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This paper specifies a general set of conditions under which the impacts of a policy can
be identified using data generated under a different policy regime. We show that some
of the policy impacts can be identified under relatively weak conditions on the data and
structure of a model. Based on the identification result we develop estimators of policy
impacts. We discuss a nonparametric method to implement the estimation but also discuss
semiparametric methods in order to reduce conditioning dimension. We then provide an
empirical example of the impact of tuition subsidies using the ideas. While the framework
used in this paper is fairly narrow, we believe this approach can be applied to a broad set
of problems.

The standard formal econometric approach to estimation of a policy impact uses two
stages. First a “structural” model is estimated, and second, these estimates are used to
simulate the policy counter-factual. Sometimes the structural model takes the form of
a regression model, and in other cases the model is specified from first principles of a
behavioral model. In both cases parameters of a model are estimated first and then the
estimate of a target parameter is constructed using these estimates.

Our approach here is to consider estimation of the policy impact directly rather than
in two stages. When we have the limited objective of obtaining estimates of policy impacts
we show we can sometimes sidestep the problem of estimating the full behavioral models
or even a regression model. We can still obtain consistent estimates of the policy impacts
as captured by the parameters we specify.

When the conditions justifying our approach are applicable, it has three benefits over
the standard structural approach. First, there are examples in which the full model is not
identified, but the policy impact can be identified. In these cases the standard approach
can not be carried out, but our approach may be applicable. For example, semiparametric
identification of key parameters in the classic selection model is often achieved by “identi-
fication at infinity” making use of the subset of data where the probability of a particular
event is close to 0 and 1.! If the support of the data is limited so that the probability is

never close to the extremes, then the parameters of the model are not identified without

'See Chamberlain (1986), Heckman (1990), Heckman and Honore (1990), or Angrist and Imbens (1991).
Taber (1999Db) uses a similar strategy to show identification in discrete choice dynamic programming models.



strong (typically parametric) restrictions on the distribution of the unobservables.? Thus
the traditional two step policy analysis does not work without a parametric distributional
assumption in that case. We show that the identification of all of the parameters of the
model is unnecessary for identifying the policy impact measure we define below and thus
our approach avoids the “identification at infinity” problem. Related to this point is that
even when the parameters in the first stage model are formally identified, using estimates
of them may lead to inaccurate estimates of policy impact relative to ours if the estimation
of those parameters can be done only inaccurately.

Second, as we do not require specification of the first stage model our approach is less
prone to misspecification problems. In particular often the two step approach relies on the
specification of the additive error terms or parametric specification of the error distribution.
Our approach does not rely on such specification.

Third, by the nature of two step procedures, the first stage estimation is carried out
without regard to the second stage. Thus when the first stage is misspecified, the pa-
rameters that are tuned to approximate the first stage equation may not be adequate to
approximate the policy impact measure in the second stage. The problem is essentially
that the loss function used to estimate the parameters in the first stage is unrelated to the
policy experiment for which the estimates will be used. By directly estimating the policy
effect we avoid this problem by focusing on the variation of data that is directly linked to
the measurement of a policy impact.

In addition this approach shares with the structural approach an advantage over “in-

W

strumental variables” or “natural experiment” methods of being explicit about the policy
and some aspects of the behavioral model underlying the estimation. The emphasis in the
“natural experiment” literature is typically on finding exogenous variation. Exactly how
a variation is linked to the policy under consideration is rarely made precise however. We
provide a framework to make this link. Making this link forces the empiricist to be explicit
about which variation in the data corresponds to a policy equivalent variation.> Finding a

policy equivalent variation typically requires stronger assumptions than in the instrumental

?Heckman, Ichimura, Smith and Todd (1998a) and Heckman Ichimura and Todd (1997, 1998b) demon-
strate that in practice these support conditions are very important.
3We formally define a policy equivalent variation in section 3.



variable case, but weaker assumptions than for full scale structural estimation. We view
our approach as a hybrid between the two.

This relates to the debate over the “Local Average Treatment Effect” (LATE).* Imbens
and Angrist (1994) show that the parameter being estimated by instrumental variables takes
the form of a “Local Average Treatment Effect.” Heckman (1997) and others criticize this
parameter because it typically does not answer an economically interesting question. Our
approach avoids this criticism by estimating a specific policy counter-factual.

However, as we shall discuss, this type of reduced form approach is not always applicable.
Clarification of the conditions under which we can and cannot identify a policy impact is
the primary goal of this paper.

Our idea is an extension of the classic idea of making use of historical variation that
corresponds to the policy under consideration. When there is such exogenous variation in
the data, it may be used to identify the policy impact, but when there is no corresponding
historical variation then there is difficulty using this approach. Marschak (1953) provides
an example of a monopolistic firm trying to maximize profit. In his example, an output
level correspond to a policy and outcome is profit. By randomly experimenting with dif-
ferent levels of output and tabulating the results, the firm would know the profit level that
correspond to a particular output level without knowledge of any of the structural param-
eters. If we do not have data which correspond to certain level of outputs, then the profit
function at those points won’t be observed. The simple example makes it clear that when
there is a variation in the data that correspond to a policy under consideration one would
know the impact of a policy but that when we don’t have the corresponding historical
variation we do not.

Another limitation of the approach is that when there is a change in some parameters
then the reduced form relationship examined will in general change and thus the approach
require a new set of variation under new regime.> Marschak (1953) discusses this problem
using a government contemplating imposing tax on the demand for the monopolist’s output.
When the government changes the tax rate the reduced form relationship of profit and

output changes and thus the government would not be able to evaluate the impact of a

4See e.g. Heckman (1997,1999) and Imbens and Angrist (1994, 1999).
See Hurwicz (1950), Marschak (1953), and Lucas (1976).



change of the tax rate on monopolist’s profit by studying the reduced form relationship
observed in the past. In this sense the reduced form analysis seems applicable for ex post
policy analysis but not for ex ante policy analysis. Marschak (1953) points out that by
making use of an economic model of the demand function and the specification of how
it relates to tax and the profit function one can resolve this difficulty by estimating the
demand function. In terms of the discussion above, his is a two step approach; the first
step is the estimation of the demand function and the second step is to combine it with an
economic model of demand that the demand only depends on tax through price to estimate
the profit function under new regime. The analysis provides an example of a possibility of
substituting economic theory in place of lack of data.

It is important not to interpret the classic works on this subject as implying that
estimation of all of the parameters of a structural model is necessary for predicting the
effects of a new type of policy that has not been enacted in the past.® By making use of
some aspects of a behavioral model one can exploit other types of variation in the data
to mimic the effects of a policy change. Sims (1982) mentions that this may be possible
with a change in the money stock. In our empirical work, we consider the example of a
tuition subsidy. Even if a tuition subsidy has never been enacted before, if we are willing to
assume that the tuition faced by individuals varies exogenously and that the tuition subsidy
operates only by lowering the net tuition paid, then one can estimate its effect through
reduced form nonparameteric regression. Knowing the effect of tuition on outcomes allows
one to infer the effect of a tuition subsidy on outcomes without knowledge of the structural
parameters of the model. However, we still need to impose some structure on the problem,
namely that tuition subsidies operate only by lowering net tuition. Another example is
taxes and labor supply. In a partial equilibrium setting workers will respond to changes in
taxes in the same way they respond to changes in wages, so after invoking some structural
assumptions one can use other types of variation in wages to estimate the effects of taxes
on labor supply.

Marschak observed one can substitute lack of historical variation in data with economic
modeling in structural approach. We exploit this observation in reduced form approach

and specify the conditions under which the effects of a particular policy can be identified

See Heckman (1999) for discussion of much of this subject.
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directly. This paper focuses on the program evaluation model with two alternative choices,
but the basic principle can be extended to more general contexts.

In section 2 we present our framework and section 3 establishes conditions under which
policy effects can be identified. Section 4 describes the relationship between our approach
and results available in the literature, and section 5 presents an empirical example. Section

6 concludes.

1 Basic model and parameters of interest

There are three basic elements in our model: choice variables, outcome variables, and a
policy under consideration. In this paper we consider a case in which the choice variable is
binary and the outcome depends on the choice. We index the policy by m which we assume
to lie in a space we call policy space II. The choice variable under policy 7 is denoted by
the random function D (Z, w) which takes values 0 and 1, where Z is an observable random
vector. Y] (Z) and Y (Z) denote outcomes that correspond to choice D (Z,7) = 1 and 0,
respectively without reference to 7.”

An important assumption we have made is that the outcome distribution of Y, and Y;
is not altered by the introduction of the new policy.® We do not consider policies that
change treatment intensity. Nor do we consider the general equilibrium effects of the policy

9 Heckman, Lochner, and Taber (1998) show that ignoring these effects may be

change.
disastrous for some national programs. However, for local programs there is no reason to
believe this assumption will be particularly problematic.

In the context of program evaluation D (Z,7) denotes program participation under
policy 7 and the individual outcomes with and without enrolling in the program are denoted

Y1 (Z) and Y (Z), respectively. Examples of 7 are subsidies or eligibility criteria of the

"Many of the results will make use of exclusion restrictions: elements that influence choice but not
outcomes. However, to simplify the notation we write the outcome variables as a function of the whole
vector Z. This notation includes cases where some elements of Z do not affect outcomes.

8We usually condition on Z but when we do not, we assume that the relevant Z distribution is the one
under the old policy or it is not altered by a new policy.

9For these cases see Heckman and Smith (1997) and Heckman (1997). General equilibrium effects are
considered by Heckman, Lochner, and Taber (1998) where changing enrollment in the program may change
the value of the program through equilibrium effects.



program.*’

Let
Y(Z,7)=D(Z Y1 (Z)+{1—-D(Z,n)}Yy(Z).

Since Y; (Z) is realized only if the person chooses D (Z,7) = 1, and since Yy (Z) is
realized only if the person chooses D (Z,7) = 0, the econometrician can only observe
(D(Z,7),Y (Z,7),Z) for the policy 7 that is in place when the data is generated.

We use the following notational convention throughout the rest of this paper. If H(Z)
is a random function of Z, we take the expression F {H(z)} to mean E{H(Z) | Z = z}."
Since virtually every expectation we consider conditions on Z, this simplifies the notation
substantially.

The first two parameters we consider are
A(z, 7', m)=E[Y(2,7") =Y (2,7)],
the mean policy effect and
Ao(z 7, m) = E[Y(2,7') =Y (2,7) | D(2,7') # D(z,7)],

the conditional policy effect. The first parameter A (z, 7', 7) captures the change in out-
comes for the population with characteristic Z = z when policy shifts to 7’ from 7.'2 The
second parameter A, (z, 7, m) captures the average gain for the population with character-
istic Z = z who would be affected by the policy shift.

In general,
Az, 7', 7) = Az, 7', m) Pr{D(z,7") # D(z,7)},

so that |A(z, 7', 7)| < |Ac(z,n’,7)|. This observation highlights the distinction between

the two parameters. The mean treatment policy embodies the notion of extensiveness of

10When possible we denote random variables or random vectors by upper case letters and the particular
values of them by lower case letters.
11 And similarly,

Pr{D(z,m) =1} =Pr{D(Z,7)=1|Z = z}.

121t is a version of the policy effect in Heckman (1997) that conditions on Z.
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the impact measured by Pr{D(z,n") # D(z,7)}, but the conditional policy effect is the
measure that isolates the intensiveness of the impact once the choice is affected. Ideally we
would want to identify both the extensive and intensive impacts. Identification of parameter
A (z,7',7) can be achieved under weaker conditions than those for A.(z, 7', 7).

The intensity measure A.(z, 7', ) described above is related to the local average treat-
ment effect (LATE) of Imbens and Angrist (1994). They define LATE as the expected
treatment effect for individuals who are influenced to change treatment status by a change
in the value of a particular conditioning variable, which they refer to as an instrumental
variable. Our parameter is the expected treatment effect for individuals who are influenced
to change treatment status by a change in a particular policy. In their analysis, the condi-
tioning variable Z also plays the role of policy variable. By separating the two explicitly,
we provide a framework to discuss identification and measurement of the impact of an a
priori specified policy. We discuss the difference between these parameters in more detail
below.

The next two “marginal treatment effect” parameters we consider are normalized limits
of the parameters A(z, 7', 7) and A.(z,n’,7), and can be considered only for 7 that is
defined on a policy space II with a notion of “closeness”. These parameters correspond
to those discussed in the literature including studies by Bjorkland and Moffitt (1987),
Heckman and Smith (1997), and Taber (1999a). The nice aspect of these parameters is that
with continuous data and policies they will be identified under weak support conditions.

To this point we have not put any structure on I, so the value of 7 has no content unto
itself except as an index to a policy option. In thinking about marginal treatment effects
we specialize II to be a finite dimensional vector of real valued functions. For example if the
government considered a tuition subsidy, 7 could index the extent of the subsidy. In this
case Il can be identified with the weakly positive real line. Suppose instead it considered
a tuition subsidy with means testing, then a policy may be represented by two numbers
m = (my, ), where the amount of tuition subsidy is denoted by 7; and the maximum
eligible parental income by m5. In this case Il can be identified with the two dimensional
weakly positive real plane. If the amount of the subsidy depends on parental income then
IT can be identified with a space of real valued functions.

We define a marginal treatment effect as the impact of an infinitesimal change in the



extent of intervention starting at 7 and will consider two types. Let A > 0 be a real number
and let 7' = 7 + A7 for some element 7 in II. Letting ‘A | 0’ denote A approaches 0 from
above, one concept is the limit of the conditional mean impact on the switchers when policy

c ( ? ) ) L0 ( ? ? )

The other concept is the normalized limit of the mean impact when policy shifts marginally

in direction 7,

For example if 7 = e; where e; has 0 in all but the jth element and 1 as the jth element
then since A (z,7n',7) = E[Y (2,7") = Y (z,7)],

A" (z,e,m) = OBy (z,m)] [gﬂ(j’w)]

We note that the concept of A™(z,7,7) can be defined more generally than the concept
of the directional limit utilized here but that the concept of A™(z, 7, 7) depends crucially
on the concept of the directional limit as we make use of the normalizing number X in an
essential way.

As we observed, in general,
Az, 7', 7) = Az, 7', m) Pr{D(z,7") # D(z,7)},

so that

A" (z,m,m) = Al (2,7, 7) l}'{ﬁ)l Pri{Dzm ))\?é Dz, W)}

That is, just as for parameters A(z, 7', 7) and A.(z, 7', ), parameter A™(z, 7, 7) is inclusive
of the extensive impact whereas A”(z, 7, ) isolates the intensity of the marginal treatment
effect.

Bjorkland and Moffitt (1987) examine a parameter analogous to A™(z,7, 7). They

consider a case with

D(Z,7) =UZ'y+m+U 20),



where 7 is a real number representing costs of choosing 1 over 0, Z and U denote observable
and unobservable random variables that affect the choice and study the parameter

OE{Y (z,7)}
on

Heckman and Vytlacyl (1999) and Aakvik, Heckman and Vytlacyl (1999a,b) consider
a related parameter they call local IV. In the same sense that A*(z, 7, ) is a limit form of
A.(z, 7' ), their parameter is a limit form of LATE. They show that in a latent variable
framework this parameter can be interpreted as the value of the treatment conditional on
being indifferent between entering the program. Taber (1999a) estimates a version of this
parameter.

These parameters have two nice features. The first is that, as the definition makes
clear, they can be approximated by A(z, 7', 7) and A.(z,n’,7) where 7’ is defined by a
small value of . The other nice feature is that, as we will show below, when the support
Z is continuous, the parameters will be identified under weaker support conditions than

those for A(z, 7', 7) and A.(z, 7', 7).

2 Identification

2.1 Identification of the Treatment Counter-factual

We first consider identification of the decision rule under the new policy function 7/,
D(Z,n"). We then consider identification of the distribution of Y;(Z) given D(Z,n’) =1
and Z = z and that of the distribution of Y (Z) given D(Z,n') = 0 and Z = 2. Clearly
the first is relevant only when Pr{D(Z,n’) = 1} > 0 and the second is relevant only when
Pr{D(Z,n") = 0} > 0. Identification of the distribution of Y; given D(Z, ') = 0 and that
of the distribution of Yj given D(Z, ") = 1 are not necessary for our purpose. Identification
of the policy effects comes directly from these results.

Let Z be the support of Z. We want to identify the choice behavior under a new policy
7', D(Z,7"), using the observations about choices made under old policy m, D(Z, 7). The

following set plays the key role for this purpose:

D(z,7',m) ={z" € Z:Pr{D(z,7") = D(z*,m)} = 1}.



For any point in this set, z* € D(z,n’,7), the observed choice behavior D(z*, ) mimics
the choice behavior under the new policy, D(z, 7). Thus if we could condition on elements
of this set we could identify the choice behavior under the new policy.

Being able to condition on this set requires essentially two types of conditions. First,
we need to be able to determine the values of z* for which D(z,7") = D(z*,m). This will
typically require some type of “structural” assumption. Second, these values of z* must be
contained within the support of Z.

In general, without any understanding of the relationship between z and 7, the set
D(z,7',7) is not known. However we show via examples below, that by exploiting some
aspects of a behavioral model, in some cases we can identify the elements in this set.

The notation we use in the bulk of the paper hides an important aspect of a problem
involved in the statement above. We use more complete notation just for a few para-
graphs below to explain the assumption needed more explicitly. Implicit in the expression
Pr{D(z,n") = D(z*,m)} is the assumption that the concept of probability is well defined
for two different points z and z*. In particular, this requires that the stochastic element
that drives the choice variable be independent from at least the part of Z that makes the
equality holds. To express this more explicitly, let Z = (Z , Zw) and corresponding fixed

values z = (Z, zr). Using this notation we write

Dz, 2,7, m) ={(2,2) € Z|Pr{D(Z, zp,7;w) = D(Z, 2%, m;w)} = 1},

Ykl

where w expresses the stochastic element that drives the participation decision and z; is
the part of z that makes the equality holds. In order for this expression to make sense, 7
and w need to be independent given Z.

For convenience, we call Z, “a policy-m equivalent variation given 7”7 or “a policy
equivalent variation” when 7 and Z are evident or not necessary to be made explicit in a

discussion and w “unobserved variation in the choice variable”. We assume

Assumption 1 A policy equivalent variation and the unobserved variation in choice vari-

able are independent given some conditioning variables under two policies m and 7.

The variables that correspond to the policy equivalent variation depends on the behav-

ioral model assumed and Assumption 1 needs to be evaluated for each application.
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For example in the empirical work we consider below, 7 is the current tuition subsidy
level and 7 is the contemplated tuition subsidy level. We assume a behavioral model in
which college attendance depends only on net tuition so that individual choice depends
only on z; — m, where z; is a level of tuition faced before the subsidy. It is conceivable
that an individual’s behavior could be different for different combination of z; and 7 even
if z; — m is the same but this is the “structural” assumption we are going to maintain and
exploit. In addition to this assumption which defines the policy equivalent variation, we
need to maintain Assumption 1. In our example tuition is measured by the average tuition
of 2 year colleges of the state in which the individual lived at age 17. We need to assume
that this variable and the unobserved variation in choice variable are independent given
some conditioning variables. Because we expect the Z, variable to be correlated with some
state characteristics which also can be correlated with the individual characteristics, we
need to condition on certain variables such as race and parental education level.

We next consider identification of the distribution of Yj (z) given D(z,7') = 1 and
identification of the distribution of Yy (2) given D(z,7') = 0. As we just discussed we
simulate a decision under new policy, D(z,7’), by examining the choice made under the old
policy by individuals with characteristic z*, D(z*, 7). Note that the corresponding outcome
Y1 (2*) and Yj (2*) need to match Y; (z) and Yj (z), respectively. Thus the key assumption

of the identification result is based on the following sets:

Zo(z,m) = {2" € Z:Pr{Yo(z) = Yo(2")|D(2",7) = 0} = 1},
Zi(z,m) = {2 € Z:Pr{Vi(2) = Yi(2")|D(z",7) = 1} = 1}.

Typically the assumption holds when some exclusion restrictions hold. In the tuition
subsidy example, if tuition z; does not enter directly into the outcome equation, the con-
dition holds. More generally, while it may be possible to avoid them with some parametric
specifications, for general nonparametric models exclusion restrictions will be required to
satisfy these conditions.

Using the intersection of these sets with D(z, 7', 7), we can identify the distribution of
Y (z,7') in a manner similar to Pr(D(z,n") = 1) above. In particular, for any z € Z, if
we can find a value z* € D(z, 7', 7) that is contained in Zy(z,7), and Z;(z,7), then the

distribution of Y (z,7') is the same as the distribution of Y (z*,7). To see this note that
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for any z* € D(z, 7', m) N Zy(z,7) N Z1(z,7),

Pr(Y (2,7) < y) =Pr(Yo(2) < y | D(z,7) = 0) Pr(D(z, ') = 0)
4 Pr(Yi(2) <y | D(z,7) = 1) Pr(D(z, ) = 1)
—Pr(Yy(2) < y | D(*,7) = 0) Pr(D(z*,7) = 0)
L Pr(Yi(2) <y | D(z*,7) = 1) Pr(D(z*, 1) = 1)
—Pr(Yo(=") < y | D(z",7) = 0) Pr(D(z",m) = 0)
L PH(Yi(2") <y | D(z*,7) = 1) Pr(D(z*,7) = 1)
—Pr(Y (2%, 1) < y).

Thus conditioning on z* allows us to identify the distribution of Y'(z, 7). Once again this
conditioning requires both that D(z, 7', m) N Zy(z,7) N Z1(z,7) is known and that it is
nonempty involving both “structural” and “support” conditions.

We now formalize this idea.

Assumption 2 Zy(z,7) and Z,(z,7) are known and their intersection with D(z, 7', m) is

nonempty for z € Z.

Lemma 1 (i) Under Assumptions 1 and 2, if Pr{D(z,7") = 0} > 0 the distribution of Yy
gwen D(z,7") = 0 is identified. (ii) Under Assumptions 1 and 2, if Pr{D(z,7') =1} >0
the distribution of Y1 given D(z,7") =1 is identified.

(Proof In Appendix)
The lemma delivers identification of A (z, 7', 7).

Theorem 2 If Assumptions 1 and 2 hold for the same z and if E{D(z,7")Y1(2)} and
E[{1 — D(z,7")}Yy (2)] are finite, A(z, 7', ) is identified.

(Proof In Appendix)

We next discuss identification conditions for the parameter A.(z, 7', 7). Note that since

our policy only influences outcomes through D and that E{Y (z,7") =Y (z,7) | D(z,7') =

12



D(z,m)} =0, so that

Az, 7', m) = E{Y (z2,7") =Y (2,7) | D(2,7") # D(z,m)}
E{Y (z,7") =Y (2, )
Pr{D(z,n") # D(z,n)
Az, m)
Pr{D(z,7") # D(z,7)}

) (e

From the theorem we know that A(z, 7', 7) is identified under Assumption 2. However
these assumptions are not sufficient for identification of the denominator. All we can
hope to identify about the joint distribution of (D(z,n’), D(z,7)) conditional on Z = z
is Pr{D(z,7’") = 1} and Pr{D (z,7) = 1}. Without further assumptions this will not be
sufficient to identify Pr{D(z,7’) # D(z,m)}. To assure identification of Pr{D(z,7') #

D(z,m)} we use a monotonicity assumption.

Assumption 3 For any z € Z, either Pr{D(z,7') > D(z,m)} = 1 or Pr{D(z,7") <
D(z,m)} = 1.

Under this assumption
Pr{D(z,7") # D(z,m)} = |[Pr{D(z,7') = 1} = Pr{D(z,7) = 1}

and thus Pr{D(z,7’) # D(z,m)} is identified. Imbens and Angrist (1994) exploit this type

of condition in the context of identification of treatment effects.

Corollary 3 Under Assumptions 1,2 and 3, A.(z, 7', ) is identified.

2.2 Identification of Marginal Treatment Effects

As we illustrate below, Assumption 2 is not likely to hold on all points in the support of Z.
In this subsection we will establish conditions for identification of the marginal treatment
effects defined above. We show that identification of the marginal treatment effects can be
carried out under support conditions that are weaker. Recall that the marginal treatment
effects are denoted A™ (z,7,m) and A" (z,7,m), where the connection between 7’ and 7
is that 7/ = m + A7 and that we consider the limit of A to zero from above. The key

assumption is the following:
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Assumption 4 There exists \* (z,7,7) > 0 such that Assumption 2 holds for all @' that
correspond to \ such that 0 < A < \* (z,7,m).

Under this assumption it is easy to show that the conditional marginal treatment effects

are identified.
Corollary 4 Under Assumptions 1 and 4, if A™ (2,7, 7) exists, then it is identified.
Corollary 5 Under Assumptions 1,3 and 4, if AT (z,7,7) exists, then it is identified.

The argument here is in some sense the opposite of identification at infinity. In the
typical identification at infinity we use the extremes of the distribution to produce the
policy counter-factual. The corollaries above essentially use the part of the distribution
that is infinitesimally close for identification. We will clarify this claim and discuss the

extent to which these conditions are weaker in some of the examples below.

2.3 Examples

To demonstrate the ideas above and to examine some of the limitations of the approach
we study five examples. These have been chosen to represent a wide variety of models and

policies.
Ezxample 1: Treatment on the Treated

One parameter that is often discussed in the program evaluation literature is the effect
of the “treatment on the treated.” It can be identified using an “identification at infinity”
argument. We will demonstrate that this result is a special case of Theorem 2 above. In
our framework in which parameters are defined conditioned on 7, this parameter takes the

form,
E(Yi(z) = Yo (2) [D(z,7) = 1).
It is interpreted as the effect of the program on those individuals who choose to enter it.

It can be considered a special case of our conditional policy effect where the alternative

14



policy 7" corresponds to elimination of the program, so that for any z € Z, D(z,#’) = 0.

In that case,

Az, 7',m) = E(Y(x')=Y(n)|D(z,7") # D(z,7))
= —FEYi(2) =Yy (2)|D(z,7) =1).

Suppose that we have exclusion restrictions as in the case discussed above so that Z =
(Z1, Z) where Z; influences the decision to enter the program, but has no direct influence on
outcome conditional on entry. Following the logic above, since D(z, ") = 0 with probability
one, for each 2y we need to find a value of 2z such that almost surely D ((z], 22),7) = 0. If
we can find such a 2}, then with this type of exclusion restriction, Assumption 2 is satisfied.
Thus for the treatment on treated parameter our identification conditions are met using
“identification at infinity.”

This example is extreme in two ways. On the one hand the conditions under which
the Assumption was satisfied required very little structure on the model. An exclusion
restriction was sufficient.!> On the other hand the demands on the data are strong in the
sense that for any z € Z, A(z,n’, ) is only identified by values of z for which the probability
of entering the program is zero. While for some small programs such as government job
training programs it may be possible to find such a variable, but for larger “programs”
such as college, finding such a variable may be infeasible.

We observe that the problem associated with “identification at infinity” is a special case

of the problem of extrapolation in forecasting.
Example 2: Quarter of Birth and Compulsory Schooling

Consider Angrist and Krueger’s (1992) example that uses quarter of birth as an in-
strument for schooling in the context of linear regression model. They observed that as a
result of compulsory schooling laws, the quarter in which someone is born may influence
schooling, but should have no direct effect on earnings. They proposed using the dummy
variables representing quarters in which someone is born as instrumental variables for the

years of schooling and estimated returns to schooling. This provides a useful example for

13 Alternatively one could use linear index assumptions.
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demonstrating the difference between policy parameters and instrumental variables. Com-
pulsory schooling laws are a policy that one can consider. However, the source of variation
used for identification comes from variation in quarter of birth rather than schooling laws.
While they are related, they are not identical.

Although our framework is not rich enough to consider returns to a year of education,
we can still exploit their observation within our framework by considering only if a student
completes high school or not. Let the indicator variable D = 1 denote high school comple-
tion and D = 0 denote dropping out from high school. Quarter of birth would correspond
to an observable Z that would have no direct effect on earnings Y7 and Yy. We could con-
sider a policy 7 to index various compulsory schooling laws. One can show under certain
conditions (available from the authors on request) that if Z was perfect in predicting the
start of school then the local average treatment effect could correspond to A(z,n’,m) for
certain compulsory schooling laws. However, in general there are other factors that deter-
mine the start of school, so to estimate the effects of these laws we must either place a
substantial amount of structure on the problem, or obtain bounds on the parameters. The

better is Z as a predictor of starting school, the tighter would be the bounds.
Example 3: Tuition Subsidy

In this example we consider the case of tuition subsidy which influences individual’s
decision to attend college. In particular we consider a policy in which an individual receives
a tuition subsidy of level 7’ if they choose to attend college assuming that there is no such
policy in existence today, 7 = 0.1* We assume that we have data on tuition levels T" faced
by different individuals, and possibly other observables X. We also assume that tuition
influences an individual’s decision about whether to attend college, but does not influence
earnings conditional on attending college. An important assumption is that it is only

the net tuition and not tuition and subsidy separately that affects the college attendance

14 Again we assume that this is a policy that only affects a small number of people so there are no general
equilibrium effects.
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decision. Thus Z = (X, T) and

D(Z,7) = DX, T —m),
Yo(Z) = Yo(X),
Yi(Z) = Yi(X).

The assumption that only the net tuition affects the college attendance decision can be
justified in the model where individuals do not distinguish the sources of funding and that
the net tuition is known enough in advance so that the attendance decision can be made
with enough preparation time. The effect of a policy we measure under this assumption is
that corresponds to the subsidy announced well in advance. More generally, the policy we
can measure the effect of correspond to whatever the equivalent variation we use.

We assume that the support of T" does not depend on X and bounded, [T}, T,]. In this
case the set D(z, 7', 7) N Zy((z,t) , ) satisfies the following:

D(z, 7, 7) N Zo((z,1),7) = {(a,t") € Z|Pr{D(x,t*) = D(z,t — ')} = 1}

> () eZ|t=t—1).

Clearly in this example any element of {(z,t*) € Z|t* =t —n'} is also an element of
D(z, o', m)N Z((z,t) ,m). U T, >t >T,+7n" then T,, > t* =t —x' > T}, so (x,t*) is in the
support of (X,7T) which means that this set is not empty. Thus Assumption 2 will hold
and A(z, 7', ) is identified.

However if t < Ty+ 7', then t* =t — 71 < T}, so (x,t*) is not in the support of (X, 7). In
this case Assumption 2 is likely to fail and we can not identify A(z,#’, 7). Thus for some
values of z, we can identify the policy effect, but for others we can not. This means that we
can only partially evaluate the policy, there will be a group of people for whom the effect
of the policy is not identified.'6

The intuition here is straight forward. If we have an individual who faces tuition level
$1500 with other covariates x, to identify the effect of a $1000 tuition subsidy, we need to

find other individuals with the same covariates =, but who currently face a tuition level of

5Implicitly we assumed monotonicity of the decision with respect to tuition. If it is not, then
Zo((z,t) , 7', ) includes the right hand side.
16]chimura and Taber (1999) considers obtaining bounds for the impact in these cases.
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$500. If the minimal level of tuition in the data is $0 then we can find such individuals, but
if the minimal level is $1000 then the effect of the policy change is not identified. In this
case the policy effect is not identified for individuals who face a current tuition between
$1000 and $2000.

In contrast, Assumption 4 does not fail for any interior points of Z. For any interior

point ¢ if we choose ™ =t — T}, then when \ < 1,
t>Ty+7 =T+ Xt —1Ty)

so Assumption 4 will hold. Thus the marginal treatment effects will be identified for all
interior points of Z. This is the sense in which the conditions for estimating the marginal
treatment effects are weaker then the policy effects.

This case is somewhat special as tuition has two important roles. First, it is the central
focus of the policy in that changing tuition levels has exactly the same effect on schooling
attendance as changing the tuition subsidy. Second, it acts as an exclusion restriction in
that it influences the decision to attend college, but does not influence earnings directly.
The combination of these two characteristics allows us to put very little structure on the
model but still be able to identify many of the policy effects. While this structure is special,
it is not unique. Many programs have either subsidies or eligibility criteria that vary across
individuals which may be of interest and these subsidies and criteria typically will not have

a direct effect on outcome.
Example 4: Linear Binary Choice Model

Our three earlier examples are special in that we needed to make only very weak as-
sumptions about the form of D(Z, 7). Typically we will need to make stronger assumptions
in order to verify Assumption 2. We often need an explicit structural model in which the
parameters are policy invariant and need the model to predict how entrance to the program
depends on the structural parameters. This fourth example has more structure than in the
previous case, but less than in our fifth example.

We assume that program participation is determined by linear index binary choice

model for D(Z, ),

D(Z,7)=1Z'3(r)+ U > 0),
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where Z = (Z;,7Z5) and Z; is an exclusion restriction that is independent of Y7, but Z,
need not be. We also assume that the relationship between [ (7) and 3 (7') is well known
in the sense that 3 () is identified from (3 (7).

In this case the key sets take the following form,

D(z,n',7) = {2 € Z|Pr{D(2,7') = D(z*,7)} =1}
= {FFe2ldp(x)=2"p(m)} 1
Zo(z,m) N Z(z,m) = {2 €Z|2n=2}.

This case turns out to be very similar to the tuition example above. Suppose that the
support of Z; does not depend on Z, and that the support of Z'3 () is bounded, [By, B,].
If B, < 2 3(7'") < B, then if we choose z* so that z3(r) = 2’ B(n') and 2§ = 2z, then
Assumption 2 will hold. However if 2’ 3(n') lies outside the support of Z 3 (r), then these
assumptions will typically not hold. Thus in many cases Assumption 2 will hold for some
of the values of z € Z but not all. However, if as above n/ = © + A7 for some 7, and
limy o 3(7') = B (7) then for each z € Z, for some value of A small enough, B, < ' 3(7') <

B,. Thus Assumption 4 will be satisfied under weaker support conditions.
Example 5: Search and Welfare

This example is loosely based on Wallace (1998). Devine and Kiefer (1991) provide
an excellent survey of related empirical search models. Consider a women who currently

participates in welfare. While on welfare she has the utility,
Ua(X, B (),

where B () is the level of welfare benefits under the current welfare system 7 and X is
observable factors.'® While on welfare the individual searches for a new job. The probability
of a job arriving in some time period is p(X). When a job arrives, the wage is drawn from
the distribution of wages F'(W; X). If the welfare mother chooses to accept the wage W

she leaves welfare and receives utility,

UL (X, ).

18We keep the model simple by abstracting from unobservable heterogeneity.
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Under different types of assumptions one could derive the reservation wage R(X, B ())
at which an individual is indifferent between working or not, where R increases with welfare
benefits. If she receives at most one offer in a period, the probability that a woman who is

on welfare at the beginning of the period works at the end of the period is,
Pr(Working | X,u) = p(X) {1 - F(R(X,B (n)); X)}.

Even abstracting from issues about unobservable heterogeneity there is a fundamental
identification problem that Flinn and Heckman (1982) point out. If R is bounded from
below, it is impossible to distinguish p from 1 — F' below that point. In this case, p and
thus the full structural model are fundamentally unidentified. In some cases, one can still
evaluate the effects of policy changes.

In terms of our notation above, the observable variables are Z = (X, B (7)). The choice
variable is welfare participation, the outcome is labor income, and the policy of interest is

the welfare benefits. Thus, D (Z, 7) denotes welfare participation under policy 7 and,
Yi(Z2) = 0.

We assume that X = (X7, X5) and that X; affects only the reservation wage and not the
offered wage distribution or the job offer probability. Suppose we want to change welfare

benefits to some new level under new policy 7’. The key sets will have the following form,
D(z,7',7) = {z" € Z|Pr{D(z,7') = D(z*,m)} =1}
= {z" € Z|R(x1,22, B (7")) = R(a},za, B (7))} .

We are worried about the problem that reservation wages may be bounded from below.
If the counter-factual reservation wage R(x, B (7')) falls below this bound, then the set
D(z,7',m) will be empty and we will not be able to achieve identification. This case should
depend on whether the policy under consideration expands benefits or contracts them.'?
If it cuts them back then R(X,B (7)) < R(X,B (m)) so for some values of Z we are
likely to have problems, however if the proposed policy increases current benefit level then
R(X,B (7)) > R(X, B (7)) and we can still identify the impact of the policy even though

we can not identify the full model.

19Tt could be more complicated depending on the support of X.
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3 Relationship with other approaches

The objective of this paper is to present a framework to consider direct estimation of policy
impacts. However, since we carry this out in a binary choice framework our work can be
linked directly to three strands in the literature of program evaluation. The first strand is
the sample selection approach typified by Heckman and Robb (1985). The main criticism of
this approach is that it requires strong assumptions to obtain consistent estimation of the
parameters of the model (e.g. Lalonde, 1986). We note that the typical parameters studied
in the program evaluation literature are not necessarily the parameters we study. As we
observed in Example 1, one of the parameters we examine includes the average treatment
on the treated parameter studied in the literature as a special case. The condition we place
for its identification, in this case, coincides with the standard condition to identify the the
average treatment on the treated parameter. In this sense our framework can be seen as a
generalization of the identification result to allow different types of policies.

A second strand is the instrumental variables or natural experiment approach typified
by Imbens and Angrist (1994). The main criticism of this approach is that it either requires
very strong assumptions or the coefficients do not converge to the policy relevant parameters
of interest.2’ We draw on the natural experiment approach in two ways. First, we study
the local effects which are similar in form to the “LATE” parameter defined by Imbens and
Angrist (1994). Second, we share the idea of exploiting the variation in the data that are
most relevant for the variation we wish to examine.

Our framework extends the natural experiment framework by formally considering a
policy parameter separately from the conditioning variables. This allows us to explicitly
define the policy impact parameters ex-ante and then to discuss conditions for identification
and estimation of such parameters. There are special cases in which the parameters we
examine and the LATE parameter coincide which we discuss in the empirical section below.

Another benefit of making the policy parameter explicitly different from the conditioning
variable is that we can meaningfully define what we mean by a policy equivalent variation
and then make use of economic models to link variation in some variable with a policy

under consideration.

20See Heckman (1997).
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A third strand is the matching method typified by Cochran and Rubin (1973), Rosen-
baum and Rubin (1983), Heckman, Ichimura, Smith, and Todd (1998), and Heckman,
Ichimura, and Todd (1997, 1998). The main criticism of this approach is that the identi-
fication condition is generally not testable within its framework and that it is consistent
with a model that allows selection on unobservable only under special cases.?! We draw on
this approach by paying closer attention to the distribution of observables than much of
the previous literature. In some sense our approach is matching except that we use some
aspect of an economic model to justify the match rather than the distance of the regressors
typically employed in the literature.

To see this consider the tuition subsidy example. In this context, what we want to

estimate is, for example

EY(t—-7)-Y@®)|T=tX=ux)
= E(Vi(2)D(t—7",2)+Yo(x) 1 = D(t—n",2))|T =t X ==x)
—EY @)|T=t,X=u1).

The second term of the right-hand side can be identified directly in the data so that we
concentrate on identifying the first term. Note that if 7" is independent with {D (¢, X)},

given X and that 7' is excluded from outcome variables, then the following equalities holds:

EYi(z)D(t—n",2)+Yy(z)(1—D({t—7",2)|T =t,X =x)
= EYi(z)D(T,2)+Yo(x) 1 =D (T,2))|[T=t—7", X =2x).

As the right hand side is identified in the data, the left hand side is. In this sense, the
approach can be viewed as matching.

When viewed in this manner our approach is also similar to Manski (1993). In our
approach we show how the econometrician can study an individual who faces tuition ¢t — 7/,
to learn about the behavior of an individual who faces t if the policy is enacted. Man-
ski models how agents study other individuals to learn about their own outcomes under

alternative choices.

21See Heckman and Robb (1985).
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4 Estimation

4.1 Nonparametric method

We consider estimation of A (z,7',7) and A, (z,7',7) making use of the identification
results discussed earlier. Estimation of the marginal parameters follow directly from esti-
mators of A (z,7',7) and A, (z, 7', 7) and hence discussions of them are omitted.

Recall that
Az, m)=E[Y(z,7") =Y (2,7)].

As E[Y (z,7)] can be estimated using the standard nonparametric regression method, we

shall only discuss estimation of the counterfactual parameter £ [Y (z,7')]. Let
Z* (z,7',m) =D(z, 7, 7) N Zo(2,m) N Z1(z, 7).

As our examples show, there are cases in which set Z* (z, 7, 7) is known and unknown.
Set Z* (z,n’,m) is known in Examples 1 and 2 and the set is not known in Examples 3 and
4. As estimation of set Z* (z, 7', 7) is case specific, below we assume that the set is known.

Note that under our identification condition, for any z* in Z* (z, 7', 7),
EY(z,n)] = E[Y (", m)].

For each z*, the right-hand side can be estimated using the standard nonparametric regres-
sion method. Thus when Z* (z, 7/, 7) is a singleton, the natural way to estimate A (z, 7/, )
is to contrast two nonparametric regression estimators, one centered at z*, and the other
centered at z.

When there are multiple elements in Z* (z, 7', 7), however, we need to address how

different z* values can be combined. Alternatively, one can exploit the following equality
EY (2,7 = E[Y(Z*,m)|Z" € Z* (2,7, 7)]

which is an implication of equation (?7?). Note that it can happen that the dimension of
vector z* is higher than the dimension of the smallest linear space that includes Z* (z, 7', ).
The index model discussed above is an example. In that case, the weighting approach

involves averaging of the higher dimensional nonparameteric estimation than that involved
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for an implementation based on equation (?7). Since the case with singleton Z* (z, 7', 7) is

a special case of the latter method, we define the estimator of A (z,7’,7) as an estimator
of

EY(Z*,m)|Z" € Z* (z,7',7)] — EY (2,7)].

Based on the relationship

2z m) = Az, )
Ac( s 10 ) |P1“{D(Z,7T,) — 1} — PI‘{D(Z,W) == 1}|7

the problem of estimating A.(z, 7', 7) is reduced to the problem of estimating Pr{D(z,7’) =
1}, which, by the same reasoning can be estimated using

E[D(z,7')] = E[D(Z",7)|2* € Z* (2,7, 7).

Thus we define the estimator of A, (z, 7, 7) as an estimator of

EY(Z*,m)|Z* € Z*(z,n',m)| — E[Y (2,7)]
\E [D(Z*,7)|Z* € Z* (z,n',7)] — Pr{D(z,7) = 1}|

4.2 Semiparametric methods

When the dimension of the linear space that includes Z* (z, 7', 7) is high, we face the curse
of dimensionality problem. There are two approaches established in the literature to deal
with the curse of dimensionality. First is to average the pointwise estimates and the second
is to exploit parametric restrictions researchers are willing to impose.

The averaging idea is to give up on estimating A (z, 7", 7) or A, (z,7’,7) and instead es-
timate E{A (Z,7',7)|Z € S} or E{A.(Z,n',7)|Z € S} for some subgroup S which can
be estimated with smaller variance. The choice of set S is dictated by two considera-
tions. The first consideration is to define the group one is interested in studying. The
second consideration is to define the subgroup of which one can expect to estimate the
impact. For example, in order to estimate A (z, 7/, ), we need to be able to estimate both
EY(Z*,m)|Z* € Z*(z,n',7)] and E[Y (z,7)] at the same time. This requires that the
Lebesgue density of z and Z* (z, 7', ) be bounded away from 0. Thus S needs to be such

a subset.2?

22The same issue is considered in Heckman, Ichimura, Smith, and Todd (1998).
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By the iterated expectation
E{A(Z,7n',7)|Z €S} = E{F[A(z,n',7)|Z =2]|Z € S} and
E{A (Z,n',7m)|Ze€ S} = E{E[A.(z2,n',7)|Z =2]|Z € S}.

Thus the averaged parameter can be obtained as the averages of the pointwise estimators.

Note that

E{A(Z,7',7)|Z € S}
= E{EY(Z",m)|Z* € 2" (Z,n',m)||Z e S} —E{Y (Z,7)|Z € S}
and that in some cases alternative method for estimation can be considered because E{ E [Y (Z*,7)|Z

simplifies. For example consider a case, when Z* (Z, 7', ) is a singleton and for a given

measurable function (, Z* = ( (Z, 7', 7). Then under Assumption 1,

E{EY(Z*,m)|Z* € Z*(Z,«',7)]|Z € S}

= E{FE[Y ((Z,«',m),m)|Z]|Z € S}

= E{Y ((Z,7',7),7)|Z € S}.
Thus in this case, one does not need to estimate the pointwise conditional expectation func-
tion in this case. Note that the comparison is meaningful when the conditional expectation
is well defined for each point in S although F {A (Z,n',x7)|Z € S} may be well defined
without such requirement.

The second dimension reduction approach requires some form of parametric restrictions.

Typically they are placed on the conditional mean function of outcome and choice variables.
For example, Let X denote the exogenous variables that affect both outcome and choice

variables and T (7) denote the policy related variables that only affect choice variables.

The potential outcome equations and choice variables may be specified as

Yl = Oél—i-X,ﬁl—l—Vl
Yo = ao+X'By+ W
D = 1{X/9)(—|—T/(7T)92+U2 0}
where (X, T (7)) and (Vp, V4,U) are independent. With this restriction, A (z,7',7) and

A, (z,7',m) are both functions of three indices, X', X(8,, and X'0x + T" (7). If we
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further restrict 5, = (;, then both are functions of two indices. The last formulation is the

one we employ in the example below.

5 Empirical Example

In this section we estimate the impact of a tuition subsidy following the example above.
We assume that in the current state of the world there is a tuition level T; in place for each
individual 7. A new tuition subsidy of the amount 7’ is proposed while there is currently no
subsidy (7 = 0). We take this to be a state level or narrowly targeted subsidy to rule out
general equilibrium effects of the type discussed by Heckman, Lochner, and Taber (1998).
Our goal is to estimate the impact that this subsidy will have on earnings.

We measure this impact using the conditional parameter,
B(Y (Z7') =Y (2,0) | D(Z,7) > D(2,0),Z € Z ('),

where Z (7') is a subset of the support of the observables.”> We assume that Z is composed
of tuition, 7', and other conditioning variables, X. The key assumption is that expected
earnings conditional on (7', X) in the counter-factual world is equivalent to expected earn-
ings conditioning on (7", X) in the current (7 = 0) world where 7" =T — 7.

Consider estimation of the policy counter-factual E (Y (T, X, 7) [(T, X) € Z (n')). Note
that,

EY (T, X,m)|(T,X) e Z(x")Pr{(T,X) € Z(x')}

:i/ E(Y (", 2,0))g(t" + 7', 2)dt"da

gt + 7', x)

:L@Eww@pncz@zrjﬂﬂ@wm.

23This is related but not identical to our parameters above in that we are not conditioning on particular
values of Z, but rather the set of Z in Z(7').
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where t* = ¢t — /. Given an estimate § of the density g, we can create the sample analogue

of this expression,
S Y (M) (T X)) € 2(0)
Y (M) 1(T ) € 2(0))

We could then use the same method to estimate the counter-factual college attendance

ED(T,X,n")|(T,X) € Z(n')), and combine the estimates to form the parameter.

EY (T, X,7)|(T,X) € Z(r')) =

As we discussed, with a large number of covariates, the nonparametric strategy faces
the curse of dimensionality problem. In particular, a high dimensional density function
needs to be estimated for the case above. For this reason we consider a two dimensional

index model discussed above to obtain
E{Y (X.1,0)|X.T} = P (X;y = T) g1 (X}7 = 1. X,3)
+ (1 e (X{v - T)) 9 (X{y _T, Xgﬁ) .
where T' represents tuition, and X;and X, are composed variables in X that will typically
have some elements in common. Note that we assume common [ in functions go and g¢;.
The assumption allows us to use two dimensional index model instead of three.

This specification arises naturally in the standard selection model with additive error
terms but that is not necessary to justify this specification. Under the standard additive er-
ror specification, one way of estimating the semiparametric model would be to first estimate
the entire model including the full joint distribution of (u,e;) and the joint distribution
of (u,e2), and then simulate the effect. While many semiparametric estimators do a good
job estimating the slope parameters, they often perform poorly when estimating the joint
distribution of the error terms.?* Our approach is to estimate this parameter directly and
avoid estimating the distribution of the error terms. In practice, often estimates of the
distribution are represented by a low dimensional flexible form. This faces the challenge of
approximating the full distribution by a small number of parameters. It seems reasonable
that they may do a poor job in estimating the relatively small part of the joint distribution

that is relevant for the policy simulation. We avoid this problem by essentially using only

the part of the distribution that is relevant.

24See for example Heckman and Singer (1984) or Cameron and Taber (1996).
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Under this independence assumption there are a number of different methods one could

use. One possibility would be to estimate the second stage model,
E(Y (X,T,0)| D,X,T) =X,6+ D(X,T,0)E (51 | X, T, X,y +T +u> 0)
4 (1— D(X,T,0)E (50 | X, T, X7+ T +u< 0)
—X.3+ D(X,T,0)q: (Xh - T) +(1— D(X,T,0)) g (Xh - T) .
One could then simulate the counter-factual since,

E(Y(Zaﬂ-,) _Y(Z7O) | D(Zaﬂ-,) > D(Z,O),Z) =
Por Xy =T+7)+(1—p)g Xy —T+7) —pgs (X7 =T) —(1=p) g2 (X7 = T)
P—p
where p/ = Pr(X;y — T 4+ 7' +u > 0) and p = Pr(X;y — T +u > 0). This is essentially

another reduced form approach to the problem. To show that this parameter is identified,
you would need to show that g, (X =T+ )and 90 (X =T+ ) are identified which
uses precisely the type of identifications we provide above. It typically does not require
that the joint distribution of the error terms be globally identified. The primary advantage
of our estimator versus this one is that we do not rely on the additive independent error
terms. We use it only for convenience.

To simplify the exposition we define
T = Z~y+T
X" = X'p
Y (T, X*7) = Y((X,Z,T),n)
D(T*,7) = D(X,Z,T),n)

Specifically to estimate the parameter we use the following procedure:
1. First estimate v from Semiparametric Least Squares, call it 4.2

2. Estimate 3 using Semiparametric Least Squares, call it 3.26

25See Ichimura (1993).
20That is, we estimate (8 by finding the minimizer of

N,y

No
> (Vi = XiB - a(Zi)* + 3 _(Yor = Xif — ao(Zi))?
=1 i=1
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3. Estimate g(7™, X*) with a kernel density estimator using (Z’y, X B), call it g.
4. For trimming value «ay, find g; such that g(¢;, z;) > g; with fraction 1 — «; in the data.
5. Define Z (7') = {(t,z) € R* : g(t — ', z) > g, }.*"
6. Construct estimates,

L (Lm0 1 (517, X7) > g1)
(“;;”Xf N 1G(T7,X7) > 9.
E(Y (T, X*,0)(T*, X*) € Z(n')) = YL VilE(T -7 X7) > gi)

21\; Lg(Tr —n', XF) > q1)
(q(T +r' X} )) (9(TF, XF) > q1)

EY (T*, X*,m)|(T*, X*) € Z(x')) =

~

E(D(T*,m)|(T*, X*) € Z(n")) =

9(T7,X})
T* 7TX * *
( WD) 1 (§(17, X7) > 00

PO e 2 - EZZN (s e

7. Put the various terms together so that

A, () = E(Y (T*, X*,m) |(T*,X*) € Z(n)) — E
‘ E(D(T* ) |(T*,X*) € Z(x')) — E

(Y (T*, X*,0)|(T*, X*) € Z (x'))
(Y (T, 0) [(T*, X*) € Z (n))

This parameter will have the interpretation as a return to college. That is suppose we
estimated a value A, (7") = 0.30 where the dependent variable Y is log wages. We would
interpret this parameter as implying that those people who are induced to attend college
by a tuition subsidy of 7’ will see their wages grow by .30 log points in expectation.

Given the similarities, it is useful to compare this estimator to instrumental variables.
To keep things simple we consider a case in which there are no conditioning variables so

we focus only on the exclusion restriction 7. The simplest case is in which there is no

where for j = 0,1, G; is obtained from a kernel regression of (Y; — X’3) on Z'v.

27 Z (1) picks up both the fact that we have trimmed out some of the observations with low density and
have eliminated the values of the observables for which the parameter is not observable. In practice the
parameter is identified for more than 99 percent of the sample. This is driven in large part by the index
model we are using. If we relied solely on variation from the tuition data, the identification problem would
be much more severe.
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heterogeneity in the treatment effect so that for everyone in the population Y! — Y° = a.
In this case both estimators will yield consistent estimates of «.

In the next case there is heterogeneity in the treatment effect, but tuition 7', takes on
only two values say t; and t;, where t; < t5. In this case IV method using tuition as
instrumental variable will converge to LATE as Imbens and Angrist (1994) have shown. In
this case LATE can be interpreted as the impact of the tuition subsidy policy of (o — t;)
which would be given to anyone facing ¢, originally. In this case LATE and A.(7', 7) would
correspond exactly and the estimators would correspond exactly (once we have replaced
the densities in the derivation above with probabilities).

The most interesting case is where the range of tuition is continuous with full support.
Angrist, Graddy, and Imbens (1997) and Heckman and Vytlacil (1999) use alternative
formulations to interpret the probability limit of the linear instrumental variables estimate.
For their application, Angrist, Graddy and Imbens show that it is a weighted average of
derivatives of the the demand functions. Heckman and Vytlacil show that it is a weighted
average of Local IV parameters. In both cases the weights are very hard to interpret making
the estimate very hard to interpret. In contrast, the effects of any level of tuition subsidy
will be identified. Our estimator produces a parameter that is easy to interpret; it takes
the form of the policy counter-factual defined above.

We now turn to the empirical exercise of estimating the effect of tuition subsidies on
wages. We use data from the National Longitudinal Survey of Youth using a specification
very similar to Cameron and Taber (1999).2® Our experimentation indicates that tuition
has a weak effect in the first stage, so we use tuition as well as the presence of a four
year college in the county as exclusion restrictions.?? In order to be consistent with our
model above we choose schooling to be a binary variable indicating whether the individual
attended college. Thus in terms of the notation above, D; is an indicator of whether the
student attended college, 7 indexes different levels of tuition subsidies, and Y; is the log
wage of individual 7.

As we discussed, our tuition variable is measured by the average tuition of 2 year colleges

28 Details about the data are provided there.
29Kane and Rouse (??) also use tuition as an exclusion restriction in estimating the returns to schooling,
and Card(??) uses the presence of a college.
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of the state in which the individual lived at age 17. We need to assume that this variable and
the unobservable in the choice equation are independent given the conditioning variables.
Because we expect the tuition variable to be correlated with some state characteristics which
also can be correlated with the individual characteristics, we condition on five background
characteristics: race, parental education level, AFQT score, mean local income variables,
and number of siblings. In addition, as we expect shorter experience for college graduate
at the same age, we also condition on experience.

An issue that arises here as in other applications is the choice of bandwidth for the
density g. We used the following procedure: After estimating 4 and 3 we replace values for
Y so that Y7 = 1 and Yy = 0 for all individuals in the sample. We first choose a bandwidth
for the first dimension. We then experiment with alternative values of the bandwidth of
the second dimension so that the estimator of A, () on the simulated data is one. We
have experimented with alternative values of the first and second dimension around those
points and find that the results are not very sensitive to the bandwidth choices.*

The empirical results are presented in Table 3. It should be kept in mind that these
parameters represent the effect of attending college, not the return to a year of college. For
comparison, in the first row we present the ordinary least square estimate of the returns
to college and in the second we present the result from a specification that includes the
Mills ratio terms to correct for selection. In the third row we use two stage least squares,
instrumenting with tuition and with a dummy variable that indicates whether there is a
college present in the county. We find that the selection results are lower than the OLS
estimates, and that the IV estimates are higher. In results not reported, when we use tuition
alone we find that the IV estimates are much higher than OLS, while using presence of a
college yields estimates of approximately 0.17.

The next three rows present the estimates of the policy simulations using the method-
ology outlined above. As one can see, these estimates are fairly close to the IV results
particularly for the larger subsidies. The $100 yields a somewhat larger return of 0.410.
These results suggest that students closer to the margin of whether to attend college have

higher returns than others. There are a lot of caveats in interpreting these results. While

30Changing a bandwidth by a factor of 2 typically yields a change in the estimated effect of approximately
.02.
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most of these problems could be addressed, we view this exercise as an example of what
one could do using these methods, rather than as an empirical exercise unto itself. Thus,
for the sake of brevity we will refrain from a lengthy discussion of the many issues that

arise.

6 Conclusions

When computational capacity is limited it is natural to construct and estimate a parsimo-
neous model and then to use the result in many ways. The structural estimation approach
shares this “estimate once, use many times” approach but takes advantage of the increased
computational capacity by making the model more realistic in many dimensions in the way
it was not possible before. In this paper we discuss an alternative way to take advantage
of increased computational capacity. Our approach is to construct and estimate a differ-
ent model tuned for each of a particular parameter we wish to estimate. We discuss this
approach in the context of measuring policy impacts.

We present a framework to directly estimate the impact of a new policy using a reduced
form approach. We provide precise conditions under which policy counter-factual can be
estimated directly. This requires essentially three types of conditions. First, it requires
some structure to be placed on the problem. Second, it requires an exclusion restriction.
Third, it requires support conditions on the data.

Our results are applicable to ex-ante as well as ex-post policy analysis. To make this
point, we have considered estimation of a new policy effect using data generated under old
policy regime.

We also presented an estimator that uses these ideas and applied it to the study of
tuition policy. In this case the estimator takes the form of a simple density ratio weighted
average of the outcome variable. The empirical work finds estimates of the payoff of tuition
subsidies that are quite high and that smaller subsidies yield higher returns per individual.

When our goal is simply to estimate a policy impact, this approach improves over two
stage methods that first estimate a full structural model and then simulate the policy effect
for three reasons. First, there are cases in which the full model is not identified but the

policy counter-factual can be identified. Second, we can often impose fewer assumptions and
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avoid spelling out preferences and the stochastic environment when they are not necessary
for identification of the policy effect. Third, estimation is focused on the range of the data
that is most informative for estimating the policy counter-factual.

There are cases in which not all the policy impacts can be identified using the approach
we have presented in this paper but some policies impacts are. In this case we need to
resort to a more structural or parametric approach for the policy impacts our approach can
not identify. Using the policy impact parameters both approaches identify we can examine
the specification assumptions behind the more structural approach.

We see a number of extensions of this work. First, the estimator proposed can be
formalized and extended to other contexts. Second, we believe the approach itself will
prove useful in a wide range of empirical applications. For this purpose it will be useful to

consider a decision framework where more than binary choice is involved.
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Appendix
Proof of Lemma 1: Note that for any z* € Zy(z) N D(z;m, )

E{1{¥(2) <y;{D(z,7) = 0}}
E{I{D(z,7') = 0}}
E{1{¥(2) <y;{D(z",7) = 0}}
E{{D(z*,7) = 0}}
E{1{Yo(z") <y} {D(z", 7) = 0}}
E{I{D(z*,7) = 0}}

= Pr{¥o(s") <y|D(z",m) = 0}.

Pr{Ys(z) < y|D(z,7") =0} =

The first equality follows from the definition. The second equality follows from Assumption
2. The third equality follows from Assumption 2. The fourth equality follows from the
definition. Since the last expression is uniquely determined in observable population, the
first expression is also unique which implies the identification result (i). Result (ii) follows
from an analogous argument as that for (i). W

Proof of Theorem 2: We can write A(z, 7', 7) as the sum of three separate pieces,

A(z,n',m) = E[D(z, 7)Y (2)] + E[(1 — D(z,7"))Yy(2)] — E[Y (2,7)].

Notice first that E[Y (z, )] is identified directly from the data. Also E(D(z,m)Y; (z)) and
E[(1 — D(z,m))Yy (2)] are identified using the results from Lemma 1 when the means are

finite. W
Proof of Corollary 3:By Theorem 2, we know that A(z, 7', 7) is identified. Under As-

sumption 3 Pr{D (z,7") # D (z,7)} is identified, so by the observation in text, A.(z, 7', 7)
is identified. W
Proof of Corollary 4:Under Assumption 4 and by Theorem 2 we know that A(z, 7, 7")

is identified for all 7’ = 7 + A7 for which A < A* (2,7, 7). Since,

then if A™(z, 7, 7) exists, it is identified . W
Proof of Corollary 5: Under Assumption 4 and by Corollary 3 we know that
Ac(z,m,7') is identified for all 7’ = m + A7 for which A < A" (2,7, 7). Since,

my ~ . Az, m)
AT (z, 7, ) = lg%f

then if AT"(z, 7, ) exits, it is identified . W
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Table 1

Summary Statistics,
Estimates of College Attendance,
and Estimates of Log Wage Equation
Males, National Longitudinal Survey of Youth

Standard  Stage 1} Stage 2*

Variable Mean Deviation Coefficient Coefficient
Tuition' 0.73 0.42 -6.04

College in County 0.87 0.34 21.74

Black 0.31 0.46 9.18 -0.10
Hispanic 0.19 0.39 1.00 -0.03
AFQT Test Score 0.205 22.14 11.79 0.005
Father’s Highest Grade  10.46 4.08 -0.59 0.003
Mother’s Highest Grade 10.76 3.19 1.45 0.002
Number of Siblings 3.75 2.63 0.19 0.007
Mean Local Income 13.57 2.74 -2.76 0.02
Experience 6.41 3.52 0.07
Experience Squared/100  0.53 0.49 -0.30
Sample Size® 2223 17068

T Tuition is the average tuition of 2 year colleges of the state in which the
individual lived at age 17 measured in thousands of 1986 dollars.
¥ The first stage uses Semiparametric Least Squares to estimate the effects
of these variables on college attendance.
* The second stage uses Semiparametric Least Squares to estimate a linear
log wage equation model where the distribution of the error term is unspecified.
The coeflicients are restricted to be the same by college, but the
conditional expectation of the error term differs.

§ The sample size differs because we have longitudinal data on wages.
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Table 2

Estimates of College Return Using Standard Methods
Males, National Longitudinal Survey of Youth

Level of  Return Change in
Method Subsidy to College College Attendance
Ordinary Least Squares: 0.217
Instrumental Variables: (LATE) 0.296
Sample Selection with Mills’s ratio:
(ATE) 0.116 1.0
$ 1000 0.156 0.046
$ 500 0.160 0.023
$ 100 0.164 0.005
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Table 3

Direct Estimation of Policy Effect
Males, National Longitudinal Survey of Youth

Level of  Return Change in
Subsidy to College College Attendance
$ 1000 0.346 0.055

$ 500 0.354 0.022

$ 100 0.410 0.005
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