theorem does not depend
on the dimension and the structure of the commodity space, the techniques for
obtaining the decentralizing continuous prices differ very much according to the
dimension of the commodity space. In the finite dimensional case, the decentral-
izing vector price is obtained as a tangent linear functional supporting the set
co(

⋃
i Γi) where Γi is the set of preferred net trades of the ith consumer. The

same argument is working in an infinite dimensional setting if the properties of
preferred sets allow to use Hahn-Banach’s theorem. In both cases, adding the as-
sumptions of the core-equivalence theorem to the assumptions of the Edgeworth
equilibrium existence result allow to extend most of known Walras equilibrium
existence results.

At the end of the paper, to go further, we assume a vector lattice commodity
space with a lattice ordered price space and propose to use a core-equilibrium
equivalence result established by Tourky [19] with in mind the possibility of
unbounded below consumption sets.

The paper is organized as follows: in Section 2, we prove the preliminary re-
sult. Section 3 contains the main result of the paper, the Edgeworth equilibrium
existence result for an economy with (possibly) unbounded below consumption
sets. Section 4 is devoted to decentralization results and to their consequences
for the existence of Walras equilibria.

2 Abstract

In this paper, we first give a direct proof of the existence of Edgeworth equilibria
for exchange economies with (possibly) unbounded below consumption sets. The
key assumption is that the individually rational utility set is compact. It is
worth noticing that the statement of this result and its proof do not depend on
the dimension or the particular structure of the commodity space. In a second
part of the paper, we give conditions for decentralizing Edgeworth allocations by
continuous prices in a finite dimensional and in an infinite dimensional setting.

3 A preliminary nonemptiness theorem for the

core of a fuzzy game

Let M = {1, . . . ,m} be a finite set of players and T = [0, 1]m \ {0}. An element
t ∈ T is interpreted as a fuzzy coalition, that is, a vector t = (ti)

m
i=1 of rates of

participation to the coalition t for the different players.
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We consider in this section m-person fuzzy games defined by (T , V ) where T
is a finite subset of T containing 1̄ = (1, . . . , 1) and the canonical base (ei) of Rm

and V : T → Rm is a nonempty-valued correspondence. For a fuzzy coalition
t ∈ T , let us denote

supp t = {i ∈ M | ti > 0}
the set of agents who participate in this coalition.

Definition 3.1 The fuzzy core of the m-person fuzzy game (T , V ) is the set

C(T , V ) = {v ∈ V (1̄) |	 ∃t ∈ T and u ∈ V (t) s.t. vi < ui, ∀i ∈ supp t}.

Consider the following set

∆T = {λ = (λt)t∈T | λt ≥ 0 and
∑
t∈T

λtt = 1̄}.

It is easily seen that ∆T is nonempty.

Definition 3.2 A m-person fuzzy game (T , V ) is said to be balanced whenever
for every λ ∈ ∆T , ⋂

{t∈T |λt>0}
V (t) ⊂ V (1̄).

The following theorem extends Scarf’s theorem [17] as stated by Aliprantis et al.
[1]. The ideas of the proof are due to R. Vohra [20] (see also Shapley and Vohra
[18]). This section is devoted to its proof.

Theorem 3.1 If T is as above and if (T , V ) is a balanced m-person fuzzy game
such that
a) each V (t) is closed,
b) each V (t) is comprehensive from below, i.e., u ≤ v and v ∈ V (t) imply
u ∈ V (t),
c) u ∈ Rm, v ∈ V (t) and ui = vi ∀i ∈ supp t imply u ∈ V (t),
d) for each t ∈ T there exists ct ∈ R, such that v ∈ V (t) implies vi ≤ ct for all
i ∈ supp t,
then

C(T , V ) 	= ∅.

Proof. Each V (t) is comprehensive from below. So for each t ∈ T , there exists
at ∈ Rm such that 0 ∈ int(at + V (t)). If a = ∨t∈T at, it is obvious that a + V
satisfies the properties a), b), c), d) and that C(T , a+V ) = a+C(T , V ). Hence,
without loss of generality, we can (and we will) assume that 0 ∈ intV (t) for each
t ∈ T .
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Next, fix some constant c > 0 such that for each t ∈ T and each v ∈ V (t) we
have vi < c for all i ∈ supp t, and then consider the set

W = (
⋃
t∈T

V (t))
⋂

] −∞, c]m.

Clearly, the set W is closed, comprehensive from below and contains 0 in its
interior. Let ∂W denote the boundary of W .

Claim 3.1 If v ∈ ∂W ∩Rm
+ and vi = 0 for some i, then vj = c holds for some j.

Proof of Claim 3.1. To see this, assume that vi = 0 and vj < c holds for each j.
Since 0 ∈ intV (ei), there exists some u ∈ V (ei) with 0 < ui < c. From Property
c), we see that the vector x defined by xj = c for j 	= i and xi = ui belongs to
V (ei) (and hence to W ∩ Rm

+ ) and satisfies v � x. This implies v ∈ intW , a
contradiction.

Let ∆ be the unit-simplex of Rm.

Claim 3.2 For each s ∈ ∆, there exists a unique α > 0 (depending on s) such
that αs ∈ ∂W ∩Rm

+ .

Proof of Claim 3.2. Let s ∈ ∆. We first prove that there exists at most one α
such that αs ∈ ∂W ∩ Rm

+ . Indeed, let αs and βs be elements of ∂W ∩ Rm
+ such

that α > β > 0. If si > 0 holds for each i, then αsi > βsi holds for each i and
so βs is an interior point of W , a contradiction. On the other hand, if si = 0
holds for some i, then by Claim 3.1 there exists some j such that βsj = c and so
that αsj > c, a contradiction. Moreover, let α = sup{β | βs ∈ W ∩ Rm

+}. From
0 ∈ intW , we deduce that α > 0. From the definition of W , we deduce that α
is finite. Since, W is closed it follows that αs ∈ ∂W ∩Rm

+ .

Thus , a function f : ∆ −→ ∂W ∩Rm
+ can be defined by formula

f(s) = αs where α = sup{β ∈ R+ | βs ∈ W ∩Rm
+}.

Claim 3.3 f is continuous.

Proof of Claim 3.3. It suffices to show that f has a closed graph. Let us consider
a sequence (sn, f(sn)) in ∆× (∂W ∩Rm

+ ) that converges to (s, y). Write f(sn) =
αnsn ∈ ∂W ∩Rm

+ . Then αn = ‖αnsn‖1 = ‖f(sn)‖1 −→ ‖y‖1, and hence f(sn) =
αnsn −→ ‖y‖1s. By uniqueness of the limit y = ‖y‖1s. Since ∂W ∩ Rm

+ is a
closed set, it follows from Claim 3.2 that f(s) = y. Consequently, f has a closed
graph.

Define a correspondence Ψ : ∆ → ∆ by

Ψ(s) =
{

t
‖t‖1

| t ∈ T and f(s) ∈ V (t)
}
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Claim 3.4 Ψ is nonempty-valued and has a closed graph.

Proof of Claim 3.4. Since f(s) ∈ W , it follows immediately that Ψ(s) is a
nonempty subset of ∆. Furthermore, let us assume sn → s, yn → y and
yn ∈ Ψ(sn). Since the range of Ψ is a finite set, there exists some n0 such that for
all n ≥ n0, y

n = y and f(sn) ∈ ⋃
{t∈T | t

‖t‖1
=y} V (t). Since {t ∈ T | t

‖t‖1
= y} is a fi-

nite set, passing to a subsequence if necessary, we can assume that f(sn) ∈ V (t0)
for some t0 ∈ {t ∈ T | t

‖t‖1
= y}. Since f is continuous and V (t0) is a closed set,

we deduce that f(s) ∈ V (t0) and consequently y ∈ Ψ(s).

Now we define the function g : ∆ × ∆ → ∆ by

gi(s, µ) =
si + (µi − 1

m
)+

1 +
∑m

j=1(µj − 1
m

)+

where, as usual, r+ = max{r, 0} for each real number r.
Clearly, g is a continuous function. Finally, we consider the correspondence
Φ : ∆ × ∆ → ∆ × ∆ defined by

Φ(s, µ) = {g(s, µ)} × coΨ(s).

Note that Φ is nonempty and convex-valued and has a closed graph. Thus by
Kakutani’s fixed point theorem, Φ has a fixed point (s̄, µ̄). That is,

s̄ = g(s̄, µ̄) and µ̄ ∈ coΨ(s̄).

In other words,

s̄i =
s̄i + (µ̄i − 1

m
)+

1 +
∑m

j=1(µ̄j − 1
m

)+
, i ∈ M (1)

and there exist T ′ ⊂ T , (at)t∈T ′ ∈ RT ′
, with at > 0 ∀t ∈ T ′ and

∑
t∈T ′ at = 1,

such that

µ̄ =
∑
t∈T ′

at
t

‖t‖1

, f(s̄) ∈ V (t) ∀t ∈ T ′ (2)

Claim 3.5 . For all i ∈ M , µ̄i = 1
m

.

Proof of Claim 3.5: Suppose that it is not true. Recalling that µ̄ ∈ ∆, it follows
from (1) that

∑m
j=1(µ̄j − 1

m
)+ > 0 Then, the sets

I = {i ∈ M | s̄i > 0} = {i ∈ M | µ̄i >
1

m
}

and

J = {i ∈ M | s̄i = 0} = {i ∈ M | µ̄i ≤
1

m
}
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are both nonempty. Indeed, from
∑m

i=1(µ̄i− 1
m

)+ > 0, it follows that (µ̄i− 1
m

)+ > 0
for some i. On the other hand, if µ̄i >

1
m

for each i, then
∑m

i=1 µ̄i > 1, a contra-
diction. Clearly, for all j ∈ J we have sj = 0 hence f(s)j = 0. From (2), for all
i ∈ I, there exists t ∈ T ′ such that ti > 0, f(s̄) ∈ V (t), hence f(s̄)i < c, which,
together with J 	= ∅, contradicts Claim 3.1.

Now, let us consider λ ∈ RT such that

λt =
{ mat

‖t‖1
if t ∈ T ′,

0 otherwise.

Clearly
∑

t∈T λtt = 1̄, and therefore λ ∈ ∆T .

Claim 3.6 f(s̄) ∈ C(T , V )

Proof of Claim 3.6: Since λ ∈ ∆T we have⋂
t∈T ′

V (t) =
⋂

{t∈T |λt>0}
V (t) ⊂ V (1̄).

Hence f(s̄) ∈ V (1̄). Suppose that there exists t ∈ T and v ∈ V (t) such that
f(s̄)i < vi for all i ∈ supp t. Let u be such that ui = vi for all i ∈ supp t and
ui = c otherwise. It follows from Property c) that u ∈ V (t) ⊂ W . But f(s̄) � u
contradicts the fact that f(s̄) ∈ ∂W ∩ Rm

+ . Therefore f(s̄) ∈ C(T , V ), which
ends the proof of theorem 3.1.

4 Application to the existence of Edgeworth equi-

libria of an arbitrage-free exchange economy

4.1 Definitions

In order to apply the previous theorem, we consider an exchange economy defined
on a commodity vector space L and recall some definitions. M = {1, . . . ,m} is
the set of consumers. Each consumer i is described by a consumption set Xi ⊂ L,
an initial endowment ei ∈ Xi, and a preference relation which is represented by
a utility function ui : Xi → R. We normalize the utility functions by requiring
ui(ei) = 0. To summarize, the economy E is a collection

E = ((Xi, ui, ei)i∈M).

Let A(E) be the set of all attainable allocations of the economy E , that is:

A(E) = {x = (xi)i∈M ∈
∏
i∈M

Xi |
∑
i∈M

xi =
∑
i∈M

ei}.
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Let also M = 2M \ {∅} be the family of all coalitions of consumers. The al-
location x ∈ A(E) is improved upon by the coalition S ∈ M if there exists
(x′

i)i∈S ∈ ∏
i∈S Xi satisfying

∑
i∈S x

′
i =

∑
i∈S ei and such that ui(xi) < ui(x

′
i) for

every i ∈ S. The core of the economy E , denoted by C(E), is defined as the set
of all allocations x ∈ A(E) which are improved upon by no coalition. Finally,
following Aliprantis et al. [1], x ∈ A(E) is said to be an Edgeworth equilibrium
if, for every integer r ≥ 1, the r-repetition of x belongs to the core of the r-fold
replica of E . We will denote by CE(E) the set of all Edgeworth equilibria of E .

For each integer r ≥ 1, using the notations of the previous section, if

T r = {t ∈ T | rti ∈ {0, . . . , r}, ∀i ∈ M},

let us define Cr(E) as the set of all attainable allocations x ∈ A(E) such that
there exist no t ∈ T r and no xt ∈ ∏

i∈supp t Xi such that

∑
i∈supp t

tix
t
i =

∑
i∈supp t

tiei and ∀i ∈ supp t, ui(xi) < ui(x
t
i).

As it is easily seen and proved in Florenzano [10], under convexity assumptions
on preferences and consumption sets, CE(E) =

⋂
r≥1 Cr(E). In other words, CE(E)

is the set of all x ∈ A(E) such that there exist no t = (ti)i∈M ∈ T , with rational
rates of participation, and no xt ∈ ∏

i∈supp t Xi such that

∑
i∈supp t

tix
t
i =

∑
i∈supp t

tiei and ∀i ∈ supp t, ui(xi) < ui(x
t
i).

Following Aubin [3], the fuzzy core of the economy E , CF (E), is the set of all
x ∈ A(E) such that there exist no t = (ti)i∈M ∈ T and no xt ∈ ∏

i∈supp t Xi such
that ∑

i∈supp t

tix
t
i =

∑
i∈supp t

tiei and ∀i ∈ supp t, ui(xi) < ui(x
t
i).

4.2 The existence result

Let us now denote by

U(E) = {v = (vi)
m
i=1 ∈ Rm

+ | ∃x ∈ A(E), s.t. 0 ≤ vi ≤ ui(xi), ∀i}

the individually rational utility set2.

We make on E the following assumptions:

[A.1] For each i, Xi is convex;

2Recall that ui(ei) = 0, i = 1, . . . , m.
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[A.2] For each i, ui : Xi → R is quasi-concave;

[A.3] U(E) is compact.

For a fuzzy coalition t ∈ T r, let

At(E) = {xt ∈
∏

i∈supp t

Xi |
∑

i∈supp t

tix
t
i =

∑
i∈supp t

tiei}

and

U t = {vt ∈ Rsupp t
+ | ∃xt ∈ At(E), s.t. 0 ≤ vi ≤ ui(x

t
i), ∀i ∈ supp t}.

Finally, let

V (t) = (U t −Rsupp t
+ ) ×RM\supp t.

Proposition 4.1 Assume [A.1]–[A.3]. Then C(T r, V ) is a nonempty subset of
U(E).

Proof. Since U(E) is compact, there exists c > 0 such that U(E) ⊂] −∞, c[m.
For each t ∈ T r, let us define

V c(t) = ((U(E)t −Rsupp t
+ )

⋂
(] −∞, c])supp t) ×RM\supp t

We will keep in mind that V c(1̄) = V (1̄) = U(E) − Rm
+ and that for every i,

V c(ei) = V (ei) = −R+ × RM\{i}. We first claim that the m-person fuzzy game
(T r, V c) has a nonempty fuzzy core, that is, C(T r, V c) 	= ∅.
Clearly, T r is a finite subset of T containing 1̄ = (1, . . . , 1) and the canonical
base (ei) of Rm. The properties listed in Theorem 3.1 are also trivially satisfied.
It suffices to verify that the m-person fuzzy game (T r, V c) is balanced in the
sense of Definition 3.2.

To this end, let λ ∈ ∆T r
and v ∈ ⋂

{t∈T r|λt>0} V
c(t). For each integer n and for

every t ∈ T r such that λt > 0, there exists xn,t ∈ At(E) such that ui(x
n,t
i ) ≥

0 ∀i ∈ supp t and

vi ≤ ui(x
n,t
i ) +

1

n
, ∀i ∈ supp t. (3)

For each i ∈ M , let
xn

i =
∑
t∈T r

λttix
n,t
i .

Since
∑

t∈T r λtt = 1̄, we have for each i ∈ M , xn
i ∈ Xi (Xi is convex) and

m∑
i=1

xn
i =

m∑
i=1

∑
t∈T r

λttix
n,t
i =

∑
t∈T r

λt(
∑

i∈supp t

tix
n,t
i )

=
∑
t∈T r

λt(
∑
i∈M

tiei) =
m∑

i=1

(
∑
t∈T r

λtti)ei =
m∑

i=1

ei
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which shows that xn ∈ A(E). Now, from relations (3) and in view of the definition
of xn and the quasi-concavity of utility functions ui, we have

vi ≤ ui(x
n
i ) +

1

n
, ∀i ∈ M.

Since for every t ∈ T r such that λt > 0, ui(x
n,t
i ) ≥ 0 ∀i ∈ supp t, we have also

(ui(x
n
i ))i∈M ∈ U(E). Passing to a subsequence if necessary, it follows from the

compactness of U(E) that there exists x ∈ A(E) such that

vi ≤ lim
n→+∞

ui(x
n
i ) ≤ ui(xi), ∀i ∈ M.

Hence v ∈ V (1̄) = V c(1̄), which shows that the game (T r, V c) is balanced. It
then follows from Theorem 3.1 that C(T r, V c) 	= ∅.

To end the proof, let v ∈ C(T r, V c). Note that v ∈ V c(1̄) = V (1̄) = U(E)−Rm
+ .

Moreover, v ∈ U(E). Indeed if not, for some i, {0}×RM\{i} ∈ V (ei) with 0 > vi.
We now prove by contraposition that v ∈ C(T r, V ). Let us assume on the
contrary that there exist t ∈ T r and u ∈ V (t) such that vi < ui ∀i ∈ supp t.
Since vi < c ∀i ∈ M , one can find λ ∈]0, 1[ such that

vi < λvi + (1 − λ)ui < min{c, ui} ∀i ∈ supp t.

Hence (λvi + (1 − λ)ui)i∈supp t ∈ V c(t). We have got a contradiction.

Proposition 4.2 Assume [A.1]-[A.3] on E. Then
⋂

r≥1 C(T r, V ) 	= ∅.

Proof First, we show that C(T r, V ) is closed. Let v = limn→+∞ vn with vn ∈
C(T r, V ). Suppose that v 	∈ C(T r, V ). Then there exists t ∈ T r and u ∈ V (t)
such that vi < ui ∀i ∈ supp t. But, for n large enough, we have vn

i < ui ∀i ∈
supp t, a contradiction. To end the proof, in view of the compactness of U(E),
it suffices to show that for each integer r ≥ 1 we have C(T r+1, V ) ⊂ C(T r, V ).
Let v ∈ C(T r+1, V ) and suppose that v /∈ C(T r, V ). Then there exists t ∈ T r

and u ∈ V (t) such that vi < ui ∀i ∈ supp t. Let us consider t′ = r
r+1

t. Clearly

At′(E) = At(E), U t = U t′ , V (t) = V (t′). Since t′ ∈ T r+1 and u ∈ V (t′), we have
got a contradiction.

We are now ready to prove the main result of this section.

Theorem 4.1 Under Assumptions [A.1]-[A.3], the set of Edgeworth equilibria
CE(E) is nonempty.

Proof Let v ∈ ⋂
r≥1 C(T r, V ) and x ∈ A(E) be such that vi ≤ ui(xi) ∀i ∈ M .

We claim that x ∈ CE(E). Indeed, if for some r, x /∈ Cr(E), then there exist
t ∈ T r and x′ ∈ At(E) such that vi ≤ ui(xi) < ui(x

′
i) for all i ∈ supp t. Hence

v /∈ C(T r, V ), a contradiction.
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Remark 4.1 Adding the assumption that the commodity space is finite dimen-
sional, the consumption sets are closed and the utility functions are upper semi-
continuous at every attainable consumption vector to the other assumptions of
Theorem 4.1, it would be easy to deduce its conclusion from Proposition 3 in
Florenzano [10]. The same proof3, under analogous topological assumptions (rel-
ative to the weak∗-topology on L), can be given if the commodity space is an
infinite dimensional Banach space which has a predual. These two cases cover
most of commodity spaces of economic interest. However, it should be noticed
that the statement of Theorem 4.1 and its proof do not depend on the dimension
of the commodity space or on its particular structure.

Remark 4.2 As easily seen and proved in Florenzano [10], if the commodity
space L is a Hausdorff topological vector space and if the utility functions are
lower semicontinuous at every attainable consumption vector, an Edgeworth
equilibrium whose existence is proved in Theorem 4.1 is actually an element
of the fuzzy core, CF (E), of the economy E .

5 Walras equilibria of an arbitrage-free exchange

economy

Recall that a couple (x, p) is said to be a quasiequilibrium of E iff x ∈ A(E), p is
a linear functional on L, with p 	= 0 and

for every i ∈ M, p · xi = p · ei and ui(x
′
i) > ui(xi) ⇒ p · x′

i ≥ p · xi.

A quasiequilibrium such that ui(x
′
i) > ui(xi) actually implies p · x′

i > p · xi is a
Walras equilibrium. We will prove the existence of quasiequilibria by decentral-
izing Edgeworth equilibria obtained via Theorem 4.1.

5.1 Finite dimensional decentralization

Let us first assume that the commodity space L is R�, the l dimensional space.
For each xi ∈ Xi, we define the strictly preferred set to xi by

Pi(xi) = {x′
i ∈ Xi | ui(xi) < ui(x

′
i)}

and we set the two following assumptions:

3Truncating the economy by an increasing sequence of closed balls of L, centered at 0 and
containing all initial endowments, one obtains a sequence (xν

i )m
i=1 of Edgeworth equilibria of

the truncated economies. The sequence (ui(xν
i ))m

i=1 belongs to U(E) and has a converging
subsequence. At the limit, from the definition of U(E), one gets an allocation (xi)m

i=1. Using
the upper semicontinuity of functions ui, it is easily proved that this allocation is an Edgeworth
equilibrium of E .
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[A.4] For each i ∈ M , ui is lower semicontinuous at every attainable
consumption vector;

[A.5] If x ∈ A(E) then for each i ∈ M , xi ∈ Pi(xi) (the closure of Pi(xi)).

Proposition 5.1 Under [A.1]-[A.5], the economy E = ((Xi, ui, ei)i∈M) has a
quasiequilibrium.

Proof Let x̄ ∈ CE(E). In view of Assumption [A.5] , we have already remarked
that x̄ ∈ CF (E). Let G = co(

⋃
i∈M(Pi(x̄i) − ei)). G is nonempty since x ∈ A(E)

and the assumption [A.5] imply that Pi(x̄i) 	= ∅. We first prove that 0 /∈ G.
Indeed if not, there exists λ = (λi)i∈M such that λi ≥ 0, for all i and

∑
i∈M λi = 1

and (xi) ∈
∏

i∈M Xi such that

∑
i∈M

λixi =
∑
i∈M

λiei

xi ∈ Pi(x̄i), ∀i such that λi > 0.

Thus the fuzzy coalition λimprove upon x̄, which contradicts x̄ ∈ CF (E).

Now, by the separation theorem for finite dimensional vector spaces, there
exists p ∈ R� \ 0 such that p · g ≥ 0, for all g ∈ G. From [A.5], one deduces that
p · x̄i ≥ p · ei for all i ∈ M . Since x̄ ∈ CE(E),

∑
i∈M =

∑
i∈M ei. Thus p · x̄i = p · ei

for all i ∈ M and (x̄, p) is a quasi-equilibrium of E .

Remark 5.1 In view of [A.5], assuming either that each ei ∈ intXi or that
e =

∑
i∈M ei is an interior point of

∑
i∈M Xi and that E satisfies some irreducibility

assumption, then (x̄, p) is a Walras equilibrium.

5.2 Infinite dimensional decentralization

If the commodity space, L, is infinite dimensional, let us first assume that L is
a Hausdorff topological vector space and that int(

⋃
i∈M(Pi(x̄i) − ei)) 	= ∅. Using

Hahn-Banach’s theorem, we can mimic the proof of Proposition 5.1 in order to
obtain:

Proposition 5.2 Under [A.1]-[A.5], the economy E = ((Xi, ui, ei)i∈M) has a
quasiequilibrium. Under the same additional assumptions as in remark 5.1, this
quasiequilibrium is an equilibrium.

The previous result extends the results of Cheng [5], Brown and Werner [4],
Theorem 1 of Dana et al.[8]. Actually, Brown and Werner, Dana et al. do not
assume [A.4] but prove only the existence of a quasiequilibrium.
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To go further, we now assume that L is a vector lattice with a topological
dual which is a sublattice of its order dual. We restrict ourselves in this last
part of the paper to the case of a noncompact attainable set, A(E). The reader
can find a study of the case A(E) compact in Deghdak and Florenzano [9] for
consumption sets equal to the positive cone and in Florenzano and Marakulin
[11] for more general consumption sets (see also the references quoted in both
papers). Recall that e =

∑
i∈M ei and that Pi(xi) = {x′

i ∈ Xi | ui(xi) < ui(x
′
i)}

defines a preference correspondence (preference relation) Pi : Xi → Xi. The
following definition is borrowed from Tourky [19]:

Definition 5.1 A preference relation Pi is M-proper at xi if there are a convex

lattice Zxi
and a convex set ̂Pi(xi) such that:

1. ̂Pi(xi)
⋂
Zxi

= Pi(xi)

2. xi + e is an interior point of ̂Pi(xi) and Pi(xi) is open in Zxi

3. 0, ei ∈ Zxi
and Zxi

+ L+ = Zxi

4. (1 + α)xi ∈ Zxi
for some α > 0.

Using Theorem 2.1 of Tourky [19], we obtain the following existence result:

Proposition 5.3 Assume [A.1]-[A.5] and that, in addition, e > 0, each ui is
strictly increasing, each Pi is M-proper at every component of an attainable allo-
cation. Then E has a quasiequilibrium. Under the same additional assumptions
as in remark 5.1, this quasiequilibrium is a Walras equilibrium.

This Walras equilibrium existence theorem has no antecedent in the literature
on trade in financial assets The economic meaning of M-properness is a purpose
for future work.

References

[1] Aliprantis, C.D., Brown, D.J., Burkinshaw, O., Existence and Op-
timality of Competitive Equilibria, (Berlin: Springer Verlag), 1989

[2] Allouch N., Equilibrium and no market arbitrage, Working Paper, Uni-
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