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Abstract

This paper examines a nonparametric test for Granger-causality for a vector
covariance stationary linear process under, possibly, the presence of long-range
dependence. We show that the test converges to a non-distribution free mul-
tivariate Gaussian process, say vec é(,u) indexed by p € [0,1]. Since, in
contrast to the scalar situation, it is not easy, if at all possible, to find a time
deformation g (p) such that vec (E (g (,u))) is a vector with independent Brown-

ian motions components, inferences based on vec (E (,u)) would be difficult to

implement. We thus propose, to circumvent this problem, to bootstrap the test
by a combination of Wild and Moving Block Bootstraps, showing its validity.

1. INTRODUCTION

In economics and other areas of social sciences, one subject routinely invoked is the
concept of causality. This is primarily due to the implication and interpretation
that such a concept has on the data. Tests for causality are often performed in
the context of unrestricted vector autoregressive (VAR (P)) models with P a finite
known positive number. See among others, Granger (1969) or Geweke (1982) when
the data is short-range dependent, or for variables showing stochastic-trend behaviour,
see Sims et al. (1990) or Toda and Phillips (1993). Some extensions are in Hosoya
(1991) who analyzes causality for stationary short-range dependent processes which
do not necessarily have a VAR representation or Liitkepohl and Poskitt (1996), and
references therein, who allow for a VAR (c0) model.

More recently, Hidalgo (1999) has proposed and examined a test for causality
which, unlike the aforementioned papers, covers long-range dependence which has
attracted immense attention in recent years. The main attributes of his test are; 1)
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it is nonparametric, 2) it is consistent, and 3) it has power against T-1/2 contiguous
alternatives. Thus, Hidalgo (1999) extended previous work in two main directions.
First, by allowing a (general) covariance stationary linear process and secondly, since
the test is nonparametric, he avoided the danger that a bad specification of the model
may induce on the outcome of the test.

Now we briefly discuss the main idea of the test. Consider the p = p; + po
dimensional covariance stationary vector w; = (y},2})" admitting the VAR (c0) rep-
resentation

o0
AL)ywy = Ajwj=¢, t=1,2..,T, (1.1)
§=0
where ¢; is a p—dimensional martingale difference sequence (more precise conditions
on &; are given in C4 below) and Aq is the identity matrix. The objective is to test
the null hypothesis Hy: y; # z:, that is y; does not cause x;, against the alternative
hypothesis H; : yy = x4, that is y; causes x;.
Following Sims (1972) or Hosoya (1977), a test for Hy is equivalent to testing
whether the p; X py matrices ¢ (j) are simultaneously equal to zero for all j < 0 in

o0

Y = Z c(j)we—j +uy, (1.2)

j=—o00

where, by construction, F [u;|zs,—00 < s < oo] = 0, and x; and u,; are, possibly,
long-range dependent processes. Alternatively, Hy is equivalent to

0
vec Z c(j —1)cos (mjN) =0 VA e o,1],

j=—00

where () is the p;ps—dimensional null vector, or

I 0 o
S* (1) = Re / vec Z c(j—1e ™rd\]| =0 VYuelo,1],
0 ~

j=—o0

where Re (a) denotes the real part of a complex number ( or vector) a. Thus, we can
finally write the hypothesis testing as

Hy: 8" (u)=0 Vuel0,1] against Hy : S* (u) 20 in A C [0,1] (1.3)

where A has Lebesgue measure greater than zero.
Given estimates of ¢ (j), for example ¢(7), and using Riemann’s discrete approxi-
mation of integrals by sums, S* (1) can be estimated by

(M p] 0
L N —ijAamp
St (1) =Re i E vec | E c(j—1)e "7 (1.4)
p=1 j:—M—i—l

where \p = 2w¢/T, { = 0,£1, ..., [T/2], and M = [T'/4m] with m = m (T) a number
which increases slowly with 7', that is m~! +mT~! — 0. The test can thus be based
on whether or not Sy (u) is significantly different than zero for all u € [0, 1] by the
implementation of a functional of St (1), for example a Kolmogorov-Smirnov test.



More specifically, using an extension of Hidalgo’s (1999) Corollary 1, we show in

Theorem 3.2 that TV/2S7 (1) “&Y vec (E (,u)), where B (1) is a p1 x po Gaussian

process with covariance structure given by

1 7 min(pg,4,)
K (11, 13) = /0 (F2l (<N ® fuu (V) dA. (1.5)

T dr

However, as it can straightforwardly be observed from (1.5), the components of the
p1p2—dimensional Gaussian process vec (E (,u)) are not generally independent. This

observation has some consequences regarding the implementation of the test. In
particular, it will imply that to find a time transformation, say ¢ (), such that

vec (E (g (w))) is a p;py—dimensional vector of independent Brownian processes is

not easy, if at all possible. Although, two situations where a transformation g (u) can
be found are a) K (yq, i15) is a diagonal matrix and b) K (uy, ty) = min (uq, py) §2 for
some positive definite matrix €2, these situations are exceptions rather than the rule.

The above comments indicate that the results of Theorem 3.2 below may generally
be of limited use in order to implement the test for Hy when p; and/or py are greater
than one. Although it may be possible to simulate the limiting distribution, this
approach can be very demanding and in addition it will require the computation of
new critical values everytime a new model is under consideration. Therefore, the
main objective of the paper is to examine how to circumvent the problem by using
a bootstrap approach to test Hy. In particular, we show that a combination of Wu’s
(1986) Wild or external Bootstrap and Kiinsch’s (1989) Moving Block Bootstrap
(MBB) is consistent. This will justify and permit us to obtain estimates of the
critical values of any continuous functional of T%/2S; (1) employed to test Hy.

The remainder of the paper is as follows. In section 2 we describe the estimation
technique for the matrices ¢ (j). In section 3, we delimit our statistical framework
and present the asymptotic behaviour of T%/2S7 (1). In section 4 we describe the
bootstrap and we examine its asymptotic properties. In section 5 we give the proofs
of our results in sections 3 and 4 which use some technical lemmas provided in section
6.

2. THE ESTIMATION OF c(j)

In this section we describe the estimation of the matrices ¢ (j) in (1.2) and discuss
why it is more desirable than other approaches, such as the least squares (LSE)
estimates, in the presence of long-range dependence. In the frequency domain, the
lag structure given in (1.2) is described by the frequency response function C (\) =
S __c(j)e ¥r So c(j) is interpreted as the jth Fourier coefficient of C' ()\) =

Jj=—00
fyr (/\) fr_rl (/\)7 that iS)
27 B
c(j)=0@m)t [ C(\) e, (2.1)
0
where fy, (M) and fz, (A\) are the indicated elements of the spectral density matrix,
Sfww (M), of w; defined from the relationship

E (w1 — Bwy) (wjp1 — Bw1)') = [ fuow (A e 7N j=0,+1,+2, ...

—T



Due to the interpretation of ¢ (j) in (2.1), Hannan (1963, 1967), see also Brillinger
(1981), proposed to estimate ¢ (j) by the sample (discrete) analogue of (2.1),

1 2M—1 B
c() =537 D Compe e, (2.2)
p=0

where 6'2mp = J/(\'yfanme_ml,Qmp7 and fymgmp and fmgmp are estimates of fyz 2mp and

Sz, 2mp Tespectively given as the indicated elements of (2.3) below, and where hence-

forth we have abbreviated g ()\,) by g, for a generic function g (). The estimator

¢(j) in (2.2) was coined by Sims (1974) as the HI (Hannan’s inefficient) estimator.
We estimate fi by

1 m
[wu) 1 5 2
5T 2 Low ) (2:3)

j=-m

J?ww (/\) =

. . /
where I, (\) = (QWT)_l (Zthl wte’”‘) (Zthl wte_m‘) is the periodogram of {w;}
and where m is as defined in Section 1.
When analyzing the HI estimator in (2.2), and similar to technical problems en-

countered in many other non/semi-parametric estimators, as f,, (0) tries to estimate
fzz (0) which may be infinity, as in Hidalgo (1999) we modify (2.2) by

/
1 PN .
=57 > i X2mp 2.4
c (.]) oM p CQmpe ’ ( )

where Zifl_l / PompeI?>m» denotes Zifl_l Pomp€ 22> + by, Intuitively, we have
replaced the estimator of Cy by that of Cs,,, that is ‘]/(\'ym’Qm ;ml’Qm.

The motivation of the estimator in (2.4) is threefold. First, the statistical prop-
erties hold the same irrespective of the number of lags specified in (1.2), which have
important consequences when analyzing the properties of St (1) defined in (1.4). Sec-
ond, since there is no gain by exploiting the information on the covariance structure
of the errors u;, as Sims (1974) showed, the HI estimator becomes as efficient as the
generalized least squares (GLS) estimator. This motivates the LSE of ¢ (j) given in
Robinson (1979), although under stronger assumptions than those we want to impose
in this paper.

Finally, the third motivation, which makes the estimate in (2.4) more appeal-
ing when the data may exhibit long-range dependence, is as follows. Assume, for
expositional simplicity, that p; = po = 1 and that model (1.2) is

o~

q
Y = Z c(a—j+w, t=1,..,T, (2.5)

j=—r

where both ¢ and r are finite and known a priory. When the data is short-range
dependent, it is known that, under suitable conditions, the LSFE is root-T" consistent
and asymptotically normal. However, under long-range dependence, as Robinson
(1994) observed, when the joint long-range dependence in the regressor z; and error
uy is sufficiently strong, that is the product of the spectral density functions of z;
and u; is not integrable, the LSE is no longer root-1" consistent and asymptotically
normal.



Motivated by this observation, Robinson and Hidalgo (1997) showed that a class
of frequency-domain weighted LSFE, including GLS (with parametric error spectral
density function) as a special case, is root-T" consistent, asymptotically normal and
Gauss-Markov efficient in model (2.5). More generally, their results are also valid when
¢ (j) is known up to a set of parameters 6, that is ¢ (j) = ¢ (j;0) for all j, in (1.2). The
intuition why the estimator in Robinson and Hidalgo (1997) is root-T" consistent and
asymptotically normal is because the weighted function possesses a zero sufficiently
strong to compensate for the singularity of the spectral density function induced by
the collective long-range dependence of x; and w;. So assuming that f,. (\) has a
singularity at the origin, f,! (\) will possess a zero at A = 0, and we can expect

that A;ml’p becomes (asymptotically) a weighted function satisfying the conditions of

Robinson and Hidalgo (1997). In fact, in Theorem 3.1 below, we show that the HI
estimator in (2.4) achieves the root-T' consistency and asymptotic normality, so that
the HI estimator is indeed a desirable estimator.

3. THE ASYMPTOTIC PROPERTIES OF (2.4) AND (1.4)

Let 2, = (w],u;)" and for g,h = 1,...,p+p1, denote by fy1, (A) the (g, h) th component
of the spectral density matrix of z;, defined from the relation

E((z1 — Ez1) (zj41 — Ez1)) = [ foo (Ve XA j=0,+1,+2, ...

—T

Let us introduce the following conditions:

Condition C1 For all g = 1,...,p + p1, there exist C; € (0,00), dy € [0,1/2) and
a € (0,2], such that

fog A) = CoA™2% (140 (M%) as A — 0+

and |f,q (A)] > 0 for all A € [0, 7).
1/2 1/2
Let us define the coherence between z;4 and zy, as Rgn (A) = fgn (A) / ( 90 (N) fuh (/\))

Condition C2 For all g < h =2,...,p+ p1, |Rgn (A)| is twice continuously differen-
tiable in any open set outside the origin and for some 3 € (1, 2],

|Rgn (\) — Ry (0)] :O(Aﬁ) as A — 0+ .

) / . . .
Condition C3 {w;} = {y},z}} and {u;} are covariance stationary linear processes

defined as
oo 00 ) > 2

we= Beey, D187 <oo anduy =) Bfeniy || < oo,
§=0 j=0 =0 =0

where @y and ®Y are the identity matrices and || D|| stands for the norm of the
matrix D. Finally {z;} and {u;} are mutually independent.



Condition C4 {e;} is a stochastic process that satisfies E (e |Fi—1) = 0,
E(eiey|Fio1) = E(erey) = E as., E(e1j,6tj2t55 | Ft—1) = H3,4, jp.js Such that
|,u3’j1’j2’j3| < oo for all j1, j2, js where F; is the o-algebra of events generated
by 5,5 < t, and the joint fourth cumulant of €4,;,, ji = 1,...,pand i = 1,...,4
satisfies

Ky josdang li=lya=1l3=14
— J1,72,73,74° Y

CUNL (€41 31 3 Etoins Etadinys Etaiy) = )
(Et11> Etajar Etasar Etaia) { 0, otherwise,

with k£ = maxj,—1, . pi=1,...4 [Kj,jajs.54| < OO

Condition C5 {e, .} is a stochastic process that satisfies F (g, |Fi—1) =0,
E (euucl i |Fic1) = E (eupel ) = Euas, E (St Cutinutis [Fi=1) = M3 jy ja.js
such that |,uu’3’j1’j2’j3| < oo for all j1, jo, js where F; is the o-algebra of events
generated by €, ,5 < t, and the joint fourth cumulant of €,4,5,, js = 1,...,p1
and i =1, ..., 4 satisfies

Ku,j1,52,58,54> t1 =1 =13 = t4,
cum (EU,tljl y Eustajor Eutsgss 6U,t4j4) = e ;
0, otherwise,

With k£, = maxj, =1, py,i=1,...4 [Ku,ji ja,js.ja| < OO

Condition C6 ||(8/0X)® (M) = O (||® (N)]| /N) and
1(@/0XN) @* (N)|| = O (|]@* (N)|| /A\) as A — 0+, where

o0

O\ =) ®e?* and " (N) =D e,
j=0 j=0

such that [|® (A)|| > 0 and ||®" (A)|| > 0 for all X € [0, 7] and twice continuously
differentiable in any open set outside the origin. In addition, for allg =1, ...,p+

D1, fg_gl/2 (A)ny (A) is a non-zero finite vector, where 7, (\) denotes the gth row
of diag (® (), d™ (V).

Condition C7 |c(|j])|| = O (|j|_3+7/2) for some 0 < 7 < 1.
Condition C8 M?T~! + M™*T — 0 with 7 as in C7.

Conditions C1-C2 deal with the behaviour of f,, () and they are the same as in
Robinson (1995a,b), so his comments apply here. Conditions C3-C5 are restrictive
in the linearity they impose, but not otherwise. The requirement of independence
between z; and u; in C3, as in Robinson and Hidalgo (1997), is necessary for the
proof of asymptotic normality of (2.4). We believe that it might be possible to re-
lax this condition to some extent, but that will enormously complicate the already
technical proof given in Robinson and Hidalgo (1997). Condition C6 is similar to
that in Robinson (1995a,b). The second part of the condition is not strong, see for
instance the comments made after (3.1) below, once A% is identified as fg_gl/ * up to
constants there. Condition C7 implies that the first derivative of ||C' ()] is Liptchitz
continuous with Liptchitz parameter in the interval (0,1 — 7/2). Condition C8 gives
the admissible values of M. Specifically, the rate of increase of M to infinity cannot
be slower than 7°'/(4=7) or faster than T/2~¢ for arbitrarily small § > 0.



Examples of processes satisfying C1-C6 are as follows. Let &, be a p—dimensional
unobservable covariance stationary linear process which possesses a continuous and
bounded away from zero spectral density matrix and consider the filter

ZG )& (3.1)

Let Gy (A) denote the gth row of the matrix G'(\) = 372G (j)e”* such that

Gy (N) A% tends to a non-zero finite vector as A — 0+, for ¢ = 1, ..., p. For instance, let
&, be a stationary invertible vector autoregressive moving average (VARM A) process
with ¢¢d innovations and let each w;, be formed by separate fractional integration of
the corresponding £, element, so that

G(/\) _ dzag ((1 - ei)\>—d1 - (1 . ei)\>—dp) .

Then C1-C6 hold. This model is an extension to the vector case of the familiar
fractional autoregressive moving average (ARFIM A) model, see for instance Granger
and Joyeux (1980) or Hosking (1981). Another model which exhibits long-range
dependence is the fractional Gaussian noise (fgn) process introduced by Mandelbrot
and Van Ness (1968), whose spectral density function, see Sinai (1976), is

402 T (2d) —2md

f) = (27r)3+2d

cos (md) sin? (\/2) Z ‘j+—

j=—00

where 02 = E (w; — E (w;))? < 00 and T'(-) denotes the gamma function.

Theorem 3.1. Assuming C1-C8, for any finite collection ji,...,J

(i) T2 (wee (2 G1) ¢ (i) vee (2 (i) —c () 4 N (0,2 =2y}, e, )
where

Ba=em ™ [ U2t N8 () 6000

-7

which corresponds to the asymptotic covariance matriz between vec (¢ (jr)) and vec (¢ (je))-
(ZZ) Let fuu 2mp *fyy 2mp _fyz Qmpfgm Qmpfzy —2mp - A consistent estimator Of .Q] Jes

rd=1,..4q,1s

2M—1
Z £ i(Jr—3¢) A2m,
J7]£ ,QM ( T _Qmp®fuu,2mp) € ¢ "

The asymptotic properties of the estimator given in (2.2) were first established
by Hannan (1967) for a finite, possibly of unknown order, distributed lag model and
Brillinger (1981) for the infinite distributed lag regression model, when both fy, (A)
and fy,, (A) are bounded and bounded away from zero, whereas Hidalgo (1999) under,
possibly, the presence of long-range dependence did the same for that in (2.4).

Let us introduce an additional condition.

Condition C9 ||z||* and ||u;||* are uniformly integrable.



Observe that a sufficient condition for Condition C9 is that for some § > 0,
sup, (Bl + B flue| ") < oc.

Let
1 [Mp] 0
_ Al 1Y o—iiA2mp
St (1) =Re Mquec | Z c(j—1)e "7
p=1 j=—M+1

Theorem 3.2. Assuming C1-C9 and ¢ (j) given in (2.4), under Hy,

T2 80 (1) " vee (B ()

in DP1P2 [0, 1] endowed with the Skorohod metric, where vec (E (,u)) 1S a PipP2-

Gaussian process with covariance structure given in (1.5).

Now we elaborate on the results of Theorem 3.2. When p; = p = 1, and because
the function K (u, p) given in (1.5) is nondecreasing and nonnegative, B (u) admits
the representation B (K (u, i) in distribution, where B (1) is the standard Brownian
motion in [0,1]. This observation, Theorem 3.2 and the continuous mapping theorem
yield

sup |TV285p ()| = sup  |B(0)|=K"*(1,1) sup |B(u)| inlaw.
nefo,1] ne0,K(1,1)] nel0,1]

Let K (1, 1) be the consistent estimate of K (1, 1) defined as

N 1 (Mp] N
K (,LL,/.L) = m ( m_ml,—Qmp ® fuu,Qmp) :
p

=1

Then, for example, the Kolmogorov-Smirnov test based on T%/2S; (1) would reject
the null if sup {I?‘UQ (L 1) |TY2S7 (W)|, 1 € [0, 1]} exceeded an appropriate critical
value obtained from the boundary crossing probabilities of a Brownian motion, which

are readily available on the unit interval. More generally, see for example Koul and
Stute (1999), as

B2 (1,1) T8, ((f? () <t>) weakly 3 ()

~ -1 ~
where (K (,u,,u)) (t) = inf {,u €10,1], K (i, ) > t}, the limiting distribution of

N N -1
any continuous functional of K ~1/2 (1,1) T"/2Sy <(K (u, ,u)) (t)) can be obtained

from the distribution of the corresponding functional of B (x) on [0, 1].
However when p; and/or ps are greater than one, a time transformation g (u)

such that vec (E (,u)) admits the representation vec (B (g (1))), where B (u) has in-
dependent Brownian motions components, is not generally available. Two situations
where this transformation is possible were described in the introduction. Namely, 1)

when K (uq, to) = min (i, po)  where € is a positive definite matrix, and 2) when
K (pq, po) is a diagonal matrix. For the latter, see for example Karatzas and Shreve



(1991) Theorem 3.4.1 for the construction of such a transformation. However, these
two situations are exceptions rather than the rule. Thus, the results of Theorem 3.2
are somehow of limited use for the purpose of statistical inference. Although, in prin-
ciple, the limiting distribution could be simulated, since it is non-distribution free, it
would imply that a practictioner would need to compute critical values everytime a
new model is under consideration. We propose to bootstrap T/2Sy () to circumvent
the potential problem of how to implement the test in empirical examples.

4. A BOOTSTRAP APPROACH TO T'2S; (u)

Since Efron’s (1979) seminal paper on the bootstrap, an immense effort has been
devoted to its development. The primary motivation for this effort is that it has
proved to be a very useful statistical tool. We can cite three main reasons. First,
bootstrap methods are capable of approximating the finite sample distribution of
statistics better than those based on their asymptotic counterparts. Second, it is
its ability to work in complex situations without imposing strong assumptions on
the data mechanism process. And third, and perhaps the most important, it allows
computing valid asymptotic quantiles of the limiting distribution in situations where
1) the limiting distribution is unknown or 2) even known, the practitioner is unable
to compute its quantiles.

In the present paper we address the latter situation. Following our comments
at the end of the previous section, the aim of this section is to propose a bootstrap
procedure for T'/2S7 (1) based on a combination of Wu’s (1986) Wild or External
bootstrap and Kiinsch’s (1989) Moving Block Bootstrap (M BB).

We now describe the bootstrap. Let ¢r (j) denote the estimator of ¢ (j) in (2.4)
and let n = n (T') be a number which increases slowly with 7. Consider L =T —n+1

groups of size n, where the ¢th group has observations w (¢) = (wé, ...,w;ﬁe_l)/.

Let us introduce the periodogram of w (¢), for £ =1,..., L,

Tsw (A 0) = hay (A, 0) Ry (N, 0)

where
1 l+4+n—1
it
ha (A, 0) :W > we™, (4.1)
P,

is the discrete Fourier transform and ”*” means transpose combined with complex
conjugation. Then, the spectral density matrix estimator of fy., using w (¢), for

¢=1,..., L, is defined by

J/c’\ww (/\7 é) =

1 m
Lpw (N + 0, 0), 4.2
2m+1j;m (N +A.0) (42)
where m = [n/4M (n)] with M (n) a positive number such that M (n)~'+n=1M (n) —
0 and \; = (275) /n, j = 0, %1, ..., % [n/2].
The bootstrap consists of three steps.

STEP 1 Compute ¢, (j;¢) as in (2.4) using w (¢), for £ =1, ..., L. That is,

2M(n)—1"

LS oy (O, (4.3)
p=1

Cn (j;0) = S ()




where Copmp () = fyz,2mp (0) ;ml’Qmp (0), and fyz 2mp (€) and frz 2mp (£) denote
the estimates of fyz omp and frz omp respectively given by the indicated com-
ponents of (4.2), and where we have abbreviated g (Aamp;€) by gomp (€) for a
generic function g ().

STEP 2 For all / =1,..., L, let us compute

nl/2 (M (n)u] 0 )
Pl =Re| o5 > vee| Y @G-LO-e (G-
p=1 j=—M(n)+1
(4.4)
And finally,
STEP 3 Compute the bootstrap statistic as
L
Ll/ 5> 9 One nel01] (4.5)
=1

where 7, is an 7id (0, 1) sequence of bounded random variables.

Remark 1. It is worth noting that we have used the same random variable n, for
every coordinate of vec (Zg:_M(n)H CG-1L0—cr(j—10)) e—ij’\Qmp). This is
crucial for the validity of the bootstrap. The reason comes from the observation that
if different random variables n, were used for each coordinate, unless vec (E (,u)) had
independent components, the latter bootstrap approach would destroy the covari-
ance structure of vec (E (,u)) and thus the validity of that bootstrap. In particular,

for ¢ =1,..,L, let n; = (77“, ---77712,;;>/ an iid sequence with mutually independent
components, and consider

L
1
=1

where for two vectors a and b, a ® b denotes multiplication of a and b coordinate by
coordinate. Then, proceeding as in the proof of Proposition 6.1, it is easily shown
that

NM$M$M3

/
(w), ) )

L
EZ ( O @n;) (Sn (1, 0) ® ;)
/=1

(1w}, - 0))

1 .
=7 Zdwg (Si (1,0)y 5, 2 (uyf)plm) - K (1),
=1
where g, denotes the qth component of a vector g. Moreover, proceeding as in the

proof of Theorem 4.1 below, LY/2S5 (1) ““&Y yec (B (1)), where vec (B (n)) has
independent components, which implies that vec ( (1)) # vec (B( ))

10



The resampling method must be such that the conditional distribution, given the
data, of the bootstrap test, say ¢ (S5 (1)), consistently estimates the distribution of

% (fuec (E (,u))) under Hy.That is, ¢ (S5 (1)) —a ¢ (fuec (E (,u))) in probability
under Hy, where “—4” denotes

lim Pr [ (57 (1) < 2/ 2] &G (2),
at each continuity point z of G (z) = Pr (cp (fuec (E (,u))) < z) as defined in Gine
and Zinn (1990). Moreover, under contiguous alternatives H,, ¢ (S4 (1)) must also
converge, in bootstrap distribution to ¢ (fuec (E (,u))), whereas under the alternative

Hy ¢ (S5 (1)) should be bounded in probability.
Before we study the statistical properties of the bootstrap statistic Si (u) given
n (??), let us introduce an additional condition.

C.10 n' + T 'nlog® T + n~'M? (n) — 0.

Theorem 4.1. let ¢ (-) be a continuous functional. Assuming C.1-C.10, under the
maintained hypothesis H = HyoUH ¢,

7 (LJ/QS} (,u)) LI (vec (B (,u))) in probabilty,

where vec (E (,u)) is a p;ps-Gaussian process with covariance structure given in
(1.5).

The first conclusion that we can draw from Theorem 4.1 is that the bootstrap
converges in probability to the same process whether or not the null hypothesis holds.
In addition, it also indicates that the bootstrap statistic given in (4.5) is consistent.
So, we can now justify the construction of confidence intervals to test Hy.

To that end, let ¢ () denote a continuous functional designed to test Hy, and let
ci’(l_a) and c‘(ll_a) be such that

Pr {‘cp (Tl/QST (,u))‘ > ci’(l_a)} =«

and
lim Pr{‘cp (Tl/QST (,u))‘ > c‘(ll_a)} =aq,

respectively. Then, Theorem 3.2 and the continuous mapping theorem indicate that
ci’(l_a) — c‘(ll_a), whereas Theorem 4.1 indicates that cfl_a) satisfy cfl_a) 2 c‘(ll_a)
where
Pr{‘cp (L1/2S} (,u))‘ > cfl_a)} =a.
Since the finite sample distribution of ¢ (Ll/ 2S5 (1)) is not available, 1oy 8
approximated, as accurately as desired, by a standard Monte-Carlo simulation al)go—
rithm. That is, let nl) = (ngj),...,n(Lj)) for j = 1,..., B, and for each j, compute

S;(j ) as in STEP 3. Then, cfl_a) is approximated by the value cff_a) that satisfies
1 & :
=31 (e (2259 )| 2 i) =
j=1

11



5. PROOFS

5.1. Proof of Theorem 3.2

Using the change of subindex —j by 7, we can write T'/2Sy (1) as

M—1 [Mpy]

Z vec | TV?¢(—j —1) Z elirzmp (5.1)
=0

M-1 . .
— wvec Tl/QE(—l)u+ZT1/26(—j—l)w (1+0(1))

)

since Re (M_1 Z;[;JLIT] eij’\QmP) e (m5)” " sin (wpf) uniformly in p € [0,1].
Writing

2M—1

aj—c(i) =537 O Furzmpfet amp€?mr, §= 0,4, M,
p=1

let €(j) = a; + H (j). So the right side of (5.1) is

M-1

vee (120t 3 T I ) (ko) )
j=1
= sin (7uj)
tvee | TV2H (L) p+ Y TV2H (—j — 1) ==L | (1 +0(1)).
Jj=1 ™

The second term of (5.2) is o, (1) uniformly in x, as we now show. From the proof of
Theorem 1 of Hidalgo (1999), uniformly in j, T'/2H (j) = O, (M~/?log M). So, by
the triangle inequality

M-1

sup | TV2H (~1)+ Y TV2H (— _q) () (5.3)

pE0,1] = ]

M-1
< o, (leM +KS lHTUZ‘H(—j—l)H:o (M—1/2log2M).
- M1/2 j p

i=1

So, to complete the proof it suffices to show that the first term of (5.2), that is,
M—1

vee | TV?a_1p + Z Tl/2a_j_1w

s
i=1 J

converges weakly to vec (E (,u)) But, since under Hy, ¢(j) = 0 for all j < 0, the
proof follows proceeding as that of Hidalgo’s (1999) Corollary 1, and thus is omitted.H

12



5.2. Proof of Theorem 4.1

The proof is split into three propositions. In Proposition 5.1 we show that the covari-
ance structure of the bootstrap process Si. (1) converges in probability to (1.5). In
Proposition 5.2 we show that the finite dimensional distributions converge to those of
vec (E (,u)), whereas in Proposition 5.3 we show the tightness condition. Then apply
the continuous mapping theorem to conclude.

Henceforth, we shall denote E* (-) as the bootstrap expectation, that is, for any
random variable Y, E* (Y) = E (Y |wy, ..., wr ).

Proposition 5.1. Under C1-C10, for all 0 < p; < uy< 1,

L L
1 1 ,

E (mZﬁ(m,f)nemzﬁwg,f)/m> = K (pg,p2) - (5.4)

=1 =1
Proof. Because 7, is a sequence of #id (0, 1) random variables, the left side of (5.4) is

1 L
z ﬁ(ﬂl7€)ﬁ(ﬂ27€)/ (55)
=1

So, it suffices to show that (5.5) converges in probability to K (p;, o).
First, proceeding as in the proof of Hidalgo’s (1999) Theorem 1,

@Cu(=i—L0)—er(=j—1) = an(=j— 1'4) —ar (—J' -1 (5.6)
+Hy (= - 10— Hr(=j—1)),
where
2M (n)—1

an (_.] - 176) - c( .] - 1 Z fum 2mp xTx 2mp ZJAQTnp,

2M —
ar (=j—1)—c(=j - 1) Z o (mp/M) f7.} (mp/ M) e/
and such that uniformly j, )
W2 (Hy (=) = 1;0) = Hr (=) = 1)) = 0, (M7 (m)log M (n)) . (5.7)
Using (5.6), (5.7) and the convention that x~!sin (ux) = u for x = 0, since uniformly

in u € 1[0,1], Re (M‘1 (n) Zgﬁn)”] eij’\QmP) 2 ? (mj) " sin (mju), we conclude

that the right side of (4.4), proceeding as in the proof of the second term of (5.2), is

M- sin (75 p)
> M Pvec(@n (—j = 1;0) —ar (—j — 1)) TJ“ + o0, (1)
Jj=0

M) -1 sin ()

= Y nMPvec(@n (—j— 1,0 —c(—j — 1)) TJ“ +o0,(1) (5.8)
j=0
o M(n)—1 ” ~ . . sin ()
—(n/T)"* Y~ TYvec(ar (—j —1) —c(—j — 1)) —==+0, (1)
=0 ™

13



The second term on the right of (5.8) is o, (1) uniformly in p as we now show.
First, proceeding as in the proof of Theorem 1 of Hidalgo (1999) and the uniform
integrability of ||z;]|* and ||ju||* we get that E T2 (@r (—j—1) —c(—j—1))|| < D
by Theorem A of Serfling (1981, p.32), where henceforth, D denotes a finite positive
constant. So the first absolute moment of that term is bounded by

pl/2 M-t nl/2

Dm Z j_l S DmlogM(n) = 0(1)
7=0

by C'10. On the other hand, proceeding as in the proof of Corollary 1 of Hidalgo
(1999), the first term on the right of (5.8) is

- 1/2 ~ . . sin (7 )
S 0t 2uec (@ (= 150) — e (—j - 1) T2
=0

T
M(n)—1 . .
£y e (— — 1) — e (— — 1)) 2L
ik ™
k—1 . .
= Y e (@ (- 10 - e(—j - ) 2 Lo, )
7=0

where the o0, (1) is uniform in g. (In fact, it was shown there that

M(n)—1 . .
Bsup| 3o ntuee (@ (~j— 1:6) — (- - 1), 2 o (1),
3 =k T

for s =1, ..., p1p2, where g5 denotes the sth coordinate of a vector g.)
So we conclude that (5.5) is

L
%Zbe (k1) be (1) + 0, (1), (5.9)
(=1
where
kot in (75 0)
be (u) = JZ:;nl/quec (@ (—=j—1;4)—c(—j—1)) %

To complete the proof, it suffices to show that the first term of (5.9) converges in
probability to K (uq,i5). To that end, without loss of generality, we focus on one of
the components of by (11;) be (115)", for example the (1,1) th.

Let K1 1 (9, i) denote the (1,1) th element of K (14, o) and be 1 (@) the first ele-
ment of by (u1). First, since n'/? (@, (—j — 1;£) — ¢ (—j — 1)) converges in distribution
by Theorem 1 of Hidalgo (1999), and by C9 is a uniformly integrable sequence then
E||n*?vec (@n (—j — 1;0) — c(—j — 1))”2 < D by Theorem A of Serfling (1981, p.32).
Thus proceeding as in Corollary 1 of Hidalgo (1999),

E (bex (p1) bex (pa)) — K1 (pg5 p12)

14



which implies by stationarity of (x},u})" that

L
E (% Zb‘ﬁl (1) be (HQ)) — K11 (g, 1) -

(=1

Next,

L 2 1 X
( Z (1) bea ( H2)> :ﬁ E(b?,l (Hl)b?,l (HQ)) (5.10)
=1
L
= 2 E

blﬁ :ul blﬁ (/"2) be,l (/"1) be,l (“2)) :
f =1<42

The first term on the right of (5.10) is

L
. Z{ (e (1) bet (1)) + E (8, () B (82, (1))
=
+cum (b (1) 5 06,1 (111) 5001 (12) 5 be,1 (112))} = O (L_l>

by Cauchy inequality, and because ‘E (b?’1 (,u))‘ < D and
lcum (be1 (11) , 00,1 (11) s b1 (f2) s bea (f2))] — 0 since by the uniform integrability
of ||lz.||* and |ju||* by C9 E [n'/2 (@ (=5 — 1;0) — c(—j — 1))”4 converges to that
of its limiting distribution, (a normal random variable), by Theorem A of Serfling
(1981, p.32).

To finish the proof of the proposition, it thus remains to show that the second
term on the right of (5.10) converges to K7 (i1, it5). But this term is

L

D AB (ber (1) byt (1)) B (beay (1) bea (1))

l1=1<lo
+E (bey 1 (1) bes 1 (12)) B (bey1 (p2) bes 1 (1) (5.11)
+E (bey 1 (1) bes1 (11)) B (bey1 (p2) bes 1 (1))

+eum (be, 1 (1) b1 (1) 5 bey 1 (1) 3 beg,1 (1))} -
The first term of (5.11) is

E
E

L 2 L
(%ZE@M (1) b %))) o (B e () b (1)) = Ky (o).

(=1

since by stationarity of x; and wuy,

L
%ZE (b (1) be (12)) = E (b1 (1) b1 (p2)) — Kux (11 po)
=1

proceeding as in the proof of Corollary 1 of Hidalgo (1999). The remaining three
terms of (5.11) are o(1) since by Lemmas 6.2 and 6.3 |E (bg, 1 (11) bey,1 (125))] — 0
if |61 — b3 > n and cum (be, 1 (pb1) s bes1 (1) , by 1 (g) s bey 1 (5)) — 0 for all 41 and

15



{5, using the same arguments as in the proof of the first term on the right of (5.10).
Thus, the second moment of the first term of (5.9) converges to the square of its
first moment, which implies that (5.9) converges in probability to K7 1 (14, ft5). This
concludes the proof of the proposition. |

Proposition 5.2. Under C1-C10, the finite dimensional distributions of S% (1) given
in (4.5) converge to those of vec (E (,u))

Proof. Fixed ¢y, ..., ¢, and p,,.
the limiting distribution of

q 1 L , 1 L q ,
Y b D8 (M e =17 D (Z@,w (up,e)> e,
p=1 =1 =1 \p=1

where £ is a p;ps;—dimensional finite vector. Because, conditional on the data,

<y ity By Cramer-Wold device it suffices to examine

W, (0) = ( ;1;:1 d)pﬁ/ﬁ (,up,é)) M, is a sequence of zero mean independent random
variables, by Proposition 5.1

L AR

2

q

Z ﬁK leyﬂp2>§> d)Pz'

So to complete the proof, we need to verify the Lindeberg’s condition, that is, for all
6>0

ZE* (W2 (IW )] > 6L1/2)) L) (5.12)

Assuming that |n,| < D, the left side of (5.12) is bounded by

L 2
%QZ D 6,E"0 (1, 0) I( W€ (11, 0) >D—16Ll/2>
(=1 [p=1
D2 | ’
< D680 () ( )
(=1 [p=1
q
LS 0,60 (1,.0) (Zw (11, €) )
=

proceeding as in the proof of Proposition 5.1. Then, let k — oo to complete the
proof. |
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Proposition 5.3. Under the same conditions of Proposition 5.2, the process

L
1 /
=1

is tight in probability.

Proof. Because the process belongs to the space D [0, 1], to show tightness it suffices
to check the moment condition

E* (120 (1) = Za (1)[") < [Gu (12 )] + 0, (1)

where

G (g, 19) = (G (pa) — G (Nl))Q + 0, (1)

where G () are nondecreasing functions on [0, 1] and where 0 < py < py < 1.
Because 7, is a sequence of bounded iid random variables with mean zero and
variance 1

L
B (120 (1) ~ Za 4):52 P, 0) =9 (. 0))* (5.13)

L
b S (€0 (tar 0) =9 (0, 00))) (€9 i ) — 0 (1, £2))))°

L1#Lo

The first term on the right of (5.13) is 0, (1) uniformly in 4 € [0, 1] as we now show.
First following (5.2) and (5.3), it is
4
RS (sin (mjty) = sin (jp)
SO 2w Pvec(n (< - 130 —e(=j— 1) 2SR o, (1)

™
=0 J

where the o, (1) is uniform in p. Next, proceeding as in the proof of Proposition 5.1
in the usual way,

M(n)—1

E Z nl/Q’UGC (an (_] _ 1’4) _ C(—j _ 1)) (Sin (ﬂ—quQ)ﬂ—_jSin (71—.]/-‘1)) <D

so that, as we can focus on p; and pu, of the type gM~t (n), ¢=0,1,..., M (n), from
the definition of ¥ (p, ¢),

| L M(n)—1 (sin (mjpy) — sin (7wjpy))
B sup — Z Z nl/Q,L)ec(an (—j—1;0) —c(—j—1)) JHa2 : JH1
My Nz —1 7=0 "
M@ L (M@)-1 (sin (7] po) — sin (7wjp,))
A~ 3 > 7r — 7r

< E) > M@ (—j — 10— e(—j 1) = 1
i (=1 =

< M@n)’L'D=o(1)
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since by C8 M? (n)n™! = o(1) and Ln~! — 1. So, the first term on the right of
(5.13) is op (1) uniformly in p € [0, 1].
So to conclude it suffices to show that the second term on the right of (5.13) =

G (i, 111) = (G (119) — G (1)) + op (1). But this is the case since that term is
bounded by

and it is straightforward to show that

L 2
(% D ((E W (112, 0) = 9 (11,0)))” = (G (1) - G(m))> — 0, (L")

=1

so that proceeding as with the proof of the first term on the right of (5.13) since by
C10 M? (n)n=! = o(1) and Ln~! — 1, we conclude that the second term on the
right of (5.13) is

(G (12) = G (111))* +0p (1)

where the o, (1) is uniform in p. The proof now follows since by C6, f.! (—=\)® fuu (N)
is an Hermitian matrix, so G (i) is nondecreasing. |

6. AUXILIARY RESULTS

Lemma 6.1. Let hy, j (€) denote the pth element of hy j (€) given in (4.1). Assuming
01_0107 fOT’ p,q= 1 yeey D1P2,

o
(a) Forl > n,E(hwp’j(l)hwq’_j(énO<%f$p/fp’jf$q/fq’j>

log j
(b) FOT’é S n; E (hwp,j (1) hwqa_j (€)> = wapwq1j+0 <Tf"1’p/fpajf"1’q/fqaj>

and for k < j,

(O B (s () 0) = 0 (1212 J202 tog (TS0 TSI S 20,

Proof. Let K (\) = (2mn) ' |21, ei”‘|2 be the Fejer kernel. Since ["_ €K (A — ;) d\ =
0 for ¢ > n, then

E (huw, j (1) hu,,—5 () ’ Fupuwg (V) €K (A= X;) dA
= [ s Q)= Fap, () €K (= )
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Now proceed as in the proof of Theorem 2 part (a) of Robinson (1995) to conclude
the proof of part (a). Observe that the term (j/T)“ which appears in that theorem
is due to the approximation given in C1 of, for instance, fu w, (A) by pr/\_Qd“’P,
which is not our case.

Parts (b) and (c) follow straightforwardly, proceeding as in the proof of Theorem
2 parts (a) and (c) of Robinson (1995) respectively. |

Remark 2. Observe that part (a) of Lemma 6.1 examines the behaviour of the finite
discrete Fourier transform for two samples with no common observations.

For notational simplicity, in the next two lemmas we will assume that both x; and
uy are scalars.

Lemma 6.2. Assuming C1-C6, and C8

ai/2 M-I ,  In/2Ad $+(do—dy)
z i o — z i A
M( ) g fuz?mpfzz,?mp I emp = nl/2 Z qusﬂ”s ! +O <(n) )
—M(n) s=—[n/2]

(6.1)

Proof. By definition of fumgmp, after straightforward calculations, the left side of
(6.1) is
| A

m Z [um,s m_ml (/\Qm([s/Qm]—i-l)) eijAQW([S/Qm]Jrl)
s=—[n/2]

[n/2]—1

- n1/2 Z [mﬁas m—ml,seij)\s (62)
s=—[n/2]
[n/2]-1

1 -1 2 iAs m m —As
_m Z [um,s zx,s€ / (1 - fmc sfmc (/\Qm([s/Qm]—i-l)) ( am{le/2mI+ 1) )) ’
s=—[n/2]

where [a] denotes the integer part of the number a.
So it suffices to show that the second term on the right of (6.2) is O, ((m/n)l/2+(dz_d“)).

First observe that f.! (/\Qm([s/Qm]H)) is a constant function for those s such that
pm+1<s<(p+1)m and for each p=—-M (n),..., M (n) — 1. Now, by symmetry,
the second term on the right of (6.2) is proportional to

[n/m]-1 [ (p+1)m

1 .
E E —1 _ijAs
nl/Q [um,s mm,se gs )

p=0 s=pm+1

where gs = fau,sfon (/\Qm([s/Qm]+l)> i(A2m(s/2m+1=2+) _ 1. The second moment of
the last displayed expression is

[n/m] 1 (p+1)m

Z E Z [UI sJzxx, s gs (63)

s=pm+1
9 [n/m]-1 (p1+1)m (p2+1)m
—1 _ijAs § —ijAs
+g E E E [TU’S mm,se” gs X [UI —sJax, —se “ g—s
p1=0<p2 s=p1m+1 s=pam+1
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By Lemma 6.1, the first term of (6.3) is bounded by n~! times

[n/m] [ (p+1)m (p+1)m

_ 2 - 10g2 S2
D Z Z fuu,sfmml,s |gS| + Z fmml,éffizé?slf&z/LQSQfmrlézgslg—SQ 52

s=pm+1 s1=pm+1<sy 1

[n/m]  149(dy—dy)
< Dlog’n Z o
p=1

7p2+2(du—dz) =0 (m (m/n)Q(dz_d“) log? n)

since by C1 and C6 |gs| < D|1—(s/m(p+1))| < D(p+1)"" for pm +1 < |s| <
(p+1)m, and D~IA; % < f,. . < DA;2%

Next, the second term of (6.3). By Lemma 6.1 part (a) and independence between
x; and u; by C3, that term is bounded in absolute value by n=! times

[n/m] (p1+1)m  (p2+1)m
1 1/2 p1/2 1/2 £1/2 10g 52
Z Z Z frm ,81 fuu slfmr,Squu So
p1=1<p2 Pip2 s1=p1m+1 sa=pam-+1 1
[n/m] 1 (p1+1)m  (p2+1)m 1 1
2(dy—dg) -
EERID DL D DEID D S
p1=1<p> s1i=p1m+1 sa=pam+1 °1 2

- 0 (m—l (n/m)l+(du—dz)) — Y (n (n/m)l/2+(du—dz)) ,

using C1 and C6 as above, and since n/m? = o (1) by C8. This concludes the proof
that the second term on the right of (6.2) is O ((m/n)l/2+(dz_d“)), and thus the

lemma. | |
Lemma 6.3. Assuming C1-C6, for £ > n,
[n/2] [n/2] .
Z fml Lpu,s s Z Tz, —s Lz, s (€) e~ kA
s=1
~0 (ng(d“_dI)I(du> dy) +7 (d,< d,)log? n)

Proof. The left side of the last displayed equality is

[n/2]
> F B (Leus (1) Lig s (€)) €079 (6.4)
s=1
[n/2] N '
42 3 G B (Tews, (1) L s, (0)) [} €72 7R
s1=1<so

By Lemma 6.1 part (a), C1 and because {z;} and {u;} are mutually independent by
C3, the first term of (6.4) is bounded in absolute value by

(n/2] lOg s [n/2] lOgQS
2(du—ds 2(du—dsy
mesf““ < Kt $2+2(da—dz) < Kn )

s=1

20



since d; < 1/2. The second term of (6.4) is by Lemma 6.1 part (c¢), bounded in
absolute value by

log S92 log” s2
Z frmlgffmmléffié?sl fl}l/l.252 + Z fmmlgf mmléz l}l/l.251 fil{QSQ —2

§1<582<2s7 2s51<82

< Kn*®=d)7(d, >d,) + I (d, <d,)log’n
since fm_mléf < Kf;mléf and fil/LQSQ < Kfil/fsl by C1 and C6. |

Remark 3. Lemmas 6.2 and 6.3 implies that estimators of ¢ (j) given in (4.3) are as-
ymptotically independent if they employ two groups of observations with no common
elements.

Lemma 6.4. Assuming C1-C10, for k <n </,

k—1 . ( )
{(; @ (=) = 1:1) —e( j—ﬂ)%)

k—1 . .
x (Z <an<—j—z;€>—c<—j—z>>w>} o(1).

j=0
Proof. The proof is immediate, since by Lemmas 6.2 and67.3
El(@n (=j = L1) —c(=j = 1)) (@ (=j = 1;0) —c(=j = 1))]
O (nQ(d“_dI)_l log2 nZ (dy > d)+n"" log4 nZ (d, < dm)) ,
and Zk 1j~1 < Dlogk < Dlogn and 0 < d,,,d, < 1/2. [ |

Remark 4. Again, as in part (a) of Lemma 6.1, the last lemma indicates that the HI
estimators of ¢ (j) using two samples with no common observations are asymptotically
uncorrelated.
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