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1 Introduction

In this paper, we propose a class of Conditional Heteroskedastic (CH) models which is robust

to temporal aggregation. There are two main characteristics of the class of models we consider:

the variance is linear and stochastic. The observable restrictions implied by our model are

that the squared residual process is an ARMA process. This ARMA structure is the main

characteristic of GARCH models (Engle 1982, Bollerslev 1986, Drost and Nijman 1993).1 For

instance, when a process " is GARCH(1,1), "2 is ARMA(1,1). This is probably the main

reason of the widespread use of such models in Financial Econometrics. In particular, the well

known volatility clustering e®ect in ¯nancial data that GARCH models account for amounts

to the ARMA structure of the squared residuals. Moreover, an ARMA representation for

squared innovations is a general parameterization of their temporal autocorrelation, since by

the Wold decomposition theorem, any regular second order stationary process admits a MA(1)
representation (see, e.g., Brockwell and Davis, 1990).

On the other hand, modern ¯nancial economics is de¯ned in continuous time while ¯nancial

data (interest rates, stock price returns, indexes) are typically observed at ad hoc frequencies

(hourly, daily, weekly...). Thus, there are systematic sampling and temporal aggregation e®ects

(see Weiss, 1984). Hence, when one speci¯es a model, on does it either for the observable

frequency and has to be sure that it is correct for this given frequency (which is testable),

or speci¯es a model for a high frequency, e.g. continuous time, then derives the observable

restrictions for a given frequency. Typically, models as in Engle (1982), Bollerslev (1986),

Nelson (1991), among others, are from the ¯rst class, while Drost and Nijman (1993), Drost

and Werker (1996) and Hansen and Scheinkman (1995) stem from the second approach.2

Drost and Nijman (1993) consider the temporal aggregation of CH models. They introduce

the weak GARCH models which shape is maintained whatever the sampling frequency.3 Their

model is characterized by the weak ARMA structure of the squared innovation process, i.e.

ARMA whose innovation process is serially uncorrelated (weak white noise). They do this since

temporal aggregation literature of ARIMA models (see Granger, 1990, for a review) learns us

that after temporal aggregation, a weak ARIMA is still a weak ARIMA for both °ow and

stock variables. This result does not hold in general for semi-strong ARMA, i.e. ARMA whose

innovation process is a martingale di®erence sequence (m.d.s.).4 This is why Drost and Nijman

(1993) show that the semi-strong GARCH class is not closed under temporal aggregation.5

Since weak GARCH models are characterized by the weak ARMA structure of the squared

innovation process, only linear projections are considered, that is conditional expectations are

1For a review of GARCH models, see, Bollerslev, Engle and Nelson (1994), and Diebold and Lopez (1995).
2Nelson bridges the gap between discrete time ARCH models and continuous time models by taking an

approximating, ¯ltering or smoothing approach: Nelson (1990, 1992, 1996), Nelson and Foster (1994).
3Hansen and Scheinkman (1995) consider continuous time stochastic di®erential equations and derive mo-

ment restrictions for a given frequency of data.
4However, homoskedastic gaussian ARMA class of processes is closed under temporal aggregation.
5Two additional reasons are given later: perfect linear correlation between squared innovations and con-

ditional variance, and a±ne relationship between conditional variance and the squared conditional variance.
However, semi-strong ARCH(1) class is closed under temporal aggregation.
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not characterized. It is an important drawback for both ¯nancial interpretations (e.g., the

conditional variance which is the relevant measure of risk is not characterized6) and statistical

ones (e.g., the QMLE setting is violated). Furthermore, for °ow variables (returns and interest

rates), Drost and Nijman (1993) need for temporal aggregation a symmetry assumption7 which

excludes skewed innovations and the so-called leverage e®ect (Black, 1976, Nelson, 1991).

In this paper, we follow the main idea of Drost and Nijman (1993) by considering ARMA

structure of the squared innovations. However, our approach is based on linear state-space

modeling, that is, according to ¯nancial econometrics terminology, stochastic volatility (SV)

modeling.8 We consider the Square-Root Stochastic AutoRegressive Volatility (SR-SARV)

models characterized by AR dynamics of the conditional variance process. This allows us to

relax the symmetry assumption and to keep conditional restrictions for ¯nancial and statistical

interpretations. Besides, we prove that any symmetric SR-SARV model (excluding leverage

e®ect) is in the weak GARCH class. Hence, weak GARCH are stochastic volatility processes

rather than standard GARCH and our results generalize those of Drost and Nijman (1993).

Several models in the CH literature share the property of autoregression of the variance:

GARCH models, structural GARCH models of Harvey, Ruiz and Sentana (1992), and the

SR-SARV models of Andersen (1994).9 Our class of models is closely related to the Andersen

(1994) SR-SARV, and we adopt his terminology. However, while Andersen (1994) adopts a

complete parametric setting, here we take a semiparametric one since we do not specify the

probability distributions. We do this because distributional assumptions are not robust to

temporal aggregation.10 In the stochastic volatility and factor GARCH literature, it is usual

and indeed necessary to specify the complete probability distribution which is required, e.g.

for inference or forecasting, in the presence of nonlinear transformation of latent variables

(see, e.g., Gourieroux and Jasiak, 1999). However, we consider here linear models and so

we do not require distributional assumptions. In particular, we derive, for inference purposes,

observable multi-period conditional moment restrictions (Hansen, 1985).

The time series literature, see e.g. Aoki (1990), shows that there is an equivalence between

ARMA and state-space models. In particular, given an ARMA model, we can ¯nd a state-

space model, generally not unique, such that the observable restrictions are the same for both

models. Consider the case of an ARMA(1,1), say zt = "
2
t , which corresponds to GARCH(1,1)

for "t. One way to represent zt in state-space form is by assuming that it is the sum of a ¯rst

6In addition a linear projection of a positive random variable may be negative.
7The intuition is as follows. For simplicity, assume that we consider the process f"t; t 2 Zg which is weak

GARCH ("2
t is a weak ARMA). We observe the process f"(2)

2t = "2t + "2t¡1; t 2 Zg. To see if the process

("
(2)
2t )2 = "2

2t + "2
2t¡1 + 2"2t"2t¡1 is a weak ARMA ("

(2)
2t weak GARCH), Drost and Nijman (1993) need that

the process f"2t"2t¡1; t 2 Zg is not serially correlated, that is E["t"t¡i"t¡j"t¡k] = 0 for 8 0 · i · j · k; i 6=
0 or j 6= k, which is a symmetry assumption.

8See Ghysels, Harvey and Renault (1996) and Shephard (1996) for a review.
9Several multivariate models in factor GARCH literature also share this property: Diebold and Nerlove

(1989), Engle, Ng and Rothschild (1990), King, Sentana and Wadhwani (1994).
10This is conformable to Drost and Nijman (1993) who show that the homokurtosis assumption is not robust

to temporal aggregation. This is why strong ARCH(1) are not closed under temporal aggregation.
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order autoregressive process gt and a white noise vt, that is

zt = gt¡1 + vt; gt = ! + °gt¡1 + ´t; with j ° j< 1:

While the class of semi-strong ARMA is not robust to temporal aggregation, the class of

semi-strong AR(1) is. Hence, the previous particular state-space representation of the

ARMA(1,1) is robust to temporal aggregation. This representation implies11

E[zt ¡ ! ¡ °zt¡1 j z¿ ; ¿ · t¡ 2] = 0;

which is a multi-period conditional moment restriction. Such conditional moment restriction

is very useful for inference (see Hansen and Singleton, 1996). Note that it implies that zt is a

weak ARMA but not a semi-strong ARMA: it is in between. This is mainly the reason why

semi-strong GARCH are not closed w.r.t. temporal aggregation, since we will see later that

the process "2t is a semi-strong ARMA(1,1) if and only if "t is a semi-strong GARCH(1,1).

In our case the process zt is the squared value of the residual "t, the former is positive. On

the other hand, the process gt¡1 is the conditional mean of "2t given the large past information

Jt¡1 = ¾("¿ ; g¿ ; ¿ < t).12 Thus, the process gt is also positive, while it is an autoregressive

process. This is not very restrictive. For instance, in a GARCH(1,1), the conditional variance,

which is positive by de¯nition, is an AR(1) process. Further, consider any AR(1) process xt
(e.g., gaussian), then the nonnegative process zt = x

2
t is also AR(1). Finally, as we will show

later, the exact discretization of the so-called Constant Elasticity of Variance (CEV) are semi-

strong AR(1) processes. These CEV processes, introduced by Cox (1975) are now widespread

in continuous time interest rates literature due to their nonnegativity (Chan et al., 1992). As a

consequence, exact discretization of continuous time SV models where the variance follows

a CEV process (e.g., Heston, 1993) is in our class of SV discrete time models.

Starting from the SR-SARV(1) class characterized by the AR(1) dynamics of the conditional

variance process, we propose several extensions. In the spirit of GARCH (p,p) modeling, we

introduce the SR-SARV(p) class: the variance process is the sum of the components (marginal-

ization) of a positive multivariate VAR(1) of size p. We adopt this particular state-space rep-

resentation since the class of semi-strong VAR(1) is closed under temporal aggregation.13 This

class contains the usual GARCH(p,p) model. Besides, the squared value of a SR-SARV(p)

process is an ARMA(p,p) with multi-period conditional moment restrictions of p lags. In con-

tinuous time, this leads up to consider a SV model where the variance is a marginalization of

a positive vector of size p, that is a multi-factor model for the variance.14 Exact discretization

of such models is SR-SARV(p) and, hence, the process of squared residuals is an ARMA(p,p).

In a companion paper, Meddahi and Renault (1999), we show that our class of SR-SARV

is robust to information reduction (¯ltering, heterogenous information between agents) and,

11We have: E[zt j z¿ ; ¿ · t¡1] = E[gt¡1+vt j z¿ ; ¿ · t¡1] = !+°E[gt¡2 j z¿ ; ¿ · t¡1] = !+°E[zt¡1¡vt¡1 j
z¿ ; ¿ · t ¡ 1], which implies the result.

12More precisely, the processes gt and vt are de¯ned by gt¡1 ´ E["2
t j Jt¡1] and vt ´ "2

t ¡ gt¡1.
13Moreover, this allows us to maintain some markovian properties which are useful in ¯nance.
14More recently, Gallant, Hsu and Tauchen (1998) adopted this approach.
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following Nijman and Sentana (1994), to marginalization and contemporaneous aggregation (of

portfolio, e.g.). Furthermore, we establish the relations in terms of conditioning information

between the various concepts of factor GARCH models (Diebold and Nerlove, 1989; Engle, Ng

and Rothschild, 1990; King, Sentana and Wadhwani, 1994). Moreover, following Engle, Lilien

and Robins (1987), we consider SR-SARV-M models where conditional mean and variance may

share some common factors in both discrete and continuous time. We prove that this class is

closed under temporal aggregation. Note that no such result is available for weak GARCH.

We also show that temporal aggregation of these models creates automatically a correlation

between the innovation and the variance processes.15

The rest of the paper is organized as follows. In section 2, we summarize some classi-

cal results of ARMA theory. In particular, we stress the equivalence between ARMA and

state-space representation. Furthermore, the latter is used to derive multi-period conditional

moment restrictions, exact discretization of continuous time models and temporal aggregation

properties. This allows us to introduce in section 3 the SR-SARV(p) model in both discrete

and continuous time settings. Temporal aggregation, exact discretization and multi-period

conditional moment restrictions for volatility models are then deduced from the state-space

representation. In particular, we characterize the relations between SR-SARV(p), semi-strong

GARCH(p,p), weak GARCH(p,p) and ARMA(p,p) representations for squared innovations.

Section 4 focuses more speci¯cally on SR-SARV(1) processes to go further on the character-

ization of the subclass of GARCH(1,1) and to discuss asymmetry issues (leverage e®ect and

skewness). Section 5 concludes the paper.

2 Lessons from ARMA theory

In this section, we revisit standard ARMA theory to enhance its main lessons for volatil-

ity modeling. We particularly focus on the state-space representation of an ARMA model,

the implied conditional moments restrictions (for inference purpose) and the discretization of

autoregressive continuous time models. Finally, we give several examples of autoregressive

processes distributed on the positive real line and therefore meaningful for volatility processes.

2.1 State-space representation

In the time series literature (see, e.g., Brockwell and Davis, 1990), two types of ARMA pro-

cesses are generally studied. The ¯rst one considers independent and identically distributed

(i.i.d.) innovations with a ¯nite variance D(0; ¾2) (strong white noise) while in the second one

the innovations are only assumed to be serially uncorrelated (weak white noise). On the other

hand, several economic models are de¯ned in terms of conditional moment restrictions (¯rst

order conditions, rational expectations...). Thus econometric literature often focuses on an

intermediate type of ARMA models based on conditional expectations: the innovation process

15This is consistent with Black (1976) and French, Schwert and Stambaugh (1987) who conclude that leverage
is probably not the sole explanation for the negative correlation between stock returns and volatility.
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is a martingale di®erence sequence (semi-strong white noise).

De¯nition 2.1: Strong, semi-strong and weak ARMA:

Let fzt; t 2 Zg be a second order stationary process such that P (L)zt = ! + Q(L)´t, with

P (L) = 1 ¡ Pp
i=1 aiL

i, Q(l) = 1 ¡ Pq
j=1 biL

i, where L is the lag operator. We assume that

ap 6= 0; bq 6= 0 and the polynomials P (L) and Q(L) have di®erent roots which are outside the
unit circle. We say that:

i) zt is a strong ARMA(p,q) if the process ´t is i.i.d. D(0; ¾
2);

ii) zt is a semi-strong ARMA(p,q) if ´t is a m.d.s. (E[´t j ´¿ ; ¿ · t¡ 1] = 0);
iii) zt is a weak ARMA(p,q) if E[´t] = 0 and Cov[´t; ´t¡h] = 0 for h ¸ 1:

Note that the three notions are nested ( i)) ii) ) iii)) and are , under normality, equivalent.

Another approach to describe time series is based on state-space modeling:

De¯nition 2.2 State-space representation:

We say that a second-order stationary process fzt; t 2 Zg admits the state-space representation
of order p fGt; ´t; t 2 Zg if Gt and ´t are second order stationary processes such as:

zt = gt¡1 + ´t; with (2.1)

gt = e
0Gt; (2.2)

Gt = ­+ ¡Gt¡1 + Vt; (2.3)

E[´t j z¿ ; G¿ ; ¿ · t¡ 1] = 0; (2.4)

E[Vt j z¿ ; G¿ ; ¿ · t¡ 1] = 0; (2.5)

where e 2 IRp and the eigenvalues of ¡ are assumed to be smaller than one in modulus.

In such models, the dynamic of the process zt is de¯ned through the process gt which

is a marginalization of the VAR(1) process Gt of size p. Since gt is a marginalization of a

VAR(1), it is a weak ARMA(p,p-1) (see, e.g., Lutkepohl (1991)).16 The process Gt is possibly

unobservable by the economic agent or by the econometrician. For instance, gt can represents

the process anticipated by the economic agent of the variable zt.
17 In the latter case, g is

observable by the economic agent and not by the econometrician. As we already mentioned,

ARMA models can be represented by state-space models. More precisely:

Proposition 2.1 State-space representation of a semi-strong ARMA

16Note however that the above de¯nition in terms of a VAR(1) process Gt of state variables is not tantamount
to a de¯nition directly in terms of a state process gt ARMA(p,p-1); the important di®erence relies on the
conditioning information set.

17For instance, Campbell (1990) stressed that the dynamics of rational expectations can be characterized
without presumption that the relevant information set contains only the history of past asset returns and a
large number of variables may be useful in forecasting.
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Let fzt; t 2 Zg be a semi-strong ARMA(p,p) with a corresponding representation P (L)zt =
! + Q(L)´t with P (L) = 1 ¡ Pp

i=1 aiL
i and Q(L) = 1 ¡ Pp

i=1 biL
i. De¯ne the processes

fGt; gt; vt; t 2 Zg by

Gt¡1 ´ (E[zt+p¡1 j It¡1]; E[zt+p¡2 j It¡1]; ::; E[zt j It¡1])0; (2.6)

gt¡1 ´ (0; 0::; 0; 1)Gt¡1; (2.7)

and vt ´ zt ¡ gt¡1 where It = ¾(z¿ ; ¿ · t). Then zt admits the state-space representation

fGt; vt; t 2 Zg. Moreover, Gt = ­+ ¡Gt¡1 + Vt where ­ = (!; 0; 0 ¢ ¢ ¢ 0)0 and

¡ =

2
666666664

a1 a2 ¢ ¢ ¢ ap
1 0 ¢ ¢ ¢ 0
0 1 ¢ ¢ ¢ 0
: ¢ ¢ ¢ ¢ ¢ ¢ :
: ¢ ¢ ¢ ¢ ¢ ¢ :
0 ¢ ¢ ¢ 1 0

3
777777775

: (2.8)

Note that this result concerns semi-strong ARMA and therefore strong ARMA. However, it

is not true for weak ARMA because the weak noise property is too poor to provide condi-

tional moment restrictions like (2.4) and (2.5). These conditional moment restrictions are the

only binding restrictions w.r.t. the Wold representation setting. Of course, any ARMA(p,q)

can be written as an ARMA(p',p') with p'=max(p,q). But the above property shows that

the state-space representation requires something intermediate between weak and semi-strong

ARMA(p,p) properties, characterized by the following multi-period conditional moment re-

strictions of order p on observable:

Proposition 2.2 State-space representation and multi-period conditional moments

A stationary process fzt; t 2 Zg admits a state-space representation of order p i® there exist
(p + 1) reals !, a1,..,ap, such as the roots of 1¡ Pp

i=1 aiL
i are outside the unit circle and

E[zt ¡ ! ¡
pX

i=1

aizt¡i j z¿ ; ¿ · t¡ p¡ 1] = 0: (2.9)

To summarize, the state-space representation of order p characterizes a class of processes which

contains strictly the class of semi-strong and strong ARMA(p,p) and is strictly included in the

weak ARMA(p,p) one. Multi-period conditional moment restrictions like (2.9) occur in several

economic contexts: models of multi-period returns of securities (Hansen and Hodrick, 1980), in

the presence of time-averaged data (Grossman, Melino and Shiller, 1987). Optimal instruments

issue for (2.9) is addressed in Hayashi and Sims (1983) and in several papers by Hansen and

co-authors (Hansen, 1985, Hansen, Heaton and Ogaki, 1988, Hansen and Singleton, 1996).

On the other hand, temporal aggregation properties of ARMA models are obtained only for

weak ARMA,18 see e.g., Palm and Nijman (1984) and see Granger (1990) for a survey. However,

the class of semi-strong VAR(1) is closed under temporal aggregation. Thus, the state-space

representation of order p, where Gt is an VAR(1), is closed under temporal aggregation:

18Of course, under normality, temporal aggregation holds for semi-strong and strong ARMA since they are
equivalent to weak ARMA.
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Proposition 2.3 Temporal aggregation of the state-space representation

Let fzt; t 2 Zg a stationary process which admits a state-space representation of order p
fGt; ´t; t 2 Zg. De¯ne for a given integer m and real numbers (a0; a1; ::; am¡1) the process

fz(m)tm ; t 2 Zg by z(m)tm ´ Pm¡1
i=0 aiztm¡i. Then fz(m)tm ; t 2 Zg admits a state-space representation

of order p. More precisely, we have z
(m)
tm = g

(m)
tm¡m + ´

(m)
tm where

g
(m)
tm¡m ´ E[z

(m)
tm j ztm¡m¡¿ ; Gtm¡m¡¿ ; ¿ ¸ 0] = e0(A(m)Gtm¡m +B

(m)); (2.10)

with A(m) =
m¡1X

i=0

ai¡
m¡i¡1 and B(m) = (

m¡1X

i=0

ai(
m¡i¡2X

k=0

¡k))­: (2.11)

Assume that e0A(m) 6= 0, i.e. z(m)tm is not a constant almost surely, then g
(m)
tm = e(m)

0
G
(m)
tm with

e(m) = A(m)
0
e; G

(m)
tm = Gtm + e

(m)(e(m)
0
e(m))¡1e0B(m): (2.12)

Besides, G
(m)
tm is a VAR(1) process whose autoregressive matrix ¡(m) is given by

¡(m) = ¡m: (2.13)

This proposition means that while semi-strong ARMA class is not closed under temporal

aggregation, the particular state-space representation that we consider is. Thus, the class of

ARMA processes de¯ned by the multi-period conditional moment restrictions (2.9) is closed

under temporal aggregation. Note that this class is endowed with richer properties than weak

ARMA which makes it more interesting for both ¯nancial and statistical purposes (see below).

Let stress at this stage some interpretations of the above results which will make even more

sense for temporal aggregation of volatility models hereinafter. The resulting variable g
(m)
tm at

the low frequency is the conditional mean of the aggregated process "
(m)
(t+1)m given the informa-

tion at the high frequency ¾(ztm¡¿ ; Gtm¡¿ ; ¿ ¸ 0) (see the ¯rst part of (2.10)). Thus, it is

an a±ne function of the initial state variable Gtm (second part of (2.10)).
19 Then, assuming

that e0A(m) 6= 0,20 we can rewrite g(m)tm as a marginalization of a new state variable G
(m)
tm which

is indeed the original one plus a constant (see (2.12)).21 Therefore, it is also a VAR(1) and the

low frequency autoregressive coe±cient is equal to the high frequency coe±cient to the power

m (see (2.13)). Thus persistence increases exponentially with the frequency.

2.2 From continuous time to discrete time

Several models in ¯nancial economics are de¯ned in continuous time. However, the data are

typically available in discrete time. Therefore, for inference purposes, it is necessarily to derive

19This is due to the markovianity in mean and to the autoregressive form of gtm.
20This assumption is not restrictive. Indeed, e0Am = 0 means that the process z

(m)
tm is a constant (e0B(m)).

Therefore, it is a degenerate state-space model.
21As usual, the state space representation is not unique. For instance, we can consider ~G

(m)
tm = A(m)Gtm +

B(m) as a state variable. In this case, if one assumes that the matrix A(m) is non singular, then ~G
(m)
tm is also a

VAR(1) whose autoregressive matrix is also ¡(m). In other words, we prefer the state G
(m)
tm rather than ~G

(m)
tm

because we have to assume only that e0A(m) 6= 0 rather then A(m) non singular.
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the implied restrictions ful¯lled by the data. A natural approach is to derive the exact likelihood

of the data from a fully parametric continuous time model. However this likelihood does not

admit in general a closed form expression. Therefore alternative approaches are developed like

non parametric methods (Ait-Sahalia, 1996), simulated methods (see Gourieroux and Monfort,

1996), bayesian methods (Elarian, Chib and Shephard, 1998) or GMM method (Hansen and

Sheinkman, 1995).

However, the template of continuous time model which allows us to derive the exact likelihood

for the discrete time data is the Ornstein-Uhlenbeck process:

dYt = K(£¡ Yt)dt+§dWt (2.14)

where Yt 2 IRp, £ 2 IRp, K is a matrix of size (p £ p) and dWt is p-variate standard Wiener

process. In this case, for any h > 0, the process fY¿h; ¿ 2 Zg is a conditionally gaussian
VAR(1) process whose conditional mean is (Id¡ e¡Kh)£ + e¡KhY(¿¡1)h.
Note however that the VAR structure of the conditional mean is indeed only due to the linearity

structure of the drift. Therefore, given a process fYt; t 2 IRpg de¯ned by

dYt = K(£¡ Yt)dt+§tdWt (2.15)

where the matrix §t can depend on Yt or on additional variables Ft,
22 the process fY¿h; ¿ 2 Zg

is a semi-strong VAR(1) process (see Appendix A), that is:

E[Yth j Y¿h; ¿ · t¡ 1] = (Id¡ e¡Kh)£ + e¡KhY(t¡1)h: (2.16)

Such processes will be of interest in our paper. Furthermore, we also require their positivity.

2.3 Autoregression and positivity

In this section, we propose three examples of autoregressive and nonnegative processes.

² Example 1: Let us consider the process fzt; t 2 IRg which is the stationary solution of:

dzt = k(µ ¡ zt)dt+ ±(zt)¸dWt; (2.17)

where 1=2 · ¸ · 1 ensures that there exists a nonnegative stationary process solution of

(2.17).23 This is the class of CEV processes. When ¸ = 1, we say that it is the square-root

process. Note that (2.17) is the univariate version of (2:15). Thus, from (2.16) we deduce that

the nonnegative process fz¿h; ¿ 2 Zg is a semi-strong AR(1) process.
² Example 2: Let fxt; t 2 Zg the process de¯ned by xt = axt¡1 + ut where j a j< 1 and ut
i.i.d. N (0; ¾2): De¯ne fzt; t 2 Zg by zt ´ x2t , then it is straightforward to prove that

E[zt j z¿ ; ¿ < t] = a2zt¡1 + ¾2 and V ar[zt j z¿ ; ¿ < t] = 2¾2(¾2 + 2a2zt¡1): (2.18)

22Of course, the choice of §t is such that there exists a unique stationary solution of (2.15).
23Note however that the existence of a stationary solution can be guaranteded without the restriction ¸ · 1;

see Conley et al. (1995).
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The ¯rst part of (2.18) means that the nonnegative process zt is an AR(1) while the sec-

ond one means that it is conditionally heteroskedastic. Note however that the conditional

heteroskedasticity is not necessary to ensure the nonnegativity of an AR process (see the fol-

lowing example). We can also adapt this example in continuous time. More precisely, consider

fxt; t 2 IRg the stationary solution of the stochastic di®erential equation dxt = ¡kxtdt+¾dWt,

with k > 0, and de¯ne the process fzt; t 2 IRg by zt ´ x2t . Then by the Ito Lemma we have

dzt = (¾
2 ¡ 2kzt)dt+ 2xt¾dWt, which can be rewritten as dzt = (¾

2 ¡ 2kzt)dt+2
p
zt¾d ~Wt. In

other words, zt is a constrained square-root process.

² Example 3: Let fzt; t 2 Zg the process de¯ned by zt = ! + ½zt¡1 + vt where, 0 < !,

0 · ½ < 1 and vt i.i.d. D(0; ¾2). The process zt has the following MA(1) representation:
zt =

P+1
i=0 ½

i(vt + !). Thus, nonnegativity of zt is ensured when vt ¸ ¡ ! almost surely.

3 SR-SARV(p) model

In this section we introduce the Square Root Stochastic AutoRegressive Volatility model of

order p (SR-SARV(p)) in discrete and continuous times. The main idea of these models is

a state-space representation of order p for the squared (innovation) process. We prove the

consistency between these two models by showing that exact discretization of continuous time

SR-SARV(p) model is a discrete time SR-SARV(p) model. This suggests that this class of

models is closed under temporal aggregation and we therefore prove the aggregation result.

Then we derive observable restrictions of our model. It provides multi-period conditional

moment restrictions of p lags which hold for the squared process. This ensures an ARMA

structure for the squared innovation process which is intermediate between weak and semi-

strong. Finally we recall the de¯nitions of semi-strong GARCH and weak GARCH and their

links with the ARMA structure of the squared innovations.

3.1 The model

3.1.1 Discrete time SR-SARV(p) model

De¯nition 3.1 Discrete time SR-SARV(p) model:

A stationary squared integrable process f"t; t 2 Zg is called a SR-SARV(p) process with
respect to an increasing ¯ltration Jt; t 2 Z, if:
i) the process "t is adapted w.r.t. Jt, that is It ½ Jt where It = ¾("¿ ; ¿ · t);

ii) "t is a martingale di®erence sequence w.r.t. Jt¡1, that is E["t j Jt¡1] = 0;
iii) the conditional variance process ft¡1 of "t given Jt¡1 is a marginalization of a stationary

VAR(1) of size p:

ft¡1 ´ V ar["t j Jt¡1] = e0Ft¡1; (3.1)

Ft = ­+ ¡Ft¡1 + Vt; with E[Vt j Jt¡1] = 0; (3.2)

where e 2 IRp+, ­ 2 IRp+ and the eigenvalues of ¡ have modulus smaller than one.
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Observe that our de¯nition is de¯ned for a given information set Jt. Jt can strictly contain

the information set It = ¾("¿ ; ¿ · t), which is the minimal information. In particular, Jt may

contain macroeconomic variables, informations about others assets and markets, the volume

of transactions, the spread, the order book and so on.24 Indeed, we never assume that the

econometrician observes the full information set Jt even if the economic agent does. Thus, the

model is a Stochastic Volatility (SV) model since the conditional variance process is a function

of possibly latent variables.

The process of interest "t is assumed to be a martingale di®erence sequence w.r.t the large

information Jt and therefore w.r.t. It. Typically, "t could be the log-return of a given asset

whose price at time t is denoted by St: "t = Log(St=St¡1). This assumption of m.d.s. is

widespread in ¯nancial economics in relation with a property of informational e±ciency of

asset markets. However, we do not preclude predictable log-returns; in this case, our "t should

be interpreted as the innovation process.25 In addition, "2t admits the state-space representation

"2t = e
0Ft¡1+("2t ¡E["2t j Jt¡1]). Therefore, "2t is endowed with the state-space model properties

like, e.g., multi-period conditional moment restrictions and ARMA structure (see below).

This model is related to the Andersen (1994) SR-SARV and indeed we adopt his terminol-

ogy. However, there are several di®erences between our model and the Andersen (1994) one.26

More precisely, Andersen (1994) considers a fully parametric model by specifying the complete

distribution of the process ("t; F
0
t)
0. Temporal aggregation requirement prevents us from com-

pletely specifying the probability distributions. Indeed, neither distributional assumptions nor

homo-conditional moments restrictions (homoskewness, homokurtosis) are closed under tem-

poral aggregation (see below). Furthermore, Andersen (1994) excludes leverage e®ect while we

do not. Note that we do specify neither this leverage e®ect Cov["t; Ft] (which can be interpreted

as a multivariate leverage e®ect) nor the high order moments of "t (third, fourth...) and Vt.
27

To summarize, we consider here a semiparametric SV model. Of course, an apparent weakness

of our model is the autoregressive structure of the variance process instead of its logarithm as

in the most standard SV models. However, we already proposed such processes in the previous

section. In addition, we now consider continuous time stochastic volatility models which are

popular in ¯nance due to their positivity; then, we prove that exact discretization of these

processes are discrete time SR-SARV(p) ones.

24Note also that ¾("¿ ; f¿ ; ¿ · t) ½ Jt since the process ft is adapted w.r.t. Jt.
25In section 5, we address more speci¯cally the issue of SV processes whose conditional mean includes the

constant and dynamic variables.
26Andersen (1994) considers the general class of SARV models where a function of the conditional variance

process is a polynomial of an AR(1) markov process. When this function is the square-root, Andersen (1994)
calls it Square-Root (SR) SARV while he terms Exponential SARV when this function is the exponential one,
corresponding to the Taylor (1986) and Harvey, Ruiz and Shephard (1994) lognormal SV model.

27On the other hand, Andersen (1994) considers only one factor so his model is related to a SR-SARV(1).
However, he de¯ned the volatility process as a function of a polynomial, say of degree p, of an AR(1) state-
variable Kt. Thus, it is a marginalization of the vector (Kt;K

2
t ; :::; Kp

t )0 which is indeed a VAR(1) of size p,
see section 2. In other words, Andersen (1994) considers also a particular case of SARV(p) model. But he does
not stress this point and he only considers in his empirical study the case p = 1.
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3.1.2 Continuous time SR-SARV(p) model

De¯nition 3.2 Continuous time SR-SARV(p) model

A continuous time stationary process fyt; t 2 IRg is called a SR-SARV(p) process with respect
to an increasing ¯ltration Jt; t 2 IR, if and only if there exists a p-variate process F ct such that
yt is the stationary solution of

d(
yt
F ct

) = (
0
K(£¡ F ct )

)dt+Rt dWt; (3.3)

whereWt is a (p+1)-variate standard Wiener process adapted w.r.t Jt, K is p£p matrix whose
eigenvalues have positive real parts28 and Rt is a (p+1)£ (p+1) lower triangular matrix, such
that the north-west coe±cient r11;t is the square-root of

r211;t ´ ¾2t = e
0F ct ; with e 2 IRp+: (3.4)

The instantaneous conditional variance of (yt; F
c
t ) given Jt is RtR

0
t. The matrix Rt is lower

triangular,29 therefore the conditional variance of yt given Jt is r
2
11;t. In other words, we follow

the main idea of the discrete time SR-SARV(p) model, that is the conditional variance is a

marginalization of a p dimensional VAR(1) positive process F ct . Note that as for the discrete

time model, we have a semiparametric SV model since we do not de¯ne completely the matrix

Rt. In particular, we allow for leverage e®ect. Of course, the matrix Rt has to ful¯ll conditions

ensuring existence and unicity of a stationary solution of the stochastic di®erential equation

(3.3). For instance, this is consistent with the Du±e and Kan (1996) setting of a multivariate

square-root process such that each coe±cient of RtR
0
t is of the form (1; F

c0
t )~e with ~e 2 IRp+1.30

For p = 1, we can consider a CEV process31

d¾2t = k(µ ¡ ¾2t )dt+ ±(¾2t )¸dW2;t; with 1=2 · ¸ · 1: (3.5)

Finally, note that we can also consider a model where there are additional factors in Rt.

We will now prove that the two previous de¯nitions are indeed consistent since exact discretiza-

tion of continuous time SR-SARV(p) model is a discrete time SR-SARV(p) one:

Proposition 3.1 Exact discretization of continuous time SR-SARV(p)

Let fyt; t 2 <g a continuous time SR-SARV(p) process with a corresponding factor process
fF ct ; t 2 <g. Then, for any sampling interval h, the associated discrete time process "(h)th =

yth¡ y(t¡1)h, t 2 Z, is a SR-SARV(p) process w.r.t. J (h)th , J
(h)
th = ¾("

(h)
¿h ; F

c
¿h; ¿ · t; ¿ 2 Z). The

corresponding conditional variance process f
(h)
(t¡1)h ´ V ar["

(h)
th j J (h)(t¡1)h] is given by f

(h)
th = e0F (h)th

with F
(h)
th = A(h)F cth +B

(h), where A(h) = K¡1(Id¡ e¡Kh) and B(h) = (hId¡ A(h))£:
28Indeed, a usual assumption, see e.g. Bergstrom (1990), page 53, is that the eigenvalues of K are distinct.

Therefore K is diagonalisable, i.e. there exist a matrix H such that HKH¡1 = Diag(¸1; :::; ¸p) ´ ¤. As a

consequence, for u > 0, He¡uKH¡1 = e¡u¤ = Diag(e¡u¸1 ; :::; e¡u¸p) with eZ =
P1

i=0
Zi

i! . The positivity of
the real parts of the eigenvalues K ensures the existence of e¡uK 8u > 0.

29This Gramm-Schmidt normalization rule is standard and can be maintained without loss of generality.
30See Du±e and Kan (1996) for su±cient conditions of existence of a stationary solution of (3.3) in this case.
31Since there is only one factor, we change the notations by taking F c

t ´ ¾2
t , Wt = (W1;t;W2;t)

0.
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This proposition32 means that exact discretization of the factor or Stochastic volatility models

of Du±e and Kan (1996), Constantinides (1992), Heston (1993), are also factor or SV models.

Moreover, as we will see later, such models imply conditional moment restrictions based only

on the observable.

More recently, Barndor®-Nielsen and Shephard (1998) consider a new class of continuous time

stochastic volatility models (termed Background Driving L¶evy Processes (BDLP)) which can

be simulated without any form of discretization error. They also characterize the moments,

autocorrelation functions and spectrum of squared returns. Indeed we can prove that exact

discretization of BDLP processes are also SR-SARV (see Appendix B).

The previous result suggests that the SR-SARV(p) class is closed under temporal aggrega-

tion. This is the main contribution of our paper and the purpose of the next subsection.

3.2 Temporal aggregation of SR-SARV(p) models

We consider here general temporal aggregation of a given process. More precisely, let consider

a process f"t; t 2 Zg, we assume that we observe the process f"(m)tm ; t 2 Zg de¯ned by

"
(m)
tm =

m¡1X

k=0

ak"tm¡k; (3.6)

where m 2 N¤, a = (a0; a1; ::; am¡1)0 2 IRm. Typically, temporal aggregation of stock vari-

ables observed at the dates m, 2m, 3m,.., Tm, corresponds to a = (1; 0; 0:::; 0)0 while for °ow

variables a = (1; ::; 1)0. This later case is particularly suitable for log-returns and continuously

compounded interest rates.

Proposition 3.2 Temporal aggregation of SR-SARV(p) model

Let "t a SR-SARV(p) process w.r.t. an increasing ¯ltration Jt and a conditional variance

process ft = e
0Ft. For a given integer m, the process "

(m)
tm de¯ned by (3.6) is a SR-SARV(p)

w.r.t. J
(m)
tm = ¾("(m)¿m ; F¿m; ¿ · t). More precisely, we have:

f
(m)
tm¡m ´ V ar["

(m)
tm j Jtm¡m] = e0(A(m)Ftm¡m +B(m)); (3.7)

where A(m) =
m¡1X

k=0

a2k¡
m¡k¡1 and B(m) = (

m¡1X

k=0

a2k(
m¡k¡2X

i=0

¡i))­: (3.8)

Assume that e0A(m) 6= 0, then f (m)tm = e(m)
0
F
(m)
tm with

e(m) = A(m)
0
e; F

(m)
tm = Ftm + e

(m)(e(m)
0
e(m))¡1e0B(m): (3.9)

Besides, F
(m)
tm is a VAR(1) process whose autoregressive matrix ¡(m) is given by

¡(m) = ¡m: (3.10)

32Note that in this proposition, the discrete time state variable is A(h)F c
th + B(h) and not, as in Proposition

2.3, F c
th plus a constant. The reason is that we are sure that the matrix A(h) is not singular (see footnote 21).
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Therefore, models where the conditional variance is a marginalization of a VAR(1) process

are robust to temporal aggregation. Note that this result is not a direct application of the

temporal aggregation property of the state-space representation (Proposition 2.3): Here we

consider the dynamics of (
Pm
i=0 ai"tm¡i)

2 while in the previous case we had characterized the

dynamics of
Pm
i=0 aiztm¡i. Actually, in section 2, the process z has a state-space representation

of order p while here it is "2 and not ". However, the intuition of the two results are the

same. Consider the initial process "t with the information Jt at high frequency and de¯ne the

process at low frequency "(m)tm by (3.6). De¯ne f (m)tm as the conditional variance of "(m)(t+1)m given

the information at high frequency Jtm (¯rst part of 3.7). This information is generally not

observable either by the agent or by the econometrician and thus the variance is stochastic.

But by something like a markovian property,33 the conditional variance f (m)tm is a function

of Ftm. Thanks to the linearity of the model, this function is indeed a±ne (second part of

(3.7)). De¯ne the information at low frequency by J
(m)
tm ´ ¾("(m)¿m ; F

(m)
¿m ; ¿ · t). Then "

(m)
tm

is still a m.d.s. with respect to J
(m)
tm since E["

(m)
tm+m j Jtm] = 0 and J

(m)
tm ½ Jtm. Of course,

by de¯nition, the conditional variance f
(m)
tm of "

(m)
tm+m given J

(m)
tm is positive. Then assuming

that e0A(m) 6= 0,34 we can rewrite this conditional variance as a marginalization of a new state
variable F

(m)
tm . The latter is a VAR(1) since it is the sum of a VAR(1) and a constant. Thus,

"
(m)
tm is a SR-SARV(1) w.r.t. J

(m)
tm . Finally the autoregressive parameter of the VAR(1) F

m
tm is

equal to the autoregressive parameter of the high frequency vector Ft to power m (3.10). It

means that the persistence increases exponentially with the frequency. Conversely, conditional

heteroskedasticity vanishes when the frequency is low. This corresponds to a well-documented

empirical evidence and was already pointed out by Diebold (1988) and Drost and Nijman

(1993).

Temporal aggregation of conditional heteroskedastic models was already considered for

GARCH models by Drost and Nijman (1993) as well as the links between continuous time SV

model and GARCH by Drost and Werker (1996). In the next subsection, we will recall these

results and show the links between their weak GARCH model and our SR-SARV model.

3.3 Observable restrictions

3.3.1 Multi-period conditional moment restrictions

The SR-SARV is de¯ned w.r.t. an increasing ¯ltration Jt, which may not be observable by

the economic agent or the econometrician. However, as in the previous section, since a SR-

SARV(p) implies that "2t has a state-space representation of order p, we can derive conditional

moments ful¯lled by the observable process "t given the minimal information It = ¾("¿ ; ¿ · t).

This means that the information generated by the returns should belong, in any case, to the

33If one has in mind an underlying continuous time representation like (3.3), the low frequency process

(y
(m)
tm ; F

(m)
tm ) is markovian. More generally, our setting ensures that the conditional variance f

(m)
tm depends on

past information only through Ftm.
34As in the previous section, this assumption is not restrictive. The equality e0A(m) = 0 means that the

process "
(m)
tm is homoskedastic which is a degenerate SR-SARV model. In other words, temporal aggregation

cancels the heteroskedastic e®ect.
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econometrician information set. These restrictions are of course multi-period ones of order p:

Proposition 3.3 SR-SARV and ARMA

Let f"t; t 2 Zg a stationnary process. It admits a SR-SARV(p) representation w.r.t. an

increasing ¯ltration Jt if and only if there exist p+1 reals !, °1,..,°p, such that the roots of

1¡ Pp
i=1 °iL

i are outside the unit circle and

E["2t ¡ ! ¡
pX

i=1

°i"
2
t¡i j "¿ ; ¿ · t¡ p¡ 1] = 0: (3.11)

This result is an application of Proposition 2.2. Therefore, "2t is an ARMA(p,p) de¯ned by

(3.11), that is an ARMA property stronger than the weak one but weaker than the semi-strong

one. The (semi-strong) ARMA structure was the main idea of the ARCH models introduced

by Engle (1982) and generalized (GARCH) by Bollerslev (1986). In particular, the well known

clustering e®ect in ¯nancial data that these models account for is directly related to the ARMA

structure of the squared residuals. On the other hand, for temporal aggregation purposes, Drost

and Nijman (1993) introduce the weak GARCH models where the squared residuals process is

weak ARMA. Following the Drost and Nijman (1993) terminology, we precisely de¯ne below

the various concepts and show how they are nested.

3.3.2 GARCH(p,q)

De¯nition 3.3 GARCH(p,q):

Let a stationary process f"t; t 2 Zg and de¯ne the processes fht; ut; t 2 Zg by the stationary
solution of

B(L)ht = ! +A(L)"
2
t (3.12)

and ut = "t=
p
ht, with A(L) =

Pq
i=1 ®iL

i, B(L) = 1¡Pp
i=1 ¯iL

i where the roots of B(L)¡A(L)
and B(L) are assumed to be outside the unit circle. We say that:

i) "t is a strong GARCH(p,q) if the process ut is i.i.d. D(0; 1);

ii) "t is a semi-strong GARCH(p,q) if the process ut is such that

E[ut j "¿ ; ¿ · t¡ 1] = 0 and V ar[ut j "¿ ; ¿ · t¡ 1] = 1; (3.13)

iii) "t is a weak GARCH(p,q) if

EL["t j Ht¡1] = 0 and EL["2t j Ht¡1] = ht; (3.14)

where EL[xt j Ht¡1] denotes the best linear predictor of xt on the Hilbert space spanned by
f1; "¿ ; "2¿ ; ¿ · t¡ 1g, Ht¡1, that is

E[(xt ¡ EL[xt j Ht¡1])"rt¡i] = 0 for i ¸ 1 and r = 0; 1; 2: (3.15)

Proposition 3.4 Semi-strong GARCH and ARMA

Let f"t; t 2 Zg a m.d.s. (E["t j "¿ ; ¿ · t¡ 1]). It is a semi-strong GARCH(p,q) if and only if
"2t is a semi-strong ARMA(maxfp; qg,p).
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This equivalence result was already stated by Bollerslev (1988). Note that strong GARCH

implies semi-strong ARMA and not strong one: When "2t=ht is i.i.d., the ARMA process "2t
should in general be conditionally heteroskedastic. On the other hand, since "2t is a semi-

strong ARMA, it implies a multi-period conditional moment restriction of order max(p,q).35

Therefore, Proposition 3.3 implies that "t admits a SR-SARV(max(p,q)) representation. Fur-

thermore, the continuous time SR-SARV(p) is like GARCH(p,p) model. To the best of our

knowledge, the relationship between GARCH(p,p) modeling of higher order (p > 1) and contin-

uous time stochastic volatility models was not clearly stated before in the literature whatever

the approach of di®usion approximating (Nelson, 1990), ¯ltering (Nelson and Foster, 1994) or

closing the GARCH Gap (Drost and Werker, 1993). Finally, temporal aggregation of GARCH

model is a SR-SARV model. In other words, to close the class of GARCH processes, we have

to go into the stochastic volatility models. This is not a surprising result since we know from

ARMA theory that semi-strong ARMA are not closed under temporal aggregation. Further,

it is an additional reason36 for the parsimony of stochastic volatility models.

In the next section, we give additional insights about the reasons why GARCH models are

not robust to temporal aggregation. Drost and Nijman (1993) already focused on this weakness

of standard GARCH models. They give examples of strong and semi-strong GARCH which are

not closed under temporal aggregation. Then, they introduce the weak GARCH model where

the squared residuals are weak ARMA in order to bene¯t from the aforementioned temporal

aggregation of the weak ARMA structure.

Proposition 3.5 Weak GARCH and ARMA

If "t is a weak GARCH(p,q) process, then "
2
t is a weak stationary ARMA(maxfp; qg,p) process.

Conversely, if "2t is a weak stationary ARMA(q,p) process: A(L)"
2
t = !+B(L)´t, with ´t weak

white noise , "t is a weak GARCH(p,q) if and only if:

Cov(´t; "¿ ) = 0; 8¿ < t: (3.16)

In this case, ° = ® + ¯ and EL["2t j Ht¡1] = EL["2t j Hs
t¡1] where H

s
t¡1 is the Hilbert space

spanned by f1; "2¿ ; ¿ · t¡ 1g.

Thus, the weak GARCH property is slightly more restrictive than the weak ARMA assumption

for the squared residuals. In particular, (3.16) is like a symmetry assumption, which is implied

by the maintained condition m.d.s. for "t when assuming semi-strong GARCH. In fact, Drost

and Nijman (1993) take a \consistent" de¯nition in the sense that they project both the

residual and its square onto the same space Ht¡1. However, ARMA structure of the squared

residuals was the main idea of the weak GARCH.37 As we can already see, the class of weak

35More precisely, a semi-strong ARMA(~q; ~p) implies a multi-period conditional moment restrictions of or-
der equal to maxf~q; ~pg. Thus a semi-strong ARMA(maxfp; qg,p) implies a multi-period restriction of order
maxfp; qg.

36See Ghysels, Harvey and Renault (1996) for the other reasons.
37We thank Feike Drost for con¯rming this point to us in a private communication. In addition, when Nijman

and Sentana (1996) and Drost and Weker (1996) prove respectively that a marginalization of a multivariate
GARCH and that the discretization of (3.3) for p=1 under (3.5) are weak GARCH, they only deal with the
ARMA property of squared residuals.
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ARMA strictly contains the multi-period type ARMA models. Therefore, it means that weak

GARCH are Stochastic Volatility models. In other words, Drost and Nijman (1993) go also

into the stochastic volatility models to close the GARCH models.38

However, to show that weak GARCH are closed under temporal aggregation, Drost and Nijman

(1993) make a restrictive technical assumption by assuming one of the following symmetry

conditions:

8h 2 N¤; 8(ak)1·k·h 2 f¡1; 1gh; ("t+k)1·k·h = (ak"t+k)1·k·h in distribution; or (3.17)

80 · i · j E["t"t¡i"t¡j] = 0 and 8 0 · i · j · k; i 6= 0 or j 6= k E["t"t¡i"t¡j"t¡k] = 0: (3.18)
Such symmetry restrictions are indeed very restrictive both in theoretical and empirical points

of view. They preclude two types of asymmetry, both of which appear relevant for ¯nancial

data. First, even in the strong GARCH setting, the probability distribution of the standard-

ized innovations "t=
p
ht may be skewed. Second, since the weak GARCH models go into the

SR-SARV setting (outside the standard GARCH class), another type of asymmetry (termed

leverage e®ect by Black, 1976, and popularized by Nelson, 1991) may matter. A clear distinc-

tion between these two types of asymmetric behavior of a general SR-SARV(1) process will

be made in section 4 below. Equivalently, leverage e®ect can be introduced in the continuous

time setting by allowing the volatility matrix Rt to be non-diagonal, unlike the case considered

by Drost and Werker (1996). Finally, note that our results of temporal aggregation and exact

discretization are consistent with those of Drost and Nijman (1993) and Drost and Werker

(1996).39 In particular, the restrictions on the parameters are the same (¡(m) = ¡m).40

4 SR-SARV(1)

4.1 SR-SARV and GARCH

The GARCH(1,1) model is nowadays dominant w.r.t. any other ARCH or GARCH type model

in the empirical ¯nance literature. In this section, we discuss in more details its relationships

with general SR-SARV(1). In the previous section, we proved that a semi-strong GARCH(p,q)

is also a SR-SARV(maxfp; qg). In the following proposition we characterize the SR-SARV(1)
processes which are also semi-strong GARCH(1,1):

Proposition 4.1 Semi-strong GARCH(1,1) and SR-SARV(1)

Let f"t; t 2 Zg a SR-SARV(1) process with a conditional variance process ft. "t is a semi-strong
GARCH(1,1) if and only if:

i) "2t and ft are conditionally perfectly positively correlated given Jt¡1 (conditional linear cor-

relation equal to 1);

ii) the ratio V ar[ft j Jt¡1]=V ar["2t j Jt¡1] is constant and smaller or equal to °2.
In this case: ht+1 = ft, Jt = It and ¯ = ° ¡ ® with ® =

q
V ar[ft j Jt¡1]=V ar["2t j Jt¡1].

38See the following section where we establish the exact links between SR-SARV and weak GARCH.
39Nevertheless, Drost and Werker (1993) consider only the one factor case.
40For more details, see Meddahi and Renault (1996).
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The ¯rst restriction is related to the common idea that ARCH models correspond to the de-

generate case where there are no exogenous sources of randomness in the conditional variance

dynamics. This degeneracy corresponds to GARCH only if it is a perfect linear conditional

correlation. The second restriction is less known even though it was already coined by Nel-

son and Foster (1994). They observed that the most commonly used ARCH models assume

that the variance of the variance rises linearly with the square of the variance, which is the

main drawback of GARCH models in approximating SV models in continuous time. Thus,

semi-strong or strong GARCH setting implies nontrivial restrictions on conditional kurtosis

dynamics.

In the literature, there are additional ARCH-type models characterized by an autoregres-

sive dynamic of the volatility. For instance, Glosten, Jagannathan and Runkle (1989, GJR)

introduce a model based on a GARCH formulation but accounting for the sign of the past

residuals. This symmetry is a limitation of GARCH models with respect to EGARCH ones.

Such asymmetric models where studied and compared theoretically and empirically by Engle

and Ng (1993). More precisely, they consider the following models:41

GJR : ht = ! + ®"
2
t¡1 + ¯ht¡1 + ° St¡1"

2
t¡1; where St = 1 if "t < 0; St = 0 otherwise; (4.1)

Asymmetric GARCH : ht = ! + ®("t¡1 + °)
2 + ¯ht¡1; (4.2)

Nonlinear Asymmetric GARCH : ht = ! + ®("t¡1 + °
q
ht¡1)

2 + ¯ht¡1; (4.3)

VGARCH : ht = ! + ®("t¡1=
q
ht¡1 + °)

2 + ¯ht¡1; (4.4)

Let us also consider a related model considered by Heston and Nandi (1999):42

Heston and Nandi ht = ! + ®("t¡1=
q
ht¡1 ¡ °

q
ht¡1)

2 + ¯ht¡1: (4.5)

In the following proposition, we show that all the previous models are SR-SARV(1) ones:

Proposition 4.2 Asymmetric GARCH and SR-SARV(1)

Let f"t; t 2 Zg such that E["t j "¿ ; ¿ · t¡ 1] = 0 and de¯ne ht the conditional variance of "t,
i.e. ht ´ V ar["t j "¿ ; ¿ · t ¡ 1]. Assume that ht is given by (4.1), (4.2), (4.3), (4.4), or by

(4.5), then "t is a SR-SARV(1) model.

4.2 SR-SARV and weak GARCH

In the following, we will focus on the relationships between SR-SARV and weak GARCH. As

we say above, Drost and Nijman (1993) prove the temporal aggregation property of symmetric

weak GARCH (assuming (3.17) or (3.18)) which excludes leverage e®ect and all the previous

41The Asymmetric GARCH was introduced by Engle (1990) while both the Nonlinear Asymmetric GARCH
and VGARCH models were intoduced by Engle and Ng (1993).

42Heston and Nandi (1999) show that the limit di®uion of (4.5) is the stationary solution of (3.5) with
¸ = 1=2, i.e. the model considered by Heston (1993). Both the discrete time and the continuous time models
present closed-form option pricing formulas.
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asymmetric models (e.g. GJR). Now we precise two kinds of asymmetries for the SR-SARV

model:

De¯nition 4.1 Leverage e®ect and skewness:

Let f"t; t 2 Zg a SR-SARV(1) process w.r.t. an increasing ¯ltration Jt with corresponding
processes fft; ut; ºtg. We say that:
i) "t does not present leverage e®ect w.r.t. Jt if and only if

E[utºt j Jt¡1] = 0; (4.6)

ii) "t does not present skewness w.r.t. Jt if and only if

E[u3t j Jt¡1] = 0: (4.7)

With the above de¯nitions, we can now show that a SR-SARV model without leverage e®ect

and skewness is a weak GARCH:

Proposition 4.3 Weak GARCH(1,1) and SR-SARV(1)

If "t is a SR-SARV(1) process without leverage e®ect and skewness, that is if (4.6) and (4.7)

hold, then "t is a weak GARCH(1,1) process.

Therefore, there is no major di®erence between symmetric weak GARCH and symmetric SR-

SARV. However, we do not prove an equivalence result and it is clear that the class of symmetric

weak GARCH is larger than the symmetric SR-SARV. Indeed, one can interpret the weak

GARCH as a stochastic volatility model, but a model which is so weak, that is there is not

enough restrictions which can be useful for interpretations and inference. In addition, we

proved in section 3 that this weakness is not needed to close the GARCH gap with continuous

time as in Drost and Werker (1996). In a sense, by introducing the SR-SARV, we reached the

weak GARCH models by adding useful restrictions for ¯nancial and statistical interpretations.

Another advantage of SR-SARV is that they allow for asymmetries like leverage e®ect and

skewness. Furthermore, these symmetric assumptions are closed under temporal aggregation:

Proposition 4.4 Temporal aggregation, leverage e®ect and skewness

Let f"t; t 2 Zg a SR-SARV process w.r.t. an increasing ¯ltration Jt with corresponding pro-
cesses fft; ut; ºt; t 2 Zg. De¯ne "(m)tm by (3.6) and the corresponding SR-SARV(1) representa-

tion of Proposition 3.2 J
(m)
tm , ff (m)tm ; u

(m)
tm ; º

(m)
tm ; t 2 Zg. Then the absence of leverage e®ect and

skewness are robust to temporal aggregation, that is symmetric SR-SARV class is also closed

under temporal aggregation:

E[utºt j Jt¡1] = 0 =) E[u
(m)
tm º

(m)
tm j J (m)tm¡m] = 0; (4.8)

E[utºt j Jt¡1] = E[u3t j Jt¡1] = 0 =) E[u
(m)
tm º

(m)
tm j J (m)tm¡m] = E[(u

(m)
tm )

3 j J (m)tm¡m] = 0: (4.9)

This proposition means that our results generalize those of Drost and Nijman (1993) and

Drost and Werker (1996), since symmetric SR-SARV are weak GARCH and are closed under

temporal aggregation. Besides, the relationships between parameters at various frequencies,
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already stressed by these authors (particularly the persistence parameter) are maintained in

our SR-SARV setting. On the other hand this proposition implies that a symmetry assumption

about the standardized innovation (a no-skewness e®ect) cannot be alleged without precluding

leverage e®ect as well (see 4.9). Therefore, when one observes signi¯cant skewness at a low

frequency, it may be due either to genuine skewness or to leverage e®ect at the high frequency,

while the presence of leverage e®ect at a low frequency implies the same feature at the high

frequency.

Proposition 4.5 Observable restrictions of leverage e®ect and skewness

Let "t a SR-SARV(1) w.r.t. an increasing ¯ltration Jt.

i) "t is without leverage e®ect ((4.6) holds) if and only if

E["2t"t¡1 j It¡2] = 0: (4.10)

ii) "t is without skewness ((4.7) if and only if holds), then

E["3t j It¡1] = 0: (4.11)

Therefore we can derive moments restrictions based on observable data which can be used to

test the absence of leverage e®ect or skewness. Moreover, usual GARCH allows for leverage

a®ect as soon as there is skewness since the conditions (4.6) and (4.7) are equivalent in this

case.

5 Conclusion

We have proposed in this paper a new concept of semiparametric stochastic volatility model

which appears to be the good framework for structural interpretations of times series models

with conditional heteroskedasticity. Actually, if one wants to consider time series of condition-

ally heteroskedastic asset returns, there was no framework available until now to capture in the

same setting temporal aggregation or portfolios of these returns. On the one hand, it is well

known that the usual GARCH setting is not robust with respect to temporal aggregation. On

the other hand, the only robust setting already suggested in the literature, that is the Drost

and Nijman (1993) weak GARCH one, su®ers from several drawbacks:

In this paper, we consider temporal aggregation of volatility models. We introduce a semi-

parametric class of volatility models termed square-root stochastic autoregressive volatility

(SR-SARV) and characterized by an autoregressive dynamic of the stochastic variance. Our

class encompass the usual GARCH models of Bollerslev (1986), the asymmetric GARCH mod-

els of Glosten, Jagannathan and Runkle (1989) and Engle and Ng (1993). Moreover, when the

volatility is stochastic, that is there is a second source of randomness, the considered models

are characterized by observable multi-period conditional moment restrictions (Hansen, 1985).

The SR-SARV class is a natural extension of the weak GARCH models of Drost and Nijman

(1993). Our extension has advantages since we allow for asymmetries (skewness, leverage ef-

fect) that are excluded by the weak GARCH models and we derive observable conditional

moment restrictions which are useful for inference.
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