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Abstract

This paper seeks to characterize empirically achievable limits for time series econo-
metric modeling. The approach involves the concept of minimal information loss in
time series regression and the paper shows how to derive bounds that delimit the
proximity of empirical measures to the true probability measure in models that are
of econometric interest. The approach utilizes generally valid asymptotic expressions
for Bayesian data densities and works from joint measures over the sample space and
parameter space. A theorem due to Rissanen is modi¯ed so that it applies directly to
probabilities about the relative likelihood (rather than averages), a new way of proving
results of the Rissanen type is demonstrated, and the Rissanen theory is extended to
nonstationary time series with unit roots, near unit roots and cointegration of unknown
order. The corresponding bound for the minimal information loss in empirical work
is shown not to be a constant, in general, but to be proportional to the logarithm
of the determinant of the (possibility stochastic) Fisher-information matrix. In fact,
the bound that determines proximity to the DGP is generally path dependent, and
it depends speci¯cally on the type as well as the number of regressors. Time trends
are more costly than stochastic trends, which, in turn, are more costly than stationary
regressors in achieving proximity to the true density. The conclusion is that, in a very
real sense, the `true' DGP is more elusive when there is nonstationarity in the data.
Some implications of these results for prediction and for the achieving proximity to the
optimal predictor are explored.
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1 Introduction

The objective of most statistical analysis, including studies in economic time series,
is the construction of good empirical models for given data. The true model, or
probability measure, for the data is unknown and, in most practical cases, it is
reasonable to suppose that it is unknowable. It is usually hypothesized up to a
parameter that needs to be estimated from the data. Often, the data is scarce
relative to the number of parameters that need to be estimated, and this makes it
intuitively evident that `lower' dimensional parameter spaces may be preferable in
practice to `higher' dimensional ones, a maxim that governs much empirical work in
statistics and econometrics.

The mathematical justi¯cation for this maxim of parsimony is important and is
especially relevant in the context of models used in economic time series, where the
series are often comparatively short. The present paper follows an approach pioneered
by Rissanen (1986, 1987, 1996) in addressing this question and seeks to establish a
theory of minimal information loss in time series regression that is suitable for use
in modern econometrics settings. A survey of the ¯eld is given in Gerencser and
Rissanen(1992) and the volume by Keuzenkamp, McAleer and Zellner (1999) con-
tains papers that report on some recent developments. So far, Rissanen's ideas have
had little impact in econometrics or on thinking about econometric methodology,
although their importance was emphasized recently in Phillips (1996). Suppose data
is available and all that is known is that the data-generating process (DGP) belongs
to a k-dimensional parametric family and satis¯es certain regularity conditions. The
seminal theorem by Rissanen that we build on here shows that the minimum infor-
mation distance (based on the relative likelihood) between any candidate probability
measure and the true measure is, on average, bounded from below by the product of
k and the logarithm of the sample size for almost all parameters, i.e., all besides a
Lebesgue null set. The bound provides a yardstick for how `close' to the true proba-
bility measure we can get within a parametric family, assuming that the parameters
all have to be estimated with the given data.

The present paper works with a broader class of assumptions than Rissanen,
allowing for some nonstationary as well as stationary time series, so that the results
apply to models with integrated and cointegrated variables as well as stationary time
series. Some new techniques for proving results of this type are also developed here
and these may be of some independent interest.

Results on minimal information loss turn out to have intimate connections with
Bayesian modelling, and some of these connections are explored here. In particular,
we show that Bayesian models (in the sense of Phillips and Ploberger, 1996 and
Phillips, 1996) are `nearly optimal' descriptions of the `true' data generating process
(DGP) given that the parameters are unknown.

The paper is organised as follows. Section 2 gives some modelling preliminaries,
discussing both Bayesian and classical versions of empirical models. Our main result
on the limits for empirical econometric models is contained in Section 3 and is derived
under some high level assumptions, which are justi¯ed for some speci¯c econometric



models in Sections 4 and 5. Section 6 explores some of the implications of our results
for forecasting and achieving proximity to the optimal predictor . Section 7 concludes.
Proofs and some complementary technical material are provided in an Appendix in
Section 8.

2 Modelling Preliminaries

We start by considering a fairly typical empirical modelling situation with time series
data. We have data xn = (xt)n1 that we associate with the realisation of a random
process that takes values in a space E with an associated event ¾¡ algebra F. The
random elements need not be ¯nite dimensional real vectors, and E could be an
arbitrary Polish space. So we can describe qualitative as well as quantitative data.
The data are assumed to arrive consecutively, i.e., we get observation xn at `time' n.
We use Fn to denote the information available at n | i.e., Fn ¾ ¾ (xn), the ¾-algebra
generated by xn.

Our purpose is the evaluation of empirical models and, therefore, we need to clarify
what we mean by this notion in a general context. Once the model concept is de¯ned
we have a natural basis for developing a criterion for relating di®erent empirical
models of the same process given the same observed data. In our framework, we think
of a model as a sequence of conditional probability measures, Gn; from Fn to E, i.e.,
a model is a representation of the process that allows us at each point n and for every
xn to calculate a prediction of the next observation in the random sequence. This is
precisely what the conditional measure provides, viz., a mathematical description of
a law that governs the forthcoming observation given the past that has been observed
so far. Note that prediction is not taken here in the narrow sense of a linear prediction
or projection on the past xn; although it could turn out that this is one of its features.
Instead, it is a complete probability distribution. It is easily seen that there is a one
to one correspondence between models (Gn) and measures G on EN. In particular,
due to the fact that E is Polish, we can see that for every sequence (Gn) it is possible
to construct a compatible measure G, i.e., a measure whose conditional distributions
are the Gn and vice versa.

How do we ¯nd candidate empirical models of the data? There is some di®erence
here between the stylized `classical' and `Bayesian' paradigms of data analysis. Our
approach seeks to cover both paradigms. Let us assume that we are in a typical para-
metric context wherein the DGP is assumed to be known up to a certain parameter
µ and let Pµ be the corresponding probability measure. The classical procedure is to
use the information in Fn to estimate µ, say by the maximum likelihood estimator
(MLE) µ̂n, and then use Pµ̂n(¢jx

n) as the inferred empirical model for the process.
One way of constructing an empirical measure from the classical framework is sim-
ply to `plug' the estimator into the conditional probability measure in a recursive
manner as we move through the data from some given point of initialization. In the
terminology of Dawid (1984), the outcome of this recursion is a prequential density.
On the other hand, in the Bayesian paradigm, a prior density ¼ (µ) for µ is de¯ned
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and the Bayesian mixture

P =
Z

¼ (µ)Pµdµ (1)

gives the marginal distribution of the data xn. We can then construct the conditional
models (or measures) from P and compute the associated data densities, viz.

pdf (xn) =
dP
d¸

=
Z

¼ (µ)
dPµ
d¸

dµ; pdf (xnjxn0) =
pdf (xn)
pdf (xn0)

; (2)

where ¸ is a dominating measure (possibly Lebesgue measure) for Pµ.
In the above setting, the class of potential models for the data is very wide.

Indeed, as soon as we have a rule for obtaining numerical values of parameters or
rules for averaging the parameters out, almost anything can be considered as a `model'
for the data. To prevent modelling concepts from degenerating into the trivial, we
introduce a yardstick for measuring the `goodness' of a model. Suppose the data are
generated by some probability measure Pµ and we use a `model' G (i.e. a probability
measure) as the supposed data generating mechanism. Denote by P (n)

µ and G(n) the
restrictions of these measures to Fn: i.e. we limit the information to that available
at time n. Similarly, we denote by P (n) the restriction of the Bayesian measure P to
Fn: Then, our measure of `goodness of ¯t' is just the sequence of random variables

`n(G) = log
dG(n)

dP (n)
µ

:

These random variables allow us to compare di®erent models (i.e., G1 is `better'
than G2 i® `n(G1) `is greater than' `n(G2) | in whatever way we de¯ne an ordering
between random variables), although the ordering is only a partial ordering because
it is possible that some models are not compatible.

We think that this measure for the `distance' of a given model from the `true'
probability measure is a sensible formalisation of the intuitive concept of one model
being `better' than another for the following reasons:

1. It is compatible with Kullback{Leibler (KL) type information `metrics' since
¡Eµ`n(G) is just the KL information distance of G(n) to P (n)

µ (i.e. the measures
modelling information up to time n). So if G1 is better than G2; then G(n)

1 is,
in KL-distance, nearer to P (n)

µ than G(n)
2 .

2. If `n(G) = 0, then G(n) = P (n)
µ , i.e., the measures describing the data are

identical.

3. If, for n ! 1, `n(G) = OPµ (1) then G(n) and P (n)
µ are contiguous in the sense

of LeCam (1986). As a consequence, it is impossible to construct consistent
tests of P (n)

µ against G(n). So, in this case, it is impossible even asymptotically
to tell for sure if the data were generated by Pµ or G.
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4. Suppose we have given two models, say G1 and G2, and `n(G1)¡ `n(G2) ! 1.
If a researcher has to decide between these two models - i.e. choose the one
which describes the data in a better way, then the Neyman{Pearson lemma
suggests the use of the likelihood ratio (LR) test of G1 against G2. In this case,
the researcher will choose the `better' model (in our sense of the term) | since
log dG1dG2 = `n(G1) ¡ `n(G2) ! 1 asymptotically.

Having established the `distance' between an empirical model and the `true mea-
sure' and between one model and another, the question of ¯nding the `best' model
arises naturally. In Phillips (1996) and Phillips and Ploberger (1996), the `goodness'
of Bayesian models was analysed in the context of a model with asymptotic locally
quadratic likelihood, and a corresponding asymptotic approximation to the data den-
sity for such a model was computed. Those computations led to an empirical density
for the data which was called a PIC density and this density was used for model
selection purposes.

In this paper we generalize a result of Rissanen (1986, 1987), and we will show that
the empirical PIC density is essentially optimal in terms of its rate of approximation to
the true model. Given a parametrized family of probability measures and an empirical
model for the data, we show that the Lebesgue-measure of the set of parameters
corresponding to probability measures for which the model is `better' than a certain
bound converges to zero | i.e., the set for which we can beat this bound is relatively
thin. Furthermore, the bound is shown to be achievable and is attained by the
PIC density, clarifying the sense in which this model is optimal. A trivial example
illustrating the sort of situation where the bound can be exceeded (i.e the thin set
referred to above) is the empirical model consisting of a probability measure Gn
obtained by using a speci¯c value of the parameter (irrespective of the data). Then,
for this one parameter value, `n is zero identically, and in this one case we have
the best overall model, but we will \pay" for this success at all other values of the
parameter { if we are wrong then there may be a very heavy cost to using the empirical
model Gn.

The technical framework used here is analogous to Phillips (1996) and Phillips and
Ploberger (1996). In particular, we will maintain the following assumption among
other conditions that will be detailed later.

Assumption A0

1. The conditional probabilities Pµ(¢jFn¡1) have densities pµ(xnjFn¡1) (with respect
to some dominating measure ¹ on E), our parameter space £ ½ Rk, and the
mapping µ ! log pµ(xnjFn¡1) is twice continously di®erentiable.

2. The score process component "n(µ) = @
@µ log pµ(xnjFn¡1) is square integrable.

De¯ne Bn(µ) =
P

1·i·nEµ("i(µ)"i(µ)0jFi¡1):

3. The prior distribution is proper with continuous density ¼(¢) that is bounded
away from the origin on every compact set K, so that infµ2K ¼(µ) > 0:
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The matrix Bn in A0(2) is the conditional quadratic variation process of the score
process

P
i·n "i(µ). It can be regarded as one possible generalisation of the Fisher

information matrix, a fact that we will more fully explore in following sections.
Phillips (1996) and Phillips and Ploberger (1996) show that if P denotes the

`Bayesian' model (1) then, as n ! 1; we have the asymptotic approximation

log
dP
dPµ

» ¡1
2 log detBn(µ) + (µ ¡ µ̂n)0Bn(µ)(µ ¡ µ̂n)=2; (3)

where µ̂n is the (normal) maximum-likelihood-estimator for µ: What determines the
order of magnitude of the terms on the right side of (3)? Clearly it is reasonable
to assume that detBn(µ) ! 1; whereas the second summand is nothing else than
the Wald{LM{LR test statistic for testing the parameter to be µ: Asymptotic the-
ory developed in recent years indicates that it is very plausible that | even under
nonstationary circumstances | this statistic will remain OPµ(1). (For the case of
general time series processes with some unit roots this is assured by the limit theo-
rems in Park and Phillips, 1988, 1989). So, the term involving log detBn(µ) in (3)
will determine the order of magnitude of the loss that is due to the lack of informa-
tion about the parameter. We will now show that it is only possible on a very small
set of parameter values that, for arbitrary " > 0, log dPdPµ ¸ ¡1¡"

2 log detBn(µ) on a
non-negligible event.

These two results have some interesting consequences for Bayesian models:
(i) Even from the point of view of our `semi-classical' analysis, Bayesian models

are impossible to beat from the predictive point of view.
(ii) The inevitable loss, log detBn(µ); is easily seen to be dependent on the dimen-

sion of the parameter space. (In the stationary case, Bn will asymptotically be of the
form B ¢n, therefore log detBn(µ) will asymptotically be log det(nB) = k log n+O(1);
where k is the dimension of B). So, even the use of informative priors is no remedy
against the curse of dimensionality. In other words it is essential to use parame-
ters parsimoniously | a view that is commonly expressed by authors recommending
methods for practitioners, e.g., Doan, Litterman and Sims (1984), West and Harrison
(1989), Zellner and Min (1992).

In practice, it will often be the case that data will be explained not only in terms
of their own past, but also by covariates. Under some reasonable assumptions, we can
deal with this type of complication in our framework. Let us assume that our data
xn consist of two `components' as in xn = (yn; zn) (again, yn and zn can take values
in arbitrary spaces). Suppose yn are the endogenous variables (i.e., the variables
we want to explain) and zn are the exogenous variables, i.e. the variables we take
as `given'. Then, our `models' will be conditional probability measures explaining
yn by zn; xn¡1; :::; x1, since we do not want to model the exogenous variables. (In
econometrics, such variables often re°ect the outcome of governmental or political
decisions and, while these decisions in°uence economic variables, it is usually not
a feasible option to model these variables themselves (i.e., to make distributional
assumptions about them).
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The formalized concepts of exogenity discussed in Engle, Hendry and Richard
(1983) have a long and successful tradition in econometrics and we are able to apply
them here. The key step is a formalisation of the plausible assumption that the
exogenous variables can be modeled without the exogenous ones. We therefore should
have the following factorization

pµ(xnjxn¡1) = qµ(ynjzn; xn¡1)f(znjzn¡1; xn¡1) (4)

wherein the density factorizes into the (parametrized) conditional density of y and the
conditional density for z: Since the exogenous variables should be modeled without
any reference to the model for the endogenous variables, their conditional density is
not dependent on the parameters needed to describe the model for the endogenous
ones.

Strictly speaking, we can think of (4) as a de¯nition of exogenity (For a detailed
discussion we refer to the article cited above). So, assuming we have given our
parametrized family in terms of the conditional densities qµ(ynjzn; xn¡1),we can
de¯ne F0n¡1 = ¾(zn; xn¡1) and the `models' as conditional probabilities from F0n¡1
to yn. Then, we can think of constructing models g(xnjxn¡1) for the whole process x
by modeling the conditional distribution of yn given fzn; xn¡1g and the conditional
distribution of the zn component by its true density f . These models depend on the
`true' (and unknown) density for the exogenous variables, but it only in°uences them
(and not the endogenous component y). Moreover, since we do not want to predict
the z component, the unknown character of the true density is of no importance to
us. It is easily seen that, in the density ratios dG=dPµ; this | unknown | density
cancels out. Therefore, we may, without a limitation in generality, assume that
Fn¡1 = ¾

¡
xn¡1

¢
, and, consequently, we are able to assume that our likelihoods are

of the form

log pµ(xn; :::; x1) =
nX

i=1

log qµ(ynjzn; xn¡1) (5)

3 The Main Theorem

This section lays out our main result. Of central importance to our development will
be an augmented space ­¤ together with a ¾-algebra F¤, which are de¯ned as follows.

De¯nition 1 Let ­¤ = £ £ ­ and let F¤ be the corresponding product ¾-algebra of
the Borel ¯eld of £ and F. Analogously, let F¤n be the product ¾-algebra of the Borel
¯elds of £ with Fn:

This augmented space has some interesting properties. In particular, we can, for
¯xed µ 2 £, extend our measures Pµ to ­¤ by de¯ning Pµ(A £ B) = IA(µ)Pµ(B)
for A ½ £, B 2 F and then use standard measure theory to extend it to the whole
product ¾-algebra. (Here, IA(¢) is the indicator function of the set A:)
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­¤ consists of pairs (µ; !), where µ 2 £. We now consider the random variable
(i.e., the mapping) attaching to each pair its ¯rst component, which we will denote
for notational convenience by µ, too. This random variable can be understood as the
`true' parameter, because the distribution of this random variable under the measure
Pµ is trivial, viz., Pµ (f(µ; !) : ! 2 ­g) = 1 and Pµ(f(#;!) : # 2 £; # 6= µg) = 0:
This concept of a \true" parameter, also makes sense for probability measures outside
the set fPµg.

We can, also extend the Bayesian mixture (1) to this probability space. De¯ne
for A ½ £, B 2 F the measure P (A £ B) =

R
A ¼(µ)Pµ(B)dµ and then extend the

measure to F¤: Restricting this measure to F one easily sees that it is identical to
(1). In what follows, we often need to do probability calculations with the measure
P (for example, we may need to show that certain random quantities are OP (1) as
n ! 1) and this formulation will then be very useful.

What is the advantage of this construction? Working with ££­ as the basic space
enables us to consider the fundamental objects that we work with (e.g., likelihood
processes) which are really continuous random ¯elds indexed with µ, as simple random
variables. Indeed, a random ¯eld Zµ (indexed by µ) is just a family of measurable
mappings from ­ into the real numbers. It is now an elementary task (if there exists
a countable dense subset on £) to show that the following statement holds. \For
almost all ! 2 ­, the mapping µ ! Zµ(!) is continuous" implies \the mapping
(µ; !) ! Zµ(!) is (almost surely equal to) a measurable mapping". In the sequel,
we will use this construction without further mentioning it. For most of the paper
we will ¯nd this \random variable interpretation" of the likelihood process is better
suited to our purposes. So we will, if not explicitly mentioned otherwise, assume that
we are working on ­¤ rather than ­.

Besides Assumptions A0, our development relies on two `high-level' assump-
tions, A1 and A2, that are given below. A1 simply guarantees that the information
(in all parametric directions) contained in our experiment diverges to in¯nity when
the sample size increases. This condition is the equivalent of a persistent excitation
condition in regression models. Assumption A2 postulates that, after we have \cut
out" a small event, there exist measures that have a density of the order of magni-
tude of 1=(detBn(µ))1=2: The existence of such a density in a very general class of
econometric models is described in Phillips and Ploberger (1992, 1996).

Assumption A1. ¸min(Bn) ! 1 a:s: (Pµ) for n ! 1; where ¸min(¢) denotes the
smallest eigenvalue.

Assumption A2. For every ´ > 0 there exist measures Q(´)
n on Fn so that

1. lim supn!1 TV (Q(´)
n ; P (n)) · ´; where TV denotes the total variation (or

variational distance) between the measures.

2. dQ
(´)
n

dP (n)µ

p
detBn(µ) = OP (1) as n ! 1 on a sequence of sets Fn 2 F¤n for which

lim infn!1 P (Fn) > 1¡± for arbitrarily small ± > 0: That is given ± > 0 there exists
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M± such that

lim inf
n!1

P

Ã
Fn \

"
dQ(´)
n

dP (n)
µ

p
detBn(µ) < M

#!
> 1 ¡ ±;

where P is our extended measure on F¤n:

Theorem 1 Let Assumptions A0, A1 and A2 hold and let G be an empirical \model
measure". Then, for every compact K, the Lebesgue measure of

(
µ : Pµ

Ã"
log

Ã
dG(n)

dP (n)
µ

!
¸ ¡1 ¡ "

2
log detBn(µ)

#!
¸ ®

)
\ K (6)

converges to 0 as n ! 1:

Proof of Theorem 1 Let G be a model measure. This model measure is de¯ned
on (­;F). But, it is easily seen that this measure can be extended to (­¤;F¤) by
de¯ning G(A£B) =

R
A ¼(µ)dµ ¢G(B) for A ½ £; B ½ ­: Analogously we can extend

the Q(´)
n to F¤n, too. To simplify notation, we just denote these extensions by Q(´)

n as
well. Then Q(´)

n (A £ B) =
R
A ¼(µ)dµ ¢ Q(´)

n (B) for A ½ £; B ½ ­:
We have to show that for all ®; " > 0 and all compact K

¸

Ã(
µ 2 K : Pµ

"
log

Ã
dG(n)

dP (n)
µ

!
¸ ¡1 ¡ "

2
log detBn(µ)

#
¸ ®

)!
! 0;

where ¸(¢) is Lebesgue measure on £:
Choose ®; " > 0 and ¯x a compact K. De¯ne the sets

Cn =

(
µ 2 K : Pµ

"
log

Ã
dG(n)

dP (n)
µ

!
¸ ¡1 ¡ "

2
log detBn(µ)

#
¸ ®

)
;

and

¡n =

(
(µ; !) : µ 2 Cn; and log

Ã
dG(n)

dP (n)
µ

(!)

!
¸ ¡1 ¡ "

2
log detBn(µ) (!)

)
:

Then, with ¼0(K) = infµ2K ¼(µ) > 0 we have P (¡n) =
R
Cn Pµ(¡n)¼(µ)dµ ¸ ®¢¼0(K)¢

¸(Cn): Therefore, for the theorem to hold it is su±cient to show that P (¡n) ! 0:
This assertion follows by showing, as we do below, that for an arbitrary ´ > 0 we
have lim supn!1Q(´)

n (¡n) · 7´: Then, A2(1) gives the required result for P (¡n):

First, Assumption A2(2) guarantees that dQ
(´)
n

dP (n)µ

p
detBn(µ) remains OP (1): There-

fore, there exists an M2 = M2(´) for which, with K1;n =
·
dQ(´)
n

dP (n)µ

p
detBn(µ) · M2

¸
;
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where P (K1;n) ¸ 1 ¡ ´: As lim supn!1 TV (P (n);Q(´)
n ) · ´, there exists an N1 =

N1(´) such that for n ¸ N1,
¯̄
¯P (K1;n) ¡ Q(´)

n (K1;n)
¯̄
¯ < 2´ and, consequently, Q(´)

n (K1;n) ¸
1 ¡ 3´:

By Assumption A1, detBn ! 1. Therefore, there exists an N2 = N2(´) such
that, with K2;n =

h
(detBn)"=2 ¸ 1

´M2

i
, and " > 0 arbitrary, P (K2;n) ¸ 1 ¡ ´: We

can, without loss of generality, choose N2 ¸ N1, and therefore Q(´)
n (K2;n) ¸ 1 ¡ 3´:

It is now su±cient to show that lim supn!1Q(´)
n (¡n \ K1;n \ K2;n) · ´: Let

(µ; !) 2 ¡n \ K1;n \ K2;n and let n ¸ max(N1;N2): Since (µ; !) 2 ¡n, we have
dG(n)

dP (n)µ
(!) ¸

p
(detBn(µ))"¡1(!) and, since ! 2 K1;n \ K2;n,

dP (n)
µ

dQ(´)
n

(!) =
1

dQ(´)n
dP (n)µ

(!)
¸ 1

M2

p
detBn(µ)(!):

So, on K1;n \ K2;n we have

dG(n)

dQ(´)
n

(!) =
dG(n)

dP (n)
µ

(!) ¢ dP (n)
µ

dQ(´)
n

(!) ¸ 1
M2

(detBn)"=2 ¸ 1
´
:

Hence,

1 ¸ G(¡n \ K1;n \ K2;n)

¸
Z

¡n\K1;n\K2;n

dG(n)

dP (n)
µ

¢ dP (n)
µ

dQ(´)
n

¢ dQ(´)
n ¼(µ)dµ (7)

¸ Q(´)
n (¡n \ K1;n \ K2;n)

´
:

Setting Kn = K1;n \ K2;n and letting Kcn be the complement of Kn; we have

Q(´)
n (¡n) = Q(´)

n (¡n \ Kn) + Q(´)
n (¡n \ Kcn)

· Q(´)
n (¡n \ Kn) + Q(´)

n (Kcn)
· ´ + 6´;

which delivers the required result.

Remark In the inequality (7), the \¸" must not be replaced by an \=", as it may
be possible that G is not absolutely continuous with respect to P (n)

µ , in which case
dG(n)=dP (n)

µ is the absolutely continuous part of G(n) only.
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Discussion Theorem 1 is related to a result on minimal information loss in mod-
elling that was proved by Rissanen (1986, 1987). Rissanen showed that if the gener-
ating mechanism for the data is a stationary process and some technical conditions
are ful¯lled, then the Lebesgue measure of the set

(
µ : ¡Eµ

Ã
log

dG(n)

dP (n)
µ

!
· 1

2
k log n

)
(8)

converges to 0 for any choice of empirical model G(n). This theorem showed that
whatever one's model, one can approximate (with respect to KL distance) the DGP
of a stationary process no better on average than 1

2k log n: Thus, outside of a `small'
set of parameters we can get no closer to the truth than 1

2k log n - the `volume' of
the set for which we can do better actually converges to zero.

Our result has a similar interpretation. Up to a `small' exceptional set, the em-
pirical model G(n) cannot come nearer to the true DGP than 1

2 log detBn as shown
in (6). Since G(n) is arbitrary, the result tells us that there is a bound on how close
any empirical model can come to the truth and that this bound depends on the data
through Bn: It may well therefore be path dependent, rather than being reliant solely
on the dimension of the parameter space as (8).

Not only is there a bound on how close we can come in empirical modelling to
the true DGP, but the bound is attainable. Indeed, Phillips (1996) and Phillips and
Ploberger (1996) show how to can construct empirical models for which

¡
Ã

log
dG(n)

dP (n)
µ

!
= (log detBn) ! 1

2
: (9)

These models can be formed by taking G(n) to be the Bayesian data measure P (n)

for proper Bayesian priors. Or, in the case of improper priors, the models G(n) may
be obtained by taking the conditional Bayes measures, given some preliminary set of
n0 observations (as in (2) above). The models can also be obtained by prequential
methods, like those in Dawid (1984) and Phillips (1996).

Models that are `better' than those which attain (9) must satisfy the inequality
de¯ned by the event

An =

"
¡

Ã
log

dG(n)

dP (n)
µ

!
= (log detBn) · 1 ¡ "

2

#
(10)

for some " > 0 at least somewhere in the probability space. However, if the prob-
ability of the event An converges to zero, one cannot reasonably de¯ne G(n) to be
better because the sample space over which the inequality (10) holds has negligible
probability. Therefore, for a model to be essentially better, we must postulate the
existence of an ® > 0 for which Pµ(An) ¸ ®; and then the probability of events such
as An is non negligible. What Theorem 1 tells us is that the set of such essentially
better models has Lebesgue measure zero in the parameter space in Rk as n ! 1: In
this well de¯ned sense, we can generally expect to be able to do no better in modeling
the DGP than to use the Bayesian models P (n):
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4 Su±cient Conditions for Assumption A2

As it is stated, A2 is a `high-level' assumption. This section reformulates the assump-
tion into more familiar terms and provides more primitive conditions for its validity.
In earlier work (Phillips and Ploberger, 1996) the behaviour of the density of the
Bayesian mixture measure (1) with respect to the true measure Pµ was investigated.
It was shown there that, for a rather wide class of econometric models and under
relatively weak regularity assumptions, the Bayesian data density dP

dPµ
is asymptoti-

cally proportional to ¼ (µ) 1p
detBn(µ)

exp(µ̂n ¡ µ)0Bn (µ) (µ̂n ¡ µ)=2) , where µ̂n is the

maximum likelihood estimator for µ. We now proceed to utilize these asymptotic
results and some of the primitive conditions of that earlier work in validating A2.
We start with the following assumption.

Assumption B0 Wn (µ) = (µ̂n ¡ µ)0Bn(µ)(µ̂n ¡ µ) = OPµ(1) for Lebesgue almost
all µ 2 £:

This assumption is plausible and can be expected to hold under quite general
conditions. First, the statistic Wn (µ) is analogous to a Wald statistic and forms the
basis of an asymptotic test that the parameter µ takes on a certain value. Under
Pµ; it is reasonable to suppose that Wn (µ) = OPµ(1); although the critical values
may well be nonstandard and, in some cases, even parameter dependent (this means
dependent on µ; here, as there are no extra nuisance parameters in our Pµ). Obviously,
the condition is ful¯lled in the `classical' case of stationary time series, but it has also
been established in models with unit roots (Phillips and Durlauf, 1986) and with
unit roots and cointegration (Park and Phillips, 1988, 1989). Note that one obvious
implication of B0 and the excitation condition A1 is that bµn !p µ (Pµ) for Lebesgue-
almost all µ 2 £: Thus, the MLE is consistent almost everywhere (Lebesgue measure)
in the parameter space.

Together with Assumption B0, the results from Phillips (1996) give su±cient
conditions (conditions C1-C7 in that paper) for A2 to hold. They cover almost
all `classical' (i.e., asymptotically stationary) situations as well as cases with unit
roots and cointegration. We will, however, go one step further. Here we are not
so much interested in the data density itself, we only want to bound it from above.
We can therefore use more convenient conditions to assure this. Central to our
derivation is the assumption that the second derivative of the log likelihood function
is continuous in a neighbourhood of µ. Our main focus, in fact, is a small shrinking
neighbourhood of µ. In e®ect, the probability measures corresponding to parameters
in this neighbourhood are contiguous to the original measure. In the `classical' case,
these neighbourhoods shrink with the order of 1=

p
n.

Assumption B1 The conditional log likelihood log pµ(xtjFt¡1) is twice continuously
di®erentiable (in µ) and @"t;µ

@µ is integrable, where "t(µ) = @ log pµ(xtjFt¡1)=@µ; as
before.

11



Under B1 and since @"t;µ@µ is integrable, we have Eµ
³
@"t;µ
@µ jFt¡1

´
+Eµ("t;µ"0t;µjFt¡1) =

0. Hence
P
t·n

@"t;µ
@µ +Bn(µ) is a Pµ-martingale. As Bn(µ) increases monotonically and

diverges (in view of A1), it is reasonable to assume that
P
t·n

@"t;µ
@µ +Bn(µ) is `small'

compared with Bn(µ), or, for each vector h,
P
t·n h0 @"t;µ@µ h+h0Bn(µ)h = o(h0Bn(µ)h):

This requirement is a standard assumption in asymptotic theory, c.f. Hall and Heyde,
1980, Ch. 6.). In Phillips(1996) the requirement was assumed to hold uniformly in
h, i.e.

sup
khk=1

¯̄
¯̄
¯

P
t·n h0 @"t;µ@µ h + h0Bn(µ)h

h0Bn(µ)h

¯̄
¯̄
¯ = oPµ(1):

Denote by `t (µ) the log likelihood function and by `(1)t (µ) ; `(2)t (µ) its ¯rst and second
µ-derivatives. We reformulate the above requirement in the following form.

Assumption B2 For Lebesgue-almost all µ 2 £

sup
khk=1

¯̄
¯̄
¯
h0`(2)n (µ)h + h0Bn(µ)h

h0Bn(µ)h

¯̄
¯̄
¯ !Pµ 0:

We also use another well-established asymptotic technique, namely the local ap-
proximation of the log-likelihood with a quadratic over `shrinking' neighbourhoods
(c.f. Phillips, 1996 and Kim, 1994). We have to be careful in making our assump-
tions about this phenomena, since we want to allow for generality and are especially
interested in cases where the information matrix (i.e, Bn(µ)) is neither asymptoti-
cally constant nor regular in the sense that its eigenvalues can have di®erent orders
of magnitude. To accomplish this, let M > 0 and de¯ne the following shrinking
neighbourhood system of µ0

EM(µ0) = fµ : (µ0 ¡ µ)0Bn(µ)(µ0 ¡ µ) · Mg:

Assumption B3 For all M > 0

sup
khk=1;µ²EM (µ0)

¯̄
¯̄
¯
h0`(2)n (µ)h ¡ h0`(2)n (µ0)h

h0Bn(µ0)h

¯̄
¯̄
¯ !Pµ0 0:

Finally, we add the following technical requirement on the space £:

Assumption B4 The boundary of £ (i.e., the di®erence between its closure and
the interior) has Lebesgue-measure zero.

Theorem 2 below gives su±cient conditions for A2 in terms of these more primi-
tive assumptions. Before stating the theorem, we give two technical lemmas that are
useful in what follows. The ¯rst provides a formula for a restricted Radon Nikodym
density in terms of mixture densities.

12



Lemma RRN Suppose we de¯ne for every set F 2 F¤n the measure ¹F by ¹F (A) =
P (A \ F ) and let ºF be its restriction to Fn. Then

dºF
dP (n)
µ0

=
Z

£
IF (µ)

dPµ
dPµ0

¼(µ)dµ: (11)

Proof Use a monotone class argument. Evidently, the lemma is valid for all sets

F = B £ C;B ½ £; C ½ ­: (12)

Moreover, if it is true for sets F 0; F 00 with F 0 ½ F 00; then it is valid for F 00 ¡ F 0;
too. Furthermore, if the relationship is true for a monotone increasing sequence of
events Fk; k = 1; 2; :::; then it is true for its limit also. Therefore, the set of all sets
F for which the lemma is true is a Dynkin-system generated by the sets 12. As this
generating set is \-stable, the Dynkin system is the whole ¾-algebra, which proves
the lemma.

The second lemma gives us a useful technique for converting OPµ bounds into OP
bounds.

Lemma P-BD Suppose we are given two sequences of processes En (µ) and Fn (µ) ;
for which En (µ) = OPµ (En (µ)) ; for Lebesgue almost all µ 2 £: Moreover, given
" > 0 and

M ("; µ) < 1 (13)

for which

Pµ
·¯̄
¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ M("; µ)

¸
· "; (14)

almost everywhere in µ, it is further assumed that the bounding quantity M ("; µ) is
measurable in µ: Then

En (µ) = OP (En (µ)) (15)

where P =
R

Pµ¼(µ)dµ is the mixture measure (1) and ¼(¢) is a proper prior distrib-
ution on £ with

R
¼(µ)dµ = 1:

Proof In view of (13) we can write £ =
S
k2N fµ : M("; µ) < kg, at least up to a

set of Lebesgue measure zero in Rk. Hence, by virtue of the integrability of ¼(¢), we
have

lim
k!1

Z

fµ:M(";µ)¸kg
Pµ¼ (µ)dµ = lim

k!1
P [M("; µ) ¸ k] = 0:

For the last equation above, observe that µ; and M("; µ) are random variables, the
latter due to the measurability assumption on M("; µ):

It follows that for all " > 0 we can ¯nd a K(") so that

P [M("; µ) ¸ K(")] < ": (16)
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To demonstrate (15) it is su±cient to show that for all " > 0

P
·¯̄
¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ K(")

¸
· 2": (17)

To show (17) holds, write
·¯̄
¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ K(")

¸
µ

µ·¯̄
¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ M("; µ)

¸
\ [M("; µ) < K(")]

¶
[[M("; µ) ¸ K(")] :

(18)
Then, in view of the construction of K(") in (16), the probability of the second event
[M("; µ) ¸ K(")] in (18) is · ", whereas for the ¯rst event we have

P
µ·¯̄

¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ M("; µ)

¸
\ [M("; µ) < K(")]

¶

=
Z

Pµ
µ·¯̄

¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ M("; µ)

¸
\ [M("; µ) < K(")]

¶
¼ (µ) dµ

=
Z

[M(";µ)<K(")]
Pµ

µ·¯̄
¯̄En(µ)
Fn(µ)

¯̄
¯̄ ¸ M("; µ)

¸¶
¼ (µ) dµ

· "
Z

¼ (µ)dµ = ";

where we use the fact that (14) holds for Lebesgue almost all µ by assumption.
Summing these probabilities gives (17), and the result follows.

Remark The measurability assumption in Lemma P-BD seems quite mild and
facilitates the conversion of Pµ probabilities of bounding events into P probabilities.
When we require this measurability assumption in future, we will simply say \with
measurable bounds". An alternative approach would be to assume directly that the
OPµ bounds hold uniformly in µ; which is a more severe restriction and one that may
be violated in some cases where limit distributions do not occur uniformly in the
parameter space, as happens in some time series situations like those involving unit
roots.

In the sequel and particularly in the proof of theorem 2 below, we often deal with
inequalities between random variables de¯ned on our augmented space £ £ ­ which
are not valid for all elements of ££­: In such cases the following de¯nition is useful.

De¯nition 2 Given random variables X1; X2 on £ £ ­; we say that

X1 · X2 on a set F

if and only if
IFX1 · IFX2:
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We are now in a position to state our main result on su±cient `primitive' condi-
tions for A2.

Theorem 2 Suppose Assumptions A0{A1 and B0{B4 are ful¯lled with measurable
bounds. Then, Assumption A2 holds.

Proof We need to show that for every ´ > 0 we can approximate P (n) by measures
Q(´)
n in such a way that A2 holds, viz.,

1. lim supn!1 TV (P (n);Q(´)
n ) · ´, and

2. dQ(´)n
dP (n)µ

p
detBn(µ) remains OP (1) at least on a sequence of sets Fn 2 F¤n for

which lim infn!1 P (Fn) > 1¡± for arbitrarily small ± > 0: That is given ± > 0 there
exists an M± for which

lim inf
n!1

P

Ã
Fn \

"
dQ(´)
n

dP (n)
µ

p
detBn(µ) < M±

#!
> 1 ¡ ±:

Choose ´ > 0. Then, in view of B0 we can ¯nd M = M(´) so that

lim inf
n!1

P ([µ̂n 2 EM(µ)]) ¸ 1 ¡ ´:

De¯ne the events F (i)
n 2 F¤n; i = 1; 2; 3; 4; as follows:

F (1)
n = [µ̂n 2 EM(µ)] \ [E2M(µ) ½ £]; (19)

F (2)
n = [¡(µ ¡ µ̂n)0`(2)n (µ̂n)(µ ¡ µ̂n) · 4M ]; (20)

F (3)
n =

"
sup

khk=1;#2EM (µ)

¯̄
¯̄
¯
h0`(2)n (#)h ¡ h0`(2)n (µ)h

h0Bn(µ)h

¯̄
¯̄
¯ <

1
16

#
; (21)

F (4)
n =

"
sup
khk=1

¯̄
¯̄
¯
h0`(2)n (µ)h + h0Bn(µ)h

h0Bn(µ)h

¯̄
¯̄
¯ <

1
16

#
; (22)

and then set Fn = F (1)
n \F (2)

n \F (3)
n \F (4)

n : It is apparent that that Fn 2 F¤n (and the
same applies for F (i)

n ; i = 1; 2; 3; 4). It is important to understand that these sets
are all subsets of £ £ ­.

Assumptions B2 and B3 imply that limn!µ P (F (3)
n \F (4)

n ) = 1. From the de¯ning
properties of the F (i)

n and EM(µ) it can easily be seen that F (1)
n \ F (3)

n \ F (4)
n ½

F (2)
n \ F (3)

n \ F (4)
n . Therefore,

lim inf
n!1

P (Fn) ¸ lim inf
n!1

P (F (1)
n \ F (3)

n \ F (4)
n ) ¸ lim inf

n!1
P (F (1)

n ) ¸ 1 ¡ ´:

Assumption B4 guarantees that limn!1 P [E2M(µ) ½ £] = 1.
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Now de¯ne the measure R(´)
n on F¤n by R(´)

n (A) = P (Fn \ A) and let Q(´)
n be its

restriction on Fn:Then TV (P (n); Q(´)
n ) · TV (P jF¤n; R(´)

n ) = 1 ¡ P (Fn), which shows
that the ¯rst requirement of Assumption A2 is ful¯lled.

For the second part of A2, we have to compute dQ
(´)
n

dP (n)µ
: In the proof that follows,

we will use the fact that the Q(´)
n are restrictions of the measures R(´)

n . For all
A 2 Fn we have Q(´)

n (A) = R(´)
n (A) = P (A \ Fn) =

R
Pµ(A \ Fn)¼(µ)dµ. From this

representation, the density can be computed easily by using (11) from Lemma RRN.
In particular, for a given µ 2 £; we have

dQ(´)
n

dP (n)
µ

=
Z

£
IFn(#; :)

dP (n)
#

dP (n)
µ

¼ (#)d#:

We now need to show that for (µ; ¢) on Fn

p
detBn(µ)

Z

£
IFn(#; ¢)pn(#)

pn(µ)
¼ (#) d# = OP (1); as n ! 1 (23)

where pn(#) = dP (n)
# =d¹ is the density of P (n)

# and, similarly, pn(µ): For IFn(#; ¢) to
be nonzero, it follows from the construction of the set Fn = F (1)

n \ F (2)
n \ F (3)

n \ F (4)
n

that
¡(# ¡ µ̂n)0`(2)n (µ̂n)(# ¡ µ̂n) · 4M;

which allows us to restrict the domain of integration accordingly.
It is easily seen from the de¯nitions of F (3)

n \ F (4)
n and F (1)

n that on Fn

Bn(µ) · 4(¡`(2)n (µ̂n)) (24)

(in the usual partial ordering of non negative de¯nite matrices), so that

detBn(µ) · det(4(¡`(2)n (µ̂n))): (25)

Both (24) and (25) should be understood as inequalities between random variables de-
¯ned on ££­: Thus, (24) means that if (!; µ) 2 Fn then Bn(µ) (!) · 4(¡`(2)n (µ̂n)) (!).

Moreover, we can use (19){(22) to derive approximations for the second derivative
of the log-likelihood. In particular, on Fn we have

sup
khk=1;#2E4M (µ)

¯̄
¯̄
¯
h0`(2)n (#)h ¡ h0`(2)n (µ)h

h0Bn(µ)h

¯̄
¯̄
¯ · 1

16
;

and, as µ̂n 2 EM (µ) ; we also have

sup
khk=1;#2EM (µ)

2
¯̄
¯̄
¯
h0`(2)n (#)h ¡ h0`(2)n (µ̂n)h

h0Bn(µ)h

¯̄
¯̄
¯ · 1

8
;
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and, therefore, (using(24)) on Fn

sup
khk=1;#2EM (µ)

¯̄
¯̄
¯
h0`(2)n (#)h ¡ h0`(2)n (µ̂n)h

h0`(2)n (µ̂n)h

¯̄
¯̄
¯ · 1

2
:

We may conclude that for # 2 EM(µ);and all vectors h we have on Fn

1
2
h0`(2)n (µ̂n)h · h0`(2)n (#)h · 3

2
h0`(2)n (µ̂n)h:

As EM(µ) is convex, we can use the Taylor expansion to conclude that for # 2
EM(µ) on Fn

`n(#) · `n(µ̂n) +
1
4
(# ¡ µ)0`(2)n (µ̂n)(# ¡ µ);

and
`n(µ̂n) · `n(µ) ¡ 3

4
(µ̂n ¡ µ)0`(2)n (µ̂n)(µ̂n ¡ µ):

As dP
(n)
#

dP (n)µ
= exp(`n(#) ¡ `n(µ)); we therefore have the following inequality on Fn

dP (n)
#

dP (n)
µ

· exp
³
1
4(# ¡ µ)0`(2)n (µ̂n)(# ¡ µ)

´
exp

³
¡3

4(µ̂n ¡ µ)0`(2)n (µ̂n)(µ̂n ¡ µ)
´

:

Let ¼n = sup¼2E4M ¼(µ). Then

Z
dP (n)
#

dP (n)
µ

¼(#)d#

· exp
³
¡3

4(µ̂n ¡ µ)0`(2)n (µ̂n)(µ̂n ¡ µ)
´Z

exp
³
1
4(# ¡ µ)0`(2)n (µ̂n)(# ¡ µ)

´
d#¼n:(26)

The ¯rst factor in (26) is OPµ(1) for Lebesgue-almost all µ due to assumptions B0
and B2. It follows from Lemma P-BD and the measurability of the bound that this
¯rst factor on the right side of (26) is also OP (1) as n ! 1: The second factor of

(26) equals C=
q

det(¡`(2)n (µ̂n)), where C is a universal normalizing factor depending

only on the dimension of µ: Inequality (25) shows that, on Fn, det(¡`(2)n (µ̂n)) ¸
Const ¢ detBn(µ) , which proves (23) and then A2(2) is established.

5 Gaussian Models

This section deals with the important practical example of conditional Gaussian
models. Under rather general conditions, we will show that these models satisfy
Assumption A2. In particular, we do not limit ourselves to cases where the limiting
distribution of the MLE is a mixture of Gaussian processes. For the theory to be
useful in econometric applications that include unit roots and cointegration, one has
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to include models where the limiting decision problem involves di®usion processes.
To permit extensions to such situations, we do require some functional limit theory
to be ful¯lled. But the conditions are relatively mild and, as shown in Park and
Phillips (1988, 1989), they are ful¯lled for all models of practical interest.

The model class to be considered is prescribed by the systems equation

yt = ¦(¯)zt + ut (27)

where yt is a k-vector of endogenous variables, zt is a K-vector of exogenous or
predetermined (i.e., Ft¡1-measurable) variables, ¯ is a parameter vector, and ut =diid
N(0;§) where § = §(°), i.e., we allow § to depend on a parameter vector ° that is
to be estimated.

Let us now assume the following:

Assumption C1 The parameter space £ = f(¯; °) : ¯ 2 £1; ° 2 £2g with £1 ½
R`, £2 ½ Rp and both sets are open and their boundaries have Lebesgue measure
zero. Furthermore, the functions ¯ ! ¦(¯) and ° ! §(°) are twice continuously
di®erentiable. Moreover, §(°) is (for Lebesgue-almost all °) nonsingular.

Assumption C2 Both parameters are locally identi¯ed, i.e. the ¯rst derivatives of
¦ and § (with respect to ¯ and °) have maximal rank (i.e., ` and p, respectively).

Assumption C3 For Lebesgue almost all µ, there exist orthogonal matrices On =
On(µ) and diagonal matrices Dn(µ) = Dn = diag(¸i;n) such that lim infi;n ¸i;n > 0,
and the random variables Wn = 1p

n

P
t·nD¡1

n O0
nztu0t and An = 1

n
P

D¡1
n O0

nztz0tOnD¡1
n

converge jointly in distribution. In particular, (Wn; An) !d (W; A), where W and A
are random elements and A is positive de¯nite (almost surely Pµ).

Then we have the following result which validates our main theorem under these
conditions.

Theorem 3 If the model (27) satis¯es assumptions C1{C3, and all OPµ bounds
are measurable in µ; then Assumption A2 holds.

The proof of theorem 3 is lengthy and involves several technical lemmas. It is
therefore given in the Appendix (see section 8.2).

6 Forecasting with Structural Linear Models

In this section we apply the above results to derive bounds for the quality of the
prediction in linear models. In particular, we seek to determine how close to the
optimal predictor we can come using empirical models, i.e. models in which the
parameters have been estimated.
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We consider a standard linear econometric model of the form

¡yt = Bxt + ut (28)

where B and ¡ are the (partially unknown) parameter matrices, the k-vector yt
contains endogenous variables and the h-vector xt consists of exogenous and pre-
determined (i.e., Ft¡1-measurable) variables. So, ¡ is a k £ k-matrix, and B is a
k £ h-matrix. The set up includes traditional simultaneous equation models as well
as VAR models.

Let us assume that ut are i.i.d N(0;§)1 and independent of xt: The conditional
distribution of yt given Ft¡1 will be denoted by the measure G(¡¡1Bxt;§): Then, if
all the parameters were known, the best prediction for yt would be

eyt = ¡¡1Bxt (29)

and the unavoidable error yt¡eyt = ¡¡1ut is distributed N(0; ¡¡1§¡1¡¡1). In general,
however, one has to estimate the matrices B and ¡: Therefore, it is not possible
to compute eyt and, in practice, one has to use another predictor for yt | say byt
(generated, for instance, by plugging in estimates of B and ¡ in (29). For our analysis,
we do not have to be concerned with how this prediction is constructed, as long as it
is Ft¡1-measurable.

Our object is to investigate the asymptotic behaviour of the weighted forecast
mean square di®erence

¢n =
nX

t=n0

f(yt ¡ eyt)0§¡1(yt ¡ eyt) ¡ (yt ¡ byt)0§¡1(yt ¡ byt)g;

where n0 is some point of initialization of the forecasts and where to simplify notation
in what follows we can set n0 = 1; with no loss of generality. In particular, we will
show that there exists a number K (depending on the degree of nonstationaritiy
and the number of cointegrating relationships in xt) which has the property that for
Lebesgue almost all parameters and for all " > 0

P
µ·

¢n ¸ ¡1 ¡ "
2

K log n
¸¶

! 0:

This result shows the inherent advantage of the approach we are taking. Our
generalization of Rissanen's theorem enables us to cover the case of prediction errors
when the regressors are nonstationary. Interestingly, as we will see, in these cases
something new happens. The additional errors do not follow the classical (number
of parameters)*(logarithm of sample size) rule. Instead, in our new rule, we have

1This distributional assumption may seem to be restrictrive. However, we want to derive lower
bounds for the prediction error due to the fact that we have to estimate parameters. In general, one
does maintain speci¯c asumptions about the distribution of the ut to obtain an optimal predictor.
Our bounds are valid for all situations where Gaussian errors are not excluded-
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to multiply the number of parameters by an additional factor that is essentially
determined by the number and type of the trends in the regressors.

Before formulating the prediction theorem we make our assumptions speci¯c. We
assume that we have given a model of the form (28) and that the parameters are
certain coe±cients of B and ¡, with the remaining coe±cients being known by way
of normalization and identifying restrictions.

Assumption D1 The parameter space is given by the elements Bi;j, (i; j) 2 M1
and ¡i;j, (i; j) 2 M2. All the other coordinates are known. Moreover, we assume
that M1 and M2 are such that all of the identi¯cation assumptions of the preceding
section are ful¯lled.

The problem we are dealing with is just another formulation of the usual iden-
ti¯cation problem for structural models. In the notation of the previous section
¦ = ¡¡1B and therefore

d¦ = ¡¡¡1d¡¦ + ¡¡1dB (30)

For our identi¯cation condition C2 to be ful¯lled for Lebesgue almost all parameters
it is well known that the following necessary and su±cient conditions must be true.

1. ¡ is nonsingular for almost all parameters

2. For each i such that 1 · i · k de¯ne index sets corresponding to the included
variables (or coe±cients) as follows:

M1(i) = fj : (i; j) 2 M1g; (31)

and
M2(i) = fj : (i; j) 2 M2g: (32)

Then, for Lebesgue almost all parameters the following rank-condition holds:

For all i such that 1 · i · k the set of h ¡ vectors (33)
fej : j 2 M1(i)g [ f¼j : j 2 M2(i)g are linearly independent,

where the ej are h¡vectors with all components zero except the j-th component
which is unity, and ¼j is the j-th row of ¦.

Assumption D2 Any linear combination of the components of xt is either station-
ary and ergodic or integrated of order one.2

Further, we de¯ne for all a 2 Rh the process et(a) to be either a0xt | if a0xt is
stationary | or ¢a0xt = a0xt ¡ a0xt¡1 | if a0xt is nonstationary. Then the process

2Following convention, a process is said to be integrated of order one, or I(1); if its ¯rst di®erence
is stationary and has non zero spectral density at the origin. The ¯rst di®erence is in this event said
to be I(0):
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et(a) is stationary in both cases3. We can therefore (if we assume that the processes
are purely nondeterministic) apply Wold's decomposition theorem and conclude that

et(a) =
1X

i=0

ciut¡i = c(L)ut; (34)

where ut¡i is white noise with variance ¾2
a. Clearly, the constants ci as well as the ut

depend on a. Nevertheless, we can make the following assumption:

Assumption D3 For every a 2 Rh the process et(a) either is constant or in its
Wold-decomposition (34) the following holds true:

1X

i=0

i
1
2 jcij < 1; (35)

and

c (1) =
1X

i=0

ci 6= 0: (36)

Assumption D3 guarantees that the autocorrelations between the components of
et converge to zero fast enough to assure the continuity of the spectral density of et:
Further, for a 6= 0; et(a) 6= 0 and partial sums of the et(a) may be assumed to satisfy
a functional central limit theorem. That is, as a function of z, with 0 · z · 1, we
have

1p
n

[nz]X

t=1

et(a) !d c(1)¾aW (z); (37)

where W (z), 0 · z · 1 is a standard Wiener process. The functional law (37) is
known to hold under under (35) under quite weak conditions on ut (see Phillips and
Solo, 1992).

Moreover, it is easily seen that (36) guarantees the strict positivity of the long term
variance (i.e., c(1)2¾2

a > 0 ) and this implies that the variance of the nonstationary
linear combinations increases linearly with time. For this study, we restrict ourselves
to `genuine' I(1) processes and exclude processes that may be fractionally integrated.

For the formulation of Theorem 4 below we need to introduce another concept,
which we call the \total degree of integration". While it is easy to clasify scalar
processes as I(1) or I(0), this classi¯cation is, for our purposes, too crude in the
multivariate case, where there may be some unit roots but not necessarily a full
set. Heuristically, it seems reasonable to think of a bivariate process (say) with two
independent integrated processes as being `more' integrated than a bivariate process
with one integrated component and one stationary component. It turns out that this
concept of degree of integration plays a major role in determining empirical limits on
forecasting ability.

3The function a! et(a) is discontinuous in some cases (e.g., if there are cointegrating relationships
present in the original process).
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De¯nition 3 Let zt be a vector process satisfying Assumptions D1{D3. Assume zt
has nstat stationary components4, ncoint cointegrating relationships and m components
in total. Then, the `total degree of integration' of zt, (written as TI(zt)) is de¯ned as
follows. If no component of zt contains a deterministic trend, then

TI(zt) = nstat + ncoint + 2(m ¡ (nstat + ncoint)):

If at least one of the components of zt contains a linear trend then

TI(zt) = nstat + ncoint + 2(m ¡ (nstat + ncoint)) + 3:

If at least one of the components of zt contains a time polynomial of degree p then

TI(zt) = nstat + ncoint + 2(m ¡ (nstat + ncoint)) + (2p + 1):

To the extent that TI(zt) di®ers from nstat + ncoint; it measures how many linear
independent integrated components (or stochastic trends) are present in zt: In ad-
dition, as we will see, TI(¢) also determines the order of growth of the information
matrix associated with the variables zt.

It will be convenient in our following development to introduce some new notation
to enable us to work equation by equation. In particular, we de¯ne for each i with
1 · i · k new processes r(i)t : The dimension of r(i)t is set as the sum of the number
of elements of M1(i) and M2(i) (de¯ned in (31) and (32)). Then, we de¯ne for
each element of M1(i) and each element of M2(i) a component of r(i)t as follows:
for j 2 M1(i) we let the component equal (xt)j , the j-th component of xt, and for
j 2 M2(i) we let the component be (¦xt)j , the j-th component of the vector ¦xt.

Heuristically, this construction can be described in the following way. We consider
all the parameters to be estimated in equation i: For each parameter in B we take
the corresponding random variable as a component, and for each parameter in ¡ we
take the corresponding component from the reduced form.

With this de¯nition in hand, we can formulate our theorem on feasible empirical
limits to forecasting and proximity to the optimal predictor when there are parameters
to be estimated. Since the proof is lengthy it is given in the Appendix (see section
8.3).

Theorem 4 Suppose we have given a model (28) satisfying Assumptions D1-D3.
Fix § = E(utu0t): Then, for all strictly positive ® and " the Lebesgue measure of the
set of parameters

·
µ = f(Bi;j ;¡k;h)(i;j)2M1 and (k;h)2M2g such that Pµ

·
¢n ¸ ¡1 ¡ "

2
K log n

¸
¸ ®

¸

converges to zero, where K =
P
i TI(r(i)t ) (and the r(i)t are de¯ned above).

4For convenience we also allow for constant components. The nonsingularity condition in As-
sumption D2, however, restricts us to just one possible constant component.
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Remark In the case of univariate yt the assumption on § is harmless. It is an
easy consequence of the results from Phillips and Ploberger (1994) that the bound is
sharp, since the MLE of the coe±cients does not depend on §: In the multivariate
case, we usually have no information about § and it will generally a®ect the MLE.
However, this fact does not make our bound any less valid. For, even if one knew
§; it would be impossible to get a better forecast! It does remain to show that this
bound is attainable - for some special cases, see Gerencser and Rissanen (1992). The
general nonstationary case is, to the best of our present knowledge, still an open
problem that is of obvious interest and importance. We are optimistic that there will
be a positive solution of the problem.

7 Conclusion

Theorem 1 and Rissanen's result (8) justify a certain amount of skepticism about
models with large numbers of parameters. In the stationary case, it is relatively
easy to compare the `loss' from parameter estimation in di®erent parameter spaces.
According to Rissanen's result, the loss due to parameter estimation is essentially
determined by the dimension of the parameter space. In this case, the minimum
achievable distance of an empirical model to the DGP increases linearly with the
number of parameters. In the presence of nonstationarities, however, the situation
changes. It is not the dimension of the parameter space that determines the distance
of the model to the true DGP, but the order of magnitude of the sample Fisher
information matrix. All the commonly arising cases lead to asymptotic expressions
of the form

log detBn s
Ã
kX

i=1

®i

!
logn (38)

for the sample information and ®i = 1 with inequality occuring for at least one ele-
ment i: In particular, ®i = 2 for stochastic trends and ®i = 3 for a linear deterministic
trend. In such cases, the distance of the empirical model to the DGP increases faster
than in the traditional case. In e®ect, when nonstationary regressors are present,
it appears to be even more important to keep the model as simple as possible. An
additional stochastic trend in a linear regression model will be twice as expensive
as a stationary regressor in terms of the marginal increase in the nearest possible
distance to the DGP and a linear trend three times more expensive. Although non-
stationary regressors embody a powerful signal and have estimated coe±cients that
display faster rates of convergence than those of stationary regressors, they can also
be powerfully wrong in prediction when inappropriate and so the loss from including
nonstationary regressors is correspondingly higher. In a very real sense, therefore,
the true DGP turns out to be more elusive when there is nonstationarity in the data.

The above remarks apply irrespective of the modelling methodology that is in-
volved. Neither Bayesian nor classical techniques can overcome the bound on em-
pirical modelling. The bound can be improved only in `special' situations, like those
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where we have extra information about the true DGP and do not have to estimate all
the parameters. For instance, we may `know' that there is a unit root in the model,
or by divine inspiration we may hit upon the right value of a parameter and decide
not to estimate it.

As we have seen, these results that delimit the achievable proximity to the true
DGP in empirical modelling have counterparts in terms of the capacity of empirical
models to capture the good properties of the optimal predictor (i.e. the predictor that
uses knowledge of the DGP and, in particular, the values of its parameters). Increas-
ing the dimension of the parameter space carries a price in terms of the quantitative
bound of how close we can come to replicating the optimal predictor. Furthermore,
this price goes up when we have trending data and when we use trending regressors.

8 Appendix

8.1 Preliminary Development and Lemmas

For the analysis in Section 5 it will be convenient to de¯ne H(°) = §(°)¡1; and then
the log likelihood function for model (27) can be expressed as

`n(¯; °) =
n
2

log detH(°) ¡ 1
2

X

t·n
(yt ¡ ¦(¯)zt)0H(°)(yt ¡ ¦(¯)zt):

Some elementary calculations yield the following results about the conditional quadratic
variation matrix Bn in this case.

Lemma A1

1. Bn is block-diagonal: Bn =

Ã
B(¯)
n 0
0 B(°)

n

!
;

2. limn!1 1
nB

(°)
n is constant, nonsingular and a continuous function of H(°) =P

(°)¡1).

3. (B(¯))i;j = tr
³P

t·n ztz0t ¢ @¦@µi
0H @¦
@µj

´
:

In the sequel, we often use bounds for matrix products of the form tr(AB) and
the following result, whose proof is straightforward, is a useful tool.

Lemma A2 Let A, B, C be nonnegative de¯nite matrices with B · C. Then
tr(AB) · tr(AC):

Using the notation of C3, de¯ne the matrices Sn and ªn by Sn = On(Dn ¢Dn)O0
n

and (ªn)i;j = n ¢ tr(Sn @¦@µi
0 @¦
@µj

).
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Lemma A3 For every ´ > 0 there exist a(´); A(´) > 0 for which

P
h
a(´)ªn · B(¯)

n · A(´)ªn
i

¸ 1 ¡ ´:

Proof From Assumption C3 ,we may conclude that for every ´ > 0 there exist
c(´); C(´) > 0, such that with Kn =

£
c(´)I · 1

n
P

D¡1
n O0

nztz0tOnD¡1
n · C(´)I

¤
, we

have P (Kn) ¸ 1 ¡ ´=2. Then, on Kn, c(´)Sn · 1
n

P
ztz0t · C(´)Sn.

Let h 2 Rm. Then, from lemma A1, h0Bnh = tr
³
(
P
t ztz

0
t)(

P
i;j hihj

@¦
@µi

0H @¦
@µj

)
´
,

and lemma A2 shows that on Kn

c(´) ¢ tr
·
Sn

µ
§ihihj

@¦
@µi

0
H

@¦
@µj

¶¸
· h0Bnh · C(´) ¢ tr

·
Sn

µ
§i;jhihj

@¦
@µi

0
H

@¦
@µj

¶¸
:

So, de¯ning (Vn)i;j = tr
³
Sn @¦

0
@µi

H @¦
@µj

´
= tr

³
@¦
@µj

Sn @¦
0

@µi
H

´
, we can rewrite the above

inequalities as
c(´)Vn · Bn · C(´)Vn (39)

By the regularity property of the prior distribution we can ¯nd a compact G ½ £2
so that §(°) is nonsingular for ° 2 G and P [° 2 G] ¸ 1¡ ´=2. Consequently, we can
¯nd h0; H0 so that h0I · H(°) · H0I. Analogous to the proof of (39) above, we can
then show that h0ªn · Vn · H0ªn which, together with (39), proves the lemma.

Lemma A4 det(Bn(¯; °)) = OP (n`np det(ªn)).

Proof Since det(Bn) = det(B(¯)
n ) det(B(°)

n ); the second proposition of Lemma A1
implies that det(B(°)

n ) = O (np). Lemma A3 shows that det(B(¯)
n ) = OP (n` det(ªn));

and, the result follows.

8.2 Proof of Theorem 3

The proof of theorem 3 will take up the remainder of this subsection and will be
developed using a series of propositions, whose proofs will be given as we go along
and at the end of the subsection. As in theorem 1 and 2, it is helpful to `cut out'
events with small probabilities and in doing so it is convenient to use the notation
introduced in De¯nition 2.

We proceed in an analogous way to the proof of theorem 2. For every ´ > 0
we will construct events Cn = Cn(´) 2 F¤n with lim inf P (Cn) ¸ 1 ¡ ´, de¯ne the
approximating measures Qn = Q(´)

n by Qn(A) = P (A \ Cn) and then make use of
Lemma RRN to give the density

dQ(´)
n

dP (n)
(¯;°)

=
Z

£
1Cn((·; ½); ¢)dP(·;½)

dP(¯;°)
¼(·; ½)d·d½:
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We will show that, on the event Cn (or, to be precise, if 1Cn((·; ½); ¢) is not identical
zero) and using Kn to denote random variables which remain OP (1),

log
dP(·;½)

dP(¯;°)
· Kn; (40)

and, with ¸ denoting the Lebesgue-measure on the appropriate spaces,

¸(f· : 1Cn((·; ½); ¢) 6= 0g) · Knp
n` det(ªn)

; (41)

¸(f½ : ICn((·; ½); ¢) 6= 0g) · Knp
np

: (42)

The required result then follows from these bounds.
To start, we write the log likelihood function as

`(·; ½) = n
2 log detH(½) ¡ 1

2

X
(yt ¡ ¦(·) zt)0H(½)(yt ¡ ¦(·) zt)

Setting ut = yt ¡ ¦(¯)zt, H0 = H(°), ¢(½) = ¦(¯) ¡ ¦(½) we have

`(·; ½) ¡ `(¯; °) = n
2 (log detH(½) ¡ log detH(°)) ¡ 1

2tr((§utu0t)(H(½) ¡ H(°)))
¡1

2§(u0tH(½)¢(½)zt + z0t¢(½)0H(½)ut)
¡1

2§z0t¢(½)0H(½)¢(½)zt

For (40) to hold, we need to show that this di®erence in the likelihoods remains
bounded in probability. As we only need to give upper bounds for these terms, we
only have to deal with the ¯rst two summands on the right side. This is accomplished
in the two propositions that follow.

8.2.1 Proposition A5.

For every ´ > 0 there exists a sequence C(1)
n = C(1)

n (´) of events so that lim inf P (C(1)
n ) ¸

1 ¡ ´ and the following property holds: if 1C(1)n ((·; ½); ¢) is not identical zero, then

n
2 (log detH(½) ¡ log detH(°)) ¡ 1

2tr((§utu0t)(H(½) ¡ H(°)) · Ln

where the Ln (for each ¯xed ´) are OP (1) random variables.

8.2.2 Proposition A6.

For every ´ > 0 there exists a sequence C(2)
n = C(2)

n (´) of events so that lim inf P (C(2)
n ) ¸

1 ¡ ´ and the following property: if 1C(2)n ((·; ½); ¢) is not identical zero, then

¯̄
¡1

2§(u0tH(½)¢ (·) + ¢(·)0H(½)ut)
¯̄
· Ln
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where Ln are OP (1) random variables.

Analogous to the proof of Theorem 2, we will \cut out" all parameters \far away"
from (¯; °). Consider the OLS-estimator for ¦ and §, viz., ¦̂n = (§ytz0t)(§ztz0t)¡1

and §̂n = 1
n§(yt ¡ ¦̂nzt)(yt ¡ ¦̂nzt)0:

8.2.3 Proposition A7.

p
n(¦̂n ¡ ¦(¯))O0

nDn;
p

n(b§n ¡ §(°))

and p
n

µ
b§n ¡ 1

n

X
utu0t

¶

remain OP (1) as n ! 1.

8.2.4 Proof of Proposition A7.

Since ¦̂n ¡ ¦(¯) = (§utz0t)(§ztz0t )¡1; it is easily seen from Assumption C3 thatp
n(¦̂n¡¦(¯))O0

nDn converges in distribution to WA¡1, which proves the ¯rst state-
ment in view of Lemma P-BD. For the second, observe that

b§n ¡ § =
¡ 1
n§utu0t ¡ §

¢

+ 2 ¢ 1p
n(¦̂n ¡ ¦(¯))OnDn(D¡1

n O0
n)

1p
n§ztu0t

+ (¦̂n ¡ ¦(¯))OnDn
©
(D¡1
n O0

n)
¡ 1
n§ztz0t

¢
(OnD¡1

n )
ª

DnO0
n(¦̂n ¡ ¦(¯))0:

C3 and the ¯rst result of this lemma now show that the second and the third state-
ments of the lemma hold, again in view of Lemma P BD.

8.2.5 Proof of Proposition A6.

Fix ´ > 0. Then we can ¯nd M = M(´) so that P (C0
n) > 1¡´=2 and P (C00

n) > 1¡´=2
with C 0

n = [jjpn(¦̂n¡¦)OnDnjj < M ] and C00
n = [jjHjj < M ] . De¯ne C(2)

n as C 0
n\C00

n.
Then

§(u0tH(½)¢(·)zt + z0t¢(·)0H(½)ut)

= 2 tr
³
fD¡1
n O0

n(§ztu0t)gH(½)f((¦̂n ¡ ¦(¯))OnDng
´

+ 2 tr
³
fD¡1
n O0

n(§ztu0t)gH(½)f(¦(·) ¡ ¦̂n)OnDng
´

:

Now analyse the two summands on the right-hand side of this equation. Each of these
is a trace of a product of three (random) matrices. The ¯rst factor is a random matrix
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which converges in distribution. The norm of the second is, provided 1C(2)n ((·; ½); ¢)
is not identical zero, dominated by M . Due to the construction of C(2)

n ; the same
applies to the third factor of the second sum. The third factor in the ¯rst sum is
the product of random matrices which converge in distribution to WA¡1: Applying
Lemma P BD completes the proof.

8.2.6 Proof of Proposition A5.

Proposition A5 can be proven in a similar manner. Let Ĥn = b§¡1n and write

p
n1
2(log detH(½) ¡ log detH(°)) ¡ 1

2tr(
1
n(§utu0t)(H(½) ¡ H(°))

=
p

n
n
1
2(log detH(½) ¡ log det Ĥn) ¡ 1

2tr(Ĥ
¡1
n (H(½) ¡ Ĥn)

o

+
p

n
n
1
2(log det Ĥn ¡ log detH(°)) ¡ 1

2tr(Ĥ
¡1
n (Ĥn ¡ H(°))

o

+
p

n
n
1
2tr((Ĥ

¡1
n ¡ 1

n(§utu0t))(H(½) ¡ Ĥn))
o

+
p

n
n
1
2tr((Ĥ

¡1
n ¡ 1

n(§utu0t))(H(°) ¡ Ĥn))
o

: (43)

Deal with each of the four terms (in braces) on the right-hand side separately. Choose
an arbitrary ´ > 0. Then we can ¯nd M = M(´) so that, with C(1)

n = [jjĤn ¡ Hjj ·
M=

p
n], P (C(1)

n ) ¸ 1 ¡ ´. Then Proposition A7 immediately shows that the fourth
term converges to zero and the third term is dominated on C(1)

n by

sup
f½: 1

C(1)n
(½;¢))6=0g

p
n

n
1
2tr((Ĥn ¡ 1

n(§utu0t))(H(½) ¡ Ĥn))
o

! 0;

as the ¯rst factor within the trace converges to zero from Proposition A7 and the
second factor remains bounded.

For the ¯rst and second terms of (43) we use the expansion for log detA that is
given in Proposition A8, stated at the end of this section. This proposition shows
that the di®erence of the second term of (43) and

tr
³p

n(H(°) ¡ 1
n(§utu0t))Ĥ

¡1
n

p
n

¡
(H(°) ¡ 1

n(§utu0t))
¢
Ĥ¡1
n

´

converges in probability to zero. As this sequence obviously converges in distribution,
we can apply Lemma P-BD and it remains OP (1).

Now we only have to analyse the ¯rst summand in (43). Using the de¯ning
property of C(1)

n , it is easily seen that

sup
f½: 1

C(1)n
(½;¢) 6=0g

jh1;n(½) ¡ h2;n(½)j ! 0;

and
h1;n(°) ¡ h2;n(°) ! 0;
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where

h1;n(½) =
p

n
n
1
2(log detH(½) ¡ log det Ĥn) ¡ 1

2tr(Ĥ
¡1
n (H(½) ¡ Ĥn))

o
;

and
h2;n(½) = tr(

p
n(H(½) ¡ Ĥn)Ĥ¡1

n
p

n(H(½) ¡ Ĥn)Ĥ¡1
n ):

It is clear that h2;n(°) converges in distribution and again remains OP (1) by virtue
of Lemma P-BD, so we only have to analyse h2;n(½). For doing this, observe that
Proposition A7 implies that

p
njjĤn ¡ H(°)jj remains OP (1), and so

sup
f½: I

C(1)n
(½;¢) 6=0g

p
njjH(°) ¡ H(½)jj

remains OP (1), too. We can therefore conclude (with the help of Assumption C2 on
local identi¯cation) that

sn = sup
f½: I

C(1)n
(½;¢) 6=0g

p
njj° ¡ ½jj (44)

is OP (1): Moreover, jjpn(H(½) ¡ Ĥn)jj · jjpn(H(°) ¡ Ĥn)jj + jjpn(H(½) ¡ H(°))jj:
The ¯rst of these summands remains OP (1): The second one, if IC(1)n (½; ¢) 6= 0; is
dominated by

sn sup
f½:1

C(1)n
(½;¢) 6=0g

jjDH(½)jj; (45)

where DH =
³
@H
@°1 ; :::;

@H
@°`

´
is the matrix composed of the ¯rst derivatives. Since for

an arbitrary small · > 0 f½ : 1C(1)n (½; ¢) 6= 0g ½ f½ : jj½ ¡ °jj < ·g for all but a ¯nite
number of n, we may conclude that both factors of our product (45) remain OP (1):
This completes the proof of Proposition A5.

Now, since ¸(f½ :
p

njj° ¡ ½jj · sng) = const¢(pn)¡pspn, and sn is OP (1) from
(44) above, we have proved (42).

To complete the mainline of our proof, it remains to show (41). Let us de¯ne
our events for some given ´ > 0. In particular, using Proposition A7 we can ¯nd an
M = M(´) so that P (C(2)

n ) > 1 ¡ ´ with C(2)
n = [jj(pn

³
¦̂n ¡ ¦

´
O0
nDn)jj · M ].

Then, we have to show that

¸(f· : I
C(2)n

(·; ¢) 6= 0g) = OP (n¡`=2=
p

detBn):

As

jj(pn(¦̂n¡¦(¯))O0
nDn)jj+ jj(pn(¦̂n¡¦(·))O0

nDn)jj ¸ jj(pn(¦ (·)¡¦(¯))O0
nDn)jj

we may conclude that

f· : I
C(2)n

(·; ¢) 6= 0g ½ f· : jj(pn(¦ (·) ¡ ¦(¯))O0
nDn)jj · 2Mg (46)
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on the event
[jj(pn(¦̂n ¡ ¦(¯))O0

nDn)jj · M ]: (47)

This should be understood as follows. For all ! satisfying event (47) f· : I
C(2)n

(·; !) 6=
0g is a subset of the set on the right-hand side of (46). By the de¯nition of M , the
probability of the event (47) is greater than 1 ¡ ´: We have to show that for the sets

Rn(M) = f· : jj(pn(¦ (·) ¡ ¦(¯))O0
nDn)jj · 2Mg;

¸(Rn(M)) has the correct order of magnitude. We will give the proof only for the
case of

On = I (48)

Since the On have been assumed to be orthogonal, the proof is easily extended to
the general case, but the more complicated notation required would distract from
the basic intuition behind the proof. Moreover, we will use the notation Const as
a generic symbol for a strictly positive constant which is not necessarily the same
in every expression. This property is most important for the proof. For reasons of
brevity, we will refrain from mentioning the strict positiveness of Const every time
we use the symbol.

Applying Proposition A7, it is su±cient to show, under our simplifying assump-
tion (48, that ¸(Rn(M)) = OP (n¡`=2=

p
detBn) for all M . Since all norms on ¯nite-

dimensional spaces are equivalent, it is easily seen that

Rn(M) ½ f· : tr((
p

n(¦ (·) ¡ ¦(¯))Dn)(
p

n(¦ (·) ¡ ¦(¯)Dn)0 · const M2g:

Moreover, it is an immediate consequence of Lemma A3 that the volume of the
ellipsoid f· : n(· ¡ ¯)0ªn(· ¡ ¯) · constg is OP (n¡`=2=

p
detBn).

Therefore, it is su±cient to show that for each ¯ there exist a neighbourhood
U(¯) and a constant Const = Const(¯) so that for · 2 U(¯)

tr
¡
(((¦ (·) ¡ ¦(¯))Dn)((¦ (·) ¡ ¦(¯))Dn)0

¢
¸ Const ¢ (·¡ ¯)0(ªn=n)(·¡ ¯): (49)

Let ¦ =
¡
¼(1); :::; ¼(`)¢ and Dn = diag(¸1;n; :::; ¸`;n). Then, the left side of (49) equals

X
¸2
j;n

°°°¼(j)(·) ¡ ¼(j)(¯)
°°°
2
;

and the right hand side is

X
(· ¡ ¯)i(· ¡ ¯)jtr

µ
DnD0

n
@¦
@µi

0 @¦
@µj

¶
=

X
¸2
j;n

°°°°°
X

(· ¡ ¯)i
@¼(j)

@¯i

°°°°°

2

;

where jjvjj =
qP

v2i is the usual Euclidean norm. Therefore, we prove the propo-
sition if we can show that for all j and all ¯ there exists a neighbourhood U(¯) so
that

jj¼(j)(·) ¡ ¼(j)(¯)jj2 ¸ Const ¢
°°°°°
X

(· ¡ ¯)i
@¼(j)

@¯i

°°°°°

2

: (50)
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At the ¯rst sight, the proof of this inequality seems to be a standard exercise in
elementary analysis, but this is true only in the case where the right-hand side is
nonzero for all nontrivial vectors (·¡¯). One does, however, encounter the problem
that, in general, there will exist vectors (· ¡ ¯) that annihilate the right hand side
(i.e., ¼(j)(¢) has a zero derivative in that direction), so the inequality is trivial for
them. But what happens \near" these vectors, i.e., when we add a small component
of a vector for which the directional derivative is nonzero)? The left hand side of the
inequality will be \small" and so the inequality is nontrivial. The key to establishing
the inequality in such neighbourhoods lies essentially in \projecting" the mapping to
some lower-dimensional manifolds on which it is regular. We make this construction
in what follows.

Let us now ¯x a j and de¯ne R¼ = span
n
@¼(j)
@¯i

o
, i.e. the vector space of all linear

combinations of the @¼
(j)

@¯i ; and let N =
n
h : @¼

(j)

@h =
P

hi @¼
(j)

@¯i = 0
o
. Further, let V

be the orthogonal complement of N . If V consists only of the null-vector, then the
right-hand side of (50) is identically zero and the inequality is trivial. Hence we can
assume that dim V > 0. Then it is easily seen that dim R¼ = dimV = J . Then we
can ¯nd vectors b1; :::; bJ that form a basis of V , i.e., they are linearly independent
and V = fPJ

i=1 ºibig: It can immediately be seen that there exists a linear, bijective
mapping ' : RJ ! R¼ de¯ned by '((º1; :::; ºJ)0) =

PJ
i=1 ºibi:

Analogously, we can ¯nd a basis c1; :::; cJ of R¼; Let us now de¯ne P as the
J £ `-matrix describing the orthogonal projection onto R¼ with respect to the basis
c1; :::; cJ : That is, for any vector x 2 R`; the vector Px 2 RJ is such that

P
(Px)ici

is the orthogonal projection of x onto R¼. It is obvious that

rank P = J: (51)

Next, let p(¢) be the mapping de¯ned on a neighborhood of the origin of RJ by the
following. If º = (º1; :::; ºJ) then

p(º) = P (¼(j)(¯ +
X

ºibi) ¡ ¼(j)(¯)):

In view of Proposition A9, which is stated and proved at the end of this section, this
mapping has the property that the Jacobian of p (¢) has full rank at the origin so that
dimR = dimV:

Let S be the projection (de¯ned in R`) on V in direction N (i.e., for h 2 N;
Sh = 0, for h 2 V; Sh = h). Since V is the orthogonal complement of N , S is an
orthogonal projection and therefore

jjhjj2 ¸ jjShjj2 (52)

Furthermore, it is easily seen that there for all h 2 R`

jjShjj2 ¸ Const ¢
°°°°°
X

hi
@¼(j)

@¯i

°°°°°

2

; (53)
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where
Const > 0: (54)

A feasible choice of Const is minh2¥ jjShjj2 with ¥ =
½

h 2 V :
°°°
P

hi @¼
(j)

@¯i

°°°
2

= 1
¾

:

¥ is easily seen to be a compact set, so the in¯mum of a continuous function on the
set is its minimum. Hence any strictly positive function can be bounded from below
with a constant greater zero, and so this de¯nition of Const ful¯ls (54)).

As ¼(j)(¢) is continuous, there is a neighborhood U around the ¯ for which with
· 2 U we have P (¼(j)(·) ¡ ¼(j)(¯)) 2 W . Let us analyse the mapping f de¯ned by
f(·) = (Ã ±'¡1)(P (¼(j)(·)¡¼(j)(¯))): Then, due to the di®erentiability of Ã and ';
there exists a Const with

jjf(·)jj · Const ¢ jjP (¼(j)(·) ¡ ¼(j)(¯))jj:

Again, Const can be assumed to be > 0 without limitation in generality, so we have
also

Const ¢ jjf(·)jj · :jjP (¼(j)(·) ¡ ¼(j)(¯))jj:
Then we have for · 2 U

jj¼(j)(·) ¡ ¼(j)(¯)jj2 ¸ jjP (¼(j)(·) ¡ ¼(j)(¯))jj2 ¸ Constjjf(·)jj2

Now it remains to show that jjf(·)jj2 ¸ Const ¢
°°°
P

(· ¡ ¯)i @¼
(j)

@¯i

°°°
2
. To prove this in-

equality it is (because of (53) and (52)) su±cient to show that jjSf(·)jj2 ¸ ConstjjS(·¡
¯)jj2for jj· ¡ ¯jj su±ciently small. Denoting by Df the Jacobian of f , Sf =R 1
0 SDf(¯ + ¸(· ¡ ¯)) ¢ (· ¡ ¯)d¸ we have

kSf(·)k2 (55)
=

R 1
0

R 1
0(SDf(¯ + ¸(· ¡ ¯)) ¢ (· ¡ ¯))0(SDf(¯ + ¹(· ¡ ¯)) ¢ (· ¡ ¯))d¸d¹

=
R 1
0

R 1
0(S(· ¡ ¯))0(Df(::))0(Df(::))(S(· ¡ ¯))d¸d¹:

By the chain rule, the Jacobian is

Df = (DÃ)(D')¡1P
@¼(j)

@¯
: (56)

Therefore, due to the continuity of Df , we can, for jj·¡¯jjsu±ciently small, conclude
that

jj(Df(::))0(Df(::)) ¡ (Df(¯))0(Df(¯))jj
can be made arbitrarily small. Therefore, there exists a neighbourhood around ¯ so
that the di®erence for all · from this neighbourhood is less than

¸0 = 1
2 min
fh2V :khk2=1g

h0(Df(¯))0(Df(¯))h; (57)
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which is nonzero due to Proposition A10, which is stated and proved below. Thus,
for · from this neighbourhood, we can conclude that the integrand in (55) is ¸
1
2¸0jjS(·¡¯)jj2, which completes the proof of (41) and concludes the proof of theorem
3.

To complete the reasoning, it remains only to prove the following three proposi-
tions that were used in the proof of Theorem 3.

8.2.7 Proposition A8.

Let A, B be nonnegative de¯nite matrices so that jjA ¡ BjjjjB¡1jj < 1. Then

log detA ¡ log detB ¡ tr(B¡1(A ¡ B)) (58)

= tr
¡
(A ¡ B)B¡1 (A ¡ B)B¡1¢ + o

µ jjB¡1jj3jjA ¡ Bjj3
1 ¡ jjB¡1jjjjA ¡ Bjj

¶
:

8.2.8 Proof of Proposition A8

This is based simply on a Taylor expansion of log detA and is omitted.

8.2.9 Proposition A9

The Jacobian of p(¢) has full rank at the origin, namely dimR = dimV .

8.2.10 Proof of Proposition A9

Assume otherwise. Then, we would be able to ¯nd nontrivial °i so that
P

°i @p@ºi =

P
³P

°i @¼
(j)

@bi

´
= 0. By de¯nition of R¼,

³P
°i @¼

(j)

@bi

´
2 R¼, so if the orthogonal

projection of this vector is zero, the vector is zero itself. So we may conclude thatP
°i @¼

(j)

@bi = 0 and therefore, since we assumed the °i to be nontrivial,

@¼(j)

@°
= 0 with ° =

X
°ibi 2 R¼:

But this would imply that ° 2 N , so ° 2 R¼ \ N = f0g, which contradicts our
assumption of ° being nontrivial. Then standard analysis shows that there exists an
open set W ½ RJ around the origin for which there exists an inverse function Ã: It is
easily seen to be continuously di®erentiable, and its Jacobian has full rank, too, i.e.,

Rank DÃ = J; (59)

giving the required result.
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8.2.11 Proposition A10

Let ¸0 be as de¯ned in (57): Then ¸0 > 0.

Proof. First observe that the set fh 2 V : jjhjj2 = 1g is compact: Therefore
the in¯mum of a continuous function over this set is a minimum. Therefore. our
de¯nition in (57) makes sense and we can assume that there exists a h 2 V with
jjhjj2 = 1 so that h0(Df(¯))0(Df(¯))h = ¸0: Now suppose the proposition does not
hold and there exists h 2 V with jjhjj2 = 1 for which h0(Df(¯))0(Df(¯))h = 0: Then,
(Df(¯))h = 0 and, due to (56) and the nonsingularity of DÃ(¯) and D'; we may
conclude that P @¼

(j)

@¯ h = P @¼
(j)

@h = 0: Since P describes the orthogonal projection

onto R¼ = span
n
@¼(j)
@¯i

o
3 @¼(j)

@h , we may conclude that @¼
(j)

@h = 0: But this is just
the de¯nition of h 2 N and therefore we have a contradiction to our assumptions
(viz., that h was nontrivial and an element of V , which de¯ned as the orthogonal
complement of N).

8.3 Proof of Theorem 4

Fix an arbitrary predictor byt: Then, the conditional probability measures G(byt; §) (for
t ¸ 1; our common point of initialization for the predictions) produce an empirical
model in the sense of earlier sections. One can easily see that the corresponding log
likelihood ratio with respect to the true model is esentially given by ¢t: Therefore,
it is apparent that Theorem 4 is a simple consequence of Theorem 1 if we can prove
that

log detBn
log n

! K; (60)

in probability for Lebesgue-almost all parameters.
We start by choosing arbitrary matrices B and ¡ that ful¯ll our iden¯cation

requirements given in Assumption D1. Next, we proceed to compute the information
matrix Bn: Lemma A1 shows that this matrix is block diagonal. To use Lemma A1,
it helps to simplify some formulae by de¯ning a 2`-vector x¤t as follows. The ¯rst
` components of x¤t are set to the vector xt itself, and components ` + 1 to 2` are
set equal ¡¦xt. The process x¤t helps to simplify the expression for the score. For
this purpose, de¯ne for (i; j) 2 M1 the elements of a k £ 2` selector matrix P 1

i;j to
be all zero except the element in position (i; j), which is set to unity. Analogously,
de¯ne for (i; j) 2 M2 the elements of the k £ 2` matrix P 2

i;j to be zero except the
element in (` + i; j), which is set to unity. In general, we will write P ai;j with a = 1; 2
corresponding to the indices of M1 and M2; respectively.

We need the following expressions for the derivative matrices: ¯rst,

@¦
@¡i;j

= ¡
"
0; 0; :::; (¡¡1)i

column j
; :::; 0

#
¦;

where the ¯rst matrix in this product is square and has the i-th column of ¡¡1 as its
j-th column, and zeros elsewhere; and, second,
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@¦
@Bi;j

=

"
0; 0; ::; (¡¡1)i

column j
; ::; 0

#
:

Using the selector matrices P ai;j, we can write these matrices in the form

@¦
@¡i;j

xt = ¡¡1P 1
i;jx

¤
t (61)

and
@¦

@Bi;j
xt = ¡¡1P 2

i;jx
¤
t (62)

We now proceed to compute the matrix Bn: We can think of Bn as a matrix
indexed with pairs of elements of Ma, which constitute triples when combined with
the index a. Formulae (61) and (62) allow us to apply Lemma A1 and with a bit of
calculation it is readily seen that

(Bn)(i;j;b);(q;`:d) =
X

t·n
tr(x¤t (x

¤
t )
0P b0i;j¡

¡1§¡¡1P dq;`) =
X

t·n
tr(P dq;`x

¤
t (x

¤
t )
0P b0i;j¡

¡1§¡¡1):

For each invertible ¡ we can ¯nd ±1 = ±1(¡; §), ±2 = ±2(¡;§) so that ±2I ¸
¡¡1§¡¡1 ¸ ±1I, where I is the identity matrix. De¯ne the matrices Rn by

(Rn)(i;j;b)(q;`;d) =
X

t·n
tr(P dq;`x

¤
t (x

¤
t )
0P b0i;j) =

X

t·n
tr(x¤t (x

¤
t )
0P b0i;jP

d
q;`):

Lemma A2 implies that
±1Rn · Bn · ±2Rn:

Hence, (60) is equivalent to
log detRn

log n
! K: (63)

Let us now look at the elements (Rn)(i;j;b)(q;`;d) if i 6= q: In this case it is easily
seen that P b0i;jP

d
q;` = 0 and, therefore,

(Rn)(i;j;b)(q;`;d) = 0 for i 6= q (64)

Let us for 1 · i · k de¯ne the matrices (R(i)
n )(j;b)(`;d) = (Rn)(i;j;b)(i;`;d), where j 2

M1(i) if b = 1 and j 2 M2(i) if b = 2. Then (64) shows that by reordering rows and
columns we can rearrange the matrix Rn into the form

Rn =

0
B@

R(1)
n 0 0

0
. . . 0

0 0 R(k)
n

1
CA ;
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which implies that detRn =
Qn
i=1 detR(i)

n and consequently

log detRn =
nX

i=1

log detR(i)
n :

Consequently, to prove (63) it is su±cient to show that

log detR(i)
n

logn
! TI(r(i)t );

where the processes r(i)t were de¯ned above. To do so, we have to analyze the matrices
R(i)
n : Fix i, with 1 · i · k, and examine the vector (P ai;jx

¤
t ), where j is from Ma(i).

Then its components are zero except for the j-th, which equals (x¤t )j: Hence, if j and
` are from Ma(i); then

(R(i)
n )(j;a)(`;a) =

X

t·n
tr(P ai;`x

¤
t (x

¤
t )
0Pa0i;j) =

X

t·n
(x¤t )j(x

¤
t )`:

Going back to the de¯nition of r(i)t ; it is apparent that the components of this vector
coincide with the components of x¤t when the index is in M1(i) or the di®erence of the
index with m is in M2(i): Both vectors simply pick o® the components of x¤t which
correspond to unknown parameters in row i: Therefore R(i)

n is just a reodered form
of

P
t·n r(i)t r(i)0t : We therefore have to show that

log det
P
t·n r(i)t r(i)0t

logn
! TI(r(i)t ): (65)

To establish (65), it will be su±cient to prove the following two results:
(i) the existence of diagonal matrices Din and a nonsingular matrix Ai so that

D¡1
in Ai

X

i·n
r(i)t r(i)0t AiD¡1

in ) Ci; (66)

where ) denotes weak convergence and Ci is a (possibly random) matrix which is
a.s. invertible; and

(ii)
log detDin

log n
= TI(r(i)t )=2: (67)

We will not give an explicit formula for Ai in (66). We will show its existence,
mainly by using permutations and linear combinations of the components of r(i)t that
are analogous to the Gaussian elimination algorithm for solving linear equations. Let
us assume our vector has nstat stationary components, and that there are ncoint linear
independent cointegrating relationships. Using a permutation matrix to rearrange
the stationary components and then multiplying by a matrix which performs the
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cointegrating space mapping, we can construct a nonsingular matrix A1 with the
following properties: the last ncoint + nstat components of the random vector ½t =
A1r

(i)
t are stationary processes and the ¯rst (m ¡ ((ncoint + nstat)) are nonstationary

and, moreover, every linear combination of them is nonstationary, so they are what
we call full rank nonstationary. Next we will deal with deterministic trends. We
will assume here that only linear trends are included, extensions to higher order
polynomial trends being straightforward. Without limitation in generality, we can
arrange for this type of trend to occur in the ¯rst component (otherwise, simply
multiply by a permutation matrix to accomplish this positioning of the elements).
So, let us assume that (½t)1 = at + W1(t), where W1(t) contains no deterministic
trend. Now multiply ½t with a matrix A2 constructed in the following way: row 1 of
A2 should be the ¯rst row of the identity-matrix; row i should be the i-th row of the
identity matrix if (½t)i does not contain a deterministic trend; otherwise assume that
(½t)i = bt + Wi(t), where Wi(t) does not contain a deterministic trend and then the
i-th row should consist of (¡b=a) in the ¯rst column (to eliminate the trend in the i'th
row), 1 in the i-th column and 0 in the remaining columns; for i > (m¡(ncoint+nstat))
let the i-th row of A2 be identical to the i-th row of the identity matrix. Next, let
Rt = A2½t: Since Rt = (A2A1)r

(i)
t is a linear combination of r(i)t and the matrix A2A1

is nonsingular, it is su±cient to prove the assertions (66) and (67) for Rt: We now
do so for a `generic' equation in the system and to simplify formulae simply drop the
a±x i in our remaining derivations.

Let us de¯ne for the case where one element contains a (linear) deterministic
trend the diagonal matrix

Dn = diag(n3=2; n1; :::; n1; n1=2; :::; n1=2)

where m ¡ 1 ¡ (ncoint + nstat) diagonal elements equal n and (ncoint + nstat) elements
equal n1=2. In the case where none of the processes contains a deterministic trend we
de¯ne

Dn = diag(n1; :::; n1; n1=2; :::; n1=2) (68)

where the ¯rst (m¡(ncoint+nstat)) diagonal elements equal n and the rest equal n1=2.
Now it is easily seen that (67) holds true for our choice of Dn. It now remains to show
(66): We have to compute the limiting distribution of D¡1

n
P
t·nRtR0

tD¡1
n : Keeping

in mind that the vector Rt is composed of linear combinations of the original vector
we can apply the limit theory (37) that follows from Assumption D3. We will only
deal with the case where a linear deterministic trend is present, because the other case
follows in an analogous fashion. So, in this case, the ¯rst component of Rn contains
a deterministic trend and we can partition the vector Rn into three parts. The ¯rst
part consists of the ¯rst component only, the second part comprises the m ¡ 1 ¡
(ncoint + nstat) nonstationary components and the third part consists of the ncoint +
nstat stationary components. Next, we partition the matrices D¡1

n
P
t·nRtR0

tD¡1
n

and their limit random matrices analogously into nine submatrices, so that we have,
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in e®ect, to show that

D¡1
n

X

t·n
RtR0

tD
¡1
n ) C =

0
@

c11 c12 c13
c012 C22 C23
c013 C0

23 C33

1
A (69)

and the limit matrix Cis nonsingular a.s.
We know from the construction of Rn that its ¯rst component consists of a de-

terministic trend (plus terms that are of smaller order than n): We therefore may
conclude that for 0 · z · 1

lim
n!1

(Rnz)1
n

! az

and
a 6= 0

if a = 0 no deterministic trend would be present. Therefore, it is easy to see that
(69) holds true for the its uppermost left corner with

c11 =
a2

3
= a2

R 1
0 z2dz:

Since the components of Rn are linear combinations of the zt, we can apply As-
sumption D3 and (37). In particular, the vector R(2)

n consisting of the nonstationary
components (i.e., components 2 : (m ¡ (ncoint + nstat))) satis¯es an invariance princi-
ple. There exists a (vector) nonsingular Wiener process V for which with 0 · z · 1

R(2)
nz ) V (z) as n ! 1;

where the convergence is understood as convergence in the Skorohod topology in the
function space D [0; 1] : For the stationary components R(3)

n (the remainder of the
vector Rn) we postulated (among other things) the existence of second moments and
ergodicity. Hence, we may conclude that

1
n

X

i·n
Ri !a:s: R

and
1
n

X

i·n
RiR0

i !a:s: C;

where C is nonsingular and C ¡ RR0 is nonnegative de¯nite.
Some lengthy calculations which are similar to those in Park and Phillips (1988,1989)

and which we therefore omit here, show that (69) is indeed true and we have the fol-
lowing limits

c12 =
R 1
0 V 0(z)zdz;

c13 =
1
2
aR0 =

R 1
0 R0zdz;
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C22 =
R 1
0 V (z)V 0(z)dz;

C23 =
R 1
0 R0V (z)dz;

C33 = C:

Therefore, it remains to show the nonsingularity of the matrix C: Assume the opposite
to be true. Then, there exists a vector d for which

d0Cd = 0

and, using the above expressions, there would exist constants A and vectors D;E,
not all zero, for which

R 1
0(Az + D0V (z) + E0R)2dz + E0((C ¡ RR0)E = 0

Keeping in mind that C ¡ RR0 is nonnegative de¯nite, this would imply that
R 1
0(Az + D0V (z) + E0R)2dz = 0;

which obviously contradicts the nonsingularity of the process V , so the singularity of
C must be wrong.

The proof is now completed for the case where the process contains a linear
deterministic trend. If such a trend is not present in the predetermined variables and
we have to use (68) in the de¯nition of Dn; we can proceed in an analogous manner.
The arguments carry over almost verbatim, and one only has to ignore all statements
regarding the ¯rst component. In a similar way, when there are deterministic trends
of degree p in the process, the same arguments apply with the modi¯ed de¯nition

Dn = diag(np+
1
2 ; n1; :::; n1; n

1
2 ; :::; n

1
2 )

of the normalizing matrix.

9 Notation

!a:s: almost sure convergence
!Pµ convergence in Pµ probability
);!d weak convergence
oPµ(1) tends to zero in Pµprobability
OPµ (1) bounded in Pµprobability
OP (1) bounded in Pprobability
»d asymptotically distributed as
IA(¢) indicator function of A
Eµ expectation under Pµ
TV (P;Q) = supA2F jP (A) ¡ Q (A)j total variation
¸min (B) smallest eigenvalue of B
k ¢ k Euclidean norm in Rk
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